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Abstract The uncertainty of wind power forecasting sig-

nificantly influences power systems with high percentage

of wind power generation. Despite the wind power fore-

casting error causation, the temporal and spatial depen-

dence of prediction errors has done great influence in

specific applications, such as multistage scheduling and

aggregated wind power integration. In this paper, Pair-

Copula theory has been introduced to construct a multi-

variate model which can fully considers the margin dis-

tribution and stochastic dependence characteristics of wind

power forecasting errors. The characteristics of temporal

and spatial dependence have been modelled, and their

influences on wind power integrations have been analyzed.

Model comparisons indicate that the proposed model can

reveal the essential relationships of wind power forecasting

uncertainty, and describe the various dependences more

accurately.

Keywords Pair-Copula, Wind power forecasting,

Temporal dependence, Spatial dependence, Wind power

integrations

1 Introduction

With mounting concerns over global warming and fossil

fuel depletion, in recent years wind power generation has

been greatly increased in the worldwide. However, due to

the stochastic behaviors of wind resources cannot be fully

predicted, the induced uncertainties significantly influence

the power system operations, such as reserve deployment,

unit commitment, power dispatch, power system’s security

and reliability assessments, etc [1–6]. Therefore, a thor-

ough uncertainty model for wind power forecasting error is

imperative for power system operators and participants, in

terms of evaluating the benefits and costs of wind power

integration and thus supporting trade-off decisions.

The short-term uncertainty of wind power generation

has been typically modelled by the distribution of the wind

power forecasting error. Numerous distributions and

modelling methods have been proposed, such as the

Gaussian distribution [7], Beta distribution [8] and non-

parametric approach [9]. These studies mainly focused on

the error distribution of a single wind farm based on a per-

prediction horizon. However, due to the similar meteoro-

logical conditions, the errors of close prediction horizons

and nearby farms influence with each other. The temporal

dependence of forecast series is crucial for multistage

decision-making problems, such as energy storage plan-

ning and scheduling. In parallel, the spatial dependence of

multiple farms has been particular concerned to cluster

operators in terms of transmission congestion and reserve

deployment. Thus more detailed models which consider the
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temporal or spatial dependence of wind power forecasting

errors have drawn wide attentions in wind power integra-

tion applications.

Under this background, researchers are inspired to

develop feasible models for the correlation structure of

wind power forecasting [10–16]. General methods can be

roughly classified into three main kinds: time series model,

Markov model, and high-dimensional joint probability

model. Time series model is able to discover change rules

of historical series, the most widely-used of which is auto

regression moving average (ARMA) model. ARMA model

has advantages of simple structure and easily fitting [10].

However, ARMA model faces difficulty in dealing with

non-stationary stochastic process. Additionally, since there

exists essential difference in characteristics between tem-

poral dependence and spatial dependence, simply using the

same noise signal for temporal and spatial modelling lacks

theoretical support [11]. Markov model depicts the state

transition distribution of random variables, with advantages

of low requirement to sample size and high fitting effect for

short-term characteristics [12]. Yet, due to the restriction of

model order, it may be difficult to apply Markov model in

uncertainty modelling for multiple wind farms [13]. By

regarding forecasting errors of different wind farms and

different times as dependent multivariate random variables,

high-dimensional joint probability model performs mathe-

matical and statistical description for uncertainty charac-

teristics through joint probability distribution function.

Copula theory is a typical method in this area, which has

been widely applied in financial market analyses, portfolio

investments, and risk assessments [14, 15].

Recently copula theory has been applied in power sys-

tem uncertainty analyses. The spatial dependence of

regional wind power outputs using Gaussian Copula was

investigated in [17]. Similar methods were used to model

the temporal relevance of forecast errors [18–21]. Although

Gaussian distribution has been the default Copula choice in

numerous studies for practical reasons, its appropriateness

for wind power forecasting dependent structure has not

been rigorously investigated. Reference [22] evaluated the

goodness-of-fit of several bivariate elliptical and Archi-

medean Copulas for modelling the wind power spatial

dependence and concluded that Gumbel Copula was pre-

ferred over Gaussian Copula. However, when extending

the bivariate model to higher dimensions, Dı́az [23] noted

that the multivariate Gumbel Copula did not outperform

Gaussian Copula due to its monotonous structure and fewer

parameters [24]. Thus, although Archimedean Copula

family provides various dependent structures, its applica-

bility in high dimensions is significantly restricted due to a

lack of feasible extension methods.

In response to these limitations, this paper introduces

Pair-Copula theory to model the temporal and spatial

dependence of wind power forecasting errors. The paper is

organized as follows. Section 2 introduces the Pair-Copula

theory and proposes the detailed procedures of modelling

wind power forecasting dependence and sampling wind

power uncertainty scenarios. Based on the regional wind

power dataset from the National Renewable Energy Lab-

oratory (NREL), the stochastic characteristics of temporal

and spatial dependence have been analyzed and modelled

in Sect. 3. In Sect. 4, different dependent models have

been compared to validate the effectiveness of the pro-

posed method, and the effects of temporal and spatial

dependence on power system operations are addressed.

Finally, concluding remarks have been presented in

Sect. 5.

2 Pair-Copula theory based uncertainty modelling
algorithm

2.1 Review of Copula and Pair-Copula theory

2.1.1 Copula theory

Assume {x1, x2,…, xn} are correlated random variables.

According to the Sklar theorem [25], Copula function links

the margin distribution functions to form the joint multi-

variate cumulative distribution function (CDF), as shown

below.

Fðx1; x2; . . .; xnÞ ¼ C1;2;...;nðFðx1Þ;Fðx2Þ; . . .;FðxnÞÞ ð1Þ

where F(xi) (i = 1, 2, …, n) is the margin distribution of xi;

F(x1, x2, …, xn) is the joint distribution function. Thus, C is

the Copula function.

The corresponding Copula probability density function

(PDF) is defined as follows:

f ðx1; x2; . . .; xnÞ ¼ c1;2;���;nðFðx1Þ;Fðx2Þ; . . .;FðxnÞÞ
� f ðx1Þf ðx2Þ. . .f ðxnÞ

ð2Þ

where f (xi) is the margin density function; f(x1, x2,…, xn) is

the joint PDF; c is the Copula density function.

The Copula modelling approach has several attractive

properties [26]: 1) it allows the marginal distributions and

dependent structure to be modelled separately; 2) it does

not require the margins to be normally or uniformly dis-

tributed; 3) it contains various Copula functions, which

makes it flexible in modelling complex dependences,

including nonlinear and asymmetric relationships.

2.1.2 Pair-Copula theory

In practical applications, high-dimensional dependence

requires feasible multivariate Copulas and even flexible
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combinations of different Copula functions. To resolve this

problem, hierarchical and nested approaches were pro-

posed, which used sub-models of lower dimensions to

construct the joint Copula function [27, 28]. However,

these techniques faced the compatibility problem. Strict

limitations were imposed on the selected types and

parameters to satisfy the nested condition [28]. On this

basis, the Pair-Copula construction method was proposed

to build flexible multivariate distributions.

Based on the conditional probability theory, the joint

PDF can be formulated as follows:

f ðx1; x2; . . .; xnÞ ¼ f ðx1Þf ðx2jx1Þ. . .f ðxnjx1; x2; . . .; xn�1Þ

¼
Yn

t¼2

f ðxtjx1; x2; . . .; xt�1Þ � f ðx1Þ

ð3Þ

According to the definition of Copula density in (2),

f(xt|x1, x2,…, xt-1) can be calculated recursively as:

f ðxtjx1; x2; . . .; xt�1Þ ¼ c1;tj2;3;...;t�1f ðxtjx2; x3; . . .; xt�1Þ¼ � � �

¼
Yt�2

s¼1

cs;tjsþ1;...;t�1

 !
ct�1;tf ðxtÞ

ð4Þ

Thus the joint density of (3) can be further decomposed

as [29]:

f ðx1; x2; . . .; xnÞ ¼
Yn�1

i¼1

Yn�i

j¼1

cj;iþjjjþ1;...;iþj�1

 !
Yn

k¼1

f ðxkÞ
 !

ð5Þ

where cj,i?j|j?1,…,i?j-1 is an abbreviated expression for the

conditional bivariate Copula density cj,i?j|j?1,…,i?j-1(-

F(xj|xj?1,…,xi?j-1), (xi?j|xj?1,…,xi?j-1)). Equation (5)

indicates that the joint density consists of the conditional

densities of all pairs and the marginal densities, which

explain why this form of decomposition is called Pair-

Copula.

Pair-Copula theory maintains the merits of Copula the-

ory, and further provides a flexible and intuitive way to

build the multivariate Copula using bivariate Copula

blocks. Compared with the other multivariate Copula

extension methods, Pair-Copula imposes no restrictions on

the selected types or parameters and is thus more flexible

and practical for modelling and analysing complex

dependences.

2.2 Model construction for wind power forecasting

errors

To specify the Pair-Copula model for the wind power

forecasting uncertainty, the temporal dependence model

are derived as an example, and the spatial dependence can

be constructed in the same manner. Suppose that {e1, e2,

…, en} are the forecast errors of prediction horizons.

According to (5), the model construction includes two

parts: 1) margin distribution estimation and 2) dependent

model construction, i.e., the estimation of every bivariate

pair density cj,i?j|j?1,…,i?j-1 evaluated at conditional CDF

F(ej|ej?1,…,ei?j-1) and F(ei?j|ej?1,…,ei?j-1). As the

modelling methods for the marginal distribution have been

widely investigated, the estimation of dependent model is

proposed in the following.

2.2.1 Parameter estimation and Copula selection

For the given candidate bivariate Copula, the corre-

sponding parameters are estimated by maximum log-like-

lihood estimate (MLE) algorithm [30] in this paper. The

parameter hj,i?j of pair cj,i?j is obtained as:

max ln lðhj;iþjÞ

¼ max
Xm

k¼1

ln cj;iþjðFðekj jekjþ1; . . .; e
k
iþj�1Þ;

Fðekiþjjekjþ1; . . .; e
k
iþj�1ÞÞ

ð6Þ

where ej
k is the kth observation of historical data ej; m is the

number of observations.

To find the best-fitted family for a pair, several potential

Copula functions are selected and parameters are estimated

for each candidate. Then the empirical CDF, as formulated

in (7), is regarded as the criterion to evaluate the goodness-

of-fit for candidates. The Copula with the closest Euclidean

distance to empirical CDF will be selected.

Cnðx; yÞ

¼ 1

m

Xm

k¼1

IðFðekj jekjþ1; . . .; e
k
iþj�1Þ� xÞ

IðFðekiþjjekjþ1; . . .; e
k
iþj�1Þ� yÞ

ð7Þ

where (x, y) is the sample point in distributed space; I(�) is
the indicative function. When the defined condition is

satisfied in parenthesis, I(�) = 1, otherwise I(�) = 0.

2.2.2 Dependent structure estimation

As mentioned above, the Copula densities are fitted

based on conditional CDFs, which can be calculated by

[31]:

FðejjDÞ ¼
oCej;ek jðDnekÞ FðejjðDnekÞÞ;FðekjðDnekÞÞ

� �

oFðekjðDnekÞÞ
ð8Þ

where D is the conditional variable set, ek 2 D; Dnek
means removing element ek from D; o is the partial dif-

ferential signal.
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Equation (8) indicates the conditional CDFs used in high

dimensions can be calculated by the fitted bivariate Cop-

ulas of lower dimensions. Therefore, the n(n - 1)/2

underestimated pairs cj,i?j|j?1,…,i?j-1 can be divided into

(n - 1) trees according to the value of i, as shown in Fig. 1.

The pair densities are estimated in the sequence of the tree

number. As the Copula functions in lower trees have been

selected and parameterized, the fitted Copula function can

be applied to calculate conditional CDFs for the next tree

by (8). Thus the entire model is achieved in a recursive

manner.

Through the construction process, it can be seen that the

Pair-Copula method allows mixing different Copula types

and sets no limitations on types or parameters, thus it can

select the best-fitted distributions and gain a higher accu-

racy. When the Gaussian Copula is nominated for all pairs,

the Pair-Copula model is proven to be equal to the multi-

variate Gaussian Copula. Therefore, the Pair-Copula model

can replace the conventional multivariate models without

sacrificing the accuracy of the model.

2.3 Wind power uncertainty scenario simulation

The most important application of the wind power

uncertainty model is to evaluate the benefits and costs of

wind power integration. For end-users, Monte Carlo sim-

ulated scenarios provide uncertainty information in a dis-

crete form, which are practical for risk assessments and

optimization programming. The simulation process is also

based on conditional probability theory.

First, the independent uniform variables {w1, …, wn} is

randomized to follow the stratified sampling principle.

Next the correlated uniform forecast errors {z1, …, zn} for

horizon 1 to n are calculated by (9). The conditional CDFs

of (9) have been developed when fitting the dependent

model; thus, they can be used directly in the simulation

process. The uniform errors then will be transferred back to

the original domain by inverse marginal CDFs, and finally

form the wind power scenarios.

z1 ¼ w1

z2 ¼ F�1ðw2jz1Þ

..

.

zn ¼ F�1ðwnjz1; z2; . . .; zn�1Þ

8
>>>>><

>>>>>:

ð9Þ

Therefore, the entire procedure for modelling and

generating wind power forecasting scenarios considering

the temporal dependence is described as follows, and the

mechanism sketch of each step is drawn in Fig. 2 for

further clarification.

Step 1 Form the n-dimensional dataset E = {e1, e2, …,

en} of prediction errors for multiple forecast horizons or

wind farms using the historical data.

Step 2 Develop the marginal distribution F(ei) (i = 1,

2,.., n) and transform the data from the actual domain to

the uniform domain.

Step 3 Construct the multivariate dependent model based

on the uniform data.

Step 4 Sample correlated uniform error {z1, z2,…, zn}

using (9) based on the model estimated in Step 3 .

Fig. 1 Mechanism sketch of dependent model construction process
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Fig. 2 Mechanism sketch of entire modelling and simulation process

Wei HU et al.

123



Step 5 Transform samples back to the actual domain

using the inverse margin ei = F-1(zi).

Step 6 Obtain wind power uncertainty scenarios by

adding the given point forecasts and simulated errors.

Further extension to spatial-temporal dependence mod-

elling also follows a similar principle, but the model

dimension is higher.

3 Modelling temporal and spatial dependence
of wind power forecasting errors

3.1 Dataset

In this section, the temporal and spatial dependences of

wind power forecasting errors are modelled based on the

Wind Integration datasets of the NREL [32]. The wind

speeds in the dataset are generated by MASS v.6.8

mesoscale model, which is initialized with input from

Atmospheric Research Global Reanalysis and assimilates

both surface and rawindsonde data. The wind power out-

puts are computed by composite turbine power curves, and

the forecasts are produced by a statistical forecast tool

named SynForecast. Though the data are simulated, they

are verified to contain similar stochastic features of actual

wind farms and reflect the geographic diversity of wind

power outputs. Thus they are suitable for researches of

wind power temporal and spatial relevance [22, 23, 33].

In this paper, regional wind plants in Vermont are

selected. The data consist of 17 onshore wind farms

varying in capacity from 100 to 180 MW and distributed

spatially from 10 to 250 km. Detailed spatial locations of

these wind farms are presented in Table 1. The wind power

outputs and day-ahead forecasts span 3 years and have a

1 h resolution. All data have been normalized by the rated

capacity.

3.2 Temporal dependence model

The Gaussian model for temporal dependence is first

built to analyse the linear dependence. Figure 3a shows the

fitted parameters of the Gaussian model, where the matrix

element in position (j, i) represents the linear correlation

coefficient of errors of horizon j and i. High correlations

are observed for close prediction horizons, whereas the

relevance decreases dramatically as the intervals increase.

Furthermore, Fig. 3b presents the colour histogram of the

forecast errors in horizons 1 and 2 in the uniform domain.

The dependent structure of adjacent errors is generally

elliptical. Moreover, the tail is steep and symmetric, which

highlights a higher coherence when large prediction errors

occur. This characteristic should be addressed in multistage

decision-making problems, as it would significantly affect

the risk index.

To develop the Pair-Copula model, five typical Copula

function, i.e. Gaussian, Student t, Clayton, Gumbel and

Frank Copulas are selected as candidates for estimating the

pair densities. The independent function is also included

here, and its bivariate CDF is the product of the marginal

distributions. When the CDF of independent type owns the

nearest distance to the empirical CDF, the concerning

variables are judged to be independent. As parameters of

different Copula families vary in different ranges, to

facilitate model analyses and comparisons, the fitted

parameters are translated into Kendall’s rank correlation

coefficients, which can be identically formulated according

Table 1 Detailed spatial locations of concerning 17 wind farms

Index Latitude Longitude Altitude

A 44.97 -72.52 503

B 44.87 -72.51 806

C 44.81 -72.69 687

D 44.92 -71.82 700

E 44.71 -71.79 744

F 44.54 -72.18 681

G 44.2 -72.35 720

H 44.29 -72.89 949

I 44.23 -73 627

J 43.99 -72.8 646

K 43.68 -72.66 673

L 43.56 -72.8 691

M 43.52 -72.62 623

N 43.35 -72.76 641

O 43.42 -73.08 754

P 43.22 -73.14 853

Q 42.9 -72.8 578

Fig. 3 Data analysis for temporal dependence
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to Copula class and parameters [29]. Figure 4 shows the

selected Copula types and corresponding parameters

(translated into Kendall’s rank correlations) for all pairs.

The element in position (j, i) denotes the jth pair in the ith

Tree, i.e., the conditional dependence of the errors of

horizon j and i ? j. Figure 4a denotes the best fitted

Copula type with different colours, and Fig. 4b demon-

strates the estimated parameter for each Copula

function.

As the dimension is 24 (the forecast errors of 24 h),

there are 23 trees in the temporal model. Tree1 has 23

pairs, each pair represents the temporal correlation of

horizon j and j ? 1. In parallel, Tree 2 has 22 pairs, each

pair represents the conditional temporal correlation of

horizon j and j ? 2. The rest trees can be analysed in the

same way. The fitted results show that the independent

function dominates in Trees 2–23, which implies that non-

adjacent errors are conditionally independent, i.e., the wind

power forecasting error has a one-order Markov property.

This result is not surprising, as wind speed and wind power

outputs have been proven to be Markov chains in many

studies [12, 34]. Using the Pair-Copula approach in this

paper, the day-ahead wind power forecasting errors are

verified to possess a Markov property with an optimal

order of 1.

For the dependence of adjacent errors in Tree 1, the

Student t is the most favored Copula function due to its

elliptical structure and strong tail dependence, and the

Gumbel function is also selected for some pairs. For

parameter results, strong correlations are found for adjacent

errors, and the variation of parameters in Tree 1 is small,

indicating that the correlations are not significantly affected

by the prediction horizons 4 figures and tables.

3.3 Spatial dependence model

Seventeen wind farms in Vermont are included in the

spatial dependence study and are sequenced by distance. The

analysis andmodelling process are similar to those described

above. The parameters of the Gaussian model are shown in

Fig. 5a. Comparedwith the temporal dependence, the spatial

correlation is remarkably weak, i.e., the smoothing effect of

aggregate wind farms is considerable. Fig. 5b displays the

colour histogram of wind farm 1 and 2 with a correlation of

0.452. It is discovered that the spatial dependence has an

upper tail, which indicates that the probability of simulta-

neous large positive errors is higher than that of negative

errors. The asymmetry property should be taken into con-

sideration in reserve deployments and transmission con-

gestion problems in wind farm cluster integration.

The Copula types and parameters of the Pair-Copula

spatial model are shown in Fig. 6, where the element in

position (j, i) denotes the conditional dependence of errors

of wind farm j and i ? j. Unlike the temporal model, the

spatial dependences are inherent; thus, Markov phe-

nomenon is not observed. Furthermore, the asymmetric

characteristic is common among the selected wind farms,

thus the Gumbel function is superior to other candidates

owing to its upper tail structure; yet the symmetrical Stu-

dent t and Frank functions are also selected for some pairs

of wind farms. Comparing Fig. 6b and the spatial distri-

bution of the wind farms, the spatial correlation generally

decreases when distance between wind farms increasing.

For instance, farm a and b is nearest, thus the correlation

coefficient is the largest (the correlation of pair c1,2 is

0.3177). However, the distance of farm b and c is farther

than farm h and i, but the correlation coefficient is larger

(the correlation of pair c2,3 and c8,9 is 0.2652 and 0.2522

respectively). Therefore, the spatial dependence is affected

by factors like distance, elevation, topographical and sur-

face structure, and it is more variable and complex.

4 Model analysis and comparisons

To illustrate the effectiveness of the proposed method,

the Pair-Copula, Gaussian-dependent and the independent

(i.e., temporal or spatial correlation is ignored) models are

Fig. 4 Estimated result of Pair-Copula temporal model Fig. 5 Data analysis for spatial dependence

Wei HU et al.

123



compared in this section. The goodness-of-fit evaluation of

multivariate distribution needs huge computation and is

time-consuming, especially for high dimensional cases.

Hence, the typical application scenes in which the temporal

or spatial dependence of wind power forecasting errors are

required are investigated. And according to the effects of

the dependences in application scenes, the corresponding

criterion is proposed to map the multivariate distribution to

a univariate one, hence facilitating the comparisons

between different multivariate models.

4.1 Temporal dependence model comparison

The scheduling and planning of an energy storage sys-

tem (ESS) is a typical multistage decision-making problem.

When the ESS is applied to balance the wind power fore-

casting deviations, the absorption or production energy of

the ESS is determined by both the magnitude and sequence

of the prediction errors, as formulated in (10). Therefore,

the temporal dependence needs to be considered.

Eb ¼
X

i2Tb
eiDt

Tb ¼ fei � 0; 8i 2 Tbg or fei � 0; 8i 2 Tbg
ð10Þ

where Eb is the charge or discharge energy of ESS; Dt is
the time interval; Tb is the charging or discharging period

during which only positive or negative prediction errors

occur.

Therefore, the distribution of Eb is regarded as the cri-

terion to evaluate the accuracy of different temporal

models. To develop the univariate distribution, temporal-

related prediction errors are generated by the Monte Carlo

algorithm based on different temporal models, Eb can then

be calculated by (9), and the empirical distribution can be

further obtained using the simulated data.

Figure 8 shows the probability density frequency of the

ESS energy based on the measurements and the three

models studied, and the data are normalized by the wind

farm rated capacity. The measured data exhibit a fat-tailed

characteristic due to the presence of continuous errors with

the same sign, which agrees with the analysis in temporal

modelling. The independent model does not reflect this

property and therefore will greatly underestimate the nec-

essary ESS energy capacity. On the other hand, the Pair-

Copula and Gaussian models are alike because the selected

Student t Copula has similar stochastic characteristics with

Gaussian Copula, and they both fit the data well.

To further qualify the goodness-of-fit of the estimated

model, Cramer-von Mises (CvM) and Kolmogorov-Smir-

nov (KS) indices [35], which respectively measure the

average and maximum Euclidean distances between the

estimated and empirical CDF, are calculated and shown in

Table 2. Both indices are negatively oriented, meaning that

lower values are preferable. The Pair-Copula model is

better than the Gaussian model in terms of both indices.

4.2 Spatial dependence model comparison

Due to the weak spatial correlation, the prediction errors

of disperse wind farms is offset thus reserve demand can be

reduced. Thus the spatial dependence is desired for the

assessment of power system operation reliability and

security. The distribution of the aggregated prediction error

of regional wind farms is selected as the criterion to

evaluate the accuracy of different spatial models.

The probability density frequency of aggregated forecast

error of 17 wind farms in Vermont based on the mea-

surements and three estimated models are shown in Fig. 7.

Apparently, the independent model significantly underes-

timates the error range and reserve demands. And the

measurements are slightly right-skewed due to the asym-

metry spatial dependent structure, which is reflected in the

Pair-Copula model but not in the Gaussian model. The

goodness-of-fit indices are listed in Table 3, and Pair-

Copula model is still better than the Gaussian model for

both evaluated indices.

Furthermore, it should be highlighted that the asym-

metry distribution would result in different requirements on

reserves. Suppose the upward and downward reserves

providing for the wind power uncertainty are 0.2 p.u. In

this case, when negative error exceeds upward reserve,

load shedding will occur. Similarly, if the positive error is

greater than the downward reserve, the surplus wind power

must be curtailed, as shown in Fig. 8. Table 4 lists the load

shedding and wind curtailing probabilities. The wind cur-

tailing probability is clearly larger than the load shedding

probability due to the asymmetry distribution. The proba-

bilities of the Pair-Copula model are the closest to the

measured data, while the Gaussian model overestimates the

load shedding probability, which will significantly increase

Fig. 6 Estimated result of Pair-Copula spatial model
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the operation costs to maintain the required reliability

level.

4.3 Feasibility evaluation of model

More comparisons for different wind farms are carried

out to test the feasibility of the proposed method. Figure 9

draws the CvM and KS index of Pair-Copula model and

Gaussian temporal model for 17 wind farms in Vermont,

where the box shows the median, 25% and 75% percentiles

of the indices, while the whiskers are the extreme indices.

The Pair-Copula model has generally lower indices than

Gaussian model for different wind farms.

Figure 10 shows the goodness-of-fit indices of spatial

models in different aggregated scale. Each column repre-

sents the index range of 60 wind farm clusters with the

specified scale, which are randomly selected from the

regional wind plants in Vermont. For both compared

Table 2 Goodness-of-fit indices of three temporal models

Index Pair-Copula

model

Gaussian

model

Independent

model

CvM index 0.0059 0.0100 0.0626

KS index 0.0153 0.0191 0.1095

Fig. 7 Probability density frequency of ESS energy of measurements

and three estimated models

Table 3 Goodness-of-fit indices of three spatial models

Index Pair-Copula

model

Gaussian

model

Independent

model

CvM index 0.0119 0.0123 0.0769

KS index 0.0376 0.0478 0.2351

Fig. 8 Probability density frequency of aggregated forecast error of

measurements and three estimated models

Table 4 Load shedding and wind curtailing probabilities

Probability Measured

data (%)

Pair-

Copula

model

(%)

Gaussian

model

(%)

Independent

model (%)

Load shedding

probability

2.79 2.44 4.45 0

Wind curtailing

probability

5.36 5.69 4.64 0.01

Fig. 9 Temporal goodness-of-fit indices for different wind farms

Fig. 10 Spatial goodness-of-fit indices for different scales of wind

farm
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models, the goodness-of-fit index worsens as the model

dimension increases. The Pair-Copula model yields greater

accuracy for all dimensions, and the improvement is more

evident than that of the temporal case. It can be concluded

that the Pair-Copula model is flexible in different depen-

dent relationships, and the superiority is more prominent

for nonlinear and asymmetric structures when compared to

the traditional Gaussian model.

5 Conclusion

Because of the highly variable forecast errors of wind

power generation, a thorough uncertainty model describing

both the predictive distribution and dependent structure of

forecast errors is essential. In this paper, a Pair-Copula

modelling approach has been proposed to construct joint

distribution and generate scenarios that mimic wind power

stochastic behaviours. The feasibility of the Pair-Copula

approach for wind power temporal and spatial dependence

is verified, and the advantages of the Pair-Copula are noted.

First, owing to the basic of conditional dependence, the

Pair-Copula model can reflect the essential relationships

between random variables, which the other multivariate

models fail to reveal, e.g., the one-order Markov charac-

teristic of the temporal model. Furthermore, the Pair-

Copula approach is more adaptive and practical in various

applications, as it allows the combination of different types

of Copulas and thus yields the best-fitted model. In the

illustrated example, the symmetrical Student t function is

selected for the temporal model, while the asymmetrical

Gumbel Copula is chosen for the spatial model.

Based on the developed models, the effects of the tem-

poral and spatial dependence of wind power forecasting

errors on power system operations are analysed. For the

temporal model, the tail dependence indicates that large

prediction errors have stronger correlations, resulting in a

fat-tail distribution of the ESS energy. Thus, a large ESS

capacity is required to balance the prediction errors. For the

spatial model, the upper tail makes the probability of excess

generation higher than that of deficits, causing different

demands for upward and downward reserves. Furthermore,

goodness-of-fit indices of different models are calculated

and comparison results show that Pair-Copula model gives

greater accuracy in various application scenes.

The main contribution of this paper is to significantly

advance the uncertainty model of wind power and to pro-

vide a systematic procedure for modelling and generating

wind power scenarios, which can then be applied to a range

of wind power integration problems. Although only wind

power uncertainty modelling is discussed in this paper, the

Pair-Copula approach provides a powerful tool for con-

structing flexible multivariate distributions that it can also

be applied to a wide range of statistical analyses and

stochastic decision fields of power systems.
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