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A tactical radio network is a radio network in which a transmitter broadcasts the same information to its receivers. In this paper,
dynamic spectrum management is studied for multiple cognitive tactical radio networks coexisting in the same area. First, we
consider the problem of common rate maximization subject to a total power constraint for a single tactical radio network having
multiple receivers and using parallel subchannels (parallel multicast channels). Mathematical derivations show that the optimal
power allocation can be found in closed form under multiple hypothesis testing. An outer loop can be used to minimize the power
subject to a common rate constraint. Then, we extend the iterative water-filling algorithm to the coexistence of multiple cognitive
tactical radio networks without requiring any cooperation between the different networks. The power allocation is performed
autonomously at the transmit side assuming knowledge of the noise variances and channel variations of the network. Simulation
results show that the proposed algorithm is very robust in satisfying these constraints while minimizing the overall power in various
scenarios.

1. Introduction

Tactical radio networks are networks in which informa-
tion (voice and packet based data) is conveyed from one
transmitter to multiple receivers. When several coalition
nations coexist in the same area, current technologies do
not permit reconfigurability, interoperability, nor coexis-
tence of the radio terminals. Software defined radio has
been developed for reconfigurability of the terminals with
software upgrades and for portability of the waveforms.
Cognitive radio has been introduced by Mitola in 1999 as
an extension to software-defined radio [1]. Cognitive radio
has been developed for spectrum availability recognition,
reconfigurability, interoperability, and coexistence between
terminals by means of software defined radio technology,
intelligence, awareness, and learning [1, 2]. The fundamental
principles of cognitive radio are on one hand to identify
other radios in the environment that might use the same
spectral resources by means of spectrum sensing and on the

other hand to design a transmission strategy that minimizes
interference to and from these radios by means of dynamic
spectrum management. The major goals of cognitive radio
are to provide a high utilization of the radio spectrum and
reliable communications whenever and wherever needed [2].
Applications of cognitive radio include, but are not limited
to, tactical radio networks, emergency networks, and wireless
local area networks with high throughput and range.

The broadcast channel has been introduced by Cover in
1972 as a communication channel in which there are one
transmitter and two or more receivers [3]. The broadcast
channel in which independent messages are sent to the
receivers (unicast channel) belongs to the class of degraded
channels in which one user’s signal is a degraded version of
the other signals. Its capacity region is fully characterized and
can be achieved by superposition coding [3, 4]. Contrary to
a single unicast channel, the sum of unicast channels as well
as MIMO broadcast channels is nondegraded [5, 6].
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Previous studies on parallel broadcast channels have
focused on scenarios in which independent messages are
sent to the receivers (parallel unicast channels) [7–10].
The optimal power allocation can be achieved by a mul-
tilevel water-filling over the parallel channels, which is
an extension of Gallager’s 1968 water-filling strategy for
single-user parallel Gaussian channels [11]. Some other
studies have considered parallel broadcast channels in which
simultaneous common and independent messages are sent
to the receivers [5, 12, 13], or simultaneous common and
confidential messages are sent to the receivers [14].

Contrary to a unicast channel, a tactical radio network
can be thought as a multicast channel with only common
information. The capacity of a single multicast channel is
limited by the capacity of the worst receiver [4, 15]. However,
less work has been done on parallel multicast channels
[16].

In the first part of the paper (Section 2), we extend
the water-filling strategy [11] to multiple receivers consid-
ering parallel multicast channels with perfect channel state
information (CSI) at the transmit side. In this case, the
extended water-filling strategy maximizes the common rate
subject to a power constraint (inner loop) or minimizes the
power subject to a common rate constraint (outer loop).
Mathematical derivations show that the optimal power
allocation can be found in closed form under multiple
hypothesis testing [14, 17, 18].

Distributed multiuser power control has been studied
for parallel interference channels, leading to a common
strategy known as iterative water-filling [19–21]. Distributed
algorithms, although suboptimal, are preferred to centralized
algorithms in practical scenarios because of their scalabil-
ity. In the iterative water-filling algorithm, each network
considers the interference of all other networks as noise
and iteratively performs a water-filling strategy. At each
iteration, the power spectrum of each network modifies the
interference caused to all other networks. This process is
performed iteratively until the power spectra of all networks
converge.

In the second part of the paper (Section 3), capitalizing
on the previous results, we introduce an autonomous
dynamic spectrummanagement algorithm based on iterative
waterfilling [19] for multiple cognitive tactical radio net-
works coexisting in a given area and willing to broadcast a
common information (voice, data, etc.) to their group. The
problem can be modeled as N networks, each network j
with a single transmitter willing to send a common message
to its corresponding Tj receivers over Nc parallel scalar
Gaussian subchannels. It is assumed that each transmitter
has the knowledge of the channel variations and noise
variances in its own network and iteratively updates its power
spectrum until a common rate constraint for all receivers is
satisfied. Although this paper focuses on multiple cognitive
radio networks for tactical communications, the proposed
algorithm can be applied to any application requiring
spectrum management between multiple cognitive radio
networks for parallel multicast channels with only common
information. In Section 4, simulation results are given for

multiple scenarios and compare the proposed algorithmwith
the worst subchannel strategy. Finally, Section 5 concludes
this paper.

2. Single Tactical Radio Network

Consider aT-receiverNc parallel Gaussian broadcast channel
as shown in Figure 1

yit = hitxi + nit , t = 1 · · ·T, i = 1 · · ·Nc , (1)

where xi is the transmitted signal, nit represents a complex
noise with variance σ2

it, and hit corresponds to the channel
seen by receiver t on tone i. The maximum common
information rate that can be supported by the channel is
given by

max
φ

min
t

Nc∑

i=1
log2

(
1 +

|hit|2φi
Γσ2

it

)

subject to
Nc∑

i=1
φi = Ptot

(2)

with φi = E[|xi|2] the variance of the input signal on channel
i, φ the power allocation among all subchannels, Ptot the total
power constraint, and Γ the SNR gap which measures the
loss with respect to theoretically optimum performance [22].
To achieve the maximum common information rate, the
common message codebook cannot be broken into different
codebooks for each channel, that is, joint encoding and joint
decoding must be performed across all subchannels [23].
This transmission scheme is referred to as “single codebook,
variable power” transmission [24].

The expression in (2) is the maximization of the min-
imum of a set of sums of concave functions of φi. Since
the sum and the minimum operations preserve concavity,
the objective is concave, and maximizing a concave function
yields a convex optimization problem. This max-min opti-
mization problem can be efficiently solved by the approach
based on minimax hypothesis testing given in [14, 17, 18].
For two receivers, the optimal power allocation algorithm is
given by three steps

Step 1. Find φ(1) given by

max
φ

R01

(
φ
)

subject to
Nc∑

i=1
φi = Ptot

(3)

with

R0t

(
φ
)
=

Nc∑

i=1
log2

(
1 +

|hit|2φi
Γσ2

it

)
, t = 1, 2. (4)

If R01(φ
(1)) < R02(φ

(1)
i
), then the optimal power allocation is

φopt = φ(1) and finish.
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Figure 1: T-receiver Nc parallel Gaussian broadcast channel.

Step 2. Find φ(2) given by

max
φ

R02

(
φ
)

subject to
Nc∑

i=1
φi = Ptot.

(5)

If R02(φ
(2)) < R01(φ

(2)) then the optimal power allocation is

φopt = φ(2) and finish.

Step 3. For a given set of weights {wt} corresponding to the
index s with

∑2
t=1 wt = 1, find φ(s) given by

max
φ

2∑

t=1
wtR0t

(
φ
)

subject to
Nc∑

i=1
φi = Ptot.

(6)

Search over all s to find sopt that satisfies R01(φ
(s)) = R02(φ

(s)),

then the optimal power allocation is φopt = φ(sopt) and finish.

First consider the optimization problem of Steps 1 and
2. As the objective function is concave, the power allocation
can be derived by the standard Karush-Kuhn-Tucker (KKT)
conditions [25]. The modified Lagrangian function for Steps
1 and 2 is given by

L
(
λ,φ

)
=

Nc∑

i=1

(
log2

(
1 +

|hit|2φi
Γσ2

it

)
− λφi

)
+ λPtot, t = 1, 2

(7)

with λ the Lagrange multiplier associated with the total
power constraint. By taking the derivative of the modified
Lagrangian function with respect to φi, we can solve the KKT
system of the optimization problem. The derivative with
respect to φi is given by

∂L
(
λ,φ

)

∂φi
= 1

ln 2
1

Γσ2
i1/|hit|2 + φi

− λ, t = 1, 2. (8)

Nulling the derivative gives

∂L
(
λ,φ

)

∂φi
= 0 =⇒ 1

Γσ2
it/|hit|2 + φi

= λ ln 2︸ ︷︷ ︸
λ̃

, t = 1, 2.
(9)

The optimal power allocation corresponds to Gallager’s
water-filling strategy for single-user parallel Gaussian chan-
nels [11].

Step 1.

φ(1)
i =

[
1

λ̃
− Γσ2

i1

|hi1|2
]+

. (10)

Step 2.

φ(2)
i =

[
1

λ̃
− Γσ2

i2

|hi2|2
]+

. (11)

We now consider the optimization problem of Step 3.
As the objective is a weighted sum of concave functions, the
power allocation can also be derived by the standard KKT
conditions. The modified Lagrangian function for Step 3 is
given by

L
(
λ,φ

)
=

Nc∑

i=1

⎛
⎝

2∑

t=1
wtlog2

(
1 +

|hit|2φi
Γσ2

it

)
− λφi

⎞
⎠ + λPtot.

(12)

with λ the Lagrange multiplier associated with the total
power constraint. By taking the derivative of the modified
Lagrangian function with respect to φi, we can solve the KKT
system of the optimization problem. The derivative with
respect to φi is given by

∂L
(
λ,φ

)

∂φi
= 1

ln 2

2∑

t=1

wt

Γσ2
it/|hit|2 + φi

− λ. (13)

Nulling the derivative gives

∂L
(
λ,φ

)

∂φi
= 0 =⇒ w1

Γσ2
i1/|hi1|2︸ ︷︷ ︸

ai

+ φi

+
w2

Γσ2
i2/|hi2|2︸ ︷︷ ︸

bi

+ φi
= λ ln 2︸ ︷︷ ︸

λ̃

.

(14)

The quadratic equation to be solved is

λ̃φ2
i +

(
λ̃(ai + bi)− (w1 + w2)

)
φi

+λ̃aibi − (w1bi + w2ai) = 0.
(15)

The discriminant is given by

Δ = λ̃2(ai − bi)
2 + (w1 + w2)

2

− 2λ̃(ai − bi)(w1 − w2).
(16)
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(1) init P = 10−9

(2) init c = 2
(3) init p = 0
(4) init Rt = 0 ∀t
(5) while |R0(φ

opt)− Rcom| > ε
(6) for all steps
(7) init wt ∀t according to step
(8) init λ = 10−9

(9) init d = 2
(10) init b = 0
(11) init φi = 0 ∀i
(12) while |∑Nc

i=1 φi − P| > ε
(13) Calculate φ according to the roots of(18)

(14) if
∑Nc

i=1 φi − P < 0
(15) b = b + 1
(16) λ = λ/d
(17) d = d − 1/2b

(18) end if
(19) λ = λ× d
(20) end while
(21) If condition satisfied on R0t(φ

opt) ∀t exit step loop
(22) end for
(23) if R0(φ

opt)− Rcom > 0
(24) p = p + 1
(25) P = P/c
(26) c = c − 1/2p

(27) end if
(28) P = P × c
(29) end while

Algorithm 1: Minimization of the power subject to a common rate constraint.

The power allocation is given by the positive root

φi =
⎡
⎢⎣
1

2λ̃
+

√√√√ (w1 + w2)
2

4λ̃2
− (ai − bi)(w1 − w2)

2λ̃
+
(ai − bi)

2

4

−ai + bi
2

⎤
⎥⎦

+

.

(17)

In this formula, the optimal power allocation takes into
account the difference between the water-fill functions and
the weights of the different receivers.

For more than two receivers, the optimal power allo-
cation algorithm is driven by the solutions of higher-
degree polynomials and involves more steps under multiple
hypothesis testing. For instance, with three receivers T = 3,
the optimal power allocation algorithm is given by seven
steps involving the solutions of three linear equations, three
quadratic equations and a cubic equation [26]. Therefore,
for three receivers T = 3 and four receivers T = 4, the
optimal power allocation is a type of water-filling strategy
given by the solutions up to a cubic and a quartic equation,
respectively. The optimal power allocation can also be found
analytically (the solution is not given in this paper due to
space limitations). With T > 4, the optimal power allocation

is given by the solutions of polynomial equations up to
degree T from the formula

T∑

t=1

wt

Γσ2
it/|hit|2 + φi

= λ̃. (18)

In general, the roots for polynomials with a higher degree
than four cannot be expressed analytically but can be solved
numerically. Note that to reduce the complexity in a practical
algorithm, the weights wt are taken from a given data set
in interval [0 1] with Ns samples, leading to a possible
exhaustive search over S = TNT−1

s possibilities. Therefore,
to satisfy the conditions requiring the rates of the different
receivers to be equal, the optimal value sopt should minimize
the dispersion of the rates

sopt

= min
s

√

(1/T)
∑T

t=1

[(
R0t

(
φ(s)

)
− (1/T)

∑T
t=1 R0t

(
φ(s)

))2]

(1/T)
∑T

t=1 R0t

(
φ(s)

) .

(19)

Figure 2 shows the power control for a single tacti-
cal radio network. An inner loop determines the power
allocation maximizing the common rate subject to a total
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Figure 2: Power control for a single tactical radio network.

power constraint. Then, an outer loop minimizes the power
such that a common rate constraint Rcom is achieved.
Algorithm 1 provides the proposed power allocation for
power minimization subject to a common rate constraint.
The inner loop and the outer loop correspond to lines 13–
21 and 6–30, respectively. Note that if all the steps in the
multiple hypothesis testing are needed, the complexity of
the algorithm increases exponentially with the number of
receivers O(TNT−1

s ).

3. Multiple Cognitive Tactical Radio Networks

The coexistence of multiple cognitive tactical radio networks
is shown on Figure 3. In each network j, the Tj receivers
are within the transmission range of the transmitter which
broadcasts a common information. The transmission range
is represented by the gray area around the transmitter. The
different networks can interfere with each other, causing
transmission losses if dynamic spectrum management tech-
niques are not implemented. Our goal is to alleviate this
problem by equipping each terminal with an algorithm
which gives the possibility to optimize its transmission power
for each subchannel. We assume that the links between
the transmitter and the receivers of each network exhibit
quasistatic fading channels, that is, in which the coherence
times of the fading channels are larger than the time
necessary to compute the algorithm. Such an assumption is
motivated by the fact that tactical radio networks using VHF
and low UHF bands exhibit long coherence times for low
mobility patterns. The received signals yj,it can bemodeled as

yj,it = hj j,itxi j +
N∑

k /= j

hjk,itxik + nj,it , i = 1 · · ·Nc,

j = 1 · · ·N ,

t = 1 · · ·Tj ,

(20)

where nj,it represents a complex noise with variance σ2
j,it

and hjk,it corresponds to the channel from network k to j
seen by receiver t and tone i. We consider the maximization
of the aggregate common rate subject to a total power
constraint per network

max
φ

N∑

j=1
min
t

Nc∑

i=1
log2

⎛
⎜⎜⎜⎜⎜⎜⎝
1 +

∣∣∣hj j,it

∣∣∣
2
φi j

Γ

⎛
⎝σ2

j,it +
∑

k /= j

∣∣∣hjk,it

∣∣∣
2
φik

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

subject to
Nc∑

i=1
φi j = Ptot

j , ∀ j

(21)

with φ the power allocation among all subchannels and

networks. Similarly to a single tactical radio network,
multiple hypothesis testing can be used to transform the
above problem into different steps according to different

values of wjt , with
∑Tj

t=1 wjt = 1, for all j. Note that the
number of steps under multiple hypothesis testing increases
exponentially with the number of networks N . In the follow-
ing, we omit the steps under multiple hypothesis testing for
clarity. Therefore, (21) reduces to the following problem:

max
φ

N∑

j=1

Tj∑

t=1
wjtR0 jt

(
φ
)

subject to
Nc∑

i=1
φi j = Ptot

j , ∀ j

(22)

with multiple conditions according to the weights wjt , for all
t, j on the rates

R0 jt

(
φ
)

=
Nc∑

i=1
log2

⎛
⎜⎜⎜⎜⎜⎜⎝
1 +

∣∣∣hj j,it

∣∣∣
2
φi j

Γ

⎛
⎝σ2

j,it +
∑

k /= j

∣∣∣hjk,it

∣∣∣
2
φik

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠
, ∀t, j.

(23)

Considering jointly the maximization of the aggregate
common rate subject to a total power constraint per network
in a centralized algorithm is an extensive task, since it would
require the knowledge of the channel variations of all the
interference terms hjk,it for all i, j, t, k. This knowledge
can be acquired through a feedback channel from the
receivers to the transmitter of each network assuming that
the acquisition time is much lower than the coherence time
of the channel fading. To this end, each terminal must
be equipped with a spectrum sensing function to estimate
the noise variances and a channel estimation function to
estimate its channel variations. This information can be
further transmitted to a centralized unit. Moreover, even
if a centralized cognitive manager was able to collect all
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(1) init Pj = 10−9∀ j
(2) init c j = 2 ∀ j
(3) init pj = 0 ∀ j
(4) init Rjt = 0 ∀t, j
(5) while |R0 j(φ

opt

j
)− Rcom| > ε∀ j

(6) for iteration = 1 to 20
(7) for j = 1 to N
(8) for all steps
(9) init wjt ∀t according to step
(10) init λ = 10−9

(11) init d = 2
(12) init b = 0
(13) init φi j = 0∀i
(14) while |∑Nc

i=1 φi j − Pj | > ε
(15) Calculate φ

j
according to the roots of(18)

(16) if
∑Nc

i=1 φi j − Pj < 0
(17) b = b + 1
(18) λ = λ/d
(19) d = d − 1/2b

(20) end if
(21) λ = λ× d
(22) end while
(23) If condition satisfied on R0 jt(φ

opt

j
)∀t exit step loop

(24) end for
(25) end for
(26) end for
(27) for j = 1 to N
(28) if R0 j(φ

opt

j
)− Rcom > 0

(29) pj = pj + 1
(30) Pj = Pj/c j
(31) c j = c j − 1/2pj

(32) end if
(33) Pj = Pj × c j
(34) end for
(35) end while

Algorithm 2: Distributed power allocation for minimization of the power subject to a common rate constraint.

the channel state information (CSI) within and between the
different networks, solving (22) would require an exhaustive
search over all possible φi j ’s or a more efficient genetic
algorithm.

Distributed algorithms, although suboptimal, are pre-
ferred to centralized algorithms for the coexistence between
several tactical radio networks because of their scalability.
Therefore, it is assumed that each transmitter has the
knowledge of the channel variations in its own network j
(hjk,it , ∀k = j, i, t). We propose a suboptimal distributed
algorithm for power minimization subject to a common
rate constraint based on the iterative water-filling algorithm
initially derived for dynamic spectrum management in
digital subscriber line (DSL) [19]. Note that a more robust
iterative water-filling algorithm such as [20, 21] can also
be applied in case of imperfect channel and noise variance
information. Each update of one network’s water-filling
affects the interference of the other networks, and this
process is repeated iteratively between the networks until
the power allocation of all networks converges and reaches
a Nash equilibrium. As the power updates between networks

can be performed asynchronously, an iterative water-filling
based algorithm is very attractive when multiple tactical
radio networks coexist in the same area. Let us derive the
modified Lagrangian function of (22)

L
(
λ,φ

)

=
Nc∑

i=1

⎛
⎜⎜⎜⎜⎜⎜⎝

N∑

j=1

Tj∑

t=1
wjtlog2

⎛
⎜⎜⎜⎜⎜⎜⎝
1 +

∣∣∣hj j,it

∣∣∣
2
φi j

Γ

⎛
⎝σ2

j,it +
∑

k /= j

∣∣∣hjk,it

∣∣∣
2
φik

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−
N∑

j=1
λjφi j

⎞
⎟⎟⎟⎟⎟⎟⎠
+

N∑

j=1
λjP

tot
j

(24)



EURASIP Journal on Wireless Communications and Networking 7

.
.
.

...

...

.
.
.

. . .

· · ·Tx1Rx11

Rx21

Rx
T1
1

Tx2

Rx22

Rx12

Rx
T2
2

TxN

Rx2N

Rx1N

Rx
TN
N

Figure 3: Multiple cognitive radio networks for tactical communications.

R01(φ
opt
1

) < Rcom? R0N (φ
opt
N

) < Rcom?

P1 Pj PN

Inner loop

find φopt
1

according to steps

Inner loop

find φopt
N

according to steps

· · · · · ·

· · · · · ·

· · ·

Yes Yes

No No

PN

PN

Iterative

P1

P1

Figure 4: Distributed power control for multiple tactical radio networks.
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in which λ are the Lagrange multipliers for all networks.
Assuming that the noise variances and the channel variations
have been estimated by the receivers and given to their
transmitter, we can solve the KKT system of the optimization
problem by taking the derivative of the modified Lagrangian
function with respect to φi j

∂L
(
λ,φ

)

∂φi j

= 1
ln 2

Tj∑

t=1

wjt

Γ

⎛
⎝σ2

j,it/
∣∣∣hj j,it

∣∣∣
2
+
∑

k /= j

(∣∣∣hjk,it

∣∣∣
2
/
∣∣∣hj j,it

∣∣∣
2
)
φik

⎞
⎠+φi j

− λj .
(25)

Therefore, after collecting the noise variances and the
channel variations of its network, each transmitter has to
apply Algorithm 1 autonomously and to update its power
allocation regularly to reach an equilibrium between the
different networks. As shown on Figure 4, within each
network, an inner loop determines the power allocation
maximizing the common rate subject to a total power
constraint. This process is updated regularly between all
the different networks until they reach a Nash equilibrium.
Finally, an outer loop minimizes the power such that a
common rate constraint is achieved for each network. The
algorithm for the coexistence of multiple tactical radio
networks is presented in Algorithm 2.

4. Simulation Results

For the simulations, the log-distance path loss model is used
to measure the path loss between the transmitter and the
receivers [27]:

PL(dB) = PL(d0) + 10nlog10

(
d

d0

)
(26)

with n the path loss exponent, d the distance between the
transmitter and the receiver, and d0 the close-in reference
distance. The reference path loss is calculated using the free
space path loss formula:

PL(d0) = −32.44− 20 log10
(
fc
)− 20 log10(d0), (27)

where fc is the carrier frequency in MHz and d0 the
reference distance in kilometers. The transmitter and the
receivers are placed randomly in a square area of 1 km2. The
carrier frequency is chosen to be in the very high frequency
(VHF) band ( fc = 80MHz). The SNR gap for an uncoded
quadrature amplitude modulation (QAM) to operate at a
symbol error rate 10−7) is Γ = 9.8 dB. The subchannel
bandwidth is Δ f = 25 kHz, the path loss exponent is n = 4,
reference distance d0 = 20meters and thermal noise with the
following expression:

σ2
n = −204dB/Hz + 10 log10

(
Δ f

)
(28)

1 2 3 4

First receiver
Second receiver

(a)

1 2 3 4

First receiver
Second receiver

(b)

Figure 5: Water-fill functions for two scenarios over four subchan-
nels.
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Figure 6: Results on the power minimization subject to a common
rate constraint for both scenarios.

which gives a noise variance per subchannel of approximately
σ2
n = 10−16.

4.1. Single Tactical Radio Network. Simulation results for a
single tactical radio network are performed using Monte
Carlo trials for the locations of the transmitters and the
receivers with T = 2 receivers and Nc = 4 subchannels and
2 particular scenarios. The maximum available power at the
transmitter is Ptot = 1W. In the first scenario (left part of
Figure 5), the first receiver sees a small noise on the first three
subchannels and a very strong noise on the 4th subchannel,
while the second receiver sees a very strong noise on the 1st
subchannel and a small noise on the last three subchannels.
In the second scenario (right part of Figure 5), we take an
extreme situation in which the first receiver sees a very strong
noise on the 3rd and 4th subchannels and the second receiver
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Figure 7: Water-fill functions for two networks over four subchan-
nels.
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Figure 8: Results on the power minimization subject to a common
rate constraint averaged for two networks.

sees a very strong noise on the 1st and 2nd subchannels.
The different noises seen by the different receivers can be
thought as subchannel variations depending on the location,
a subchannel occupied by a primary transmitter, a jammer,
or different channel characteristics.

In the first set of simulations, we compare Algorithm 1
with the worst subchannel strategy for the minimization of
the power subject to a common rate constraint. The worst
subchannel strategy corresponds to the strategy in which
the common message codebook is broken into different
codebooks for each subchannel; therefore, the common
rate is limited by the weakest receiver in each subchannel
[23]. This transmission scheme is referred to as “multiple
codebook, variable power” transmission [24]. In the worst
subchannel strategy, the water-filling is performed on the
worst subchannel conditions considering both receivers.
More precisely, the values ai and bi are compared for each

subchannel and the greatest value is selected for the water-
filling. For the worst subchannel strategy, the inner loop
maximizes the rate of the superposition of the receiver’s
worst subchannels given by

max
φ

Nc∑

i=1
min
t

log2

(
1 +

|hit|2φi
Γσ2

it

)

subject to
Nc∑

i=1
φi = Ptot.

(29)

Figure 6 shows the results of the power minimization
subject to a common rate constraint ranging from Rcom =
2 kbps to Rcom = 512 kbps over 103 Monte Carlo trials for
both scenarios. Algorithm 1 provides the minimum power
for all scenarios compared to the worst subchannel strategy
as this is the optimal strategy. Moreover, for the scenario 2,
the worst subchannel strategy uses the maximum power for
all common rate constraints.

4.2. Multiple Cognitive Tactical Radio Networks. In the
second set of simulations, we compare Algorithm 2 with
the worst subchannel strategy for the minimization of the
power subject to a common rate constraint with N = 2
networks whose transmitters and receivers are in a same
square area of 1 km2. To highlight the robustness of our
algorithm, we take an extreme scenario in which the receivers
see a different noise σ2

n on their Nc = 4 subchannels (as
shown in Figure 7). In the first network, a very strong noise
(σ2

n = 10−9) is seen on the 4th subchannel by the first receiver
and the 1st subchannel by the second receiver. In the second
network, a very strong noise (σ2

n = 10−9) is seen on the 3th
subchannel by the first receiver and the 2nd subchannel by
the second receiver. Figure 8 shows the results of the power
minimization subject to a common rate constraint ranging
from Rcom = 2 kbps to Rcom = 512 kbps over 103 Monte
Carlo trials. The results are averaged for both networks. In
this scenario, it can be seen that Algorithm 2 outperforms the
worst subchannel strategy. Therefore, in practical scenarios
in which the interference temperature varies along the
subchannel and the receiver locations, Algorithm 2 provides
a novel distributed strategy to find the power allocation
minimizing the power subject to a common rate constraint.
Since it is based on closed-form expressions, the algorithm
has reasonable complexity for a low number of receivers.
However, the search for the best set of weights requires an
exhaustive search over all possible weights. Therefore, to
reduce the complexity in a practical algorithm, the weights
wt are taken from a given data set in interval [0 1].

5. Conclusion

In this paper, dynamic spectrum management was studied
for multiple cognitive tactical radio networks coexisting in
the same area. First, we have considered the problem of
power minimization subject to a common rate constraint
for a single tactical radio network with multiple receivers
over parallel channels (parallel multicast channels). Then,
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we have extended the iterative water-filling algorithm to
multiple receivers for the coexistence of multiple cognitive
tactical radio networks assuming knowledge of the noise
variances and channel variations of the network. Simulation
results have shown that the proposed algorithm is very robust
in satisfying these constraints while minimizing the overall
power in various scenarios.
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