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Abstract

Background: Recognizing the correct structural fold among known template protein structures for a target protein
(i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem
can be defined as a binary classification problem of predicting whether or not the unknown fold of a target
protein is similar to an already known template protein structure in a library, machine learning methods have been
effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the
most powerful and scalable machine learning classification methods - to recognize protein folds.

Results: RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to
make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl’s
benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with
17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best
performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard
superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the
correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the
top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3%
at family, superfamily, and fold levels.

Conclusions: The good performance achieved by the RF-Fold demonstrates the random forest’s effectiveness for
protein fold recognition.

Background
Proteins are the fundamental functional units in living
systems. Protein tertiary (three-dimensional) structures
at the molecular level are necessary to understand the
functions of proteins. However, due to the significant
cost of experimentally determining the tertiary struc-
tures of proteins, the number of known 3D protein
structures is about 200 times smaller than the number
of known protein sequences [1,2]. Therefore, it is impor-
tant to develop computational methods to predict pro-
tein structures from protein sequences [3]. Recognizing
a known structure that is similar to the unknown struc-
ture (i.e. fold recognition) is an important step of the

template-based protein structure modeling approach
that uses the known structure as a template to construct
a structural model for the target protein [4,5].
Since the number of unique protein structures appears

to be limited (e.g., several thousand) according to the
structural analysis on all the tertiary protein structures in
the Protein Data Bank (PDB) [6], it is possible to identify
one correct template structure (fold) for a large portion
of target proteins. This is particularly the case if a target
protein has a significant sequence identity with one of
template proteins with a known tertiary structure. Fold
recognition becomes very challenging when the sequence
identity of the target protein and template proteins is
low, i.e., in the twilight zone. Numerous research endea-
vors have been devoted to developing sensitive methods
to improve fold recognition in the twilight zone. Machine
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learning methods have been used to tackle the problem
effectively by casting the fold recognition as a binary clas-
sification problem to decide whether or not a target pro-
tein shares the same structural fold with a template
protein in a protein structure library [6-8].
Given a number of features describing the pairwise

similarity between two proteins (e.g., a target protein and
a template protein), the objective of the classification is
to predict if the two proteins share a similar tertiary
structure (fold). The problem can often be divided into
three difficulty levels that range from the easiest family
level (i.e. two protein belonging to the same family), to
the superfamily level, and to the hardest fold level. This
roughly corresponds to the decrease in sequence identity
between two proteins. Proteins sharing similar structures
have a relatively high sequence similarity if they are in
the same family, moderate or little sequence similarity if
in the same superfamily, and almost no sequence similar-
ity if in the same fold.
Random forest is one of the most powerful machine

learning methods known for its good interpretability and
its efficiency in handling very large training datasets [9].
Random forest grows a large number of decision trees
based on a subset of randomly selected features and a frac-
tion of randomly selected training data points. All the
trained trees are applied to a new data point to make pre-
diction. The majority vote of the ensemble of trained deci-
sion trees is used as the final prediction for the data point.
The average decision based on a large number of decision
trees makes random forest robust against noisy data, irre-
levant features, and unbalanced class distribution. Random
forest has delivered an excellent performance in broad
classification tasks that compares favorably with other
ensemble classifiers such as Adaboost [10], and its perfor-
mance is generally comparable to other state-of-the-art
classifiers such as Support Vector Machine (SVM) as well
[11]. Random forest has been used extensively in a wide
variety of domains [12-14] including protein fold classifi-
cation [15-17], which is related to, but different than pro-
tein fold recognition. The fold recognition problem
addressed in this paper is to recognize proteins that have
similar tertiary structures to target proteins, while the pro-
tein classification [15,16], and [17] is to classify a single
protein sequence into a number of structural folds. On
contrary, we applied random forest to classify if a pair of
proteins (one target protein and one template protein)
shares the same structure. The classification scores are
then used to rank template proteins based on their struc-
tural relevance (i.e. the classification score) with a target
protein. Many methods have been developed to improve
the accuracy of recognizing structurally similar folds when
there is little sequence similarity between a target and a
template protein, such as PSI-BLAST [18], HMMER [19],
SAM-T98 [20], SSHMM [21],THREADER [22], FUGUE

[23], SPARKS [24], SP3 [25], HHpred [26], FOLDpro [5],
SP4 [27], SP5 [28], RAPTOR [29], SPARKS-X [30], and
BoostThreader [31].
In this work, we applied the random forest method (i.e.

RF-Fold) to address the fold recognition problem and
evaluated its performance on the standard Lindahl’s data-
set [32], on which many previously established methods
had been benchmarked. In comparison with 17 existing
methods, RF-Fold’s performance was comparable to that
of the state-of-the art methods, demonstrating the effec-
tiveness of the random forest method in protein fold
recognition.

Methods
Random forest method for protein fold recognition
The decision tree method for classification had been
widely used in many domains due to its simplicity and
good interpretability after Leo Breiman et al. introduced it
in 1984 [33]. However, the accuracy of a single decision
tree is often lower than more advanced classification
methods such as support vector machines or neural net-
works, which limits its application in accuracy-critical
domains. The more recent development of the decision
tree methodology found that using an ensemble of deci-
sion trees constructed from randomly selected features
and training data not only often yielded significantly
higher accuracy than a single decision [34,35], but also
often surpassed the accuracy of other most advanced
machine learning methods. This new approach is called
random forest. Random forest is a meta-learning algo-
rithm for classification, which consists of a bag of sepa-
rately trained decision trees. Therefore, it inherits the
advantages of decision tree methods such as easy training,
fast prediction, and good interpretability. Because random
forest selects a random subset of input features to con-
struct each decision tree, the average prediction of a suffi-
cient number of decision trees is robust against the
existence of irrelevant features, which partially contributes
to its good accuracy. Furthermore, the random selection
of a subset of training data to train each tree also leads to
an ensemble of decision trees that are resistant to noise
and disproportional class distribution in the training data.
In our study, each decision tree in the random forest

was trained to predict if two proteins share a similar
structural fold or not from a list of input features describ-
ing similarity between the two proteins (see Section 2.2
for the description of the training data and features). A
number of features used to construct each decision tree
were randomly selected from the total 84 features. The
random forest method was implemented by using the
randomForest R package [37]. The decision trees were
trained by the standard decision tree training algorithm
that maximized the information gain in selecting a fea-
ture to partition the training data. After training, each
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tree (T) was able to predict the probability of each class
(1: in the same fold or 0: not in the same fold) given an
input feature vector representing a protein pair (a target
protein and a template protein). The average probability
predicted by these trees was calculated and the class with
higher predicted probability was the prediction. Figure 1
illustrates how the random forest makes a prediction.
The trained random forest is used to predict if a target
protein has the similar fold with each template protein in
the test data set through cross-validation. The top one or
five templates with the higher predicted probability to
share a fold with the target protein were obtained for
evaluation.

Data set and features
We trained and tested RF-Fold on the FOLDpro dataset
[5]. The FOLDpro dataset used the proteins in Lindahl’s
benchmark dataset [32] derived from the SCOP [7] data-
base (version 1.39). The Lindahl’s dataset includes 976
proteins, among which 555 proteins have at least one posi-
tive match with other proteins at the family level, 434 pro-
teins at the super family level, and 321 proteins at the fold
level. The pairwise sequence identity of any pair in the
dataset is <= 40%. In the FOLDpro dataset, 84 features
were extracted for each of all 976 × 975 distinct protein
pairs in order to classify if a pair of proteins (one target /

query protein and one template protein) share the same
structure at the family, superfamily, or fold level. The fea-
tures were extracted using existing, general-purpose align-
ment tools as well as protein structure prediction
programs in five categories, including sequence/family
information, sequence-sequence alignment, sequence-pro-
file alignment, profile-profile alignment, and structural
information. For the features of sequence/family informa-
tion, the compositions of a single amino acid (monomer)
and an ordered pair of amino acid (dimer) were com-
puted and transformed into similarity scores using the
cosine, correlation, and Gaussian kernel functions. For
sequence-sequence alignment features, PALIGN [38]
and CLUSTALW [39] were used to extract pairwise fea-
tures associated with sequence alignment scores of a
pair of proteins. For sequence-profile alignment fea-
tures, PSI-BLAST, HMMER-hhmsearch [40] and
IMPALA [41] were used to extract profile-sequence
alignment features between the target profile and the
template sequence. For profile-profile alignment fea-
tures, five profile-profile alignment tools CLUSTALW,
COACH of LOBSTER [42], COMPASS [43], HHSearch
[44] and PRC (Profile Compiled, http://supfam.org/
PRC) were used to align target and template profiles to
obtain profile-profile alignment scores. For structural
features, based on the global profile-profile alignments

Figure 1 A random forest to classify if two proteins share the same fold. The random forest is comprised of T decision trees. Each tree
predicts the probability of class c conditioned on an input feature vector (v) representing the similarity between two proteins. Class c is either 0
(not in the same fold) or 1 (in the same fold). The average probability of all the trees is calculated as P(c|v). The class c with the higher value is
the predicted class for the input feature vector.

Jo and Cheng BMC Bioinformatics 2014, 15(Suppl 11):S14
http://www.biomedcentral.com/1471-2105/15/S11/S14

Page 3 of 7

http://supfam.org/PRC
http://supfam.org/PRC


obtained with LOBSTER, structural features of query
proteins predicted using the SCRATCH suite [45-49]
were compared with that of template proteins to obtain
structural compatibility scores.
The small portion of pairs belonging to the same pro-

tein family, superfamily, or fold was labelled as positive
examples because they shared the same structural folds.
The vast majority of protein pairs that did not have
structural similarities were labelled as negative examples.

Training and benchmarking
We divided all protein pairs into 10 equal-size subsets for
10-fold cross validation purposes. We put all the target-
template pairs associated with the same target protein
into the same subset. Nine subsets were used for training
and the remaining subset was used for validation. We
removed all the pairs in the training dataset that used tar-
gets in the test dataset as templates. This procedure was
repeated 10 times and the sensitivity and specificity of
fold recognition were computed across the 10 trials. We
also compared RF-Fold with 17 other methods by fold
recognition rates for top-one ranked templates and for
top-five ranked templates as in [5,32]. Using the same
evaluation procedure as in [5,29-32], we calculated the
sensitivity by taking as predictions the top-one or the
top-five template proteins ranked for each target protein
by classification scores. Here the sensitivity was defined
by the percentage of target proteins (with at least one
possible hit) having at least one correct template ranked
1st, or within the top 5 [5,32].

Results
Comparison of random forest with a single decision tree
We compared the random forest consisting of 500 deci-
sion trees to a single decision tree in terms of the error
rate (i.e. percent of incorrectly classified protein pairs).
The error rate of the random forest classification was
0.566%, which was lower than 1.135% of a single tree
(Table 1). It is worth noting that the error rate is very
low because the dataset with only a small fraction of
positive examples is highly imbalanced.

Effects of data imbalance on random forest
It is difficult to train a classifier on a highly imbalanced
dataset in which one or more classes are extremely
under-represented. The significant drawback of using
training data with the imbalanced distribution of classes

has been reported in [36]. The FOLDpro dataset is a
very imbalanced dataset, which has 7,438 positive exam-
ples versus 944,162 negative examples. The ratio
between the majority class and the minority class is
128:1. Training on such a dataset is difficult for most
machine learning methods in general.
In order to assess how well the random forest approach

handled imbalanced data, we trained the random forest
classifier on 5 datasets, which had a ratio of negatives to
positives of 128:1, 100:1, 75:1, 50:1, and 25:1. Table 2
shows how the numbers of correctly selected templates
were at the family, superfamily, or fold level change with
respect to the ratios in the10-fold cross validation. Except
for the case with a 1:1 ratio, it appeared that the perfor-
mance of random forest method was steady with different
ratios of negative and positive examples.

Effect of the number of features
The number of features used for training affects the per-
formance of machine learning methods. We evaluated
how the performance of the random forest changed with
respect to the number of features used in training, which
ranged from 1 to 84. Figure 2 shows the plots of the sensi-
tivity of fold recognition of RF-Fold against the number of
features at the family, super family, and fold levels for both
top-one ranked templates and top-five ranked templates.
The sensitivity for top-one (resp. top-five) ranked tem-
plates is defined as the percentage of target proteins hav-
ing at least one correct template ranked no. 1 (resp. within
the top-5) [32] by RF-Fold. The results showed that the
performance of the random forest improved or stabilized
as more features were used in training. However, it
appeared to plateau out after 21 features at the family
level, and after 41 features at the superfamily and fold
level.

Comparing RF-Fold with existing fold recognition
methods
Table 3 shows the sensitivity of 18 fold recognition
methods including RF-Fold at the family, superfamily,

Table 1 Error rate of the random forest and a single
decision tree on fold recognition dataset

Method Error rate (%)

Random forest 0.566

Single decision tree 1.135

Table 2 The number of correctly predicted template folds
by random forest at the family level, superfamily level,
and fold level under various ratios of negatives and
positive training examples

Ratio Family Superfamily Fold

Top1 Top5 Top1 Top5 Top1 Top5

128:1 (Original) 469 508 275 344 131 187

100:1 457 505 271 335 119 183

75:1 466 503 273 330 118 181

50:1 459 504 276 329 120 174

25:1 452 504 270 324 114 181

1:1 190 287 81 157 49 107
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and fold levels, for the top-one and top-five predictions
respectively. The sensitivity for top-one predictions
(resp. for top-5 predictions) is defined as the percentage
of target proteins having at least one correct template
ranked by a method at top-one (resp. within top-five).
The last two rows in this table show that RF-Fold per-
formed better than FOLDpro [5] in all but one case in
top-one at the family level, where the success rate of
FOLDpro(85.0%) was similar to the RF-Fold(84.5%). At
the superfamily level, the sensitivity of RF-Fold for the

top-one or top-five predictions is 63.4% and 79.3%,
about 9% higher than FOLDpro. RF-Fold had the largest
improvement in top-one at the fold level, where its
accuracy was 14.3% higher than FOLDPro’s. The sensi-
tivity of RF-Fold for the top-five predictions was 58.3%,
which was 10% higher than FOLDpro.
RF-Fold performed better than most of methods in

Table 3 and comparably to RAPTOR, SPARKS-X, and
BoostThreader. Compared with RAPTOR, in most situa-
tions, RF-Fold shows some improvement of accuracy,
while it performed worse than Raptor at top-1 family
level and top-5 fold level. Compared with SPARKS-X,
RF-Fold was less accurate at the fold level, but more
accurate at the other two levels. Compared with Boost-
Threader, RF-Fold was less accurate in top-one at three
levels, but more accurate in top-five at all three levels.

Availability of RF-Fold software and source code
In order to facilitate the reuse and implementation of RF-
Fold method, the online web service for fold recognition,
the source code of the programs of random forest learning
and classification, the scripts of generating pairwise fea-
tures for a pair of proteins, the scripts of evaluating the
fold recognition results, and the training and test datasets
are released at http://calla.rnet.missouri.edu/rf-fold/. The
readme .txt file describes how to train and test the random
forest method for fold recognition (RF_learn and RF_clas-
sify programs), how to evaluate the performance on the
benchmark data set (Calculate-lindahl-Top1-Top5.sh), the
datasets used to do cross-validation, and the scripts used
to generate 84 pairwise features for a pair of proteins (32
Perl scripts in scripts_feature_generation sub-directory).
Based on the document and programs, any user can create
his/her own training and test datasets and train / test his/
her own random forest classifier for protein fold recogni-
tion from scratch. The software, source code and data are

Figure 2 The fold recognition sensitivities of the random forest with respect to different numbers of input features; Y-axis denotes
the sensitivity and X-axis the number of features.

Table 3 The sensitivity of 18 methods on the Lindahl’s
dataset

Method Family Superfamily Fold

Top1 Top5 Top1 Top5 Top1 Top5

PSI-Blast 71.2 72.3 27.4 27.9 4 4.7

HMMER 67.7 73.5 20.7 31.3 4.4 14.6

SAM-T98 70.1 75.4 28.3 38.9 3.4 18.7

BLASTLINK 74.6 78.9 29.3 40.6 6.9 16.5

SSERCH 68.6 75.5 20.7 32.5 5.6 15.6

SSHMM 63.1 71.7 18.4 31.6 6.9 24

THREADER 49.2 58.9 10.8 24.7 14.6 37.7

Fugue 82.2 85.8 41.9 53.2 12.5 26.8

SPARKS 81.6 88.1 52.5 69.1 28.7 47.7

SP3 81.6 86.8 55.3 67.7 30.8 47.4

HHpred 82.9 87.1 58 70 25.2 39.4

SP4 80.9 86.3 57.8 57.8 30.8 53.6

SP5 82.4 87.6 59.8 70 37.9 58.7

RAPTOR 86.6 89.3 56.3 69 38.2 58.7

SPARKS-X 84.1 90.3 59.0 76.3 45.2 67.0

BoostThreader 86.5 90.5 66.1 76.4 42.6 57.4

FOLDpro 85 89.9 55 70 26.5 48.3

RF-fold 84.5 91.5 63.4 79.3 40.8 58.3

The bold font denotes the highest sensitivity in their respective categories of
prediction. The results of other methods are taken from [5,28,29]
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released under the GNU General Public License. Anyone
can freely reuse the software and source code for any pur-
pose (e.g., protein fold recognition, homology detection,
and protein tertiary structure prediction). Any technical
problems may be addressed to the email box of the corre-
sponding authors. Based on users’ feedback, additional
documents, utility programs, test examples, and data will
be added in order to facilitate the development of random
forest methods for protein fold recognition.

Conclusions
In this study, we developed a random forest method (RF-
Fold) to recognize protein folds. The method was system-
atically validated by varying the input features and the
class distribution of training datasets on a standard fold
recognition dataset. The random forest consisting of
500 decision trees yielded a low error rate than a single
decision tree on a highly imbalanced dataset. The ran-
dom forest also delivered a good, steady performance
regardless of the different ratios of negative and positive
examples. Compared with 17 other different fold recogni-
tion methods, the performance of the RF-Fold is gener-
ally comparable to the best performance. The results
achieved by the RF-Fold demonstrated the effectiveness
of using the random forest algorithm in protein fold
recognition. In the future, we plan to further evaluate the
performance of RF-Fold on a standard protein homology
detection dataset [50], independent CASP datasets [51],
and to build a protein tertiary structure prediction web
server based on RF-Fold for the community to use.
Furthermore, the sensitivity of RF-Fold for the hardest
fold recognition problem at the fold level is still relatively
low (e.g. 40.8% for top-one predictions and 58.3% for
top-five predictions), which is one of the major bottle-
necks of template-based protein structure modeling. We
will incorporate more informative features into RF-Fold
to address this problem in the future.
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