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1 Introduction and summary

N = 2 supersymmetric string theories are known to possess supersymmetric configurations

involving multiple black holes [1–4]. An interesting problem is to compute the spectrum of

BPS states of this multi-centered configuration. A useful quantity that encodes informa-

tion about not only the total number of states but also the angular momentum J3 carried

by the states is the refined ‘index’ Ωref(γ; y, z) ≡ Tr ′(−y)2J3 . Here the trace is taken over

all states carrying a given total electric and magnetic charges, collectively denoted by γ,
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after factoring out the trace over the degrees of freedom associated with the center of mass

of the system. The parameter z refers to the dependence on the values of the moduli at

spatial infinity, which is governed by the well-known wall-crossing formulaes [5–7]. For

y = 1, Ωref(γ; 1, z) reduces to the usual index Tr ′(−1)F , or equivalently the second helicity

supertrace [8, 9].1

Recently, drawing inspiration from various other related studies [6, 7, 11–14], we pro-

posed a specific formula for the refined index Ωref(γ; y, z) carried by a multi-centered black

hole system in terms of the refined index ΩS
ref(α; y) of single centered black holes [15]. One

of the virtues of this formula is that it incorporates the full dependence on the asymp-

totic moduli consistently with wall-crossing, leaving only moduli-independent coefficients

ΩS
ref(α; y) to be determined. On the other hand, at a fixed point in moduli space, the for-

mula does not directly give any information on Ωref(γ; y), since the number of input vari-

ables — the single centered refined index ΩS
ref(α; y) for each charge vector α — is equal to

the number of quantities to be computed — the total index Ωref(γ; y) for each charge vector

γ. However the formula becomes significant when combined with the observation that single

centered supersymmetric black holes must carry strictly zero angular momentum [16–18]

and therefore ΩS
ref(α; y) must be independent of y. This drastically reduces the number of

input parameters to a single constant for each charge vector α, in terms of which the formula

of [15] expresses the refined indices Ωref(γ; y, z). This gives predictions for the y dependence

of the refined index of multi-centered black hole configurations in N = 2 supersymmetric

string theories, which could be tested if the same index was computable by other means.

Unfortunately at present we do not have an independent way of computing the re-

fined index of general multi-centered black hole configurations in N = 2 supersymmetric

string theories. However we can construct a subset of these black hole micro-states in

type II string theory compactified on Calabi-Yau spaces as bound states of elementary

D-branes wrapped on various cycles of the internal space. When the central charges of the

constituents nearly align, the dynamics of this system is described by an N = 4 supersym-

metric quiver quantum mechanics [2] containing vector and chiral multiplets characterized

by a superpotential and a set of Fayet-Iliopoulos (FI) parameters. When the FI parameters

are large the vector multiplets can be integrated out and the dynamics is described by an

effective theory for the chiral multiplets. The refined index Ωref(γ; y) is determined by the

Poincaré polynomial of the moduli space M of classical vacua of this effective theory, also

known as the Higgs branch, which can often be computed explicitly.

On the other hand when the FI parameters are small, the dynamics of the theory

can be described by an effective theory of the vector multiplets, with the chiral multiplets

integrated out. This effective theory — known as the Coulomb branch theory — turns

1While the index Tr ′(−1)F is protected and depends only on the values of the vector multiplet scalars z

at infinity, the refined index Ωref is not and may depend on both the vector multiplet (VM) and hypermulti-

plet (HM) scalars. In particular, it need not be the same at strong and weak coupling, yet it is expected that

the dependence on the VM scalars obeys the motivic wall crossing formula of [5–7] in both regimes [6]. In this

paper as in [6, 15], we work at fixed value of the HM scalars. In N = 2 gauge theories, a variant of the refined

index known as the protected spin character does exist, thanks to the existence of a SU(2) R-symmetry [10].

We expect that our formulae also apply in this case with Ωref replaced by the protected spin character.
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out to be identical to the quantum mechanics of multi-centered black holes. Naively, if r

is the total rank of the gauge group of the quiver quantum mechanics, one would expect

the Coulomb branch theory to describe a system of r black holes (some of which could

be identical), with each center carrying charge α associated to one of the nodes and unit

degeneracy ΩS
ref(α) = 1. While this is indeed so for quivers without closed loops, this

prescription however fails to reproduce the full spectrum computed from the Higgs branch

in cases where the moduli space of the Coulomb branch has singularities associated with

so called scaling solutions, where three or more centers can come arbitrarily close to each

other [4, 19]. In such cases, the general formula proposed in [15] allows to compensate

for this failure by adding to the naive Coulomb branch result contributions from multi-

black hole configurations with less than r centers, with the new centers carrying composite

charges. The contribution from these new configurations are parametrized by the single

centered black hole indices ΩS
ref(α) carried by the new centers. This general formula can

then be compared with the Poincaré polynomial of the Higgs branch. Again, since Ωref(γ; y)

is not protected, there is a priori no guarantee that the Higgs and the Coulomb branch

results for Ωref(γ; y) should agree. Nevertheless our analysis of several examples shows

that the two results do agree, indicating that this quantity is more robust than what naive

arguments based on supersymmetry would suggest.

From the description given above it is clear that in order to be able to carry out the com-

putation of Ωref(γ; y) on the Coulomb branch, there should exist a notion of ‘single-centered

micro-states’, which carry zero angular momentum and whose existence is independent of

the moduli at infinity, such that their refined index ΩS
ref(α) be independent of both y and z.

Recent work indicates that this role may be taken by a subset of micro-states described by

the middle cohomology2 of the Higgs branch [19, 20]. Indeed, such states are invariant under

the Lefschetz SU(2) action on the total cohomology H∗(M,Z), which realizes spatial rota-

tions in real space. Moreover, these states appear to be robust under deformation of the su-

perpotential and under wall-crossing, unlike the rest of the cohomology which jumps across

walls of marginal stability. In fact, it has been observed, in the special case of the three-

node quiver with a loop, that the complement of the middle cohomology is in one-to-one

correspondence3 with states on the Coulomb branch of the quiver quantum mechanics. In

contrast a subset of the the middle cohomology states have no counterpart on the Coulomb

side, hence deserving the name of ‘pure Higgs’ or ‘intrinsic Higgs’ states [19, 20]. The only

way to incorporate these states in the Coulomb branch analysis is to add their contribution

by hand as the contribution from single-centered black holes, thereby forcing us to identify

the micro-states of single centered black holes with pure Higgs states. In this paper, we

shall give evidence that a generalized version of these properties continues to hold in a large

class of quivers, including quivers with more than one loop or non-Abelian gauge groups.

2For brevity, we use the phrase ‘middle cohomology’ to refer to the part of Hd(M,Z) which is invariant

under SU(2) Lefschetz rotations, where d is the complex dimension of M.
3For quivers without loops, such that all charge vectors lie in a two-dimensional plane, this equivalence

was proven at the level of refined indices in [21]. We believe that the assumption that all charge vectors lie

in a two-dimensional plane could be relaxed.
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For the reader’s convenience we shall now summarize our prediction for the Poincaré

polynomial of quiver moduli spaces. Let us consider a quiver with K nodes, carrying

U(N1)× U(N2)× · · ·U(NK) gauge group, and a number γℓk of (Nℓ, N̄k) representation of

U(Nℓ) × U(Nk). A negative γℓk indicates −γℓk = γkℓ number of (N̄ℓ, Nk) representation

of U(Nℓ)× U(Nk). Also let cℓ be the Fayet-Iliopoulos (FI) parameter associated with the

Abelian factor at the ℓ-th node, subject to the condition
∑

ℓNℓcℓ = 0. Such a quiver is

pictorially represented by γℓk arrows connecting the node ℓ to the node k, with the arrows

being directed from ℓ to k if γℓk is positive. The construction of the quiver moduli space be-

gins by introducing a set of complex variables φℓk,α,ss′ for every pair ℓ, k for which γℓk > 0.

Here α runs over γℓk values, s is an index labelling the fundamental representation of U(Nℓ)

and s′ is an index representing the anti-fundamental representation of U(Nk). The moduli

space of classical vacua is the space spanned by these variables {φℓk,α,ss′} subject to the

following D-term and F-term constraints:

∑

k,s,t,s′

γℓk>0

φ∗
ℓk,α,ss′ T

a
st φℓk,α,ts′ −

∑

k,s,t,s′

γkℓ>0

φ∗
kℓ,α,s′s T

a
st φkℓ,α,s′t = cℓ Tr (T

a) ∀ ℓ, a ,

∂W

∂φℓk,α,ss′
= 0 . (1.1)

Here T a’s are the generators of the U(Nℓ) gauge group, and W is a gauge invariant super-

potential holomorphic in the variables φℓk,α,ss′ . For every closed loop in the quiver we can

construct gauge invariant polynomials by taking the products of φℓk,α,ss′ along the closed

loop and the superpotential W is an arbitrary linear combinations of such gauge invariant

polynomials. Besides the constraints given in (1.1), the variables {φℓk,α,ss′} are also subject

to identification under the
∏

ℓU(Nℓ) gauge transformations. The resulting manifold M,

which we refer to as the quiver moduli space, describes the space of classical vacua on the

Higgs branch of the supersymmetric quantum mechanics. The associated refined index

Tr ′(−1)2J3 is given by the Laurent polynomial

Q(M; y) = (−y)−dP (M;−y) =

2d∑

p=1

bp(M) (−y)p−d (1.2)

where d is the complex dimension of M, the bp’s are its topological Betti numbers, and

P (M; t) =
∑2d

p=1 bp(M) tp is the Poincaré polynomial. The analysis of this paper gives an

algorithm for computing Q(M; y) as follows.

We first assign to each node ℓ a basis vector γℓ = (0, . . . , 1, 0, . . . ) in an abstract vector

space Z
K , and introduce a symplectic inner product4

〈γ, γ′〉 ≡ (γ′, γ)− (γ, γ′) , (γ, γ′) ≡
K∑

ℓ=1

nℓn
′
ℓ −

K∑

ℓ,k=1
γℓk>0

nℓn
′
kγℓk, (1.3)

4The quadratic form (γ, γ′) and vector β are known in the mathematical literature on quivers as the

Euler form and dimension vectors. We consider the dimension vector and FI terms to be part of the data

of the quiver, in deviance from mathematical practice.
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between the elements β =
∑K

ℓ=1 nℓγℓ. It follows that for the basis vectors, 〈γℓ, γk〉 = γℓk.

We denote by Γ ⊂ Z
K the collection of vectors β =

∑K
ℓ=1 nℓγℓ where nℓ are non-negative in-

tegers, and by Cβ the hyperplane
∑K

ℓ=1 nℓcℓ = 0 in the space of real vectors c =
∑K

ℓ=1 cℓγℓ ∈

R
K . To any vectors β ∈ Γ and c ∈ Cβ , we associate a quiver Q(β, c) with K nodes, γℓk

arrows connecting the node ℓ to the node k, gauge group U(n1)×U(n2)×· · ·U(nK), and FI

parameters {c1, · · · cK}. If some of the nℓ’s vanish we just drop the corresponding nodes.

This construction produces a family of quivers which contains the original quiver

Q(γ, c) with γ =
∑

ℓNℓγℓ as a special case. Let Q(γ; y) be the corresponding Laurent

polynomial introduced in (1.2). Our conjectured formula for Q(γ; y), which we shall often

refer to as the Coulomb branch formula, takes the form:

Q(γ; y) =
∑

m|γ

µ(m)m−1 y − y−1

ym − y−m
Q̄(γ/m; ym)

Q̄(γ; y) =
∑

n≥1

∑

{αi∈Γ},
∑n

i=1 αi=γ

1

Aut({α1, α2, · · · , αn})
gref (α1, α2, · · · , αn; y)

×
n∏

i=1





∑

mi∈Z

mi|αi

1

mi

y−y−1

ymi − y−mi

(
ΩS
ref(αi/mi; y

mi)+Ωscaling(αi/mi; y
mi)
)




, (1.4)

where µ(m) is the Möbius function, Aut({α1, · · ·αn}) is given by
∏

k sk! if among the set

{αi} there are s1 identical vectors α̃1, s2 identical vectors α̃2 etc., and m|α means that

m is a common divisor of (n1, · · · , nK) if α =
∑

ℓ nℓγℓ. The factor gref(α1, α2, · · · , αn; y),

which we shall call the ‘Coulomb index’, is (the bulk contribution to) the refined index of

the quantum mechanics of n charged particles. It is equal to 1 for n = 1 and

gref(α1, . . . , αn; y) = (−1)
∑

i<j αij+n−1

[
(y − y−1)1−n

∑

p

s(p) y
∑

i<j αij sign[xj−xi]

]
for n≥2

αij ≡ 〈αi, αj〉 . (1.5)

Here the sum over p runs over all solutions to the system of n − 1 independent algebraic

equations in n− 1 unknowns x2, . . . xn,

n∑

j=1
j 6=i

αij

|xi − xj |
= ĉi , xi ∈ R , for 1 ≤ i ≤ n , (1.6)

with x1 fixed to any value, and s(p) = ±1 is a certain sign given in (2.3). The prescriptions

for enumerating the solutions to (1.6) are detailed in section 2. The coefficients ĉi are

determined in terms of the FI parameters ci by ĉi =
∑

ℓAiℓcℓ whenever αi =
∑

ℓAiℓγℓ.

From the restriction
∑

i αi = γ and that
∑

ℓNℓcℓ = 0 it follows that
∑

i ĉi = 0, as required

for the consistency of the equations (1.6).

The symbols ΩS
ref ’s appearing in (1.4) represent the refined indices of single centered

micro-states and are given as follows. First of all we have ΩS
ref(γℓ; y) = 1 for 1 ≤ ℓ ≤ K.

For any other β ∈ Γ, ΩS
ref(β; y) is an unknown y-independent constant. For reason that

– 5 –
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will become clear soon we shall refrain from setting ΩS
ref(β; y) = ΩS

ref(β) until we determine

the functions Ωscaling. The latter are expressed recursively in terms of ΩS
ref through

Ωscaling(α; y) =
∑

{βi∈Γ},{mi∈Z}
mi≥1,

∑
i miβi=α

H({βi}; {mi}; y)
∏

i

ΩS
ref(βi; y

mi) , (1.7)

where the functions H({βi}; {ki}; y) are determined as follows. Firstly, when the number

of βi’s is less that three, H({βi}; {ki}; y) vanishes. For three or more number of βi’s, we

note that the expression for Q(
∑

i kiβi; y) given in (1.4) contains a term proportional to

H({βi}; {ki}; y)
∏

iΩ
S
ref(βi; y

ki) arising from the choice m = 1 in the first equation in (1.4),

n = 1, α1 =
∑

i kiβi, m1 = 1 in the second equation in (1.4), and mi = ki in the expression

for Ωscaling(
∑

i kiβi; y) in eq.(1.7). We fix H({βi}; {ki}; y) by demanding that the net co-

efficient of the
∏

iΩ
S
ref(βi; y

ki) in the expression for Q(
∑

i kiβi; y) is a Laurent polynomial

in y. This of course leaves open the possibility of adding to H a Laurent polynomial. This

is resolved by using the minimal modification hypothesis, which requires that H must be

symmetric under y → y−1 and vanish as y → ∞ [15]. We determine H({βi}; {mi}; y)

iteratively by beginning with the H’s with three βi’s and then determining successively

the H’s with more βi’s. ΩS and H are expected to be independent of the FI parameters

and hence can be calculated for any value of these parameters. From the algorithm for

determining H described above it is clear that one should retain the y-dependence of ΩS
ref

at intermediate stages to distinguish between ΩS
ref(β; y

m) for different values of m. For

Abelian quivers this is not important since only ΩS
ref(β; y) appear in the final expression

and hence in this case we can set ΩS
ref(β; y) = ΩS

ref(β) from the outset.

The Coulomb branch formula (1.4)–(1.7) gives an explicit algorithm for computing the

Poincaré polynomial of the quivers Q(β) for all dimension vectors β ∈ Γ in terms of the

constants ΩS
ref(β). There is one such undetermined constant for each β ∈ Γ, represent-

ing the number of ‘pure Higgs states’ which cannot be determined by our algorithm and

must be computed by other methods.5 It is also worth stressing that the Coulomb branch

formula automatically satisfies the Kontsevich-Soibelman wall crossing formula [5]. This

follows from the result of [15] that the formula for the index given there satisfies the wall

crossing formula of [6], and the result of [21] showing the equivalence of the wall crossing

formulæ of [5] and [6].

As is clear from the above, the main assumption in our algorithm is that there exists a

class of ‘single-centered black hole micro-states’ which have the property that their index

ΩS
ref(β) is independent of y and robust under wall-crossing. For single centered black holes

the y-independence of the index follows from the fact that the black hole carries zero angular

momentum. This is in turn a consequence of spherical symmetry of a supersymmetric black

hole together with the fact that an extremal black hole represents a collection of states in

the microcanonical ensemble where all charges and angular momenta are fixed [16]. For the

quiver the role of single centered black hole states is played by ‘pure Higgs states’ — states

which are visible on the Higgs branch but not on the Coulomb branch of the supersymmetric

5If the quiver Q(β) has no oriented closed loop then ΩS
ref(β) as well as Ωscaling(β; y) are expected to

vanish [4].
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quantum mechanics [4, 19, 20]. Since the quiver description is valid in a different region in

the space of coupling constants, and since the y dependence of the index is not guaranteed

to be protected under a change of coupling, one might expect that for the quiver ΩS may be

y-dependent. Nevertheless the recent studies in [19, 20] indicate that even for the quiver the

y independence of ΩS holds, which we therefore take as our working hypothesis. Needless

to say, we find that this hypothesis holds in all the examples that we have analyzed.

The remainder of this work is organized as follows. In section 2 we review the gen-

eral formula of [15] expressing the refined index of a multi-centered black hole system in

terms of the index carried by single centered black holes. We then show how a micro-

scopic version of this formula can be used to compute the Betti numbers of quiver moduli

spaces. We also suggest an extension of this formula for computing the Hodge numbers.

We then review other methods for computing the cohomology of the Higgs branch directly,

using the Lefschetz hyperplane theorem, Riemann-Roch theorem and Harder-Narasimhan

recursion method. In sections 3, 4, 5 and 6 we apply our general methods to compute the

cohomology of different kinds of quivers, and compare the results with those obtained by

other methods. Section 3 deals with quivers with 3-nodes, section 4 with cyclic quivers and

section 5 with more complicated quivers in which the arrows form more that one closed

loop. In each case however we consider only U(1) gauge groups at the nodes. In section 6

we consider example of quivers with non-abelian gauge groups.

As this manuscript was being prepared for publication, the preprint [22] appeared on

arXiv, which overlaps substantially with our results for cyclic quivers in section 4.

2 Poincaré polynomials from pure Higgs states

In this section we first review the formula of [15] expressing the refined index of a gen-

eral multi-centered black hole configuration in terms of the index carried by the individual

centers. We shall then argue that a microscopic version of this formula can be used to

constrain the form of the Poincaré and Dolbeault polynomials of quiver moduli spaces. We

then describe several mathematical methods for computing the cohomology of the Higgs

branch directly.

2.1 Refined index from single-centered black holes

Let us consider a general multi-centered black hole configuration with individual centers

carrying charges α1, · · ·αn. The collinear equilibrium configurations of n single centered

black holes carrying charges α1, · · ·αn in some lattice Γ are given by the extrema of the

Coulomb potential

Ŵ ({xi}) = −
∑

1≤i<j≤n

αij sign(xj − xi) ln |xj − xi| −
n∑

i=1

ĉixi, xi ∈ R , (2.1)

with respect to x2, · · ·xn at fixed x1. Here αij = 〈αi, αj〉 denotes the Dirac-

Schwinger=Zwanziger symplectic product between αi and αj . The constants ĉi
depend on the asymptotic moduli and the charges, and satisfy

∑
i ĉi = 0. Extremizing W

– 7 –



J
H
E
P
1
1
(
2
0
1
2
)
0
2
3

gives a system of n− 1 equations6

∑

j 6=i

αij

|xi − xj |
= ĉi i = 2 . . . n (2.2)

which are algebraic in the variables xi for any fixed ordering along the real axis. We let

s(p) = sign detM , (2.3)

where Mℓk = ∂2Ŵ/∂xℓ∂xk for 2 ≤ ℓ, k ≤ K is the Hessian of Ŵ with respect

to the variables x2, · · ·xn at fixed x1. Under reflection along the x-axis, one has

xi 7→ −xi, s(p) 7→ (−1)n−1s(p).

We define the Coulomb index associated to the unordered set of charges {αi}i=1...n by

gref(α1; y) = 1 for n = 1, and

gref(α1, . . . , αn; y) = (−1)
∑

i<j αij+n−1

[
(y − y−1)1−n

∑

p

s(p) y
∑

i<j αij sign[xj−xi]

]
(2.4)

for n ≥ 2. Here the sum over p runs over all solutions to (2.2), with the following

understanding: If two or more centers carry mutually local charges (i.e. αij = 0), then

the prescription of [15] is to analytically continue the charges away from their original

values so that they are slightly different from each other, find the set of extrema of W

and then continue the charges back to their original values.7 If all centers corresponding

to mutually local αi’s in the original solution are separated then the analytic continuation

has no effect. However if M centers with mutually local charges coincide in the original

solution, then the analytic continuation will separate their locations and pick one out of

the M ! possible orderings of these centers along the x-axis. Thus, instead of analytically

continuing the charges we may adopt the equivalent prescription of counting a solution

with M coincident mutually local charges only once, rather than M ! times.

In addition, we exclude solutions in which several centers carrying mutually non-local

charges (i.e. αij 6= 0) would coincide. Such singular solutions arise for certain choices

of charges which allow for ‘scaling solutions’, where a subset (or all) of the charges can

approach each other at arbitrarily small distances. In the absence of such scaling solutions,

gref(α1, . . . , αn; y) computes the refined index Tr (−y)2J3 of the quantum mechanics of n

charged particles interacting by Coulomb, Lorentz, Newton and scalar exchange forces.

Here y is a parameter conjugate to the angular momentum along the z axis, and the trace

is taken after factoring out the center of mass modes. Equivalently, gref(α1, . . . , αn; y)

computes the index of the equivariant Dirac operator on the space of solutions to (2.2),

— a compact symplectic space equipped with an Hamiltonian action of SO(3). The

6For multi-centered black holes, the regularity of the metric and absence of time-like curves puts addi-

tional conditions on the solutions to (2.2). We assume that no such restriction arises in the case of quivers,

since all the charge vectors lie in the convex cone Nℓ ≥ 0.
7If

∑
p s(p) y

∑
i<j αij sign[xj−xi] contains y-independent constant terms then the coefficient of the constant

term can some time depend on the details of how we take the limit to the original values. However this

does not affect the final result since the functions H introduced in (2.7) precisely compensates for this.
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result (2.4) then arises by localizing with respect to the action J3, whose only fixed points

are the isolated collinear configurations above [6].

In the presence of scaling solutions, the space of solutions to (2.2) is non-compact, and

there are additional non-isolated fixed points which can contribute to the equivariant index.

We shall continue to define gref as the contribution of the collinear configurations (2.4),

excluding the singular scaling solutions with mutually non-local coincident centers. As we

shall review, the additional contributions from the scaling solutions can be determined by

the ‘minimal modification hypothesis’ of [15].

For n = 2, none of these issues arises, and gref(α1, α2; y) reduces to the character of a

spin J = 1
2(〈α1, α2〉 − 1) representation [6],

gref(α1, α2; y)=

{
(−1)〈α1,α2〉+1

(
y〈α1,α2〉−y−〈α1,α2〉

)
/
(
y−y−1

)
for sign (〈α1, α2〉)=sign (c1)

0 for sign (〈α1, α2〉) = −sign (c1) .

(2.5)

For a general charge vector γ ∈ Γ, the refined index Ωref(γ; y) = Tr ′(−y)2J3 — where

the trace is now taken over all states carrying total charge γ after factoring out the center

of mass degrees of freedom — is expressed in terms of the Coulomb indices gref via [15]8

Ωref(γ; y) =
∑

m|γ

µ(m)m−1 y − y−1

ym − y−m
Ω̄ref(γ/m; ym)

Ω̄ref(γ; y) =
∑

n≥1

∑

{αi∈Γ},
∑n

i=1 αi=γ

1

Aut({α1, α2, · · · , αn})
gref (α1, α2, · · · , αn; y)

×
n∏

i=1





∑

mi∈Z

mi|αi

1

mi

y − y−1

ymi−y−mi

(
ΩS
ref(αi/mi; y

mi)+Ωscaling(αi/mi; y
mi)
)




, (2.6)

where µ(m) is the Möbius function, Γ is the charge lattice, ΩS
ref(β; y) denotes the refined

index carried by a single centered black hole of charge β, and

Ωscaling(α; y) =
∑

{βi∈Γ},{mi∈Z}
mi≥1,

∑
i miβi=α

H({βi}; {mi}; y)
∏

i

ΩS
ref(βi; y

mi) , (2.7)

for some function H({βi}; {mi}; y). We determine H({βi}; {mi}; y) by requiring that the

coefficient of the
∏

iΩ
S
ref(βi; y

mi) in the expression for Ωref(
∑

imiβi; y) is a Laurent poly-

nomial in y. The ambiguity of adding to H a Laurent polynomial is resolved by using

the ‘minimal modification hypothesis’, which requires that H must be symmetric under

y → y−1 and vanish as y → ∞ (and hence also as y → 0). Alternatively, one could absorb

ΩS
ref(αi; y) into Ωscaling(αi; y) at the cost of allowing H to take a finite value as y → ∞.

Concretely, suppose that the net coefficient of the monomial
∏

iΩ
S
ref(βi; y

ki) in the

expression for Ωref(
∑

i kiβi; y) is given by f(y) + H({βi}; {ki}; y) where f(y) is a known

8In [15] the formula for Ωref(γ; y) was given for the case when the total charge γ is primitive. Other-

wise the same formula applies to the ‘rational refined index’ Ω̄ref(γ; y) =
∑

m|γ
1
m

y−y−1

ym−y−m Ωref(γ/m; ym).

From this we can arrive at the expression for Ωref(γ; y) using the inverse transformation Ωref(γ; y) =
∑

m|γ
µ(m)
m

y−y−1

ym−y−m Ω̄ref(γ/m; ym).
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function, with Laurent series expansion
∑

n<N fny
−n around y = 0. It is easy to check

that

H({βi}; {ki}; y) = f0 +
∑

n≥1

fn
(
y−n + yn

)
− f(y) (2.8)

is the unique solution to the conditions stated above. This may be rewritten as a contour

integral around u = 0,

H({βi}; {ki}; y) =

∮
du

2πi

(1/u− u) f(u)

(1− uy)(1− u/y)
− f(y) . (2.9)

We determineH({βi}; {mi}; y) iteratively by beginning with theH’s with least possible

number of βi’s (three) and then determining successively the H’s with larger number of

βi’s. Physically Ωscaling and hence H represent the correction to the index due to the

presence of scaling solutions [4].

In the formulae (2.6), (2.7) the ΩS
ref(γ; y), representing the index carried by the single

centered black holes, must be independent of y since single centered BPS black holes carry

zero angular momentum [16]. Furthermore H and ΩS are expected to be independent of the

values of the parameters ĉi, as the jumps of the refined index across walls of marginal sta-

bility in the space of the parameters ĉi is already captured by the Coulomb indices gref [15].

2.2 A Coulomb branch formula for quiver Poincaré polynomials

In the weak coupling limit, the dynamics of multi-centered black holes is described by a

quantum mechanics with N = 4 supersymmetry, whose matter content is captured by a

certain quiver [2]. For Nℓ centers of charge γℓ for ℓ = 1, · · ·K, the corresponding quiver has

K nodes labelled by the integer ℓ, with a complex vector space of dimension Nℓ attached

to the node ℓ and |γℓk| arrows connecting the node ℓ to the node k if γℓk > 0, or connecting

the node k to the node ℓ if γℓk < 0. The nodes represent U(Nℓ) vector multiplets, while

the arrows represent |γℓk| chiral multiplets φℓk,α,ss′ in the bifundamental of U(Nℓ)×U(Nk)

(or its complex conjugate, if γℓk < 0). In addition, to each node we associate a constant

cℓ labelling the coefficient of the FI parameter for the U(1) factor in U(Nℓ), such that∑
ℓNℓcℓ = 0. Finally, the superpotential W for the chiral multiplets is a generic sum of

gauge-invariant monomials associated to each oriented loop in the quiver.

At low energies, the supersymmetric quantum mechanics admits two different effective

descriptions, the Coulomb branch description, which is valid in the region where the vevs of

the vector multiplet scalars are large, so that the chiral multiplets can be integrated out, and

the Higgs branch description, valid in the region where the vevs of the chiral multiplets are

large, so that the vector multiplets can be integrated out. In this subsection we shall focus

on the Coulomb branch description. The flat directions of the potential on the Coulomb

branch turn out to reproduce the moduli space of supersymmetric configurations of multi-

centered BPS black holes in N = 2 supergravity, with the FI parameters determined by

the values of the scalar fields at spatial infinity [2]. This allows us to borrow the results on

multi-centered black hole quantum mechanics, reviewed in the previous section, to analyze

the refined index of the quiver quantum mechanics on the Coulomb branch. Using (1.2),

we can then use this result to make predictions for the Poincaré polynomial of the moduli
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space of quivers on the Higgs branch. This can then be compared with a direct computation

of the same Poincaré polynomial using methods to be discussed in sections 2.4–2.5.

We denote by Q(γ; y) the refined index of the supersymmetric quantum mechanics

associated with the quiver Q(γ, c) for γ =
∑

ℓNℓγℓ. The refined index Q(γ; y) can be

computed using the results of section 2.1 with the following understanding:

1. The role of the charge lattice is now played by the set of charges of the form
∑

ℓmℓγℓ
with mℓ ∈ Z. Furthermore only charge vectors with non-negative mℓ can appear in

the sums over charge vectors in (2.6), (2.7).

2. The index Ωref(
∑

ℓNℓγℓ; y) appearing on the l.h.s. of (2.6) is interpreted as the

Laurent polynomial (2.18) of the Higgs branch of the quiver with gauge group U(Nℓ)

at the ℓth node.

3. In evaluating the ‘Coulomb index’ gref (α1, · · ·αn; y) appearing in (2.6), the parame-

ters ĉi are determined in terms of the FI parameters through ĉi =
∑

ℓAiℓcℓ whenever

αi =
∑

ℓAiℓγℓ. Since only combinations such that
∑

i αi = γ =
∑

ℓNℓγℓ appear, the

condition
∑

i ĉi =
∑

ℓNℓcℓ = 0 is automatically satisfied.

4. The quantities ΩS
ref(β; y) appearing on the r.h.s. of (2.6) and (2.7) are interpreted as

the number of ‘single centered black hole micro-states’ with charge β. These are the

‘pure Higgs’ or ‘intrinsic Higgs’ states which originate from the middle cohomology of

the quiver or one of its subquivers. They are assumed to be y-independent, although

it is useful to retain the dependence on y to carry out the algorithm explained in

section 2.1.

5. For any of the basis vectors γℓ, we set ΩS
ref(Nγℓ; y) = 1 for N = 1 and zero if

N > 1, since each node of the quiver is assumed to represent a single state of zero

angular momentum (using the formulas in 2.5, one finds that also mathematically

the generalized DT-invariant vanishes for quiver representations with dimension N

at the node ℓ and dimension 0 at the other nodes).

It is important to note that even though the quiver quantum mechanics maps to the

quantum mechanics describing the dynamics of multiple black holes, for an actual

system of black holes the quiver quantum mechanics counts only part of the black hole

micro-states. In particular if we associate to each node of the quiver an elementary

constituent carrying charge γℓ, then the quiver quantum mechanics counts only a subset

of the micro-states which carry a total charge γ =
∑

ℓNℓγℓ, — namely those which can

be built from elementary constituents carrying charges γ1, · · · , γK . Other black hole

micro-states with the same total charge could arise from bound states of other elementary

constituents described by different types of quivers. Similarly ΩS
ref(β; y) need not count

all states of a single centered black hole of charge β, but counts only those states which

can be built from the elementary constituents carrying charges γ1, · · · γK . For the quiver,

ΩS
ref(β; y) represent contribution from states which are elementary from the point of view

of the Coulomb branch but are composite from the point of view of the Higgs branch

except when β coincides with one of the basis vectors γℓ.
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This microscopic re-interpretation of the formulae (2.6), (2.7) leads to the algorithm

for computing Q(M; y) summarized in section 1. Like its macroscopic counterpart [15], this

procedure leaves the ‘single-centered micro-state degeneracies’ ΩS
ref(β) for β =

∑
ℓmℓγℓ

undetermined. These can be fixed by independently computing the Euler character of

the corresponding quiver moduli space, using techniques discussed in section 2.4 and

section 2.5, and comparing with the prediction of (2.6) at y = 1, where the Poincaré

polynomial reduces to the Euler character. Alternatively it can be determined in terms

of the middle cohomology of the quiver with U(mℓ) gauge group at the ℓ-th node by

comparing the y-independent terms on both sides of (2.6) for γ =
∑

ℓmℓγℓ. Once the

coefficients ΩS
ref(γ) have been determined, we can use (2.6) to determine the Poincaré

polynomial of a quiver with arbitrary gauge groups
∏

ℓU(Nℓ).

2.3 A Coulomb branch formula for Hodge numbers

So far we have focused on the Poincaré polynomial of the quiver moduli space M, i.e. on

the topological Betti numbers bi(M). However, since M is a complex Kähler manifold its

cohomology admits a Dolbeault decomposition

H∗(M,Z) =
d∑

p,q=0

Hp,q(M,Z) , (2.10)

We shall now give an algorithm for computing the Hodge numbers hp,q(M) =

dimHp,q(M,Z), generalizing the prescription in the previous subsection.

Let us define the Dolbeault polynomial as the Laurent polynomial in two variables

Q̃(M; y, t) =
∑

p,q

hp,q(M) (−y)p+q−dtp−q . (2.11)

Using the standard symmetries of the Hodge numbers hp,q = hd−p,d−q = hq,p, one has

Q̃(M; y, t) = Q̃(M; 1/y, 1/t) = Q̃(M; y, 1/t) . (2.12)

For t = 1, Q̃(M; y, t) reduces to the Laurent polynomial Q(M; y) introduced in (1.2), while

for t = 1/y, it reduces to

Q̃(M; y, 1/y) = (−y)−dχ(M; y2) , (2.13)

where χ(M; v) is the Hirzebruch polynomial [23]

χ(M; v) =
∑

p,q

(−1)p+q vq hp,q(M) = vd χ(M; 1/v) . (2.14)

For y = t = 1, Q̃(M; y, t) reduces to (−1)d times the Euler number χ(M). Finally

Q̃(M; y, t) is related to the Hodge polynomial H(u, v) ≡ hp,qu
pvq via Q̃(M; y, t) =

(−y)−dH(−yt,−y/t).

The parameter t is a chemical potential conjugate to the quantum number I3 ≡ p− q,

which can be viewed as the remnant of a SU(2)R symmetry in the full quiver quantum
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mechanics, before integrating out the vector multiplets to reach the Higgs branch descrip-

tion. For t = y (or t = 1/y), the Dolbeault polynomial Q̃(M; y, t) at t = y is therefore

identified with the protected spin character Tr ′(−1)2J3y2(I3+J3) [10]. On the other hand,

there is much evidence9 that all states associated with the quantization of multi-centered

black holes are singlets under I3. As a result the functions gref and consequently H

are independent of the parameter t conjugate to I3. Thus the only possible source of t

dependence is in the index for ‘pure Higgs states’. This motivates the conjecture that the

Dolbeault polynomial Q̃(γ; y, t) for a general quiver Q(γ) is given by the same formula as

in section 1 with the replacement ΩS
ref(α/m) → Ω̃S

ref(α/m; tm):

Q̃(γ; y, t) =
∑

m|γ

µ(m)m−1 y − y−1

ym − y−m

¯̃
Q(γ/m; ym, tm)

¯̃
Q(γ; y, t) =

∑

n≥1

∑

{αi∈Γ},
∑n

i=1 αi=γ

1

Aut({α1, α2, · · · , αn})
gref (α1, α2, · · · , αn; y)

×
n∏

i=1





∑

mi∈Z

mi|αi

1

mi

y − y−1

ymi−y−mi

(
Ω̃S
ref(αi/mi; t

mi)+Ω̃scaling(αi/mi; y
mi , tmi)

)




,

Ω̃scaling(α; y, t) =
∑

{βi∈Γ},{mi∈Z}
mi≥1,

∑
i miβi=α

H({βi}; {mi}; y)
∏

i

Ω̃S
ref(βi; t

mi) . (2.15)

Thus we can parametrize Q̃(γ; y, t) in terms of the unknown functions Ω̃S
ref(α; t). These in

turn can be determined if we know the Hirzebruch polynomial Q̃(γ; y, 1/y) given in (2.14)

for each γ. The functions H({βi}; {mi}; y) appearing in (2.15) are the same as before and

so need not be determined again. For this reason we have dropped the y dependence in

the arguments of Ω̃S
ref from the outset.

Note that since Q̃(γ; y, t) is not protected, we cannot prove that this quantity com-

puted from the Coulomb branch description must match the Higgs branch result. In that

sense (2.15) should again be taken as a conjecture for the Dolbeault polynomial of the Higgs

branch moduli space. Since all quantities except the Ω̃S
ref(α, t)’s on the right hand side of

this expression are computable, this formula can be tested by independently computing

the Dolbeault polynomial of the Higgs branch moduli space for simple quivers.

2.4 Quiver Poincaré polynomial from the Higgs branch analysis

The analysis of section 2.2 gives a specific algorithm for computing the Poincaré polynomial

of quiver moduli space. In order to test this formula we need an independent determination

of the Poincaré polynomial. In this subsection we shall outline the procedure for doing

this, generalizing methods used in [4, 19, 20].

9This was observed in the context of 2-centered black holes in [2], and elevated in the context of N = 2

gauge theories to the ‘no exotics’ conjecture of [10]. As we shall see in the next subsection, this is consistent

with the fact that the Coulomb branch accounts for all non-middle cohomology states on the Higgs branch,

which necessarily have p = q.
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The classical moduli space M on the Higgs branch, or quiver moduli space for brevity,

is described by the D-term and F-term conditions (1.1), subject to identifications under∏
ℓU(Nℓ) gauge transformations. In general, M is a complex Kähler manifold of complex

dimension

d = 1−
∑

ℓ

N2
l +

∑

γℓk>0

γℓk NℓNk − f , (2.16)

where f is the number of independent F-term conditions (f = 0 for quivers without loop).

The BPS states in the supersymmetric quantum mechanics are identified as classes in the

total cohomology H∗(M,Z). The Lefschetz operators [25]

J+ · h = ω ∧ h , J− = ω xh , J3 · h = 1
2(n− d)h , (2.17)

where ω is the Kähler form, x= ∗ ∧ ∗ where ∗ denotes Hodge star operation, and n is

the degree of the differential form h, generate an action of SU(2) on H∗(M,Z) which

is identified as SO(3) rotations in space-time [2]. The refined index Tr ′(−y)2J3 of the

supersymmetric quantum mechanics on the Higgs branch is given by

Q(M; y) ≡
2d∑

p=1

bp(M)(−y)p−d (2.18)

where bp(M) = dimHp(M,Z) is the p-th Betti number. In the rest of this subsection we

shall restrict our analysis to Abelian quivers, ı.e. with U(1) gauge groups at each node,

deferring a discussion of non-Abelian quivers to section 2.5.

For Abelian quivers, the moduli space of classical vacua M is obtained by first using

part of the F-term constraints to set some of the variables φℓk,α,ss′ to zero, and then using

the standard relation between Kähler quotients and algebro-geometric quotients10 to solve

the D-term constraints for the remaining variables. As a result, the quiver moduli space

M is generally obtained as a complete intersection of k hypersurfaces inside a product

Mamb of complex projective spaces, corresponding to the F-term constraints which are not

trivially solved in the first step. Provided each of the F-term constraints arises as the zero

locus of the section of a positive line bundle11 over Mamb, it follows from the Lefschetz

hyperplane theorem [25] that the Betti numbers bp(M) for p not equal to the complex

10I.e. the equivalence between, on the one hand, the space of solutions of the D-term constraints modulo

the compact gauge group G = U(1)K and on the other hand, the quotient of the semi-stable locus by the

complexified gauge group GC = (C×)K .
11We shall also encounter examples where some of the F-term constraints are not given by sections of line

bundles with strictly positive curvature — this happens e.g. when some of the constraints are independent

of the coordinates of some projective space in Mamb. Even though (2.19) no longer holds for M directly,

one can still regard M as a product of manifolds for which (2.19) holds. In this case one may parametrize

the lack of knowledge of the middle cohomology of each of the manifolds in the product by unknown

constants, and determine the y dependence of Q(M; y) in terms of these constants. As we shall see in

many examples later, knowing the y-dependence of Q(M; y) will allow us to test the general algorithm for

computing Q(γ; y) given in section 1, and the unknown constants mentioned above will be in one to one

correspondence to the constants ΩS
ref(γ) which appear in the formulæ in section 1.
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dimension d of M are given in terms of the Betti numbers of the ambient space by

bp(M) =

{
bp(Mamb) p < d

b2d−p(Mamb) p > d ,
(2.19)

leaving the middle cohomology undetermined. The Betti numbers bp(Mamb) on the other

hand are given by
∑

p

bp(Mamb) y
p =

n∏

ℓ=1

1− y2aℓ

1− y2
. (2.20)

Eq. (2.19), (2.20) allows us to determine the y-dependence of Q(M; y) ≡

(−y)−d
∑

p bp(−y)p, but leaves undetermined the constant term in Q(M; y). More gen-

erally, the Lefschetz hyperplane theorem ensures that the Hodge numbers hp,q(M) for

p + q 6= d are inherited from the ambient space, and therefore that they vanish unless

p = q. As a result, the Dolbeault polynomial is then a sum

Q̃(y, t) = Q̃amb(y) + Q̃mid(t) (2.21)

of a t-independent piece, coming from the cohomology of the ambient projective space,

and a y-independent piece, coming from the middle cohomology. In general however the

quiver moduli space is more complicated, e.g. given by the product of manifolds for each

of which (2.21) holds. Our conjecture of section 2.3 is expected to reproduce correctly the

Dolbeault polynomial in all such cases.

In order to complete the computation of the Poincaré and Dolbeault polynomials, we

need to evaluate the contribution of the middle cohomology. This can be easily obtained

from the Euler number χ(M), equal up to a sign to the value of Q(γ; y) at y = 1, or

from the Hirzebruch polynomial χ(M, v), related to the Dolbeault polynomial at t = 1/y

via (2.13). Both of them can be computed using the Riemann-Roch theorem, as follows.

Suppose as before that the quiver moduli space M is given by the complete intersection of

k hypersurfaces in Mamb = P
a1−1×· · ·×P

an−1. The Riemann-Roch theorem (see e.g. [23])

expresses the Euler characteristics χ(M) as the coefficient of the top form Ja1−1
1 . . . Jan−1

n

in the Laurent expansion around Jℓ = 0 of the rational function

n∏

ℓ=1

(1 + Jℓ)
aℓ

k∏

j=1

d
(j)
1 J1 + · · ·+ d

(j)
n Jn

1 + d
(j)
1 J1 + · · ·+ d

(j)
n Jn

, (2.22)

where d
(j)
ℓ is the degree of the algebraic equation defining the j-th hypersurface with respect

to the homogeneous coordinates on P
aℓ−1. Equivalently, χ(M) can be obtained as a contour

integral around Jℓ = 0,

χ(M) =

∮ n∏

ℓ=1

dJℓ
2πi

n∏

ℓ=1

(
1 + Jℓ
Jℓ

)aℓ k∏

j=1

d
(j)
1 J1 + · · ·+ d

(j)
n Jn

1 + d
(j)
1 J1 + · · ·+ d

(j)
n Jn

. (2.23)

For example, for M = Mamb = P
a−1, the Euler number is given by

χ(Pa−1) =

∮
dJ

2πi

(
1 + J

J

)a

=
1

2πi

∮
dx

(1− x)2 xa
= a , (2.24)
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where, in the second equality, we changed variable to J = x/(1 − x). For a less trivial

example, consider a complete intersection Mn,d1,...dk of k hypersurfaces of degree d1, . . . dk
inside P

n+k. Using (2.23), we find that the Euler number is given by

χ(Mn,d1,...dk) =

∮
dJ

2πi

(
1 + J

J

)n+k+1 k∏

j=1

dj J

1 + djJ

=

∮
dx

2πi (1− x)2 xn+k+1

k∏

j=1

dj x

1 + (dj − 1)x

(2.25)

where we used the same change of variable. The integral can be computed by introducing

the generating function

Z(d1, . . . dk; z)≡
∞∑

n=0

χ(Mn,d1,...dk ; v) z
n+k=

∮
dx

2πi (1−x)2
zk

x−z

k∏

j=1

dj
1+(dj−1)x

. (2.26)

The integral picks up the residue at x = z, leading to the simple result

Z(d1, . . . dk; z) =
1

(1− z)2

k∏

j=1

dj z

1 + (dj − 1)z
. (2.27)

As explained in [23], the Hirzebruch polynomial (2.14) can be similarly obtained from

the Riemann-Roch theorem, by performing in (2.23) the replacements

Jℓ
Jℓ + 1

→ Rv(Jℓ),
d
(j)
1 J1 + · · ·+ d

(j)
n Jn

1 + d
(j)
1 J1 + · · ·+ d

(j)
n Jn

→ Rv(d
(j)
1 J1 + · · ·+ d(j)n Jn), (2.28)

in (2.23). Here Rv(J) is a function of J which reduces to x = J/(J + 1) at v = 1,

Rv(J) =

{
1− v

1− e−(1−v)J
+ v

}−1

. (2.29)

As in (2.24), it is useful to change variable from J to R = Rv(J) using

dJ =
dR

(1−R)(1− vR)
, J =

1

1− v
log

1− vR

1−R
. (2.30)

For example, the Hirzebruch polynomial of Pa−1 is given by

χ(Pa−1; v) =

∮
dJ

2πi[Rv(J)]a
=

∮
dR

2πi(1−R)(1− vR)Ra
=

1− va

1− v
, (2.31)

in agreement with the fact that hp,p = 1 for 0 ≤ p ≤ a− 1, hp,q = 0 for p 6= q.

Returning to the example discussed in (2.25), the Hirzebruch polynomial of the com-

plete intersection Mn,d1,...dk is given by

χ(Mn,d1,...dk ; v) =

∮
dJ

2πi [Rv(J)]n+k+1

k∏

j=1

Rv[djJ ]

=

∮
dR

2πi (1−R)(1− vR)Rn+k+1

k∏

j=1

(1− vR)dj − (1−R)dj

(1− vR)dj − v(1−R)dj
.

(2.32)
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The generating function of these polynomials is obtained by summing up the geometric

series and picking up the residue at R = z, leading to

Z(d1, . . . dk; z, v)≡
∞∑

n=0

χ(Mn,d1,...dk ; v) z
n+k=

1

(1−z)(1−vz)

k∏

j=1

(1−vz)dj−(1−z)dj

(1−vz)dj−v(1−z)dj
,

(2.33)

correcting a misprint in [23], Thm 22.1.1. The manipulations shown in this example will

be used in the examples discussed in section 3 onward.

2.5 Cohomology of quivers without superpotential and HN recursion method

As discussed in section 2.4, the moduli space for Abelian quivers arises as a complete

intersection in an ambient space Mamb given by a product of complex projective spaces,

whose cohomology is easily computed via the Lefschetz hyperplane and Riemann-Roch

theorems. For a generic non-Abelian quiver, the situation is more complicated, since the

classical moduli space M is defined by the solution to D-term and F-term equations (1.1)

inside the space C
N parametrized by all the complex variables φℓk,α,ss′ , quotiented by the

action of the compact group G =
∏

ℓU(Nℓ). We denote by M0 the space of solutions

to the D-term equations only, quotiented by the action of G. Since the F-term equations

are gauge invariant, they descend to the quotient, hence M is a submanifold of M0. The

cohomology of M can in principle be computed from the cohomology of the ambient space

M0 using the methods described in section 2.4. In this section we shall describe a general

procedure for computing the cohomology of M0.

By the usual equivalence between Kähler quotients and algebro-geometric quotients,

M0 is isomorphic to the quotient of the semi-stable locus S ⊂ C
N by the action of the

complexified gauge group GC =
∏

ℓGL(Nℓ,C) [26]. Recall that the semi-stable locus is

defined as the set of points x for which there exists an homogeneous non-constant GC-

invariant polynomial Fx(X) such that Fx(x) 6= 0. Roughly speaking, semi-stable points

are those where the complexified gauge group is broken to a finite group. This implies in

particular that M0 is a projective variety, which contains M as a complex submanifold.

The space M0 is, in effect, the classical quiver moduli space when the superpotential is

tuned to zero. When the quiver contains closed loops which admit scaling configurations,

this space is non-compact, and hence one might wonder whether its Poincaré polynomial

is well-defined. Typically, this non-compactness arises due to a certain number of indepen-

dent variables φNC
i , i = 1 . . . N ′ which are allowed to vary over C

N ′
without restrictions,

and hence can become arbitrary large consistently with the D-term constraints. For fixed,

finite values of φNC
i , the remaining variables φC

j , j = 1 . . . N −N ′ take values in a compact

space Mamb(φ
NC), trivially fibered over C

N ′
, such that the fiber never degenerates. The

Poincaré polynomial PM0(y) of M0 is then given by the product of the Poincaré polyno-

mial PMamb
(y) of the compact space Mamb(φ

NC) (evaluated for example at φNC
i = 0) and

the Poincaré polynomial of the complex plane labelled by the free variables. For the latter

we have b0 = 1 and bp = 0 for p > 0, and hence the Poincaré polynomial is 1. Thus,

Q(M0; y) ≡ (−y)−d0PM0(−y) = (−y)−d0PMamb
(−y) = (−y)−d0+dEQ(Mamb; y) , (2.34)
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where d0 and dE are complex dimensions of M0 and Mamb respectively. Q(Mamb; y) is

invariant under y → 1/y but in general Q(M0; y) is not invariant under y → 1/y, since

Poincaré duality does not hold for non-compact spaces. In the absence of scaling solutions

(in particular, for quivers without loops), the moduli space M0 is compact, and this issue

does not arise.

To compute Q(M0; y), we shall apply the Harder-Narasimhan (HN) recursion

method. This method was originally established for stable vector bundles over Riemann

surfaces [27, 28] and recently applied to semi-stable sheaves over rational complex sur-

faces [29]. For arbitrary quivers without oriented closed loops, the HN recursion method

was developed by Reineke, culminating in a general formula for the Poincaré polynomial of

the quiver moduli space with any primitive dimension vector [30]. The method was later

generalized to quivers with oriented closed loops but vanishing superpotential by [31]. We

find strong evidence that the HN recursion method does indeed produce the cohomology

of the ambient space M0.

Instead of explaining the logic behind the method, we shall just give the algorithm

that derives from it. We introduce the following notations: for the quiver Q(γ) associated

to the charge vector γ we define Q0(γ; y) = Q(M0; y), and, as in (1.4), Q̄0(γ; y) by

Q̄0(γ; y) =
∑

m|γ

m−1(y − y−1)(ym − y−m)−1Q0(γ/m; ym) . (2.35)

From this data we construct a new set of invariants I(γ;w) via the relations [32–34],

I(γ;w) =
∑

∑k
i=1

αi=γ,

µ(αi)=µ(γ)

1

k!

k∏

i=1

(
Q̄0(αi;−w−1)

w − w−1

)
, (2.36)

where µ(β) is the ‘slope’ of the dimension vector β =
∑

ℓ nℓγℓ, defined by

µ(β) ≡

∑
ℓ cℓnℓ∑
ℓ nℓ

. (2.37)

Recall that the parameters cℓ are chosen to satisfy
∑

ℓ cℓNℓ = 0, hence µ(γ) = 0. Finally,

for any dimension vector β and ordered set of dimension vectors {αi} we define12

h(β;w) =
w−(β,β)

∏K
ℓ=1

∏nℓ

j=1(1− w−2j)
, F({αi};w) = w−

∑
i<j〈αi,αj〉

k∏

i=1

I(αi;w) , (2.38)

where (γ, γ) and 〈γ, γ′〉 are the Euler form and antisymmetric form defined in (1.3). The

HN method states that the invariants I(γ;w) satisfy the relation [26–28]

I(γ;w) = h(γ;w)−
∑

k≥2

∑
∑k

i=1
αi=γ,

µ(αi)>µ(αi+1)

F({αi};w). (2.39)

12The function h(β;w) counts the number of quiver representations over finite fields, and is sometimes

known as the counting function. The parameter w is related to y by w = −1/y.
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We can solve these relations recursively to find I(γ;w). The solution to the recursion (2.39)

is in fact given in terms of the ‘counting functions’ h(β;w) by [30]

I(γ;w) =
∑

α1+···+αk=γ,k≥1

µ(
∑m

j=1
αj)>µ(γ),m=1,...,k−1

(−1)k−1w−
∑

i<j〈αi,αj〉
k∏

j=1

h(αj , w). (2.40)

Using (2.36) we can then find Q̄0(γ; y) and hence Q(M0; y) = Q0(γ; y). In particular, for

a one-node quiver with dimension N and no arrow, we find QM0 = 1 if N = 0 and 0 if

N > 1. This reproduces the fact mentioned in section 2.2, item 5, that Ωref(Nγℓ; y) = δ1,N
for any basis vector γℓ of any quiver.

To further illustrate this method, let us consider the simplest example, the Kronecker

quiver with 2 nodes and γ12 = a > 0 arrows from node 1 to 2,

1 2a // (2.41)

For U(1) gauge groups at each node, γ = γ1 + γ2. Eq. (2.38) then gives

h(γ;w) =
wa

(w − w−1)2
, I(γℓ;w) = h(γℓ;w) =

1

w − w−1
. (2.42)

For c1 > 0, c2 < 0 we have µ(γ2) < 0 < µ(γ1) and hence the sum over {αi} in (2.39) runs

over the ordered pair {α1, α2} = {γ1, γ2}. Eq. (2.39) now gives

I(γ1 + γ2;w) = (wa − w−a)/(w − w−1)2 (2.43)

and hence from (2.35) and (2.36) we get

Q0(γ1 + γ2; y) = (−1)a+1(ya − y−a)/(y − y−1) , for c1 > 0 . (2.44)

On the other hand if c1 < 0, c2 > 0, then the sum over {αi} in (2.39) runs over the

ordered pair {α1, α2} = {γ2, γ1}. Eq. (2.39) now gives I(γ1 + γ2;w) = 0 and hence

from (2.35) and (2.36) we get Q0(γ1 + γ2; y) = 0. These results agree with the fact

that the quiver moduli space is P
a−1 for c1 > 0, and empty otherwise. The Poincaré

polynomials for arbitrary dimension vectors n1γ1 + n2γ2 (including non-primitive vectors

with gcd(n1, n2) > 1) can be obtained by iterating this procedure. Note that in this case

there is no distinction between the embedding space M0 and the actual moduli space M.

3 Abelian three-node quiver

In this section we shall illustrate the general algorithm outlined in section 1 for the case

of a quiver with three nodes, each carrying a U(1) gauge group, with (a, b, c) arrows as

depicted below:

1

23

a
✸✸
✸✸
✸✸

��✸
✸✸
✸✸
✸c

✌✌✌✌✌✌

FF✌✌✌✌✌✌

b ❵❵❵❵❵❵oo❵❵❵❵❵❵

(3.1)
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We consider both the the cyclic case, where the arrows form a loop (i.e. a, b, c all of the same

sign), and the acyclic case, where the orientation of the arrows does not allow for any loop.

The acyclic case has no pure Higgs states, ı.e. ΩS
ref(γ1 + γ2 + γ3; y) = 0. Subject to certain

inequalities on the number of arrows, the cyclic case has a non-trivial middle cohomology,

which can be exponentially large [4]. It is a special case of the more general cyclic quivers

analyzed in section 4. All of these cases allow us to test the algorithm of section 1.

3.1 Identifying the contributing collinear configurations

We start by analyzing the Coulomb branch of the quiver, using the localization techniques

of [6, 15]. According to the prescription of section 2, we choose a three vectors γ1, γ2, γ3
such that

a = 〈γ1, γ2〉, b = 〈γ2, γ3〉, c = 〈γ3, γ1〉 , (3.2)

By permuting the nodes and/or flipping the sign of all γℓk’s and cℓ’s, operations which

leave (1.6) unchanged, we can take the FI parameters to satisfy13

c1 > 0, c2 > 0, c3 = −c1 − c2 < 0 , (3.3)

as in [19]. We shall avoid situations where one of the cℓ’s vanish since this may lie on a wall

of marginal stability. Our goal in this subsection will be to identify solutions to (1.6) which

contribute to gref(a, b, c; y) ≡ gref(γ1, γ2, γ3; y) for the above values of the FI parameters.

We shall also determine the sign s(p) associated with these solutions via (2.3).

According to section 2, we need to enumerate the permutations p of (123) for which

solutions to (1.6) exist. Using symmetry under reversal of the x-axis, we only need to

examine three permutations: (123), (213) and (132). We first consider the case where

none of the multiplicities a, b, c vanish. Let us define

z1 = a/|x1 − x2|, z2 = b/|x2 − x3|, z3 = c/|x1 − x3|, (3.4)

and

σℓ = sign(xℓ+1 − xℓ) for 1 ≤ ℓ ≤ 3, x4 ≡ x1 . (3.5)

The equations (1.6) determine z1, z2 in terms of z3 through

z1 = z3 + c1, z2 = z3 + c1 + c2 , (3.6)

while z3 is determined by the requirement that (x2 − x1) + (x3 − x2) + (x1 − x3) = 0,

f(z3) = 0, f(z3) ≡
a σ1

z3 + c1
+

b σ2
z3 + c1 + c2

+
c σ3
z3

. (3.7)

Thus for any given ordering specified by the choice of σi = ±1 the solutions of (1.6) are

in one-to-one correspondence with the zeros of f(z3), subject to the inequalities

a/(z3 + c1) > 0, b/(z3 + c1 + c2) > 0, c/z3 > 0 , (3.8)

13The ci’s are related to the parameters θi in [19] (or ζi’s in [20]) as ci = −θi = −ζi.
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which follow from (3.4) and (3.6). Finally, the determinant of the Hessian of Ŵ is given by

detM = −
a b c σ1σ2σ3

(x1 − x2)2(x2 − x3)2(x1 − x3)2
f ′(z3) . (3.9)

From this we see that any solution to f(z3) = 0 contributes a term

(−1)a+b+c (y − y−1)−2 s(p) y2J3(p) (3.10)

to the Coulomb index gref(a, b, c; y), where

2J3(p) = aσ1 + bσ2 + cσ3 , s(p) = sign[−a b c σ1σ2σ3 f
′(z3)] . (3.11)

A short analysis shows that the conditions (3.8) allow the variable z3 to take values in

an interval zmin < z3 < zmax, depending on the signs of a, b, c. Within this interval, the

function f(z3) may have several zeros, but since solutions contribute with a sign s(p)

proportional to f ′(z3), they will cancel in pairs. Thus, a necessary and sufficient condition

for the ordering specified by σi to contribute is that f(z3) should have opposite signs near

the two ends of the allowed range, so that an odd number of solutions exist, in which case

the sign s(p) will be that of abcσ1σ2σ3, times the sign of f(z3) near the lower limit of z3.

Below we tabulate the allowed range of z3 as well as the signs of f(z3) at the two ends of

the interval (other combinations of signs of a, b, c are ruled out by the conditions (3.8)):

a b c zmin signf(z)|z→z+min
zmax signf(z)|z→z−max

+ + + 0 cσ3 +∞ aσ1 + bσ2 + cσ3
+ + − −c1 aσ1 0 −cσ3
− + − −c1 − c2 bσ2 −c1 −aσ1
− − − −∞ −(aσ1 + bσ2 + cσ3) −c1 − c2 −bσ2

(3.12)

Using this table, it is straightforward to show that the ordering p(123) = (123),

corresponding to σ1 = σ2 = 1, σ3 = −1, contributes whenever

a b > 0, c < a+ b , s(p) = sign(a) , 2J3(p) = a+ b− c , (3.13)

while the ordering p(123) = (213), corresponding to σ1 = σ3 = −1, σ2 = 1 contributes

whenever

a c > 0, b > a+ c , s(p) = −sign(a) , 2J3(p) = b− a− c , (3.14)

Finally the ordering p(123) = (132), corresponding to σ1 = 1, σ2 = σ3 = −1, contributes

in four possible cases

(i) b, c > 0, a > b+ c (ii) a, b > 0, c < 0

(iii) a, c < 0, b > 0 (iv) b, c < 0, a < b+ c
(3.15)

with s(p) = −1, 2J3(p) = a− b− c in all these cases.

We now consider the case where the multiplicity a vanishes, and b, c 6= 0. In that

case the equations (1.6) can be solved algebraically. We find that solutions exist only

when b > 0, c < 0, and their topology depends on the sign of δ = bc1 + cc2. If δ > 0,
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the orderings (213) and (132) contribute with signs s(213) = 1, s(132) = −1, respectively.

If δ < 0, the orderings (123) and (132) contribute with signs s(123) = 1, s(132) = −1,

respectively. The Coulomb index gref(a, b, c; y) is continuous across the locus δ = 0, which

corresponds to a wall of threshold stability.

Similarly, if b = 0 and a, c 6= 0, we find that solutions exist only when a < 0, c < 0,

and their topology depends on the sign of δ = ac3 + cc2. For δ > 0, the orderings (213)

and (132) contribute, with s(213) = 1, s(132) = −1, respectively. For δ < 0, the orderings

(213) and (123) contribute, with s(213) = 1, s(123) = −1.

Finally, if c = 0 and a, b 6= 0, we find that solutions exist only when a > 0, b > 0,

and their topology depends on the sign of δ = ac3 + bc1. For δ > 0, the orderings (123)

and (213) contribute, with s(123) = 1, s(213) = −1, respectively. For δ < 0, the orderings

(123) and (132) contribute, with s(123) = 1, s(132) = −1.

At last, if two of the multiplicities vanish, one of the centers decouples from the other

two and the solutions to (1.6) are no longer isolated. This case never arises when discussing

non-marginal bound states, as we do in this paper.

We should also discuss the cases where one of the triangle inequalities is saturated. In

this case we can still make use of (3.12), but each of the entries where (aσ1 + bσ2 + cσ3)

appears will need modification when it vanishes since we cannot use this to determine the

sign of f(z3) in appropriate limits. In such cases we need to go back to the expression for

f(z3) given in (3.7) and keep the subleading terms to determine the behaviour of f(z3)

in the z3 → ±∞ limit. Take for example the case c = a + b with a, b, c > 0. In this case

(aσ1 + bσ2 + cσ3) vanishes for σ1 = σ2 = −σ3. In this case we see from (3.7) that in the

z3 → ∞ limit, the sign of f(z3) is given by that of cσ3. Since this is the same as the

sign of f(z3) for z3 → 0 we see that this configuration does not contribute to gref . Similar

analysis can be done for all other configurations as well.

3.2 Three-node quiver without loop

Let us now consider the case a < 0, b > 0, c < 0, corresponding to a three-node quiver

without loop. The results of the previous subsection show that only the orderings 213 and

132 contribute, leading to the Laurent polynomial

gref(γ1, γ2, γ3; y) = (−1)a+b+c(y − 1/y)−2
(
yb−a−c + ya+c−b − ya−c−b − yb+c−a

)

= (−1)a+b+c ya+c−b−2 (1− y2)−2
(
1− y−2c

) (
1− y2(b−a)

)
. (3.16)

Since there are no scaling solutions with two centers,

ΩS
ref(γℓ) = 1 , ΩS

ref(γℓ + γk) = Ωscaling(γℓ + γk; y) = 0, for 1 ≤ ℓ < k ≤ 3 . (3.17)

Furthermore for a quiver without closed loop there are also no three centered scaling

solutions and hence

ΩS
ref(γ1 + γ2 + γ3) = Ωscaling(γ1 + γ2 + γ3; y) = 0 . (3.18)

eq.(1.4) now gives

Q(γ1 + γ2 + γ3; y) = gref(γ1, γ2, γ3; y) . (3.19)

– 22 –



J
H
E
P
1
1
(
2
0
1
2
)
0
2
3

On the other hand, the quiver moduli space is described by the D-term equations

|c|∑

γ=1

|φ13,γ |
2 −

|a|∑

α=1

|φ21,α|
2 = c1

b∑

β=1

|φ23,β |
2 +

|a|∑

α=1

|φ21,α|
2 = c2 . (3.20)

Since the diagonal U(1) acts trivially on all the fields, they define a manifold M of complex

dimension |a| + b + |c| − 2, which is a smooth P
|c|−1 bundle over P

|a|+b−1. The Poincaré

polynomial of M is the product of the Poincaré polynomial of these two projective spaces,

in perfect agreement with (3.16).

3.3 Three node quiver with loop

Let us now consider a three-node quiver with loop, choosing a > 0, b > 0, c > 0. In the

case where the triangular inequalities

a < b+ c, b < a+ c , c < a+ b , (3.21)

hold, the analysis of section 3.1 shows that only the ordering (123) contributes, leading to

gref(γ1, γ2, γ3; y) = (−1)a+b+c(y − y−1)−2
(
ya+b−c + yc−a−b

)
. (3.22)

Unlike (3.16), this is not a Laurent polynomial, as expected since the Coulomb moduli

space has scaling regions. Applying the prescription of section 2 we find

Q(γ1+γ2+γ3; y) = gref(γ1, γ2, γ3; y)+ΩS
ref(γ1+γ2+γ3)+H({γ1, γ2, γ3}; {1, 1, 1}; y) . (3.23)

The unique choice of H, which is even under y → y−1, vanishes as y → ∞ and makes the

right hand side of (3.23) a polynomial in y, y−1 is given by14

H({γ1, γ2, γ3}; {1, 1, 1}; y) =

{
−2 (y − y−1)−2 for a+ b+ c even

(y + y−1) (y − y−1)−2 for a+ b+ c odd
(3.24)

Substituting these in (3.23) we finally get

Q(γ1 + γ2 + γ3; y) = ΩS
ref(γ1 + γ2 + γ3)+

+ (y−1/y)−2 ×

{(
ya+b−c + yc−a−b − 2

)
, for a+b+c even

−
(
ya+b−c+yc−a−b−y−y−1

)
, for a+b+c odd

(3.25)

On the other hand, if a, b, c are all positive but the triangle inequalities are violated, then

it follows from the analysis of section 3.1 that

Q(γ1 + γ2 + γ3; y) = (y − y−1)−2
(
ya+b−c + yc−a−b − yb+c−a − ya−b−c

)
for a > b+ c

14Since H is independent of the FI parameters, the result (3.24) can be used for any scaling subquiver of

a larger quiver.
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= (y − y−1)−2
(
ya+b−c + yc−a−b − ya+c−b − yb−a−c

)
for b > a+ c

= 0 for c > a+ b . (3.26)

Note that in these cases we have set ΩS
ref(γ1 + γ2 + γ3) to zero since the Coulomb branch

moduli space does not have scaling region. Finally when any one of the inequalities is

saturated then we can use either (3.25) or (3.26) since they give the same result.

Let us now compare this result with the cohomology of the Higgs branch. Since the

loop allows for a superpotential W =
∑

αβγ Cαβγ φ12,αφ23,βφ31,γ , the moduli space of

classical vacua is described by the F-term

∂φ12,αW = ∂φ23,β
W = ∂φ31,γW = 0 (3.27)

and D-term constraints

a∑

α=1

|φ12,α|
2 −

c∑

γ=1

|φ31,γ |
2 = c1

b∑

β=1

|φ23,β |
2 −

a∑

α=1

|φ12,α|
2 = c2 (3.28)

c∑

β=1

|φ31,γ |
2 −

b∑

β=1

|φ23,β |
2 = c3 = −c1 − c2 .

As shown in [4], for generic choice of the superpotential the moduli space splits into three

different branches, where one of set of chiral multiplets φ12, φ23 or φ31 vanishes. For the

choice of FI terms in (3.3), φ31 vanishes identically, so that the solution to the D-term

constraints modulo gauge transformation is given by P
a−1 × P

b−1 parametrized by φ12,α

and φ23,β respectively, upon which the F-term conditions ∂φ31,γW = 0 impose c bilinear

constraints. Thus, M is a complete intersection in P
a−1 × P

b−1. Its cohomology can be

computed by the Lefschetz hyperplane theorem, which predicts

Q(M; y) ≃ (−1)a+b+cyc−a−b+2(1− y2)−2(1− y2a)(1− y2b)

≃ (−1)a+b+c(y − 1/y)−2 yc−a−b +O(1) , (3.29)

where ≃ denotes equality up to additive constant and positive powers of y. This is in

agreement with (3.25). The constant ΩS
ref(γ1 + γ2 + γ3) in (3.25) correspond to the ‘pure

Higgs states’ carrying zero angular momentum.

We shall now obtain the undetermined constant ΩS
ref(γ1 + γ2 + γ3), by computing the

Euler number of M using the Riemann-Roch theorem. This computation was first carried

out in [19], generalizing the analysis of [4]. We shall extend these results by computing the

Hirzebruch polynomial (2.14) of the quiver moduli space, which provides finer information

on the middle cohomology.

For the three-node with loop of interest in this section, M is a complete intersection of

codimension c in the product Pa−1 × P
b−1. After performing the change of variable (2.30),
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we find that the Hirzebruch polynomial is given by

χ(a, b, c; v) =

∮
dR1

2πi (1−R1)(1− vR1)Ra
1

dR2

2πi (1−R2)(1− vR2)Rb
2

×

(
R1 +R2 −R1R2(1 + v)

1−R1R2v

)c (3.30)

To evaluate this integral, it is useful to construct the partition function

χ(x1, x2, x3; y) =
∑

a≥0,b≥0,c≥0

(−y)−a−b+c+2χ(a, b, c; y2)xa1 x
b
2 x

c
3 . (3.31)

Summing up the geometric series and computing the contour integral using Cauchy’s the-

orem, we arrive at

χ(x1, x2, x3; y) = (3.32)

=
x1x2(1− x1x2)

(1+x1y)(1+x1/y)(1+x2y)(1+x2/y) [1−x1x2−x2x3−x1x3−x1x2x3(y+1/y)]
.

On the other hand, denoting by Q̂(x1, x2, x3; y, t) the generating function of the Dol-

beault polynomial Q̃(a, b, c; y, t) ≡ Q̃(γ1 + γ2 + γ3; y, t),

Q̂(x1, x2, x3; y, t) =
∑

a≥0,b≥0,c≥0

(x1)
a(x2)

b(x3)
cQ̃(a, b, c; y, t) , (3.33)

we find by using (3.26), (2.15) and (3.25)

Q̂(x1, x2, x3; y, t) = Q̂S(x1, x2, x3; t)

+
x1x2

{
1− x1x2 + x1x2x3

(
x1 + x2 + y + y−1

)}

(1− x1x2)(1− x1x3)(1− x2x3)(1 + x1/y)(1 + x1y)(1 + x2/y)(1 + x2y)
.

(3.34)

Here Q̂S(x1, x2, x3; t) is the generating function of Ω̃S
ref(γ1 + γ2 + γ3; t). Note that the t

dependence comes only from Q̂S. Now according to (2.13), at t = 1/y this should reduce

to (−y)−dχ(y2). Comparing this with (3.32) we find

Q̂S(x1, x2, x3; t)=
x21x

2
2x

2
3

(1−x1x2)(1−x2x3)(1−x1x3)[1−x1x2−x2x3−x1x3−x1x2x3(t+1/t)]
(3.35)

It is striking that Q̂S(x1, x2, x3; t) is symmetric under permutations of x1, x2, x3, which

implies that the middle cohomology states are robust under wall-crossing. This property

at t = 1 was noticed in [19].

Finally, let us test the HN recursion method described in section 2.5 by computing

the cohomology of the quiver moduli space in the absence of a superpotential. We still

assume a, b, c > 0 and c1 > c2 > 0, c3 = −c1 − c2 < 0. Using the fact that the slopes are

ordered according to

γ3 < γ2 + γ3 < γ1 + γ3 < γ1 + γ2 + γ3 < γ2 < γ1 + γ2 < γ1 , (3.36)
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we find from (2.40)

I(γ1;w) = I(γ2; y) = I(γ3; y) = 1/(w − w−1),

I(γ1 + γ2;w) = (wa − w−a)/(w − w−1)2,

I(γ2 + γ3;w) = (wb − w−b)/(w − w−1)2, (3.37)

I(γ1 + γ3;w) = 0,

and, from (2.36) and (2.40)

Q0(γ1 + γ2 + γ3; y) = (−1)a+b+cy−c(ya − y−a)(yb − y−b)/(y − y−1)2

= (−1)a+b+cy−a−b−c+2(1− y2a)(1− y2b)(1− y2)−2 . (3.38)

This agrees with the fact that the embedding space M0 is given by P
a−1×P

b−1×C
c [19, 20].

4 Cyclic quivers

We shall now consider a generic cyclic quiver with K nodes, of the form

1

2

. . .K − 1

K

a1
❍❍

❍❍
❍

##❍
❍❍

❍❍

a2
✕✕
✕✕
✕✕



✕✕
✕✕
✕✕

oo

aK−1✯✯✯✯✯✯

TT✯✯✯✯✯✯

aK
✈✈✈✈

;;✈✈✈✈✈

(4.1)

We assume that each node carries a U(1) factor. We take γℓ(ℓ+1) = aℓ > 0 for ℓ =

1, · · ·K − 1, γK1 = aK > 0, and choose the FI parameters to satisfy

c1, c2, · · · cK−1 > 0, cK < 0 . (4.2)

The Higgs branch of this class of quivers was analyzed in [20]. Since in this case there

are no subquivers with closed loops the analysis of both the Coulomb branch and Higgs

branch simplifies.

4.1 Coulomb branch analysis

The prescription of section 2 yields

Q(γ1+· · ·+γK ; y)=gref(γ1, · · · γK ; y)+H({γ1, · · · γK}, {1, · · · 1}; y)+ΩS
ref(γ1+· · ·+γK) . (4.3)

To evaluate the Coulomb index gref(γ1, · · · γK ; y), we need to find the solutions to (1.6) for

this system. Extending the procedure of section 3.1, let us define

zℓ ≡
aℓσℓ

xℓ+1 − xℓ
, σℓ ≡ sign(xℓ+1 − xℓ) for 1 ≤ ℓ ≤ K − 1 ,
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zK ≡
aKσK
x1 − xK

, σK ≡ sign(x1 − xK) , (4.4)

and rewrite (1.6) as

zℓ+1 − zℓ = cℓ+1 for 1 ≤ ℓ ≤ K − 2 , z1 − zK = c1 . (4.5)

Since all the aℓ’s are positive, this is also the case of the zℓ’s. Without any loss of generality

we can fix x1 = 0. This gives

zℓ = zK +
ℓ∑

k=1

ck , xℓ =
ℓ−1∑

k=1

akσk
zk

, (4.6)

where the only unknown zK is determined by the algebraic equation

f(zK) = 0 where f(zK) ≡
K∑

ℓ=1

aℓσℓ
zℓ

. (4.7)

Since we assume that all aℓ (ℓ = 1 . . .K) and cℓ (ℓ = 1 . . .K − 1) are positive, the only

requirement on the solution of (4.7) is that zK > 0. For such a solution, the determinant

of the Hessian Mℓk = ∂2Ŵ/∂xℓ∂xk for 2 ≤ ℓ, k ≤ K evaluates to

detM = −f ′(zK)
K∏

ℓ=1

aℓσℓ
(xℓ+1 − xℓ)2

, xK+1 ≡ x1 . (4.8)

Thus, a solution to f(zK) = 0 contributes to gref(γ1, · · · γK ; y) with a sign

s(p) = −sign
[
f ′(zK)

] K∏

ℓ=1

σℓ . (4.9)

In general, the equation f(zK) = 0 may have several solutions in the range 0 < zK < +∞.

However, due to (4.9), the contribution of these solutions to gref(γ1, · · · γK ; y) will cancel

in pairs. The only possibility for the ordering specified by σi to contribute is that there

should be an odd number of solutions. For this we need to ensure that f(zK) has opposite

signs in the two extreme limits: as zK → 0 and as zK → ∞. As long as the cℓ’s are not

zero we see from (4.6) that all the zℓ’s other than zK remain finite in the zK → 0 limit

and hence f(zK) approaches aKσK/zK . On the other hand as zK → ∞, we see from (4.6)

that all the other zℓ’s also approach infinity keeping the difference zℓ− zK finite and f(zK)

goes as
∑K

ℓ=1aℓσℓ/zK . Thus (4.7) has an odd number of solutions if

sign

[
K∑

ℓ=1

aℓσℓ

]
= −σK . (4.10)

As indicated above, if there is more than one solution the solutions will cancel in pairs,

but the sign of f ′(zK) at the uncancelled solution will be the opposite of the sign of f(zK)

as zK → 0. Since the sign of f(zK) as zK → 0 is σK , we get, from (4.9),

s(p) =
K−1∏

ℓ=1

σℓ . (4.11)
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Using (2.4) we arrive at

gref(γ1, · · · γK ; y)=(−1)K−1+
∑

ℓ aℓ(y−y−1)−K+1
∑

σ1=±1,σ2=±1,···σK=±1

sign[
∑K

ℓ=1
aℓσℓ]=−σK

(
K−1∏

ℓ=1

σℓ

)
y
∑K

ℓ=1 σℓaℓ .

(4.12)

Inserting this result in (4.3), we find

Q(γ1 + · · ·+ γK ; y) = ΩS
ref(γ1 + · · ·+ γK) +H({γ1, · · · γK}, {1, · · · 1}; y)

+ (−1)K−1+
∑

ℓ aℓ(y − y−1)−K+1
∑

σ1=±1,σ2=±1,···σK=±1

sign[
∑K

ℓ=1
aℓσℓ]=−σK

(
K−1∏

ℓ=1

σℓ

)
y
∑K

ℓ=1 σℓaℓ . (4.13)

H({γ1, · · · γK}, {1, · · · 1}; y) is fixed uniquely by demanding that it is symmetric under

y → y−1, vanishes as y → ∞, 0, and that Q(γ1 + · · ·+ γK ; y) is a Laurent polynomial in y.

It can be obtained for example using the contour integral prescription (2.9), inserting the

second line of (4.13) in place of f(y). The constant ΩS
ref(γ1+ · · ·+ γK) appearing in (4.13)

can be determined from the Euler characteristics of the Higgs branch, as explained in the

next subsections.

In preparation for the analysis of the Higgs branch, let us now try to identify the

negative powers of y in (4.13). Firstly, neither H nor ΩS contributes negative powers

of y in an expansion around y = 0 since H vanishes as y → 0 and ΩS is y-independent

constant. To get negative powers of y from the first term on the right hand side of (4.13),

we need
∑K

ℓ=1 σℓaℓ < 0. Due to the restriction on the σℓ’s in the sum, this implies that

σK = 1. Thus we can express (4.13) as

Q(γ1+· · ·+γK ; y)≃(−1)K−1+
∑

ℓ aℓ(y−y−1)−K+1
∑

σ1=±1,σ2=±1,···σK−1=±1
∑K−1

ℓ=1
aℓσℓ+aK<0

(
K−1∏

ℓ=1

σℓ

)
y
∑K−1

ℓ=1 σℓaℓ+aK ,

(4.14)

where as usual ≃ denotes equality up to additive constant and positive powers of y.

4.2 Higgs branch analysis

Now according to the analysis of [20] the moduli space M of this quiver is a codimension

aK complete intersection hypersurface in P
a1−1 × · · · × P

aK−1−1. Thus the complex

dimension of this manifold is given by

d =
K−1∑

ℓ=1

aℓ − aK − (K − 1) . (4.15)

By Lefschetz hyperplane theorem, the cohomology of M coincides with that of

P
a1−1 × · · · × P

aK−1−1 for degree less than d. Since the Poincaré polynomial of Pn−1 is

given by (1− t2n)/(1− t2), we see that the first d−1 powers of t of the Poincaré polynomial
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of M is given by that of
∏K−1

ℓ=1 {(1 − t2aℓ)/(1 − t2)}. Thus the Laurent polynomial

associated to M is given by

Q(M; y) ≃ (−y)−
∑K−1

ℓ=1 aℓ+aK+(K−1)
K−1∏

ℓ=1

{(1− y2aℓ)/(1− y2)}

≃ (−1)−
∑K

ℓ=1 aℓ (y − y−1)−K+1 y−
∑K−1

ℓ=1 aℓ+aK

K−1∏

ℓ=1

(1− y2aℓ) , (4.16)

where ≃ denotes equality of terms involving negative powers of y. The terms in Q(M; y)

involving positive powers of y are given by the y → y−1 symmetry. Now to identify

terms in (4.16) involving negative powers of y, we can explicitly expand the product∏K−1
ℓ=1 (1− y2aℓ), and pick up those powers of y, which when multiplied by y−

∑K−1
ℓ=1 aℓ+aK ,

still gives negative powers of y. Thus we get

Q(M; y) ≃ (−1)−
∑K−1

ℓ=1 aℓ+aK+K−1 (y − y−1)−K+1

×
∑

~σ
σ1a1+···σK−1aK−1+aK<0

(
K−1∏

ℓ=1

σℓ

)
yσ1a1+···σK−1aK−1+aK , (4.17)

where the sum over ~σ runs over all K − 1 dimensional vectors of the form (±1,±1, · · · ± 1)

subject to the restriction given above. This is in perfect agreement with (4.14). The

agreement between the positive powers of y between Q(M; y) and Q(γ1 + · · · + γK ; y)

then follows from the y → y−1 symmetry of both terms. The H in (4.14) ensures

that Q(γ1 + · · · + γK ; y), like Q(M; y), is a Laurent polynomial in y. Finally the

ΩS
ref(γ1 + · · · + γK) in (4.14) will have to be adjusted so that the constant terms in the

expressions for Q(M; y) and Q(γ1 + · · ·+ γK ; y) match.

4.3 Middle cohomology

Using the Riemann-Roch theorem summarized in section 2.4, we find that the Hirzebruch

polynomial is given by the contour integral

χ(a1, . . . aK ; v) =

∮
Rv(

K−1∑

ℓ=1

Jℓ)]
aK

K−1∏

ℓ=1

dJℓ
2πi [Rv(Jℓ)]aℓ

(4.18)

where Rv(J) has been defined in (2.28). Changing variables from Jℓ to Rℓ = Rv(Jℓ), we find

χ(a1, . . . aK ; v) =

∮
{Rv[

K−1∑

ℓ=1

R−1
v (Rℓ)]}

aK

K−1∏

ℓ=1

dRℓ

2πi (1−Rℓ)(1− vRℓ)R
aℓ
ℓ

. (4.19)

Thus, the partition function, after carrying out the Rℓ integrals, is found

χ(x1, . . . , xK ; y) ≡
∑

a1,···aK

(−y)−a1−···−aK−1+aK+K−1χ(a1, . . . aK ; y2)xa11 . . . xaKK

=
1

1 + xKyRy2 [
∑K−1

ℓ=1 R−1
y2

(−xℓ/y)]

K−1∏

ℓ=1

xℓ
(1 + xℓ/y)(1 + xℓy)
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With some work one may express Rv[
∑K−1

ℓ=1 R−1
v (xℓ)] in terms of the xℓ,

Ry2

[
K−1∑

ℓ=1

R−1
y2

(−xℓ/y)

]
= 1 +

(y − y−1)
∏K−1

ℓ=1 (1 + xℓ/y)

y−1
∏K−1

ℓ=1 (1 + xℓy)− y
∏K−1

ℓ=1 (1 + xℓ/y)
. (4.20)

This gives

χ(x1, . . . , xK ; y)=
K−1∏

ℓ=1

xℓ
(1+xℓ/y)(1+xℓy)

y−1
∏K−1

ℓ=1 (1+xℓy)−y
∏K−1

ℓ=1 (1+xℓ/y)

y−1
∏K

ℓ=1(1 + xℓy)− y
∏K

ℓ=1(1 + xℓ/y)
. (4.21)

Setting y = 1, we find

χ(x1, . . . , xK ; 1) =
1

1 + xK

K−1∏

ℓ=1

xℓ
(1 + xℓ)2

+D(x1, . . . , xK)
K∏

ℓ=1

xℓ
1 + xℓ

, (4.22)

where

D(x1, . . . , xK) =

(
1−

K∑

k=1

xk
1 + xk

)−1 K∏

ℓ=1

1

1 + xℓ
. (4.23)

The function (4.23) is recognized as the generating function of the number D(a1, . . . aK) of

derangements of a set of
∑K

ℓ=1 aℓ objets of K different types, with ak objects of type k for

k = 1 . . .K. This partition function was computed in [35] for arbitrary K, and its relevance

for the counting of pure Higgs states was noted in [19] in the case of 3-node quivers.

On the other hand, the Dolbeault polynomial of the quiver moduli space is given

analogously to (4.13) by

Q̃(γ1+ · · ·+ γK ; y, t) = Ω̃S
ref(γ1 + · · ·+ γK ; t) +H({γ1, · · · γK}, {1, · · · 1}; y)

+ (−1)K−1+
∑

ℓ aℓ(y − y−1)−K+1
∑

σ1=±1,σ2=±1,···σK=±1

sign[
∑K

ℓ=1
aℓσℓ]=−σK

(
K−1∏

ℓ=1

σℓ

)
y
∑K

ℓ=1 σℓaℓ . (4.24)

Since the second term H vanishes as y → 0, we can ignore it for the purpose of

determining the non-positive powers of y in Q̃(γ1 + · · · + γK ; y, t). The constraint

sign
[∑K

ℓ=1aℓσℓ

]
= −σK then implies that negative powers of y only come from terms with

σK = 1. Moreover, for such terms we can drop the constraint sign
[∑K

ℓ=1aℓσℓ

]
= −σK

since terms which violate this constraint carry positive powers of y. Thus the generating

function for Q̃(γ1 + · · ·+ γK ; y, t) can be written as

Q̂(x1, · · ·xK ; y, t) :≃ Q̂S(x1, · · ·xK ; t)

+
∑

{aℓ}
aℓ≥0 ∀ ℓ

(xℓ)
aℓ (−1)K−1+

∑
ℓ aℓ(y − y−1)−K+1

∑

σ1=±1,σ2=±1,···σK−1=±1

(
K−1∏

ℓ=1

σℓ

)
y
∑K−1

ℓ=1 σℓaℓyaK

:≃ Q̂S(x1, · · ·xK ; t) +
1

1 + xKy

K−1∏

ℓ=1

xℓ
(1 + xℓy)(1 + xℓ/y)

, (4.25)
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where :≃ denotes equality up to additive positive powers of y, and Q̂S is the generating

function for Ω̃S
ref . Now according to (2.13) we can equate this at t = 1/y to χ(x1, . . . , xK ; y).

This gives

Q̂S(x1, · · ·xK ; 1/y) :≃
1− y2

y−1
∏K

ℓ=1(1 + xℓy)− y
∏K

ℓ=1(1 + xℓ/y)

K∏

ℓ=1

xℓ
1 + xℓy

(4.26)

After expanding in powers of the xℓ’s and picking the coefficient of the monomial
∏

ℓ x
aℓ
ℓ .

the right hand side of (4.26) gives the negative and zero powers of y in Ω̃S
ref(γ1+· · · γK ; 1/y).

The positive powers of y are found using the y → 1/y symmetry.

In fact, one may compute the complete partition function of Ω̃S
ref(γ1 + · · · γK ; 1/y),

including positive powers of y, by using the prescription (2.9). One can exchange the sums

over aℓ with the integral over u as long as |xℓ| ≪ |u| ∀ℓ. This gives

Q̂S(x1, · · ·xK ; 1/y) =

∮
du

2πi

(1/u− u)

(1− uy)(1− u/y)

1− u2

u−1
∏K

ℓ=1(1 + xℓu)− u
∏K

ℓ=1(1 + xℓ/u)

×
K∏

ℓ=1

xℓ
1 + xℓu

, (4.27)

where it is understood that the u integration contour encloses all poles which go to zero as

xℓ → 0 but does not enclose any other poles. The integral can be evaluated as follows:

1. We first make a change of variables from u → 1/u. This moves the integration

contour so as to enclose the poles at y and 1/y.

2. We now deform the integration contour back to the original position, in that process

picking up residues at the poles at u = y and u = 1/y.

3. We then take the average of the original integral (4.27) and the new result.

At the end of the process one arrives at the result

Q̂S(x1, · · ·xK ; 1/y) = −
1

2

y − 1/y

y−1
∏K

ℓ=1(1 + xℓy)− y
∏K

ℓ=1(1 + xℓ/y)

×

[
y

K∏

ℓ=1

xℓ
1 + xℓy

+ y−1
K∏

ℓ=1

xℓ
1 + xℓy−1

]

−
1

2

∮
du

2πi

(u− u−1)2

(1− uy)(1− u/y)

K∏

ℓ=1

xℓ
(1 + xℓu)(1 + xℓ/u)

. (4.28)

We can now shrink the last contour to u = 0, picking up the residues at the poles at

u = −xk in that process. This gives

Q̂S(x1, · · ·xK ; 1/y) = −
1

2

y − 1/y

y−1
∏K

ℓ=1(1 + xℓy)− y
∏K

ℓ=1(1 + xℓ/y)

×

[
y

K∏

ℓ=1

xℓ
1 + xℓy

+ y−1
K∏

ℓ=1

xℓ
1 + xℓy−1

]
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+
1

2

K∑

k=1

1− x2k
(1+xk/y)(1+yxk)

∏

ℓ=1...K
ℓ6=k

xℓ
(1−xℓ/xk)(1−xℓxk)

. (4.29)

This agrees with (3.35) for K = 3. Like (3.35), eq.(4.29) is also symmetric under the

exchange of the xℓ’s reflecting the fact that the single centered index remains invariant

under wall crossing. It is worthwhile noting that the poles at y = −xℓ and y = −1/xℓ
precisely cancel between the two terms in (4.29). The partition function (4.29) is also

regular at y = 1, where it reduces to

Q̂S(x1, · · ·xK ; 1) =

∏K
ℓ=1

xℓ

(1+xℓ)2

1−
∑K

k=1
xk

1+xk

+
1

2

K∑

k=1

1− xk
1 + xk

∏

ℓ=1...K
ℓ6=k

xℓ
(1− xℓ/xk)(1− xℓxk)

. (4.30)

Using the same techniques as in [19], it is straightforward to extract the asymptotic

growth of the index of pure Higgs states ΩS
ref(γ1 + · · ·+ γK) as the arrow multiplicities aℓ

are uniformly scaled to infinity. The asymptotics is governed by the pole of the partition

function at
K∑

k=1

xk
1 + xk

= 1 . (4.31)

Setting for simplicity all aℓ equal to a, the solution to (4.31) is xk = 1/(K − 1), leading

to an exponential growth

ΩS
ref(γ1 + · · ·+ γK)

a→∞
∼ a

1−K
2 (K − 1)Ka . (4.32)

Since a = 〈γℓ, γℓ+1〉 scales like the square of the charges, the exponential growth of ΩS
ref

is consistent with the Bekenstein-Hawking entropy of a macroscopic single-centered black

hole.

5 Quivers with two loops

So far we have considered quivers for which the links form a single closed loop. In this sec-

tion we shall apply the general algorithm of section 1 to compute the Poincaré polynomial

of quivers with more than one oriented loop.

5.1 Abelian four-node, two-loop quivers

We consider the class of Abelian quivers with four nodes and two oriented loops represented

below,

1

2

3

4

a
❅❅

❅❅

��❅
❅❅

❅

e

HH

g
⑧⑧⑧⑧

??⑧⑧⑧⑧

b
��
��

����
��

f
vv

c ❅❅❅❅

``❅❅❅❅

(5.1)
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We denote by γ1, · · · γ4 the charge vectors carried by the four nodes, and by γ12 = a,

γ23 = b, γ34 = c, γ41 = g, γ31 = e, γ24 = f the multiplicities of arrows, which we assume

to be strictly positive. Using (1.4), (1.7), (3.17) and that ΩS
ref(γℓ) = 1 we get

Q(γ1 + γ2 + γ3 + γ4; y) = gref(γ1, γ2, γ3, γ4; y)

+

{
gref(γ1, γ2+γ3+γ4; y)

(
ΩS
ref(γ2+γ3+γ4)+H({γ2, γ3, γ4}; {1, 1, 1}; y)

)
+perm

}

+ΩS
ref(γ1 + γ2 + γ3 + γ4) +H({γ1, γ2, γ3, γ4}; {1, 1, 1, 1}; y) .

(5.2)

The coefficients H({γi, γj , γk}; {1, 1, 1}; y)’s have been determined in section 3. The coeffi-

cient H({γ1, γ2, γ3, γ4}; {1, 1, 1, 1}; y) is determined by demanding that the right hand side

of (5.2) is a polynomial in y and that H is invariant under y → y−1 and vanishes as y → ∞.

Instead of trying to solve the problem for a general set of charges, we shall illustrate our al-

gorithm for special choices of the γij ≡ 〈γi, γj〉 and the ci’s. We shall consider two examples:

5.1.1 Example with only 3-center scaling solutions

We choose multiplicities15

a = 3k, b = 4k, c = 7k , g = 4k , e = 5k, f = 4k, (5.3)

where k is an arbitrary positive integer, and choose the FI parameters to be

c1 = 2.1 , c2 = 3 , c3 = −1.1 , c4 = −4 . (5.4)

Since the subquivers 134 and 234 have no closed loops, the corresponding H and ΩS
ref

must vanish:

H({γ1, γ3, γ4}; {1, 1, 1}; y) = H({γ2, γ3, γ4}; {1, 1, 1}; y) = 0,

ΩS
ref(γ1 + γ3 + γ4) = ΩS

ref(γ2 + γ3 + γ4) = 0 . (5.5)

In contrast, the subquivers 123 and 124 are 3-node quivers with loops of the type analyzed

in section 3.3, satisfying the triangular inequalities (3.21). We can therefore borrow the

result from (3.24),

H({γ1, γ2, γ3}; {1, 1, 1}; y) = −2(y − y−1)−2,

H({γ1, γ2, γ4}; {1, 1, 1}; y) =

{
(y + y−1) (y − y−1)−2 for k odd

−2 (y − y−1)−2 for k even
. (5.6)

The two-center Coulomb indices gref(γ4, γ1 + γ2 + γ3; y) and gref(γ3, γ1 + γ2 + γ4; y)

can be computed from .(2.5) using {ĉi} = {c4, c1 + c2 + c3} = {−4, 4} and

{c3, c1 + c2 + c4} = {−1.1, 1.1}, respectively,

gref(γ4, γ1 + γ2 + γ3; y) = (−1)k+1 y
7k − y−7k

y − y−1
, gref(γ3, γ1 + γ2 + γ4; y) = 0 . (5.7)

15Since scaling the γij ’s by an overall constant k maps a solution to (1.6) to another solution related by

simple rescaling of the xi’s without changing their relative order, the computation of gref can be done at

one go for a family of quivers labelled by differerent values of k.
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Finally, an explicit analysis of the solutions to (1.6) gives

gref(γ1, γ2, γ3, γ4; y) = (−1)k+1 (y − y−1)−3(y9k − y−9k + y5k − y−5k) , (5.8)

with the contribution to gref(γ1, γ2, γ3, γ4; y) arising from the orderings

{1, 2, 3, 4;+}, {4, 1, 2, 3;−} (5.9)

and their reverse (the last entries in (5.9) give the associated signs s(p)). Substituting

these into (5.2) we get

Q(γ1 + γ2 + γ3 + γ4; y)

=(−1)k+1{(y−y−1)−3(y9k−y−9k+y5k−y−5k)−2(y−y−1)−3(y7k−y−7k)

+ (y − y−1)−1(y7k − y−7k)ΩS
ref(γ1 + γ2 + γ3)}

+H({γ1, γ2, γ3, γ4}; {1, 1, 1, 1}; y) + ΩS
ref(γ1 + γ2 + γ3 + γ4) .

(5.10)

Requiring this to be a polynomial in y, y−1, and H to be even under y → y−1 and vanish

as y → ∞, we get

H({γ1, γ2, γ3, γ4}; {1, 1, 1, 1}; y) = 0 . (5.11)

This gives

Q(γ1 + γ2 + γ3 + γ4; y) =ΩS
ref(γ1 + γ2 + γ3 + γ4)

+ (−1)k+1 (y−7k+1 + y−7k+3 + · · ·+ y7k−1)

×
{
ΩS
ref(γ1+γ2+γ3)+(y−k+1+y−k+3+· · ·+yk−1)2

}
.

(5.12)

The coefficient ΩS
ref(γ1 + γ2 + γ3) can be determined from the generating function of pure

Higgs states given in (3.35) for (a, b, c) = (3k, 4k, 5k) and t = 1.

The vanishing of H({γ1, γ2, γ3, γ4}; {1, 1, 1, 1}; y) indicates that in this case there are

no 4-center scaling solutions. This can be verified by noting that there exist no choice of

~r1, · · ·~r4 for the four centers such that the total angular momentum

~J =
1

2

∑

i<j

αij
~rij
|~rij |

, (5.13)

vanishes. As a consequence ΩS
ref(γ1+γ2+γ3+γ4) also vanishes. In section 5.1.2 we consider

another example where there is a genuine 4-center scaling solution.

Let us now compute Q(M; y) by a direct analysis of the cohomology of the quiver

moduli space M. For the multiplicities (5.3) and FI parameters (5.4) the D-term equations

take the form:

φ∗
12,αφ12,α − φ∗

31,αφ31,α − φ∗
41,αφ41,α = 2.1 ,

−φ∗
12,αφ12,α + φ∗

23,αφ23,α + φ∗
24,αφ24,α = 3 ,

−φ∗
23,αφ23,α + φ∗

31,αφ31,α + φ∗
34,αφ34,α = −1.1 ,

φ∗
41,αφ41,α − φ∗

24,αφ24,α − φ∗
34,αφ34,α = −4 . (5.14)
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Note that the last equation follows from the first three. In the absence of superpotential,

the variables {φNC} = {φ31,α, φ41,α} may become arbitrarily large, but for fixed values of

those the remaining variables {φC} = {φ12,α, φ23,α, φ24,α, φ34,α} lie in a compact domain.

Due to the existence of the closed loops 123, 124 and 1234, the generic superpotential

takes the form

W = C
(1)
αβγφ12,αφ23,βφ31,γ + C

(2)
αβγφ12,αφ24,βφ41,γ + C

(3)
αβγδφ12,αφ23,βφ34,γφ41,δ , (5.15)

where C(i)’s are arbitrary constants. A family of solutions to the F-term and D-term

equations can be found by setting:

φ41,α = φ31,α=0 ,

φ∗
12,αφ12,α=2.1 , φ∗

23,αφ23,α=1.1+φ∗
34,αφ34,α , φ∗

34,αφ34,α+φ∗
24,αφ24,α = 4,

C
(1)
αβγφ12,αφ23,β = 0, C

(2)
αβδφ12,αφ24,β + C

(3)
αβγδ φ12,αφ23,βφ34,γ=0 . (5.16)

Since the Poincaré polynomial remains unchanged under a deformation of the superpoten-

tial as long as the moduli space does not become singular or non-compact, we can simplify

the problem by choosing the superpotential appropriately. Let us set the coefficients

C
(3)
αβγδ to zero. In that case the last set of equations, γ41 = 4k in number, can be solved

by setting the γ24 = 4k components φ24,α to zero. The equations now simplify to

φ41,α = φ31,α = φ24,α = 0 ,

φ∗
12,αφ12,α = 2.1, φ∗

23,αφ23,α = 5.1, φ∗
34,αφ34,α = 4,

C
(1)
αβγφ12,αφ23,β = 0 . (5.17)

After quotienting by the complexified gauge group (C×)4, the moduli space of classical

solutions factorizes into a product of P
c−1, parametrized by the variables φ34,α, and of

a complete intersection of e degree (1,1) hypersurfaces in P
a−1 × P

b−1, parametrized by

φ12,α and φ23,α The cohomology of the complete interesection can be analysed using the

Lefschetz hyperplane theorem as explained in section 2.4, or simply borrowed from our

previous analysis of 3-node quivers in (3.25) with (γ12, γ23, γ31) = (a, b, e). Since the

Poincaré polynomial is multiplicative, we arrive at

Q(M; y) =(−1)k+1 (y−7k+1 + y−7k+3 + · · ·+ y7k−1)

×
{
ΩS(γ1 + γ2 + γ3) + (y−k+1 + y−k+3 + · · ·+ yk−1)2

} (5.18)

The value of ΩS
ref(γ1+γ2+γ3) can be determined from the generating function of pure Higgs

states in (3.35). Eq.(5.18) is in perfect agreement with (5.12) with ΩS
ref(γ1+γ2+γ3+γ4) = 0.

Finally, let us compare the cohomology of the vacuum moduli space M0 in absence

of superpotential with the results of the HN recursion method explained in section 2.5.

As noted below (5.14), the variables φNC
i = φ31,α, φ41,α can vary freely over C

e × C
g,

while, for fixed values of those, the remaining variables parametrize the compact manifold

P
a−1×P

b−1×P
c+f−1. The topology of M0 is therefore P

a−1×P
b−1×P

c+f−1×C
e×C

g, with

Q(M0; y) = (−1)a+b+c+g+e+f+1y−g−e(y − y−1)−3(ya − y−a)(yb − y−b)(yc+f − y−c−f ) .

(5.19)
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On the other hand, using the fact that the charge vectors are ordered according to

γ4 < γ3+γ4 < γ3 < γ1+γ3+γ4 < γ1+γ4 < γ2+γ3+γ4 < γ2+γ4 < γ1+γ2+γ3+γ4

< γ1 + γ2 + γ4 < γ1 + γ3 < γ2 + γ3 < γ1 + γ2 + γ3 < γ1 < γ1 + γ2 < γ2 , (5.20)

where we have used the shorthand notation α < β to denote µ(α) < µ(β), the HN

recursion method yields

I(γ1 + γ2;w) = I(γ1 + γ3;w) = I(γ1 + γ4;w) = 0,

I(γ2 + γ3;w) =
wb − w−b

(w − w−1)2
, I(γ2 + γ4, w) =

wf − w−f

(w − w−1)2
, (5.21)

I(γ3 + γ4;w) =
wc − w−c

(w − w−1)2
, I(γ1 + γ3 + γ4;w) = 0,

I(γ1 + γ2 + γ3;w) = we(w − w−1)−3(wb − w−b)(wa − w−a),

I(γ1 + γ2 + γ4;w) = wg(w − w−1)−3(wf − w−f )(wa − w−a),

I(γ2 + γ3 + γ4;w) = (w − w−1)−3(wc+f − w−c−f )(wb − w−b .

Using these results and eq.(2.39), we have, for the total charge vector γ1 + γ2 + γ3 + γ4,

I(γ;w) = h(γ;w)−F(γ2, γ1, γ3 + γ4;w)−F(γ1, γ2 + γ3 + γ4;w)

−F(γ1, γ2 + γ3, γ4;w)−F(γ1 + γ2 + γ3, γ4;w)−F(γ2, γ1, γ3, γ4;w)

−F(γ1, γ2 + γ4, γ3;w)−F(γ1 + γ2 + γ4, γ3;w) .

= we+g (w − w−1)−4 (wa − w−a) (wb − w−b) (wc+f − w−c−f ) . (5.22)

Using this and (2.36), we precisely reproduce (5.19). This bolsters our hypothesis that the

HN method is applicable to quivers with loops, as long as the superpotential vanishes.

5.1.2 Example with 4-center scaling solutions

We now consider a 4-node quiver with the same topology (5.1) but with multiplicities

a = 15k, b = 20k, c = 35k , g = 10k , e = 5k, f = 2k, (5.23)

where k is a positive integer, and with FI parameters

c1 = 2 , c2 = 3 , c3 = −6 , c4 = 1 . (5.24)

In this case only the subquiver 123 and 124 have closed loops, but the subquiver 124 does

not satisfy the triangle inequalities (3.21). Hence we expect H and ΩS to vanish for the

subquivers 124, 234 and 134:

H({γ1, γ3, γ4}; {1, 1, 1}; y) = H({γ2, γ3, γ4}; {1, 1, 1}; y) = H({γ1, γ2, γ4}; {1, 1, 1}; y) = 0,

ΩS
ref(γ1 + γ3 + γ4) = ΩS

ref(γ2 + γ3 + γ4) = ΩS
ref(γ1 + γ2 + γ4) = 0 . (5.25)

The analog of (5.6) now has the form:

H({γ1, γ2, γ3}; {1, 1, 1}; y) = −2(y − y−1)−2 . (5.26)
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Finally an explicit analysis of (1.6) give

gref(γ4, γ1 + γ2 + γ3; y) = 0 ,

gref(γ1, γ2, γ3, γ4; y) = (−1)k+1 (y − y−1)−3(y3k − y−3k) , (5.27)

with the contribution to gref(γ1, γ2, γ3, γ4; y) arising from the arrangements

{4, 1, 2, 3;+}, (5.28)

and its reverse. Substituting these into (5.2) we get

Q(γ1+γ2+γ3+γ4; y)=(−1)k+1 (y−y−1)−3(y3k−y−3k)+H({γ1, γ2, γ3, γ4}; {1, 1, 1, 1}; y)

+ ΩS
ref(γ1 + γ2 + γ3 + γ4) . (5.29)

The unique choice of H({γ1, γ2, γ3, γ4}; {1, 1, 1, 1}; y) consistent with the requirements is

H({γ1, γ2, γ3, γ4}; {1, 1, 1, 1}; y) =

{
3
2 k (y − y−1)−2(y + y−1) for k even

−3 k (y − y−1)−2 for k odd
. (5.30)

The fact that H({γ1, γ2, γ3, γ4}; {1, 1, 1, 1}; y) does not vanish is consistent with the

existence of scaling solutions where all four centers come together (i.e. the existence of

four vectors ~r1, ~r2, ~r3, ~r4 such that the angular momentum (5.13) vanishes). Substituting

this into (5.29) we get

Q(γ1 + γ2 + γ3 + γ4; y)

=

{
ΩS
ref(γ1+γ2+γ3+γ4)−

(
y−y−1

)−3 {
y3k−y−3k− 3

2k(y
2−y−2)

}
for k even

ΩS
ref(γ1+γ2+γ3+γ4)+

(
y−y−1

)−3 {
y3k−y−3k−3k(y−y−1)

}
for k odd

(5.31)

Let us now compute Q(M; y) by a direct analysis of the cohomology of the quiver

moduli space M. In this case the D-term equations take the form:

φ∗
12,αφ12,α − φ∗

31,αφ31,α − φ∗
41,αφ41,α = 2 ,

−φ∗
12,αφ12,α + φ∗

23,αφ23,α + φ∗
24,αφ24,α = 3 ,

−φ∗
23,αφ23,α + φ∗

31,αφ31,α + φ∗
34,αφ34,α = −6 ,

φ∗
41,αφ41,α − φ∗

24,αφ24,α − φ∗
34,αφ34,α = 1 . (5.32)

In the absence of a superpotential, the variables {φNC} = {φ31,α, φ34,α, φ24,α} may

become arbitrarily large, but for fixed values of those the remaining variables

{φC} = {φ12,α, φ23,α, φ41,α} lie in a compact domain. In general however, the su-

perpotential is given by (5.15), where C(i)’s are arbitrary constants. A family of solutions

to the F-term and D-term equations can be found by setting

φ34,α = φ31,α = φ24,α = 0 ,

φ∗
12,αφ12,α = 3, φ∗

23,αφ23,α = 6, φ∗
41,αφ41,α = 1,
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C
(1)
αβγφ12,αφ23,β = 0, C

(2)
αβγφ12,αφ41,γ = 0, C

(3)
αβγδ φ12,αφ23,βφ41,δ = 0 . (5.33)

Now the variables φ12,α, φ23,α and φ41,α subject to the constraints given in the second

line of (5.33), and the identification under the complexified gauge transformations (C×)4,

describe the product manifold Mamb = P
a−1 × P

b−1 × P
g−1. The constraints in the last

line of (5.33) describe a codimension e + f + c submanifold M inside Mamb. Thus the

quiver moduli space M has dimension d = a + b + g − e − f − c = 3k − 3. By repeated

use of Lefschetz hyperplane theorem one can argue that the Betti numbers bp(M) for

p < d coincide with that of the ambient space Mamb. Thus the negative powers of y in

the Laurent polynomial of M are given by

Q(M; y) ≃ y−3k+3(1 + y2 + · · · y30k−2)(1 + y2 + · · · y40k−2)(1 + y2 + · · · y20k−2)

≃ y−3k+3(1− y2)−3 ,
(5.34)

where ≃ denotes equality of terms involving negative powers of y. This is in perfect

agreement with (5.31). The y → y−1 symmetry ensures that the positive powers of

y in Q(M; y) also agree with that given in (5.31). To determine the constant term

ΩS
ref(γ1 + γ2 + γ3 + γ4) in (5.31), it suffices to compute the Euler number of the complete

intersection manifold described by eq.(5.33). Using the method of section 2.4, we find

ΩS
ref(γ1 + γ2 + γ3 + γ4) = (−1)k+1χ(M)−

{
k
8 (4− 9k2) for k even
k
8 (9k

2 − 1) for k odd
(5.35)

where

χ(M) =

∮ 3∏

i=1

dJi
2πi

(
1 + J1
J1

)15k (1 + J2
J2

)20k (1 + J2
J3

)10k

×

(
J1 + J2

1 + J1 + J2

)5k ( J1 + J3
1 + J1 + J3

)2k ( J1 + J2 + J3
1 + J1 + J2 + J3

)35k

.

(5.36)

The contour integral can be easily evaluated for any k using the method of section 2.4.

5.2 A 5-node quiver with nested scaling configurations

We now consider the 5-node, 2-loop Abelian quiver depicted below,
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We choose the FI parameters to be

c1 = c2 = c3 = c4 = 1, c5 = −4 . (5.38)

In this case the nodes 345 form a subquiver satisfying triangle inequality and hence ΩS
ref(γ3+

γ4 + γ5) and H({γ3, γ4, γ5}, {1, 1, 1}; y) are non vanishing. Thus we have

Q(γ1+ · · ·+ γ5; y) = ΩS
ref(γ1 + · · ·+ γ5)

+ gref(γ1, γ2, γ3+γ4+γ5; y)
[
ΩS
ref(γ3+γ4+γ5)+H({γ3, γ4, γ5}, {1, 1, 1}; y)

]

+ gref(γ1, · · · γ5; y) +H({γ1, · · · γ5}, {1, · · · 1}; y)

+H({γ1, γ2, γ3 + γ4 + γ5}, {1, 1, 1}; y)Ω
S
ref(γ3 + γ4 + γ5) .

(5.39)

The coefficients gref(γ1, γ2, γ3 + γ4 + γ5; y), H ({γ3, γ4, γ5}, {1, 1, 1}; y) and H({γ1, γ2, γ3 +

γ4 + γ5}, {1, 1, 1}; y) can be read off from the results of section 3. We have

gref(γ1, γ2, γ3 + γ4 + γ5; y) = (−1)k
(
y − y−1

)−2
(yk + y−k) ,

H ({γ3, γ4, γ5}, {1, 1, 1}; y)) =

{
−2 (y − y−1)−2 for k even

(y + y−1) (y − y−1)−2 for k odd

H({γ1, γ2, γ3+γ4+γ5}, {1, 1, 1}; y) =

{
−2 (y − y−1)−2 for k even

(y+y−1) (y−y−1)−2 for k odd
. (5.40)

Finally the contribution to gref(γ1, · · · γ5; y) turns out to arise from the following arrange-

ment of the nodes

{1, 2, 3, 4, 5;+}, {1, 2, 5, 4, 3;+}, (5.41)

and their reverse. This gives

gref(γ1, · · · γ5; y) = (y − y−1)−4
(
y2k + y−2k + 2

)
(5.42)

First consider the case where k is even. In this case (5.39)–(5.42) gives

Q(γ1 + · · ·+ γ5; y) =ΩS
ref(γ1 + γ2 + γ3 + γ4 + γ5) +H({γ1, · · · γ5}, {1, · · · 1}; y)

+ (y − y−1)−2 (yk/2 − y−k/2)2ΩS
ref(γ3 + γ4 + γ5)

+ (y − y−1)−4
(
y2k − 2yk + 2− 2y−k + y−2k

)
.

(5.43)

From this we get

H({γ1, · · · γ5}, {1, · · · 1}; y) = −
k2

2
(y − y−1)−2 , (5.44)

and hence

Q(γ1 + · · ·+ γ5; y) =ΩS
ref(γ1 + γ2 + γ3 + γ4 + γ5)

+ (y − y−1)−2 (yk/2 − y−k/2)2ΩS
ref(γ3 + γ4 + γ5)+

+ (y−y−1)−4

(
y2k−2yk+2−2y−k+y−2k−

k2

2
(y−y−1)2

)
.

(5.45)
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Next we consider the case where k is odd. In this case (5.39)–(5.42) gives

Q(γ1 + · · ·+ γ5; y) =ΩS
ref(γ1 + γ2 + γ3 + γ4 + γ5) +H({γ1, · · · γ5}, {1, · · · 1}; y)

− (y − y−1)−2 (yk + y−k − y − y−1) ΩS
ref(γ3 + γ4 + γ5)

+ (y − y−1)−4
(
y2k + 2 + y−2k − (y + y−1)(yk + y−k)

)
.

(5.46)

From this we get

H({γ1, · · · γ5}, {1, · · · 1}; y) = −
k2 − 1

2
(y − y−1)−2 , (5.47)

and hence

Q(γ1 + · · ·+ γ5; y) = ΩS
ref(γ1 + γ2 + γ3 + γ4 + γ5)

− (y − y−1)−2 (yk + y−k − y − y−1) ΩS
ref(γ3 + γ4 + γ5)

+ (y − y−1)−4

(
y2k + 2 + y−2k − (y + y−1)(yk + y−k)−

k2 − 1

2
(y − y−1)2

)
.

(5.48)

Let us now compare these predictions with the result of direct computation of the

cohomology of the quiver moduli space. The D-term equations (1.1) now take the form:

φ∗
12,αφ12,α − φ∗

51,αφ51,α = 1 ,

−φ∗
12,αφ12,α + φ∗

23,αφ23,α = 1 ,

−φ∗
23,αφ23,α + φ∗

34,αφ34,α − φ∗
53,αφ53,α = 1 ,

φ∗
45,αφ45,α − φ∗

34,αφ34,α = 1 ,

−φ∗
45,αφ45,α + φ∗

53,αφ53,α + φ∗
51,αφ51,α = −4 , . (5.49)

In the absence of a superpotential, the variables φNC
i = {φ51,α, φ53,α} may vary freely but

for a fixed value of these variables, the remaining variables live in a compact space. Due

to the existence of the oriented closed loops 12345 and 345, the generic superpotential

takes the form

W = C
(1)
αβγφ34,αφ45,βφ53,γ + C

(2)
αβγδσφ12,αφ23,βφ34,γφ45,δφ51,σ , (5.50)

where C(i)’s are arbitrary constants. A family of solutions to the F-term and D-term

conditions can be found by setting:

φ51,α = φ53,α = 0 ,

φ∗
12,αφ12,α = 1, φ∗

23,αφ23,α = 2, φ∗
34,αφ34,α = 3, φ∗

45,αφ45,α = 4 ,

C
(1)
αβγφ34,αφ45,β = 0, C

(2)
αβγδσφ12,αφ23,βφ34,γφ45,δ = 0 . (5.51)

The variables φ12,α, φ23,α, φ34,α and φ45,α satisfying the constraints in the second line

describe a product manifold P
k−1 × P

k−1 × P
k−1 × P

k−1 manifold. The first equation

in the third line describe a codimension k manifold embedded in the product of the last

two P
k−1 factors. Let us denote the resulting k − 2 dimensional manifold by M̄. The
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cohomology of M̄ is in fact identical to that associated with a three node quiver carrying

charges γ3, γ4 and γ5 and is given by (3.25) with a = b = c = k. Thus

Q(M̄; y)=

{
ΩS
ref(γ3 + γ4 + γ5) + (y − y−1)−2(yk + y−k − 2) for k even

ΩS
ref(γ3+γ4+γ5)−(y−y−1)−2(yk+y−k−y−y−1) for k odd

. (5.52)

The last equation in the third line of (5.51) now describes a codimension k subspace

embedded in P
k−1 × P

k−1 × M̄. The resulting manifold M has complex dimension

d = 2(k − 1) + (k − 2) − k = 2k − 4, and by the Lefschetz hyperplane theorem its Betti

numbers bp are given by those of Pk−1 × P
k−1 ×M̄ for p < d. This in turn means that the

negative powers of Q(M; y) are given by

Q(M; y) ≃ (−y)−2k+4(1 + y2 + y4 + · · ·+ y2k−2)2 (−y)k−2Q(M̄; y) . (5.53)

Using (5.52), and throwing away terms involving non-negative powers of y, we find

Q(M; y) ≃(−y)−k+2(1− y2)−2ΩS
ref(γ3 + γ4 + γ5)

+

{
y−k+2(1− y2)−2(y − y−1)−2(yk + y−k − 2) for k even

y−k+2(1− y2)−2(y − y−1)−2(yk + y−k − y − y−1) for k odd .

(5.54)

It is easy to see that the negative powers of y in this expression match those in (5.45), (5.48).

By y → 1/y symmetry the positive powers of y in the polynomial Q(M; y) also match

those in (5.48). The constant term is determined by the Euler number of M, which can

be computed using the method of section 2.4,

χ(M)=

∮ 4∏

i=1

dJi
2πi

(
(1+J1)(1+J2)(1+J3)(1+J4)(J3+J4)(J1+J2+J3+J4)

J1J2J3J4(1 + J3 + J4)(1 + J1 + J2 + J3 + J4)

)k

. (5.55)

Equating (5.55) and (5.48) at y = 1 allows to determine the pure Higgs state degeneracy

ΩS
ref(γ1 + · · ·+ γ5).

6 Non-Abelian quivers

So far we have only considered quivers for which each node carries a U(1) factor. We shall

now analyze some examples of non-Abelian quivers.

6.1 Rank (1,1,2)

We consider again the 3-node quiver (3.1), but now allow for a U(2) gauge group at node

3, keeping U(1) gauge groups at node 1 and 2. We assume that the multiplicities a, b, c

are positive integers satisfying

a < 2c, b < c , k ≡ a+ 2b− 2c > 0 . (6.1)

We choose the FI terms such that

c1 > 0, c1 + c2 > 0, c2 < 0, c3 → 0−. (6.2)
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As mentioned in section 1, when dealing with non-Abelian quivers it is important not to

enforce the y independence of ΩS
ref until we determine the relevant H’s. Using the fact

that the only combination of charges for which the scaling solutions exist are γ1 + γ2 + γ3
and γ1 + γ2 + 2γ3, we can express eqs.(1.4), (1.7) in the form:

Q(γ1 + γ2 + 2γ3; y) =
1

2
gref(γ1, γ2, γ3, γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y) Ω

S
ref(γ3; y)

2

+
1

2

y − y−1

y2 − y−2
gref(γ1, γ2, 2γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y) Ω

S
ref(γ3; y

2)

+ gref(γ1 + γ2 + γ3, γ3; y) Ω
S
ref(γ3; y)

×
[
ΩS
ref(γ1 + γ2 + γ3; y) +H({γ1, γ2, γ3}, {1, 1, 1}; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y) Ω

S
ref(γ3; y)

]

+ΩS
ref(γ1+γ2+2γ3; y)+H({γ1, γ2, γ3, γ3}, {1, 1, 1, 1}; y) Ω

S
ref(γ1; y)Ω

S
ref(γ2; y)Ω

S
ref(γ3; y)

2

+H({γ1, γ2, γ3}, {1, 1, 2}; y)Ω
S
ref(γ1; y) Ω

S
ref(γ2; y) Ω

S
ref(γ3; y

2) (6.3)

Using (6.1), (2.5) and the result of section 3.3 we get

gref(γ1 + γ2 + γ3, γ3; y) = 0 , gref(γ1, γ2, 2γ3; y) = (−1)k
yk + y−k

(y − y−1)2
. (6.4)

Finally to find gref(γ1, γ2, γ3, γ3; y) we label the coordinates of the charges γ1, γ2, γ3, γ3 by

x1, x2, x3, x4. Eq. (1.6) now gives

a

|x12|
−

c

|x13|
−

c

|x14|
= c1,

c

|x13|
−

b

|x23|
= c3,

c

|x14|
−

b

|x24|
= c3 . (6.5)

Note that the last two equations, regarded as equations for x3 and x4 respectively, are

identical equations and hence we can try to solve them simultaneously for fixed x1, x2.

Using translation invariance and reversal symmetry of the x axis we can take x1 = 0,

x2 > 0. In the c3 → 0 limit the last two equations in (6.5) give

b|xa| = c|xa − x2| for a = 3, 4 . (6.6)

Since b < c, this equation has two possible solutions — one solution xm in the range

x1 < xa < x2, and another xr in the range xa > x2,

0 = x1 < xm ≡ c
b+cx2 < x2 < xr ≡

c
c−bx2 . (6.7)

Consider now the solution where nA of the γ3’s sit at xm and nB of the γ3 sit at xr. Here

nA, nB = 0, 1, 2 subject to the restriction nA + nB = 2. Substituting the corresponding

values of xi into the first equation in (6.5) we get

c1x2 = a− b(nA − nB)− c(nA + nB) . (6.8)

Since c1 > 0 and x2 > 0, the right hand side of (6.8) must be positive. The condition a < 2c

in (6.1) now shows that this is possible only for the choice nA = 0, nB = 2. Furthermore
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one finds that for this case s(p) = 1 [15]. Thus the contribution to gref(γ1, γ2, γ3, γ3; y)

comes from the permutation {1, 2, 3, 4;+} and its reverse.16 This gives

gref(γ1, γ2, γ3, γ3; y) = (−1)k+1 (y − y−1)−3 (yk − y−k) , (6.9)

Eq. (6.3) now gives

Q(γ1 + γ2 + 2γ3; y) = ΩS
ref(γ1 + γ2 + 2γ3; y)

+

{
H({γ1, γ2, γ3}, {1, 1, 2}; y)+

(−1)k

2(y−y−1)2
yk+y−k

y+y−1

}
ΩS
ref(γ1; y)Ω

S
ref(γ2; y)Ω

S
ref(γ3; y

2)

+

{
H({γ1, γ2, γ3, γ4}{1, 1, 1, 1}; y) +

1

2
(−1)k+1 (y − y−1)−3(yk − y−k)

}

× ΩS
ref(γ1; y) Ω

S
ref(γ2; y) Ω

S
ref(γ3; y)

2 . (6.10)

Requiring that the coefficients of ΩS
ref(γ1; y)Ω

S
ref(γ2; y)Ω

S
ref(γ3; y

2) and ΩS
ref(γ1; y)Ω

S
ref(γ2; y)

ΩS
ref(γ3; y)

2 be polynomials in y, y−1 we get

H({γ1, γ2, γ3, γ3}{1, 1, 1, 1}; y) =

{
1
4 k (y − y−1)−2(y + y−1) for k even

−1
2 k (y − y−1)−2 for k odd

H({γ1, γ2, γ3}, {1, 1, 2}; y)

=

{
1
4(y−y−1)−2(y+y−1)−1

{
−(y+y−1)2+(−1)k/2(y−y−1)2

}
for k even

1
2 (y − y−1)−2 for k odd

(6.11)

Once the H’s have been determined we can drop the y dependence of ΩS
ref(γ1 + γ2 + 2γ3)

and set ΩS
ref(γℓ; y) = 1. This gives

Q(γ1 + γ2 + 2γ3; y)

=ΩS
ref(γ1 + γ2 + 2γ3) + (y − y−1)−3 (y + y−1)−1

{
y−k+1 − yk−1

+
1

4
(k − 1)(y + y−1)2(y − y−1) +

1

4
(−1)k/2(y − y−1)3

}
for k even

=ΩS
ref(γ1 + γ2 + 2γ3) + (y − y−1)−3 (y + y−1)−1

{
yk−1 − y−k+1

−
1

2
(k − 1)(y2 − y−2)

}
for k odd

(6.12)

We note that both for k even and odd the negative powers of y in this expression are given by

Q(γ1 + γ2 + 2γ3; y) ≃ (−1)k+1 y−k+5(1− y2)−3(1 + y2)−1 . (6.13)

Let us now compare this prediction with an explicit computation of the cohomology of

the Higgs branch. Since the node 3 carries an U(2) gauge group, the fields φ23,α and φ31,α

16For this solution the locations x3 and x4 coincide and hence the same solution also appears in the

permutation {1, 2, 4, 3}. But following our prescription we count the solution only once.
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carry an extra U(2) index which we shall label by s.17 The D-term equations for the U(1)

factors take the form

φ∗
12,αφ12,α − φ∗

31,α,sφ31,α,s = c1 ,

−φ∗
12,αφ12,α + φ∗

23,α,sφ23,α,s = c2 ,

−φ∗
23,α,sφ23,α,s + φ∗

31,α,sφ31,α,s = 2c3 , (6.14)

while the D-term equations for the SU(2) gauge group further require

φ∗
23,α,sT

a
ss′φ23,α,s′ − φ∗

31,α,sT
a
ss′φ31,α,s′ = 0 , (6.15)

where T a for 1 = 1, 2, 3 are the Lie algebra generators (Pauli matrices in this case). The

superpotential is given by

W = Cαβγφ12,αφ23,β,sφ31,γ,s , (6.16)

where Cαβγ are constants. If we ignore the last set of equations (6.15) then solutions

to (6.14) can be found by choosing:

φ31,α,s=0, φ∗
12,αφ12,α=c1>0, φ∗

23,α.sφ23,α,s=c1+c2>0, Cαβγφ12,αφ23,β,s=0 . (6.17)

This describes the complete intersection of 2c hypersurfaces of degree (1,1) inside

P
a−1 × P

2b−1, generating a manifold of complex dimension a + 2b − 2c − 2 = k − 2. At

generic points on this space, the SU(2) gauge symmetry is completely broken. The space

of solutions to the SU(2) D-term equations (6.15) modulo the action of the compact gauge

group is isomorphic to the quotient of the semi-stable locus by the complexified gauge

group SL(2,C), and is a complex manifold M of dimension k − 5. This agrees with the

maximal negative power of y in (6.13). Our goal is to compute the cohomology of this

manifold M and compare it with (6.13).

For this purpose, we shall first consider the cohomology of the vacuum moduli space

M0 in the absence of superpotential, i.e. the space of solutions to the U(1) and SU(2)

D-term constraints (6.14) and (6.15) modulo the gauge group U(1)×U(1)×U(2). To

compute the cohomology of M0, we shall use the HN recursion method described in

section 2.5.18 Under the same assumptions as in (6.1), (6.2), we find that the slopes are

ordered according to

γ2 < γ2+γ3 < γ2+2γ3 < 2γ3 < γ3 < γ1+γ2+γ3 < γ1+γ2 < γ1+2γ3 < γ1+γ3 < γ1 . (6.18)

Using (2.38), (2.39) we arrive at

I(γ1 + γ2;w) = (wa − w−a)(w − w−1)−2 , I(γ2 + γ3;w) = 0, I(γ1 + γ3;w) = 0,

I(2γ3;w) =w−1(w−w−1)−1(w2−w−2)−1 , I(γ1+2γ3;w)=0, I(γ2+2γ3;w)=0,

I(γ1+γ2+γ3;w) =wa+b+c(w − w−1)−3(wa − w−a)(wb − w−b) (6.19)

17Even though we use the same symbol s it should be understood that for φ23 it labels the anti-

fundamental representation of SU(2) while for φ31 it labels the fundamental representation of SU(2).
18Alternatively, one can use Maxwell-Boltzmann statistics to compute Q0(γ; y) from a set of Abelian

quivers [6].
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hence, for the total charge vector γ = γ1 + γ2 + 2γ3,

I(γ;w) =h(γ;w)−F(γ1 + γ2, 2γ3;w)−F(γ1 + γ2 + γ3, γ3;w)−F(γ1, 2γ3, γ2;w)

=w2c (w − 1/w)−4(w + 1/w)−1 (wa − w−a)(wb − w−b)(wb−1 − w1−b)
(6.20)

and therefore

Q0(γ; y) = (−1)a+1 y5−a−2b−2c(1− y2)−3(1 + y2)−1(1− y2a)(1− y2b)(1− y2b−2) . (6.21)

Thus, the Betti numbers of M0 are given by

∑

p

bp(M0)(−y)p = (1− y2)−3(1 + y2)−1(1− y2a)(1− y2b)(1− y2b−2) . (6.22)

The effect of the F-term constraints is to set φ31,α,s = 0 and impose the last set of equations

in (6.17). Setting φ31,α,s to zero does not affect the Betti numbers, while by Lefschetz

hyperplane theorem imposing the last set of equations of (6.17) does not change the Betti

numbers for p < k−5. Thus the Laurent polynomial of the quiver moduli space is given by

Q(M; y) ≃ (−1)k+1y−k+5(1− y2)−3(1 + y2)−1(1− y2a)(1− y2b)(1− y2b−2) . (6.23)

Now it follows from the inequalities (6.1) that we can drop the y2a, y2b and y2b−2 terms

from (6.23) without affecting the negative powers of y. This gives

Q(M; y) ≃ (−1)k+1y−k+5(1− y2)−3(1 + y2)−1 , (6.24)

in perfect agreement with (6.13).

Before leaving this example we should draw the readers’ attention to a subtle point.

We could solve the U(1) D-term constraints (6.14) as well as the F-constraint coming from

the superpotential (6.16) by choosing:

φ31,α,s=0, φ∗
12,αφ12,α=c1, φ23,α,s=fαus, u∗sus=1, f∗

αfα=c1+c2, Cαβγφ12,αfβ=0 .

(6.25)

This gives a codimension c hypersurface in P
a−1 × P

b−1 × P
1 spanned by φ12,α, fα and

us respectively and has dimension (a + b − c − 1). This seems to be larger that the

dimension (a+2b− 2c− 2) of the manifold we found earlier, since we have b < c. However,

these solutions do not satisfy the SU(2) D-term constraint (6.15), as they would require

u∗sT
a
ss′us′ = 0. This will give us = 0 and hence is inconsistent with the normalization of us

given in (6.25). Thus, the set of solutions (6.25) does not belong to the semi-stable locus.

6.2 Rank (1, 1, N)

We now generalize the previous example to allow for a U(N) gauge group at the third node,

keeping U(1) gauge groups at the first two nodes. We choose the FI parameters as in (6.2)

and assume, for reasons to become apparent shortly, that the arrow multiplicities satisfy

(c− b)N < a < (c− b)N + 2b , b < c. (6.26)
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In this case it is easy to see that

gref(γ1 + γ2 + k0γ3, k1γ3, k2γ3, · · · ; y) = 0 ,

ΩS
ref(γ1 + pγ3) = 0, ΩS

ref(γ2 + qγ3) = 0 , (6.27)

for positive integers p, q, k1, k2, · · · and non-negative integer k0. Recalling that

ΩS
ref(γℓ; y) = 1 for ℓ = 1, 2, 3, we find that (1.4) takes the form

Q(γ1 + γ2 +Nγ3; y) = ΩS
ref(γ1 + γ2 +Nγ3; y)

+
∑

s1,s2,···∑
msm=N

(
∏

m

1

sm!

)
gref(γ1, γ2, γ3, · · · γ3, 2γ3, · · · 2γ3, · · · ; y)

∞∏

m=1

(
1

m

y − y−1

ym − y−m

)sm

+
∑

k1,k2,···∑
i ki=N

H({γ1, γ2, γ3, γ3, · · · γ3}, {1, 1, k1, k2, · · · }; y) . (6.28)

In the second line s1 represents the number of γ3’s, s2 represents the number of 2γ3’s etc. in

the argument of gref . Now this form is not suitable for determining the individual H’s since

we have set the ΩS
ref(γ3; y) = 1 from the beginning. These will be needed for analyzing

bigger systems which include the current quiver as a subsystem. However for the purpose

of finding Q(γ1 + γ2 +Nγ3; y) itself, we can proceed as follows. Since by construction the

H’s vanish as y → ∞ and y → 0, we see that they do not contribute negative powers of

y or constant term in a Laurent series expansion of (6.28) around y = 0. Thus we have

Q(γ1 + γ2 +Nγ3; y) ≃

≃
∑

s1,s2,···∑
msm=N

(
∏

m

1

sm!

)
gref(γ1, γ2, γ3, · · · γ3, 2γ3, · · · 2γ3, · · · ; y)

∞∏

m=1

(
1

m

y−y−1

ym−y−m

)sm

,
(6.29)

where ≃ denotes equality of negative powers of y. The positive powers of y in the Laurent

polynomial Q(γ1 + γ2 + Nγ3; y) are then found using the y → 1/y symmetry, and the

constant term is given by ΩS
ref(γ1 + γ2 +Nγ3).

To proceed further we need to compute the Coulomb index

gref(γ1, γ2, γ3, · · · , 2γ3, · · · ; y). For this we can proceed as in (6.5). Since the cen-

ters with charge kiγ3 do not interact among themselves, they must sit at one of the

two possible locations xm and xr in (6.7) . If we assume that the inequalities (6.26) are

satisfied, then the analog of (6.8) shows that all the centers carrying charge proportional

to γ3 must in fact sit at xr, ı.e. the centers are arranged in the order {γ1, γ2, k1γ3, k2γ3, · · · }

with all the kiγ3’s coincident, and its reverse. This gives

gref(γ1, γ2, γ3, · · · γ3, 2γ3, · · · 2γ3, · · · ; y)

= (−1)k+
∑

m sm−1(y − y−1)−
∑

m sm−1
(
yk − (−1)

∑
m smy−k

)
,

(6.30)

where as before sm denotes the number of mγ3’s in the argument of gref , and

k ≡ a+N(b− c) . (6.31)
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We now note that in a series expansion of (6.29) around y = 0, the contribution from the

first term inside the parantheses in (6.30), yk, produces only positive powers of y. Thus

we can drop this term for the purpose of computing the negative powers of y in (6.29).

This gives

Q(γ1 + γ2 +Nγ3; y) ≃ (−1)k+1y−k+1(1− y2)−1Q′(N ; y) , (6.32)

where

Q′(N ; y) =
∑

s1,s2,···∑
m msm=N

∞∏

m=1

{
1

sm!

(
1

m

1

ym − y−m

)sm}
. (6.33)

Introducing the generating function19

F (z; y) ≡
∞∑

N=0

zNQ′(N ; y) , (6.34)

and using (6.33), we find that F (z; y) is given by the q-deformed Pochhammer symbol,

F (z; y) = exp

[
∞∑

m=1

zm
1

m

1

ym − y−m

]
= exp

[
−

∞∑

m=1

1

m
zmym

∞∑

n=0

y2mn

]

= exp

[
∞∑

n=0

ln(1− zy2n+1)

]
=

∞∏

n=1

(1− zy2n+1) . (6.35)

To find Q′(N ; y) we need to extract the coefficient of zN in (6.35). The coefficient of the

zN term in the Pochhammer symbol is given by (−1)NyN
2
/{(1−y2)(1−y4) · · · (1−y2N )}.

Using (6.32) we now get

Q(γ1 + γ2 +Nγ3; y) ≃ (−1)k+N+1y−k+N2+1(1− y2)−2
N∏

n=2

(1− y2n)−1 . (6.36)

The analysis of the Higgs branch proceeds as in section 6.1. We arrive at the same

set of equations (6.14)–(6.17) with the only difference that the index s carried by φ31

labels the fundamental representation of U(N) and the index s carried by φ23 runs over

the anti-fundamental representation of U(N). The analog of (6.17) now gives a complete

intersection hypersurface of codimension Nc in P
a−1 × P

Nb−1. Thus we have a complex

manifold of dimension a +Nb −Nc − 2 = k − 2. The SU(N) D-term constraints reduces

this to k −N2 − 1. This agrees with the maximum negative power of y in (6.36), showing

that the Coulomb branch formula correctly reproduces the dimension of the moduli space.

To find the effect of the SU(N) D-term constraints on the cohomology we need to first

find the Betti numbers of the manifold M0 that satisfies the D-term constraints but not

the F-term constraints, and then use the Lefschetz hyperplane theorem to argue that the

Betti numbers bp of the full moduli space coincide with those of M0 for p < k − N2 − 1.

We expect that this can be done using the HN recursion relations but we have not done

this. Instead, we observe that the last factor
∏N

n=2(1 − y2n)−1 in (6.36) is the Poincaré

polynomial of the universal classifying space of SU(N) [28], which is known to govern the

contribution of the semi-stable locus in the formalism of [26].

19Note that since the expression for gref used in (6.30) is valid only when (6.26) holds, we can use this

generating function to compute Q(γ1 + γ2 +Nγ3; y) only in this range.
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6.3 Rank (1,2,2)

In this final example, we consider again the same 3-node quiver (3.1) but with a U(1) factor

at node 1 and U(2) factors at nodes 2 and 3. For definiteness we take

γ12 = a = 3k, γ23 = b = 2k, γ31 = c = 3k, c1 = 2, c2 = −2.9, c3 = 1.9 , (6.37)

where k is a positive integer. Besides (3.17), in this case we also have the relations

ΩS
ref(γ1 + 2γ2) = ΩS

ref(γ1 + 2γ3) = 0 ,

Ωscaling(γ1 + 2γ2) = Ωscaling(γ1 + 2γ3) = 0 , (6.38)

since the corresponding subquivers do not have closed oriented loops. This leads to

Q(γ1 + 2γ2 + 2γ3; y) = ΩS
ref(γ1 + 2γ2 + 2γ3; y) + Ωscaling(γ1 + 2γ2 + 2γ3; y)

+ gref(γ1 + γ2 + γ3, γ2, γ3; y)
[
ΩS
ref(γ1 + γ2 + γ3; y) + Ωscaling(γ1 + γ2 + γ3; y)

]

× ΩS
ref(γ2; y) Ω

S
ref(γ3; y)

+ gref(γ1+2γ2+γ3, γ3; y)
[
ΩS
ref(γ1+2γ2+γ3; y)+Ωscaling(γ1+2γ2+γ3; y)

]
ΩS
ref(γ3; y)

+ gref(γ1+γ2+2γ3, γ2; y)
[
ΩS
ref(γ1+γ2+2γ3; y)+Ωscaling(γ1+γ2+2γ3; y)

]
ΩS
ref(γ2; y)

+
1

4(y + 1/y)
gref(γ1, γ2, γ2, 2γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y)

2ΩS
ref(γ3; y

2)

+
1

4(y + 1/y)
gref(γ1, 2γ2, γ3, γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y

2) ΩS
ref(γ3; y)

2

+
1

4(y + 1/y)2
gref(γ1, 2γ2, 2γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y

2) ΩS
ref(γ3; y

2)

+
1

4
gref(γ1, γ2, γ2, γ3, γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y)

2ΩS
ref(γ3; y)

2 . (6.39)

In this case from (2.5) we have

gref(γ1 + 2γ2 + γ3, γ3; y) = 0, gref(γ1 + γ2 + 2γ3, γ2; y) = 0 . (6.40)

Using (6.40), (2.7) and that ΩS
ref(2γ2; y) = ΩS

ref(2γ3; y) = 0, we can reduce (6.39) to

Q(γ1 + 2γ2 + 2γ3; y) = ΩS
ref(γ1 + 2γ2 + 2γ3; y)

+H({γ1, γ2, γ2, γ3, γ3}, {1, 1, 1, 1, 1}; y)Ω
S
ref(γ1; y) Ω

S
ref(γ2; y)

2ΩS
ref(γ3; y)

2

+H({γ1, γ2, γ3, γ3}, {1, 2, 1, 1}; y) Ω
S
ref(γ1; y) Ω

S
ref(γ2; y

2) ΩS
ref(γ3; y)

2

+H({γ1, γ2, γ2, γ3}, {1, 1, 1, 2}; y)Ω
S
ref(γ1; y) Ω

S
ref(γ2; y)

2ΩS
ref(γ3; y

2)

+H({γ1, γ2, γ3}, {1, 2, 2}; y) Ω
S
ref(γ1; y) Ω

S
ref(γ2; y

2) ΩS
ref(γ3; y

2)

+H({γ1 + γ2 + γ3, γ2, γ3}, {1, 1, 1}; y)Ω
S
ref(γ1 + γ2 + γ3; y) Ω

S
ref(γ2; y) Ω

S
ref(γ3; y)

+ gref(γ1 + γ2 + γ3, γ2, γ3; y) Ω
S
ref(γ1 + γ2 + γ3; y) Ω

S
ref(γ2; y) Ω

S
ref(γ3; y)

+ gref(γ1+γ2+γ3, γ2, γ3; y)H({γ1, γ2, γ3}, {1, 1, 1}; y) Ω
S
ref(γ1; y) Ω

S
ref(γ2; y)

2ΩS
ref(γ3; y)

2

+
1

4(y + 1/y)
gref(γ1, γ2, γ2, 2γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y)

2ΩS
ref(γ3; y

2)
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+
1

4(y + 1/y)
gref(γ1, 2γ2, γ3, γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y

2) ΩS
ref(γ3; y)

2

+
1

4(y + 1/y)2
gref(γ1, 2γ2, 2γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y

2) ΩS
ref(γ3; y

2)

+
1

4
gref(γ1, γ2, γ2, γ3, γ3; y) Ω

S
ref(γ1; y) Ω

S
ref(γ2; y)

2ΩS
ref(γ3; y)

2 . (6.41)

The coefficients gref(γ1 + γ2 + γ3, γ2, γ3; y), H({γ1 + γ2 + γ3, γ2, γ3}, {1, 1, 1}; y),

H({γ1, γ2, γ3}, {1, 1, 1}; y) and gref(γ1, 2γ2, 2γ3; y) can all be evaluated from the results

of section 3 using the assignments (a, b, c) = (k, k, 2k) for the first two cases, (3k, 3k, 2k)

in the third case and (6k, 6k, 8k) in the last case (note that some permutations of the

nodes are necessary in order to satisfy (3.3)). Thus from (3.22), (3.24) and the analysis of

section 3.1 we have

gref(γ1 + γ2 + γ3, γ2, γ3; y) = 0 ,

H({γ1 + γ2 + γ3, γ2, γ3}, {1, 1, 1}; y) = 0 ,

H({γ1, γ2, γ3}, {1, 1, 1}; y) = −2(y − y−1)−2 ,

gref(γ1, 2γ2, 2γ3; y) = (y − y−1)−2
(
y4k + y−4k

)
. (6.42)

Note that for the first two cases we cannot directly apply (3.22), (3.24) since we have

2k = k + k and the triangle inequality is saturated. Instead we use the analysis given at

the end of section 3.1 which leads to the vanishing of gref and hence also H.20 Finally a

direct computation gives

gref(γ1, γ2, γ2, 2γ3; y) = −(y − y−1)−3(y4k − y−4k) ,

gref(γ1, 2γ2, γ3, γ3; y) = −(y − y−1)−3(y4k − y−4k) ,

gref(γ1, γ2, γ2, γ3, γ3; y) = (y − y−1)−4(y4k + y−4k) . (6.43)

with the contributions coming from the permutations {4, 1, 2, 3;+} and its reverse for the

first term, {2, 1, 3, 4;−} and its reverse for the second term and {2, 3, 1, 4, 5;+} and its

reverse for the last term.

Requiring that the coefficients of ΩS
ref(γ1; y)Ω

S
ref(γ2; y)

2ΩS
ref(γ3; y)

2,

ΩS
ref(γ1; y)Ω

S
ref(γ2; y

2) ΩS
ref(γ3; y)

2, ΩS
ref(γ1; y)Ω

S
ref(γ2; y)

2ΩS
ref(γ3; y

2) and

ΩS
ref(γ1; y)Ω

S
ref(γ2; y

2)ΩS
ref(γ3; y

2) are Laurent polynomials in y, we get

H({γ1, γ2, γ2, γ3, γ3}, {1, 1, 1, 1, 1}; y) = (y − y−1)−4

{
−k2(y − y−1)2 −

1

2

}

H({γ1, γ2, γ3, γ3}, {1, 2, 1, 1}; y) =
k

2
(y − y−1)−2 ,

H({γ1, γ2, γ2, γ3}, {1, 1, 1, 2}; y) =
k

2
(y − y−1)−2 ,

20Alternatively we could deform γ12, γ23 and γ31 slightly away from those given in (6.37) — e.g. by adding

small even integers to them for large k — so that for the triple (γ1+γ2+γ3, γ2, γ3) strict triangle inequality

holds, and take the limit back to the original values of γ12, γ23 and γ31 at the end of the calculation. In that

case we could use (3.22), (3.24) for the triple (γ1 + γ2 + γ3, γ2, γ3). The final result is unaffected by this.
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H({γ1, γ2, γ3}, {1, 2, 2}; y) = −
1

2
(y + y−1)−2(y − y−1)−2 . (6.44)

Once the H’s have been determined we can set Ω(γℓ; y) = 1, and get, from (6.41),

Q(γ1 + 2γ2 + 2γ3; y) = ΩS
ref(γ1 + 2γ2 + 2γ3) + (y − y−1)−4(y + y−1)−2

×
[
−k2y4−k2y−4+2k2−2k+y2−4k+y4k−2+ky4+ky−4−y2−y−2

]
. (6.45)

It is easy to verify that the term inside the square bracket has (y − y−1)4(y + y−1)2 as a

factor and hence (6.45) describes a Laurent polynomial in y. The negative powers of y in

this expansion are given by

Q(γ1 + 2γ2 + 2γ3; y) ≃ y−4k+6(1− y2)−4(1 + y2)−2 . (6.46)

Let us now compare this result with an explicit computation of the cohomology of the

Higgs branch. In this case the nodes 2 and 3 carry U(2) gauge groups. As a result the

fields φ12,α and φ31,α carry an extra U(2) index each, and φ23,α carries an extra pair of

U(2) indices. The U(1) D-term equations take the form:

φ∗
12,α,sφ12,α,s − φ∗

31,α,s′φ31,α,s′ = 2 ,

−φ∗
12,α,sφ12,α,s + φ∗

23,α,s,tφ23,α,s,t = −5.8 ,

−φ∗
23,α,s,tφ23,α,s,t + φ∗

31,α,tφ31,α,t = 3.8 (6.47)

while the SU(2)× SU(2) D-term equations require

φ∗
23,α,s,tT

a
ss′φ23,α,s′,t − φ∗

12,α,sT
a
ss′φ12,α,s′ = 0

φ∗
23,α,s,tT

a
tt′φ23,α,s,t′ − φ∗

31,α,tT
a
tt′φ31,α,t′ = 0 . (6.48)

The superpotential is given by

W = Cαβγφ12,α,sφ23,β,s,tφ31,γ,t . (6.49)

If we ignore (6.48) then a solution to (6.47) and (6.49) can be found by choosing:

φ23,α,s,t = 0, φ∗
12,α,sφ12,α,s = 6, φ∗

31,α,tφ31,α,t = 4, Cαβγφ12,α,sφ31,γ,t = 0 . (6.50)

This describes a complete intersection of 8k hypersurfaces of degree (1, 1) in P
6k−1×P

6k−1,

hence is a manifold of complex dimension 4k − 2. The SU(2) × SU(2) D-term con-

straints (6.48) together with the identification under gauge transformations lead to a

manifold M of complex dimension 4k − 6. This agrees with the maximal negative power

of y in (6.46). Our goal is to compute the cohomology of this manifold and compare it

with (6.46).

For this purpose, we shall first consider the cohomology of the vacuum moduli space

M0 in the absence of superpotential, i.e. the space of solutions to the D-term con-

straints (6.47) and (6.48) modulo the gauge group U(1) × U(2) × U(2). To compute the
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cohomology of M0, we shall use the HN recursion method described in section 2.5. Under

the same assumptions (6.37), we find that the slopes are ordered according to

γ2 < 2γ2+γ3 < γ1+2γ2 < γ2+γ3 < γ1+2γ2+γ3 < γ1+γ2 < γ1+2γ2+2γ3 < γ2+2γ3

< γ1 + γ2 + γ3 < γ1 + γ2 + 2γ3 < γ3 < γ1 + 2γ3 < γ1 + γ3 < γ1 . (6.51)

Thus we find

I(γ1 + γ3;w) = I(γ2 + γ3;w) = I(γ1 + 2γ3;w) = I(γ2 + 2γ3;w) = 0 ,

I(2γ2 + γ3;w) = I(2γ2 + 2γ3;w) = 0 ,

I(γ1 + γ2;w) = (wa − w−a)/(w − w−1)2,

I(γ1 + 2γ2;w) = (wa − w−a)(wa−1 − w1−a)(w − w−1)−3(w + w−1)−1 ,

I(γ1 + γ2 + γ3;w) =wb (wa − w−a)(wc − w−c)(w − w−1)−3 ,

I(γ1+2γ2+γ3;w) =w2b(wa−w−a)(wa−1−w1−a)(wc−w−c)(w−w−1)−4(w+w−1)−1 ,

I(γ1+γ2+2γ3;w) =w2b(wa−w−a)(wc−w−c)(wc−1−w1−c)(w−w−1)−4(w+w−1)−1, (6.52)

and, for the total charge vector γ = γ1 + 2γ2 + 2γ3,

I(γ;w) = h(γ;w)−F(γ1, 2γ3, 2γ2;w)−F(γ3, γ1 + 2γ2 + γ3;w)

−F(γ3, γ1 + γ2 + γ3, γ2;w)−F(2γ3, γ1 + 2γ2;w)

−F(2γ3, γ1 + γ2, γ2;w)−F(γ1 + γ2 + 2γ3, γ2;w) (6.53)

finally arriving at

Q0(γ; y) = y−4b−2a−2c+8(1−y2a)(1−y2a−2)(1−y2c)(1−y2c−2)(1−y2)−4(1+y2)−2 . (6.54)

It follows that the Betti numbers of M0 are given by

∑

p

bp(−y)p = (1− y2)−4(1 + y2)−2(1− y2a)(1− y2a−2)(1− y2c)(1− y2c−2) , (6.55)

where

a = γ12 = 3k, b = γ23 = 2k, c = γ31 = 3k . (6.56)

The effect of the F-term constraints is to set φ23,α,s,s′ = 0 and impose the last set of

equations in (6.50). Setting φ23,α,s,s′ to zero does not affect the Betti numbers since its

effect is to restrict the 4b free complex variables φ23,α,s,s′ to the origin, while by Lefschetz

hyperplane theorem imposing the last set of equations of (6.50) does not change the Betti

numbers for p < 4k − 6. Thus

Q(M; y) ≃ y−4k+6(1− y2)−4(1 + y2)−2(1− y6k)(1− y6k−2)(1− y6k)(1− y6k−2)

≃ y−4k+6(1− y2)−4(1 + y2)−2 . (6.57)

This is in perfect agreement with (6.46), giving further evidence that the HN method

works for quivers with loops and no superpotential.
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