
Alzaatreh et al. Journal of Statistical Distributions and Applications 2014, 1:16
http://www.jsdajournal.com/content/1/1/16

RESEARCH Open Access

T-normal family of distributions: a new
approach to generalize the normal distribution
Ayman Alzaatreh1*†, Carl Lee2† and Felix Famoye2†

*Correspondence:
alzaatreha@apsu.edu
†Equal contributors
1Department of Mathematics and
Statistics, Austin Peay State
University, Clarksville, TN 37044, USA
Full list of author information is
available at the end of the article

Abstract

The idea of generating skewed distributions from normal has been of great interest
among researchers for decades. This paper proposes four families of generalized
normal distributions using the T -X framework. These four families of distributions are
named as T -normal families arising from the quantile functions of (i) standard
exponential, (ii) standard log-logistic, (iii) standard logistic and (iv) standard extreme
value distributions. Some general properties including moments, mean deviations and
Shannon entropy of the T -normal family are studied. Four new generalized normal
distributions are developed using the T -normal method. Some properties of these four
generalized normal distributions are studied in detail. The shapes of the proposed
T -normal distributions can be symmetric, skewed to the right, skewed to the left, or
bimodal. Two data sets, one skewed unimodal and the other bimodal, are fitted by
using the generalized T -normal distributions.
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1 Introduction
The normal distribution is perhaps the most commonly used probability distribution in
both statistical theory and applications. The normal distribution was first used by de
Moivre (1733) in the literature as an approximation to the binomial distribution. However,
the development of the normal distribution by Gauss (1809, 1816) became the standard
used in the modern statistics. Hence, the normal distribution is also commonly known
as the Gaussian distribution. Properties of the normal distribution have been well devel-
oped (e.g., see Johnson et al. 1994; Patel and Read 1996). The distribution also plays an
important role in generating new distributions.
Methods for developing generalized normal distributions seemed very limited until

Azzalini (1985). A random variable Xλ is said to follow the skewed normal distribution
SN(λ) if the probability density function (PDF) of Xλ is g(x|λ) = 2φ(x)�(λx), where φ(x)
and �(x) are N(0, 1) PDF and cumulative distribution function (CDF) respectively. Vari-
ous extensions of SN(λ) have been proposed and studied (e.g., Arellano-Valle et al. 2004;
Arnold and Beaver 2002; Arnold et al. 2007; Choudhury and Abdul 2011; Balakrishnan
2002; Gupta and Gupta 2004; Sharafi and Behboodian 2008; Yadegari et al. 2008). For
reviews on skewed normal and its generalization, one may refer to Kotz and Vicari (2005)
and Lee et al. (2013). Pourahmadi (2007) showed that the skewed normal distribution
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SN(λ) approaches half-normal as λ → ∞. This explains why skewed normal distribution
is limited in fitting real data. In order to allow for fitting diverse magnitudes of skewness,
various works have been done by introducing different methods to capture the magnitude
of the skewness.

Fernández and Steel (1998) introduced a two-piece PDF as g(x) =
{

cf (αx), x ≥ 0,

cf (x/α), x < 0.
,

c > 0 and α > 0, where f is a symmetric PDF defined on �, which is unimodal and
symmetric around 0. When f is normal, it is a generalized skewed normal. Kotz and
Vicari (2005) suggested that α and 1/α be replaced by α1 and α2 respectively, in order to
have more flexibility of controlling skewness. Another general framework that introduces
a skew mechanism to symmetric distributions was given by Ferreira and Steel (2006).
The corresponding skew family is g(x| f , q) = f (x)q[F(x)] , x ∈ �. The PDF g(x| f , q)
is a weighted version of f (x), with the weight function given by q[F(x)]. If q follows the
uniform distribution, then, g = f . When f is normal, this is a general framework for
developing skewed normal distributions.
Eugene et al. (2002) introduced the beta-generated family of distributions with CDF

G(x) =
∫ F(x)

0
b(t)dt, (1.1)

where b(t) is the PDF of the beta random variable and F(x) is the CDF of any random
variable. The corresponding PDF to (1.1) is given by

g(x) = 1
B(α, β)

f (x)Fα−1(x)(1 − F(x))β−1, α, β > 0. (1.2)

If F is �, the CDF of the normal distribution, equation (1.2) defines the beta-normal
distribution. If α and β are integers, (1.2) is the αth order statistic of the random sample
of size (α + β − 1).
The beta-normal distribution can be unimodal or bimodal and it has been applied to fit

a variety of real data including bimodal cases (Famoye et al. 2004). The main distinction
between the method of skewed normal and the beta-generated normal is that the skewed
normal method introduces a skewing mechanism into the normal distribution to gener-
ate skewed normal family. The skewness of the distribution is estimated by the skewing
parameter. On the other hand, the beta-normal distribution is generated by adding more
parameters using beta distribution as the generator. Thus, the skewness is not directly
defined by a specific parameter; rather it is the combination of all shape parameters that
play the role of measuring skewness. For detailed review about the methods for gener-
ating continuous distributions, including the normal distribution, one may refer to Lee
et al. (2013).
Alzaatreh et al. (2013) extended the beta generated family and defined the T-X(W )

family. The CDF of the T-X(W ) distribution is G(x) = ∫W (F(x))
a r(t)dt, where r(t) is

the PDF of the random variable T with support (a, b) for −∞ ≤ a < b ≤ ∞. The
function W (F(x)) is monotonic and absolutely continuous. Aljarrah et al. (2014) took
W (F(x)) to be the quantile function of a random variable Y and defined the T-X{Y }
family as

G(x) =
∫ QY (F(x))

a
r(t)dt = R(QY (F(x)), (1.3)
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where QY (p) is the quantile function of the random variable Y . In (1.1), X is used as a
random variable having CDF F(x) and then as a random variable having CDF G(x) which
may be confusing. This article first gives a unified notation to re-define the T-X{Y } as
T-R{Y } and proposes several different generalizations of the normal distribution using
the T-R{Y } framework.
Section 2 gives the unified definition of T-R{Y } family and defines several new

generalized normal families. Section 3 gives some general properties of the pro-
posed generalized normal families. Section 4 defines some new generalized normal
distributions and studies some of their properties. Section 5 provides some appli-
cations to numerical data sets and the paper ends with a short summary and
conclusions.

2 T-normal families of distributions
Let T , R and Y be random variables with CDF FT (x) = P(T ≤ x), FR(x) = P(R ≤ x) and
FY (x) = P(Y ≤ x). The corresponding quantile functions are QT (p), QR(p) and QY (p),
where the quantile function is defined as QZ(p) = inf{z : FZ(z) ≥ p}, 0 < p < 1. If den-
sities exist, we denote them by fT (x), fR(x) and fY (x). Now assume the random variable
T ∈ (a, b) and Y ∈ (c, d), for −∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞. Following the
technique proposed by Aljarrah et al. (2014), the CDF of the random variable X is defined
as

FX(x) =
∫ QY (FR(x))

a
fT (t)dt = P [T ≤ QY (FR(x))] = FT (QY (FR(x))). (2.1)

Note that (2.1) is an alternative expression to (1.3) without using X in two different sit-
uations. Hereafter, the family of distributions in (2.1) will be called the T-R{Y } family of
distributions.

Remark 1. If X follows the distribution in (2.1), it is easy to see that

(i) X d=QR(FY (T)),
(ii) QX(p) = QR(FY (QT (p))),
(iii) If T d=Y then X d=R and
(iv) If Y d=R then X d=T .

The corresponding PDF associated with (2.1) is

fX(x) = fT (QY (FR(x))) × Q′
Y (FR(x)) × fR(x), (2.2)

where Q′
Y (FR) = d

dFR QY (FR). Using the fact that QY (FY (x)) = x, it follows that
Q′

Y (FY (x)) × fY (x) = 1 so that Q′
Y (p) = 1/fY (QY (p)). By taking p = FR(x), (2.2) reduces

to

fX(x) = fR(x) × fT (QY (FR(x)))
fY (QY (FR(x)))

. (2.3)
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From (2.1) and (2.3), the hazard function of the random variable X can be written as

hX(x) = fX(x)
1 − FX(x)

= fR(x)
1 − FR(x)

× 1 − FY (QY (FR(x)))
fY (QY (FR(x)))

× fT (QY (FR(x)))
1 − FT (QY (FR(x)))

= hR(x) × hT (QY (FR(x)))
hY (QY (FR(x)))

. (2.4)

One can see from (2.3) and (2.4) that

fX(x)
fR(x)

= fT (QY (FR(x)))
fY (QY (FR(x)))

and
hX(x)
hR(x)

= hT (QY (FR(x)))
hY (QY (FR(x)))

.

Some general properties of the T-R{Y } family were recently studied in the literature,
for more details see Aljarrah et al. (2014). Equivalent expressions to (2.2) - (2.4) are
given in Aljarrah et al. (2014) by using the T-X{Y } notation. Table 1 gives some distri-
butions of the T-R{Y } families based on quantile functions of some standard forms of
distribution and some commonly used random variables T . The explicit expression of a
T-R{Y } family can be obtained using (2.3) for different combinations of random variables
T , R, and Y .
Several extensions from Table 1 can be made. First, one can use the quantile function

of non-standard distributions, such as non-standard exponential, log-logistic, logistic,
extreme value, andWeibull. For example, the quantile function of log-logistic is QY (p) =
α(p/(1 − p))1/β , α, β > 0. By using this QY function, two additional parameters cor-
responding to the log-logistic distribution may be added to the T-R{log-logistic} family.
Aljarrah et al. (2014) gave a more detailed list of T-R{Y } distributions based on quantile
functions of non-standard distributions. Secondly, one can introduce exponentiated and
scale parameters by replacing FT (x) by Fδ

T (αx), α, δ > 0 as well as for FR(x).
If R is a normal random variable with PDF fR(x) = φ(x) and CDF FR(x) = �(x), then

(2.1) gives the T-normal{Y } family of distributions as

FX(x) =
∫ QY (�(x))

a
fT (t)dt = FT (QY (�(x))). (2.5)

The corresponding PDF associated with (2.5) is

fX(x) = fT (QY (�(x))) × Q′
Y (�(x)) × φ(x) = φ(x) × fT (QY (�(x)))

fY (QY (�(x)))
. (2.6)

Table 1 Families of T-R{Y} distributions based on different choices for the random
variables Y∗ and T

Y QY(p) T FT (x) or fT (x)

(a) Uniform p (1) Exponentiated-Exponential FT (x) = (1 − e−λx)
α

(b) Exponential − log(1 − p) (2) Weibull FT (x) = 1 − e−(x/γ )c

(c) Log-logistic p/(1 − p) (3) Logistic FT (x) = 1 − (1 + e−λx)
−1

(d) Logistic log(p/(1 − p)) (4) Log-logistic FT (x) = 1 − [ 1 + (x/α)β ]
−1

(e) Extreme value log(− log(1 − p)) (5) Pareto FT (x) = 1 − (α/x)β

(6) Cauchy fT (x) = {πβ(1 + [ (x − α)/β]2)}−1

(7) Pascal fT (x) = 0.5λe−λ|x|

(8) Gamma fT (x) = xα−1e−x/β/[βα
(α)]

*standard random variable Y.
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The hazard function of the T-normal{Y } family is given by hX(x) = hφ(x) × hT (QY (�(x)))
hY (QY (�(x))) ,

where hφ(x) = φ(x)/(1 − �(x)).
The T-normal{Y } family is a general framework for generating many different gener-

alizations of the normal distribution. Various existing generalizations of normal distribu-
tions can be obtained based on this framework. The beta normal (Eugene et al. 2002),
Kumaraswamy normal (Cordeiro and de Castro 2011), and generalized beta-generated
normal (Alexander et al. 2012) belong to the T-normal{standard uniform} families.
The gamma-normal distribution studied by Alzaatreh, et al. (2014) is a member of
T-normal{standard exponential} family. For distribution “parsimony”, we will focus on
the quantile functions of standard distributions in order to limit the number of param-
eters. Generalizations from using non-standard quantile functions or adding exponenti-
ated and/or scale parameters can be derived in a straightforwardmanner. In the following,
we define the families of generalized normal (GN) distributions, T-normal{Y }, using the
standard quantile functions (b)-(e) defined in Table 1.

2.1 Family of GN distributions from the quantile function of exponential distribution

(T-N{exponential})

By using the quantile function (b) in Table 1: QY (�(x)) = − log(1 − �(x)), the
corresponding CDF to (2.5) is

FX(x) = FT
{− log(1 − �(x))

} = FT
(
Hφ(x)

)
, (2.7)

and the corresponding PDF is

fX(x) = φ(x)
1 − �(x)

fT
(− log (1 − �(x))

) = hφ(x)fT
(
Hφ(x)

)
, (2.8)

where hφ(x) andHφ(x) = − log[1−�(x)] are the hazard and cumulative hazard functions
for the normal distribution, respectively. Thus, this family of GN distributions is denoted
as T-N{exponential}, which arises from the “hazard function of the normal distribution”.

2.2 Family of GN distributions from the quantile function of log-logistic distribution

(T-N{log-logistic})

By using the quantile function (c) in Table 1: QY (�(x)) = �(x)/(1 − �(x)), the
corresponding CDF to (2.5) is

FX(x) = FT {�(x)/(1 − �(x))} , (2.9)

and the corresponding PDF is

fX(x) = φ(x)
(1 − �(x))2

fT
(

�(x)
1 − �(x)

)
. (2.10)

The family of GN distributions in (2.9) is denoted as T-N{log-logistic}, which arises from
the “odds of the normal distribution”.

2.3 Family of GN distributions from the quantile function of logistic distribution

(T-N{logistic})

By using the quantile function (d) in Table 1: QY (�(x)) = log(�(x)/(1 − �(x))), the
corresponding CDF to (2.5) is

FX(x) = FT
{
log[�(x)/(1 − �(x))]

}
, (2.11)
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and the corresponding PDF is

fX(x) = φ(x)
�(x)(1 − �(x))

fT
(
log {�(x)/(1 − �(x))}) = hφ(x)

�(x)
fT
(
log

{
�(x)

1 − �(x)

})
.

(2.12)

The family of GN distributions in (2.11) is denoted as T-N{logistic}, which arises from
the “logit function of the normal distribution”.

2.4 Family of GN distributions from the quantile function of extreme value distribution

(T-N{extreme value})

By using the quantile function (e) in Table 1: QY (�(x)) = log(− log(1 − �(x)), the
corresponding CDF to (2.5) is

FX(x) = FT
{
log[− log(1 − �(x))]

}
, (2.13)

and the corresponding PDF is

fX(x) = φ(x)
−(1 − �(x)) log(1 − �(x))

fT
{
log

(− log(1 − �(x)
)} = hφ(x)

Hφ(x)
fT (log(Hφ(x)).

(2.14)

The family of GN distributions in (2.13) is denoted as T-N{extreme value}, which arises
from the “extreme value function of the normal distribution”.

3 Some properties of the T-normal family of distributions
In this section, some of the general properties of the T-normal family will be discussed.

Lemma 1 (Transformation). For any random variable T with PDF fT (x), then the
random variable

(i) X = �−1(1 − e−T ) follows the distribution of T-N{exponential} family in (2.7).
(ii) X = �−1 (T/(1 + T)) follows the distribution of T-N{log-logistic} family in (2.9).
(iii) X = �−1 (eT/(1 + eT )

)
follows the distribution of T-N{logistic} family in (2.11).

(iv) X = �−1
(
1 − e−eT

)
follows the distribution of T-N{extreme value} family in

(2.13).

Proof. The result follows immediately from Remark 1(i).

Lemma 1 gives the relationships between the random variable X and the random vari-
able T . These relationships can be used to generate random samples from X by using T .
For example, one can simulate the random variable X which follows the distribution of
T-N{exponential} family in (2.7) by first simulating random variableT from the PDF fT (x)
and then computing X = �−1 (1 − e−T), which has the CDF FX(x).

Lemma 2. The quantile functions for the (i) T-N{exponential}, (ii) T-N{log-logistic},
(iii) T-N{logistic}, and (iv) T-N{extreme value} distributions, are respectively,

(i) QX( p) = �−1 {1 − e−QT ( p)},
(ii) QX( p) = �−1 {QT ( p)/ (1 + QT ( p))

}
,
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(iii) QX( p) = �−1 {eQT ( p)/
(
1 + eQT ( p))},

(iv) QX( p) = �−1
{
1 − e−eQT ( p)

}
.

Proof. The result follows directly from Remark 1(ii).

Theorem 1. The mode(s) of the T-N{Y } family are the solutions of the equation

x = μ + σ 2φ(x)
{
Q′′

Y (�(x))
Q′

Y (�(x))
+ f ′

T (QY (�(x)))
fT (QY (�(x)))

Q′
Y (�(x))

}
. (3.1)

Proof. One can show the result in (3.1) by setting the derivative of the equation (2.6) to
zero and then using the fact that φ′(x) = −σ−2(x − μ)φ(x).

Corollary 1. The mode(s) of the (i) T-N{exponential}, (ii) T-N{log-logistic},
(iii) T-N{logistic}, and (iv) T-N{extreme value} distributions, respectively, are the solu-
tions of the equations

(i) x = μ + σ 2hφ(x)
{
1 + f ′

T
(
Hφ(x)

)
fT

(
Hφ(x)

)
}
, (3.2)

(ii) x = μ + σ 2hφ(x)
{
2 + f ′

T (�(x)/(1 − �(x)))
(1 − �(x))fT (�(x)/(1 − �(x)))

}
,

(iii) x = μ + σ 2 hφ(x)
�(x)

{
f ′
T
(
log {�(x)/(1 − �(x))})

fT
(
log {�(x)/(1 − �(x))}) + 2�(x) − 1

}
,

(iv) x = μ + σ 2 hφ(x)
Hφ(x)

{
f ′
T {log(Hφ(x))}
fT {log(Hφ(x))} + Hφ(x) − 1

}
.

Note that the results in Theorem 1 do not imply that the mode is unique. It is possible
that there is more than one mode for some of these GN distributions. For example, the
logistic-N{logistic} distribution given in section 4 is a bimodal distribution. If T follows
the gamma distribution with parameters α and β , equation (3.2) can be simplified to

x = μ + σ 2hφ(x)
{
1 + f ′

T
(
Hφ(x)

)
fT

(
Hφ(x)

)
}

= μ + σ 2hφ(x)
[
(α − 1)/Hφ(x) − β−1 + 1

]
.

This agrees with the result obtained by Alzaatreh et al. (2014) for the gamma-normal
distribution.
The entropy of a random variable X is a measure of variation of uncertainty

(Rényi 1961). Shannon’s entropy for a random variable X with PDF g(x) is defined as
E
{− log

(
g(X)

)}
.

Theorem 2. The Shannon’s entropies for the T-N{Y } family is given by

ηX = ηT + E
(
log fY (T)

) + log(σ
√
2π) + 1

2σ 2 E(X − μ)2. (3.3)
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Proof. Since X d=QR(FY (T)), this implies that T d=QY (FR(X)). Hence, from (2.3) we have
fX(x) = fT (t)

fY (t) × fR(x). This implies

ηX = ηT + E
(
log fY (T)

) − E
(
log fR(X)

)
. (3.4)

For the T-N{Y } family we have fR(x) = φ(x), so

log(φ(x)) = − log(σ
√
2π) − [ (x − μ)/σ ]2/2. (3.5)

The result in (3.3) follows from (3.4) and (3.5).

Corollary 2. The Shannon’s entropies for the (i) T-N{exponential}, (ii) T-N{log-
logistic}, (iii) T-N{logistic}, and (iv) T-N{extreme value} distributions, respectively, are
given by

(i) ηX = log(σ
√
2π) − μT + ηT + E(X − μ)2/(2σ 2), (3.6)

(ii) ηX = log(σ
√
2π) − 2E(log(1 + T)) + ηT + E(X − μ)2/(2σ 2),

(iii) ηX = log(σ
√
2π) − 2E(log(1 + eT )) + μT + ηT + E(X − μ)2/(2σ 2),

(iv) ηX = log(σ
√
2π) − E(eT ) + μT + ηT + E(X − μ)2/(2σ 2).

Proof. The results in (i)-(iv) can be easily shown using (3.3) and the fact that
fY (T) = e−T , (1 + T)−2, eT (1 + eT )

−2 and eTe−eT for exponential, log-logistic, logistic
and extreme value, respectively.

Theorem 3. The rth non-central moments of the (i) T-N{exponential}, (ii) T-N{log-
logistic}, (iii) T-N{logistic}, and (iv) T-N{extreme value} distributions, respectively, can
be expressed as

(i) E(Xr) =
r∑

j=0

∞∑
k1,··· , kj=0

2sj+j∑
i=0

2j/2σ jμr−jA(k)
(
r
j

)(
2sj + j

i

)
(−2)iMT (−i), (3.7)

(ii) E(Xr) =
r∑

j=0

∞∑
k1, k2,··· , kj=0

2j/2σ jμr−jA(k)
(
r
j

)
E
{(

T − 1
T + 1

)2sj+j
}
, (3.8)

(iii) E(Xr) =
r∑

j=0

∞∑
k1, k2,··· , kj=0

2j/2σ jμr−jA(k)
(
r
j

)
E

⎧⎨
⎩
(

eT

1 + eT

)2sj+j
⎫⎬
⎭, (3.9)

(iv) E(Xr) =
r∑

j=0

∞∑
k1,··· , kj=0

2sj+j∑
i=0

2j/2σ jμr−jA(k)
(
r
j

)(
2sj + j

i

)
(−2)iMeT (−i), (3.10)

where A(k) = A(k1, k2, · · · , kj) = (
√

π/2)2sj+jak1ak2 · · · akj , sj = k1 + k2 + · · · + kj,

MT (−i) = E(e−iT ), ak = ck
2k+1 , ck =

k−1∑
j=0

cjck−1−j
( j+1)(2j+1) , and c0 = 1.
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Proof. We first show (3.7). By using Lemma 1, the rth moments for theT-N{exponential}
distribution can be written as E(Xr) = E

(
�−1(1 − e−T )

)r . Since
�−1(1 − e−T ) = √

2 σerf−1(1 − 2e−T ) + μ,

the rth moments can be written as

E(Xr) = E
(√

2 σerf−1(1 − 2e−T ) + μ
)r =

r∑
j=0

(
r
j

)
2j/2σ j E

{
(erf−1(1 − e−T ))

j}
μr−j.

(3.11)

On using the series representation for erf−1(1 − 2e−T ) (Wolfram.com, 2014), we get

erf−1(1 − 2e−T ) =
∞∑
k=0

ak(
√

π/2)2k+1
(1 − 2e−T )

2k+1, where ak = ck
2k+1 , ck =

k−1∑
j=0

cjck−1−j
( j+1)(2j+1) , and c0 = 1. This implies

(
erf−1(1 − 2e−T )

)j =
∞∑

k1, k2,··· , kj=0
A(k1, k2, · · · , kj)(1 − 2e−T )

2sj+j, (3.12)

where A(k1, k2, · · · , kj) = (
√

π/2)2sj+jak1ak2 · · · akj and sj = k1 + k2 + · · · + kj. By using
the binomial expansion on (1 − 2e−T )

2sj+j, (3.12) can be written as

(
erf−1(1 − 2e−T )

)j =
∞∑

k1, k2,··· , kj=0

2sj+j∑
i=0

A(k1, k2, · · · , kj)
(
2sj + j

i

)
(−2)ie−iT . (3.13)

The result of (3.7) follows by using equation (3.13) in equation (3.11). The results of
(3.8)-(3.10) can be obtained by applying the same technique for (3.7).

If T follows the gamma distribution with parameters α and β for the T-N{exponential},
we obtain the term MT (−i) = (1 + βi)−α in (3.7). Thus, (3.7) gives the rth non-central
moment of gamma-N{exponential} distribution as shown in Alzaatreh et al. (2014).
The deviation from the mean and the deviation from the median are used to measure

the dispersion and the spread in a population from the center. The mean deviation from
the mean is denoted by D(μ), and the mean deviation from the median M is denoted
by D(M).

Theorem 4. D(μ) and D(M) for each of (i) T-N{exponential}, (ii) T-N{log-logistic},
(iii) T-N{logistic}, and (iv) T-N{extreme value} distributions, respectively, are

(i) D(μ) = √
2σ

∞∑
k=0

2k+1∑
i=0

A(k)
(
2k + 1

i

)
(−2)i+1Se−u(μ, 0, i), (3.14)

D(M) = √
2σ

∞∑
k=0

2k+1∑
i=0

A(k)
(
2k + 1

i

)
(−2)i+1Se−u(M, 0, i), (3.15)

where Sξ (c, a,α) = ∫ QY (�(c))
a ξα fT (u)du and QY (�(c)) = − log(1 − �(c)).

(ii) D(μ) = −√
8σ

∞∑
k=0

A(k)Su−1
u+1

(μ, 0, 2k + 1), (3.16)

D(M) = −√
8σ

∞∑
k=0

A(k)Su−1
u+1

(M, 0, 2k + 1), (3.17)
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where QY (�(c)) = �(c)/(1 − �(c)).

(iii) D(μ) = −√
8σ

∞∑
k=0

A(k)S eu
1+eu

(μ,−∞, 2k + 1), (3.18)

D(M) = −√
8σ

∞∑
k=0

A(k)S eu
1+eu

(M,−∞, 2k + 1), (3.19)

where QY (�(c)) = log{�(c)/(1 − �(c))}.

(iv) D(μ) = √
2σ

∞∑
k=0

2k+1∑
i=0

A(k)
(
2k + 1

i

)
(−2)iSe−eu (μ,−∞, i), (3.20)

D(M) = √
2σ

∞∑
k=0

2k+1∑
i=0

A(k)
(
2k + 1

i

)
(−2)iSe−eu (M,−∞, i), (3.21)

where QY (�(c)) = log{− log(1 − �(c))}.

Proof. By definitions of D(μ) and D(M),

D(μ) =
∫ μ

−∞
(μ − x) fX(x)dx+

∫ ∞

μ

(x − μ) fX(x)dx = 2
∫ μ

−∞
(μ − x) fX(x)dx

= 2μFX(μ) − 2
∫ μ

−∞
x fX(x)dx. (3.22)

D(M) =
∫ M

−∞
(M − x) fX(x)dx+

∫ ∞

M
(x − M) fX(x)dx

= 2
∫ M

−∞
(M − x) fX(x)dx + E(X) − M

= μ − 2
∫ M

−∞
x fX(x)dx. (3.23)

We first proof the results (3.14) and (3.15) for the T-N{exponential} family. Defining the
integral

Ic =
∫ c

−∞
x fX(x)dx =

∫ c

−∞
xφ(x)

1 − �(x)
fT

{− log(1 − �(x)
}
dx, (3.24)

and using the substitution u = − log(1 − �(x)), (3.24) can be written as

Ic =
∫ − log(1−�(c))

0
�−1(1 − e−u)fT (u)du. (3.25)

By using similar approach as in Theorem 3, the equation (3.25) can be written as

Ic = μFX(c) + √
2σ

∞∑
k=0

2k+1∑
i=0

A(k)
(
2k + 1

i

)
(−2)iSe−u(c, 0, i), (3.26)

where A(k) is defined in the proof of Theorem 3, Sξ (c, a,α) = ∫ QY (�(c))
a ξα fT (u)du and

QY (�(c)) = − log(1 − �(c)). The results in (3.14) and (3.15) follow by using (3.26) in
(3.22) and (3.23). Applying the same techniques of showing (3.14) and (3.15), one can
show the results of (3.16) and (3.17) for (ii), (3.18) and (3.19) for (iii), and (3.20) and (3.21)
for (iv).
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4 Some examples of GN families of distributions with different T distributions
In this section different T distributions are used to generate different GN distributions.
In the following subsections, we present four new GN distributions namely, Weibull-
N{exponential}, exponential-N{log-logistic}, logistic-N{logistic} and logistic-N{extreme
value}. For illustrative purposes, we study some properties of the Weibull-N{logistic} dis-
tribution. To conserve space, properties of other GN distributions are not given. One can
follow the same method to study the properties of other GN distributions.

4.1 TheWeibull-N{exponential} distribution

If a random variable T follows the Weibull distribution with parameters c and γ , then
fT (x) = cγ −1( x

γ
)
c−1e−( x

γ
)
c
, c, γ > 0. From (2.8), the PDF of the Weibull-N{exponential}

is defined as

fX(x) = c
γ

φ(x)
1 − �(x)

{− log (1 − �(x))
γ

}c−1
exp

(
−
{− log (1 − �(x))

γ

}c)
. (4.1)

Remark 2.

(i) When c = 1, the Weibull-N{exponential} reduces to the exponential-normal
distribution with θ = 1/γ .

(ii) When c = γ = 1, the Weibull-N{exponential} reduces to the normal distribution.
(iii) When c = 1 and γ −1 = n ∈ N , the PDF in (4.1) reduces to the distribution of the

minimum order statistics, x(1), from a normal random sample of size n.

By using (2.7), the CDF of the Weibull-N{exponential} is given by

FX(x) = 1 − exp
(−{−(1/γ ) log (1 − �(x))

}c) .
In Figures 1 and 2, various graphs of fX(x) when μ = 0, σ = 1 and for various values of

c and γ are provided. These Figures indicate that the Weibull-N{exponential} PDF can be
left skewed, right skewed, or symmetric. Also, the Weibull-N{exponential} is left skewed
whenever γ > 1 and right skewed whenever γ < 1. For fixed γ , the peak increases as c
increases.

−6 −4 −2 0 2 4 6
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c = 3    γ = 2
c = 5    γ = 5
c = 5    γ = 7

Figure 1 The PDF of Weibull-N{exponential} for various values of c and γ .
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Figure 2 The PDF of Weibull-N{exponential} for various values of c and γ .

Some properties of the Weibull-N{exponential} are obtained in the following by using
the general properties discussed in section 3.

(1) Quantile function: By using Lemma 2, the quantile function of the
Weibull-N{exponential} distribution is given by
QX(p) = �−1 {1 − exp(−γ (− log(1 − p))1/c)

}
.

(2) Mode: By using Corollary 1, the mode of Weibull-N{exponential} distribution is
the solution of the following equation

x = μ + σ 2hφ(x)
{
c − 1
Hφ(x)

− cγ −c(Hφ(x))c−1 + 1
}
.

(3) Shannon entropy: By using Corollary 2 and the fact that μT = γ
(1 + 1/c) and
ηT = 1 + ξ(1 − 1/c) + log(γ /c) (see Song 2001), one can easily obtain the
Shannon entropy of Weibull-N{exponential} distribution as

ηX = log(σ
√
2π)−γ
(1+1/c)+ξ(1−1/c)+log(γ /c)+E(X − μ)2/(2σ 2)+1.

(4) Moments: By using Theorem 3, a series representation of the rth moments of the
Weibull-N{exponential} distribution can be obtained by replacingMT (−i) with

∞∑
k=0

(−1)kγ k

k!



(
1 + k

c

)

in equation (3.7).
(5) Mean deviations: By using Theorem 4, the mean deviation from the mean and the

mean deviation from the median of Weibull-N{exponential} distribution can be

obtained by replacing S(μ, 0, i) and S(M, 0, i) with c
icγ c

∞∑
k=0

(−1)k
γ ck ickk!
[ c(k + 1),−i

log(1 − �(μ))] and c
icγ c

∞∑
k=0

(−1)k
γ ck ickk!
[ c(k + 1),−i log(1 − �(M))] in

equations (3.14) and (3.15) respectively, where 
(α, x) = ∫ x
0 u

α−1e−udu is the
incomplete gamma function.
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4.2 The exponential-N {log-logistic} distribution

If a random variableT follows the exponential distribution with parameter λ, then fT (x) =
λe−λx, λ > 0. From (2.10), the PDF of the exponential-N{log-logistic} is defined as

fX(x) = λφ(x)
(1 − �(x))2

exp
[ −λ�(x)
1 − �(x)

]
. (4.2)

From (2.9), the CDF of (4.2) is given by FX(x) = 1 − exp
[

λ�(x)
1−�(x)

]
.

In Figure 3, various graphs of fX(x) when μ = 0, σ = 1 and for various values of λ

are provided. These graphs indicate that the exponential-N{log-logistic} distribution is
always left skewed. Also, the skewness increases as λ decreases.

4.3 The logistic-N{logistic} distribution

If a random variable T follows the logistic distribution with parameter λ, then fT (x) =
λe−λx(1 + e−λx)

−2, λ > 0. From (2.12), the PDF of logistic-N{logistic} distribution is
defined as

fX(x) = λφ(x)�λ−1(x)(1 − �(x))λ−1

[�λ(x) + (1 − �(x))λ]2
. (4.3)

From (2.11), the CDF of (4.3) is given by FX(x) = �λ(x)
�λ(x)+(1−�(x))λ .

When λ = 1, (4.3) reduces to the normal distribution. In Figure 4, various graphs of
fX(x) when μ = 0, σ = 1 and for various values of λ are provided. These graphs indicate
that the PDF of logistic-N{logistic} can be bimodal and the bimodality occurs for small
values of λ. Also, it is easy to see from the PDFs in (4.3) that the distribution is symmetric
for all values of λ.

4.4 The logistic-N {extreme value} distribution

If a random variable T follows the logistic distribution with parameter λ, then fT (x) =
λe−λx(1 + e−λx)

−2, λ > 0. From (2.14), the PDF of the logistic-N{extreme value}
distribution is defined as
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Figure 3 PDF of the exponential-N{log-logistic} distribution for various values of λ.
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Figure 4 PDF of logistic-N{logistic} distribution for various values of λ.

fX(x) = λhφ(x)Hφ
λ−1(x)

(1 + Hφ
λ(x))2

. (4.4)

From (2.13), the CDF of (4.4) is given by FX(x) = Hφ
λ(x)

1+Hφ
λ(x) .

In Figure 5, various graphs of fX(x) when μ = 0, σ = 1 and for various values of λ

are provided. These graphs indicate that the distribution is always right skewed. Also, the
skewness increases as λ decreases.

5 Applications
To illustrate the flexibility of the GN distributions, we fit some GN distributions to a
unimodal data set and a bimodal data set. The unimodal data with n = 66 in Table 2
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Figure 5 PDF of the logistic-N{extreme value} distribution for various values of λ.
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Table 2 Breaking stress of carbon fibers data

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11 3.56

4.42 2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.90 1.57

2.67 2.93 3.22 3.39 2.81 4.20 3.33 2.55 3.31 3.31 2.85

1.25 4.38 1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.70 2.03

1.89 2.88 2.82 2.05 3.65 3.75 2.43 2.95 2.97 3.39 2.96

2.35 2.55 2.59 2.03 1.61 2.12 3.15 1.08 2.56 1.80 2.53

is obtained from Nichols and Padgett (2006) on the breaking stress of carbon fibers
of 50 mm in length. Alzaatreh at el. (2013) fitted the data set to the gamma-normal
distribution. They showed that the standard gamma-normal distribution with μ = 0
and σ = 1 provides a good fit to the data set. The standard form of exponential-
N{exponential}, exponentiated exponential-N{exponential} and Weibull-N{exponential}
distributions with μ = 0 and σ = 1 are applied to fit the data set and the results
compared with the results from standard gamma-normal distribution. The maximum
likelihood estimates, the log-likelihood value, the AIC (Akaike Information Criterion),
the Kolmogorov-Smirnov (K-S) test statistic, and the p-value for the K-S statistic for
the fitted distributions are reported in Table 3. The results in Table 3 show that all the
generalized normal distributions give an adequate fit to the data. However, the K-S val-
ues indicate that the gamma-N{exponential} distribution provides the best fit among the
distributions. Figure 6 displays the histogram and the fitted density functions for the
data.
The second application is on a bimodal data set obtained from Emlet et al. (1987)

on the asteroid and echinoid egg size. The data is available from the first author. The
data consists of 88 asteroid species divided into three types; 35 planktotrophic lar-
vae, 36 lecithotrophic larvae, and 17 brooding larvae. Since the logarithm of the egg
diameters of the asteroids data has a bimodal shape, Famoye et al. (2004) applied
the beta-normal distribution to the logarithm of the data set. We apply the logistic-
N{logistic} distribution, which can be bimodal, to fit the same data. The results of the
maximum likelihood estimates, the log-likelihood value, the AIC (Akaike Information
Criterion), the Kolmogorov-Smirnov (K-S) test statistic, and the p-value for the K-S
statistic for the fitted distributions are reported in Table 4. The results in Table 4 show

Table 3 Parameter estimates for the carbon fibers data

Distribution Exponential- Exponentiated Weibull- gamma-

N {exponential} exponential- N {exponential} N {exponential}

N {exponential}

Parameter θ̂ = 0.1612 α̂ = 6.0389 ĉ = 2.4062 α̂ = 4.7966

Estimates (0.0198)* (1.3675) (0.2226) (0.8076)

λ̂ = 0.3919 γ̂ = 6.9991 β̂ = 1.2932

(0.0434) (0.3780) (0.2296)

Log-likelihood -114.8292 -87.0385 -86.0629 -85.9070

AIC 231.6584 178.0770 176.1258 175.8140

K-S 0.2768 0.0854 0.0894 0.0693

K-S p-value 0.0001 0.7215 0.6676 0.9090
*standard error.
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Figure 6 PDF for fitted distributions of the breaking stress of carbon fibers data.

that both the beta-normal and logistic-N{logistic} distributions give an adequate fit to
the data. However, the K-S values indicate that the logistic-N{logistic} distribution pro-
vides a better fit. Figure 7 displays the histogram and the fitted density functions for the
data.

6 Summary and conclusions
The normal distribution is the most commonly used distribution in both statistical the-
ory and applications. The generalization of the normal distribution is studied using the
T-X framework proposed by Alzaatreh et al. (2013). Four types of generalized nor-
mal families from the quantile functions of the (i) exponential, (ii) log-logistic, (iii)
logistic, and (iv) extreme value distributions are proposed. Some general properties
are studied. Four generalized normal distributions are described and some of their
properties investigated. It is noticed that the shapes of GN distributions can be sym-
metric, skewed to the right, skewed to the left or bimodal. This gives the families some
flexibility in fitting real world data. Because the GN distributions include the normal
distribution as a special case, using the GN distributions to fit data enables one to
check if the additional parameters characterize the deviation from the normal distri-
bution. Many types of generalizations of the normal distribution can be derived using
the methodology described in this paper. Due to the fact that GN distributions are

Table 4 Parameter estimates for the asteroids data

Distribution Beta-normal* Logistic-N {logistic}

Parameter α̂ = 0.0129 λ̂ = 0.1498(0.0185)

Estimates β̂ = 0.0070 μ̂ = 6.0348(0.0685)

μ̂ = 5.7466 σ̂ = 0.2604(0.010)

σ̂ = 0.0675

Log-likelihood -109.4800 -111.4287

AIC 226.9600 228.4974

K-S 0.1233 0.0988

K-S p-value 0.1377 0.3572
*From Famoye et al. (2004) and the MLE standard errors were not provided.
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Figure 7 PDF for the fitted distributions for the asteroids data.

natural extensions from the normal distribution, statistical modeling by assuming the
error term follows some form of GN distribution will be an interesting topic for future
research.
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