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1 Introduction and preliminaries
Let E be a real Banach space, E* be the dual space of E. In the sequel we assume that C
is a nonempty closed convex subset of E, �+ is the set of nonnegative real numbers and
J : E → E* is the normalized duality mapping defined by

J(x) =
{
f ∈ E* : 〈x, f 〉 = ‖x‖ · ‖f ‖,‖x‖ = ‖f ‖}, x ∈ E. (.)

Let T : C → C be a mapping, we denote by F(T) the set of fixed points of T . We also use
‘→’ to stand for strong convergence and ‘⇀’ for weak convergence.
We first recall some definitions.
A one-parameter family � := {T(t) : t ≥ } of self-mappings of C is said to be a nonex-

pansive semigroup if the following conditions are satisfied:
(i) T(t + t)x = T(t)T(t)x, for any t, t ∈ �+ and x ∈ C;
(ii) T()x = x for each x ∈ C;
(iii) for each x ∈ C, t 
→ T(t)x is continuous;
(iv) for any t ≥ , T(t) is a nonexpansive mapping on C, that is, for any x, y ∈ C,

∥∥T(t)x – T(t)y
∥∥ ≤ ‖x – y‖. (.)

If the family � := {T(t) : t ≥ } satisfies conditions (i)-(iii), then it is:
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(a) Pseudocontractive semigroup if for any x, y ∈ C, there exists j(x – y) ∈ J(x – y) such
that

〈
T(t)x – T(t)y, j(x – y)

〉 ≤ ‖x – y‖. (.)

(b) Uniformly Lipschitzian semigroup if there exists a bounded measurable function L :
[,∞)→ (,∞) such that, for any x, y ∈ C and t ≥ ,

∥∥Tn(t)x – Tn(t)y
∥∥ ≤ L(t)‖x – y‖, ∀n≥ . (.)

In this case, we also say that � is a uniformly L(t)-Lipschitzian semigroup.
(c) Strictly pseudocontractive semigroup if there exists a bounded function λ : [,∞) →

(,∞) and for any given x, y ∈ C, there exists j(x – y) ∈ J(x – y) such that

〈
T(t)x – T(t)y, j(x – y)

〉 ≤ ‖x – y‖ – λ(t)
∥∥(
I – T(t)

)
x –

(
I – T(t)

)
y
∥∥ (.)

for any t ≥ .
It is easy to see that such a semigroup is (( + λ(t))/λ(t))-Lipschitzian and pseudocon-

tractive semigroup.
(d) Demicontractive semigroup if

⋂
t≥ F(T(t)) �= ∅, and there exists a bounded function

λ : [,∞)→ (,∞) for any t ≥ , x ∈ C and y ∈ ⋂
t≥ F(T(t)), there exists j(x– y) ∈ J(x– y)

such that

〈
T(t)x – y, j(x – y)

〉 ≤ ‖x – y‖ – λ(t)
∥∥(
I – T(t)

)
x
∥∥. (.)

In this paper, we introduce the following semigroups.

Definition . A one-parameter family � := {T(t) : t ≥ } of self-mappings of C satisfies
conditions (i)-(iii), then it is:
(e) Total asymptotically strictly pseudocontractive semigroup if there exist a bounded

function λ : [,∞) → (,∞) and sequences {μn} ⊂ [,∞) and {ξn} ⊂ [,∞) with μn → 
and ξn →  as n→ ∞. For any given x, y ∈ C, there exists j(x – y) ∈ J(x – y) such that

〈
Tn(t)x – Tn(t)y, j(x – y)

〉 ≤ ‖x – y‖ – λ(t)
∥∥(
I – Tn(t)

)
x –

(
I – Tn(t)

)
y
∥∥

+μnφ
(‖x – y‖) + ξn, ∀n≥ ,∀t ≥ , (.)

where φ : [,∞)→ [,∞) is a continuous and strictly increasing function with φ() = .
In this case, we also say that � is a (λ(t), {μn}, {ξn},φ)-total asymptotically strict pseudo-

contractive semigroup.
(f )Asymptotically strictly pseudocontractive semigroup if there exist a bounded function

λ : [,∞) → (,∞) and a sequence {kn} ⊂ [,∞) with kn →  as n → ∞; for any given
x, y ∈ C, there exists j(x – y) ∈ J(x – y) such that

〈
Tn(t)x – Tn(t)y, j(x – y)

〉

≤ kn‖x – y‖ – λ(t)
∥∥(
I – Tn(t)

)
x –

(
I – Tn(t)

)
y
∥∥, ∀n≥ , (.)

for any t ≥ .
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In this case, we also say that � is a ({kn},λ(t))-asymptotically strict pseudocontractive
semigroup.
(g) Asymptotically demicontractive semigroup if

⋂
t≥ F(T(t)) �= ∅ and there exist a

bounded function λ : [,∞)→ (,∞) and a sequence {kn} ⊂ [,∞) with kn →  as n→ ∞;
for any t ≥ , x ∈ C and y ∈ ⋂

t≥ F(T(t)), there exists j(x – y) ∈ J(x – y) such that

〈
Tn(t)x – y, j(x – y)

〉 ≤ kn‖x – y‖ – λ(t)
∥∥(
I – Tn(t)

)
x
∥∥, ∀n≥ , (.)

for any t ≥ .
In this case, we also say that� is a ({kn},λ(t))-asymptotically demicontractive semigroup.

Remark . If φ(λ) = λ and ξn = , then a total asymptotically strict pseudocontractive
semigroup is an asymptotically strict pseudocontractive semigroup. Every asymptotically
strict pseudocontractive semigroup with

⋂
t> F(T(t)) �= φ is an asymptotically demicon-

tractive semigroup. If kn = , ∀n≥ , an asymptotically strict pseudocontractive semigroup
is a strict pseudocontractive semigroup, an asymptotically demicontractive semigroup is
a demicontractive semigroup.

It is easy to see that condition (.) is equivalent to the following condition: for any t ≥ ,
x ∈ C and y ∈ F(T(t)), there exists j(x – y) ∈ J(x – y) such that

〈
x – Tn(t)x, j(x – y)

〉 ≥ λ(t)
∥∥x – Tn(t)x

∥∥ –μnφ
(‖x – y‖) – ξn. (.)

The convergence problem of implicit and explicit iterative sequences for nonexpansive
semigroups to a common fixed point has been considered by some authors in various
spaces; see, for example, [–].
In , Shioji-Takahashi [] introduced and studied a Halpern-type scheme for a com-

mon fixed point of a family of asymptotically nonexpansive semigroups in the framework
of a real Hilbert space.
In , Suzuki [] proved that the implicit scheme defined by u,x ∈ C

xn = αnu + ( – αn)T(tn)(xn), n≥ , (.)

converges strongly to a common fixed point of the family of nonexpansive semigroups in
a real Hilbert space. Xu [] extended the result of Suzuki to a more general real uniformly
convex Banach space having a weakly sequentially continuous duality mapping.
In , Aleyner and Reich [] proved the strong convergence of an explicit Halpern-

type scheme defined by u,x ∈ C

xn+ = αnu + ( – αn)T(tn)xn, n≥ , (.)

to a common fixed point of the family {T(t) : t ≥ } of nonexpansive semigroups in a
reflexive Banach space with a uniformly Gâteaux differentiable norm.
Recently, Chang et al. [] introduced the following explicit iteration process:

x ∈ C,

xn+ = ( – αn)xn + αnT(tn)xn, n≥ , (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/178
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for the Lipschitzian and demicontractive semigroup � := {T(t) : t ≥ } in general Banach
spaces. Under appropriate assumptions imposed upon the parameter sequences {αn} and
{tn}, they proved that the sequence {xn} defined by (.) converges strongly to some point
in F =:

⋂
t≥ F(T(t)).

Inspired and motivated by the above works of Shioji-Takahashi [], Suzuki [], Xu [],
Aleyner-Reich [] and Chang [], in this paper we aim to study the strong convergence
to a common fixed point for a finite family of uniformly Lipschitzian and total asymptot-
ically strict pseudocontractive semigroups �i := {Ti(t) : t ≥ }, ∀i ∈ {, , . . . ,N} in general
Banach spaces. The results presented in the paper extend and improve some recent results
given in [, , , ].
The following lemmas will be needed in proving our main results.

Lemma . Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying

an+ ≤ ( + δn)an + bn, ∀n≥ n, (.)

where n is some nonnegative integer. If
∑∞

n= δn < ∞ and
∑∞

n= bn < ∞, then the limit
limn→∞ an exists.

Lemma . [] Let E be any real Banach space, let E* be the dual space of E and let
J : E → E* be the normalized duality mapping. Then, for any x, y ∈ E, we have

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀j(x + y) ∈ J(x + y). (.)

2 Main results
Let E be a real Banach space, and letC be a nonempty, closed convex subset of E. For some
fixed i ∈ N , let �i := {Ti(t) : t ≥ } be a uniformly Li(t)-Lipschitzian with a bounded mea-
surable function Li : [,∞)→ (,∞) and (λi(t), {μin}, {ξin},φi)-total asymptotically strictly
pseudocontractive semigroup with a bounded function λi : [,∞) → (,∞), sequences
{μin}, {ξin} ⊂ [,∞) with μin →  and ξin →  as n→ ∞, such that

Li := sup
t≥

Li(t) <∞, λi := inf
t≥

λi(t) > , Fi :=
⋂

t≥

F
(
Ti(t)

) �= ∅. (.)

Then, for x, y ∈ C, p ∈ Fi and t ≥ ,

〈
Tn
i (t)x – p, j(x – p)

〉 ≤ ‖x – p‖ – λi∥∥x – Tn
i (t)x

∥∥

+μinφi
(‖x – p‖) + ξin, ∀n≥ , (.)

where φi : [,∞) → [,∞) is a continuous and strictly increasing function with φi() = ,
and

∥∥Tn
i (t)x – Tn

i (t)y
∥∥ ≤ Li‖x – y‖, ∀n≥ . (.)

Consider a family {�i}Ni= of uniformly Li(t)-Lipschitzian and (λi(t), {μin}, {ξin},φi)-total
asymptotically strict pseudocontractive semigroups of C and let

L := max
≤i≤N

Li < ∞, λ := min
≤i≤N

λi > , F :=
⋂

≤i≤N

⋂

t≥

F
(
Ti(t)

) �= ∅,

http://www.fixedpointtheoryandapplications.com/content/2013/1/178
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μn = max
≤i≤N

μin, ξn = max
≤i≤N

ξin, φ = max
≤i≤N

φi. (.)

For x, y ∈ C, p ∈ F , t ≥  and any i ∈ {, , . . . ,N},
〈
Tn
i (t)x – p, j(x – p)

〉 ≤ ‖x – p‖ – λ
∥∥x – Tn

i (t)x
∥∥

+μnφ
(‖x – p‖) + ξn, ∀n≥  (.)

and

∥∥Tn
i (t)x – Tn

i (t)y
∥∥ ≤ L‖x – y‖, ∀n≥ . (.)

Now, we are ready to give our main results.

Theorem . Let E be a real Banach space, and let C be a nonempty, closed convex subset
of E. Let {�i}Ni= be a finite family of uniformly Li(t)-Lipschitzian and (λi(t), {μin}, {ξin},φi)-
total asymptotically strictly pseudocontractive semigroups of C, Li(t), λi(t), {μin}, {ξin}, φi,
Li, λi, Fi, L, λ, F , φ, {μn} and {ξn} be the same as above. In addition, there exist positive con-
stants M and M* such that φ(λ) ≤ M*λ for all λ ≥ M. Let {xn} be the sequence generated
by

x ∈ C,

xn+ = ( – αn)xn + αnTn
n (tn)xn, n ≥ , (.)

where Tn
n (tn) = Tn

n(modN)(tn), ∀n ≥ , {αn} is a sequence in (, ) and {tn} is an increasing
sequence in [,∞). If the following conditions are satisfied:
()

∑∞
n= α


n < ∞,

∑∞
n= αn = ∞,

∑∞
n= αnμn < ∞,

∑∞
n= αnξn < ∞.

() Assume for any i ∈ {, , . . . ,N} and for any bounded subset D⊂ C,

lim
n→∞ sup

x∈D,s∈R+
∥∥Tn

i (s + tn)x – Tn
i (tn)x

∥∥ = . (.)

() There exists a compact subset G of E such that
⋂

t≥Tl(t)(C)⊂G for some
l ∈ {, , . . . ,N}.

Then the sequence {xn} converges strongly to some element in F .

Proof The proof of Theorem . is divided into four steps.
Step . First we prove that limn→∞ ‖xn – p‖ exists for all p ∈ F .
For any p ∈ F , by (.) we have

∥∥Tn
n (tn)xn – p

∥∥ =
∥∥Tn

n (tn)xn – Tn
n (tn)p

∥∥ ≤ L‖xn – p‖. (.)

It follows from (.) and (.) that

‖xn+ – p‖ = ∥∥( – αn)xn + αnTn
n (tn)xn – ( – αn)p – αnp

∥∥

≤ ( – αn)‖xn – p‖ + αn
∥∥Tn

n (tn)xn – p
∥∥

≤ ( – αn)‖xn – p‖ + αnL‖xn – p‖
≤ ( + L)‖xn – p‖ (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/178
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and

‖xn+ – xn‖ = αn
∥∥Tn

n (tn)xn – xn
∥∥

≤ αn
(∥∥Tn

n (tn)xn – p
∥∥ + ‖xn – p‖)

≤ αn( + L)‖xn – p‖. (.)

By (.), for the point xn+ and p, there exists j(xn+ – p) ∈ J(xn+ – p) such that

〈
Tn
n (tn)xn+ – xn+, j(xn+ – p)

〉 ≤ –λ
∥∥Tn

n (tn)xn+ – xn+
∥∥

+μnφ
(‖xn+ – p‖) + ξn, ∀n≥ . (.)

Since φ is an increasing function, it results that φ(λ) ≤ φ(M) if λ ≤ M and φ(λ) ≤ M*λ

if λ ≥ M. In either case, we can obtain that

φ(λ)≤ φ(M) +M*λ. (.)

Thus, by Lemma ., (.)-(.), we have

‖xn+ – p‖ ≤ ∥∥xn – p + αn
(
Tn
n (tn)xn – xn

)∥∥

≤ ‖xn – p‖ + αn
〈
Tn
n (tn)xn – xn, j(xn+ – p)

〉

= ‖xn – p‖ + αn
〈
Tn
n (tn)xn – Tn

n (tn)xn+, j(xn+ – p)
〉

+ αn
〈
Tn
n (tn)xn+ – xn+, j(xn+ – p)

〉

+ αn
〈
xn+ – xn, j(xn+ – p)

〉

≤ ‖xn – p‖ + αnL‖xn+ – xn‖‖xn+ – p‖
– αnλ

∥∥Tn
n (tn)xn+ – xn+

∥∥ + αnμnφ
(‖xn+ – p‖)

+ αnξn + αn‖xn+ – xn‖‖xn+ – p‖
≤ (

 + α
n( + L) + αnμnM*( + L)

)‖xn – p‖

– αnλ
∥∥Tn

n (tn)xn+ – xn+
∥∥

+ αnμnφ(M) + αnξn

≤ (
 + α

n( + L) + αnμnM*( + L)
)‖xn – p‖

+ αnμnφ(M) + αnξn. (.)

By condition (), it follows from Lemma . that the limit limn→∞ ‖xn – p‖ exists and so
the sequence {xn} is bounded in C.
Step . Now we prove that

lim inf
n→∞

∥∥xn – Tn
n (t)xn

∥∥ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/178
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In fact, it follows from (.) that

αnλ
∥∥Tn

n (tn)xn+ – xn+
∥∥ ≤ ‖xn – p‖ – ‖xn+ – p‖ + α

n( + L)K

+
(
M*( + L)K + φ(M)

)
αnμn + αnξn, (.)

where K = supn≥ ‖xn – p‖. Hence, for somem ≥ ,

λ
m∑

n=

αn
∥∥Tn

n (tn)xn+ – xn+
∥∥

≤
m∑

n=

(‖xn – p‖ – ‖xn+ – p‖) + ( + L)K
m∑

n=

α
n

+
(
M*( + L)K + φ(M)

) m∑

n=

αnμn + 
m∑

n=

αnξn

≤ ‖x – p‖ + ( + L)K
m∑

n=

α
n

+
(
M*( + L)K + φ(M)

) m∑

n=

αnμn + 
m∑

n=

αnξn. (.)

Letting m → ∞, we have

λ
∞∑

n=

αn
∥∥Tn

n (tn)xn+ – xn+
∥∥

≤ ‖x – p‖ + ( + L)K
∞∑

n=

α
n

+
(
M*( + L)K + φ(M)

) ∞∑

n=

αnμn + 
∞∑

n=

αnξn. (.)

By condition (), we obtain

∞∑

n=

αn
∥∥Tn

n (tn)xn+ – xn+
∥∥ < ∞, (.)

which implies

lim inf
n→∞

∥∥xn+ – Tn
n (tn)xn+

∥∥ = . (.)

Since limn→∞ ‖xn – p‖ exists for all p ∈ F and limn→∞ αn = , using (.), we have

lim
n→∞‖xn+ – xn‖ = . (.)

This implies that

lim
n→∞‖xn+i – xn‖ = , ∀i ∈ {, , . . . ,N}. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/178
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It follows from (.) and (.) that

lim inf
n→∞

∥∥xn – Tn
n (tn)xn

∥∥

≤ lim inf
n→∞

{‖xn – xn+‖ +
∥∥xn+ – Tn

n (tn)xn+
∥∥ +

∥∥Tn
n (tn)xn+ – Tn

n (tn)xn
∥∥}

≤ lim inf
n→∞

{
( + L)‖xn – xn+‖ +

∥∥xn+ – Tn
n (tn)xn+

∥∥}
= . (.)

For any t ≥ , we have

∥∥xn – Tn
n (t)xn

∥∥

≤ ∥∥xn – Tn
n (tn)xn

∥∥ +
∥∥Tn

n (tn)xn – Tn
n (tn + t)xn

∥∥ +
∥∥Tn

n (tn + t)xn – Tn
n (t)xn

∥∥

≤ ( + L)
∥∥xn – Tn

n (tn)xn
∥∥ + sup

z∈{xn},t∈R+
∥∥Tn

n (t + tn)z – Tn
n (tn)z

∥∥, (.)

from (.) and (.), conclusion (.) is proved.
Step . Now we prove that

lim inf
n→∞

∥∥xn – Tm(t)xn
∥∥ = , ∀m ∈ {, , . . . ,N}. (.)

For each j = , , . . . ,N , let

ηiN+j :=
∥∥xiN+j – TiN+j

j (t)xiN+j
∥∥.

Since Tj is uniformly Lj(t)-Lipschitzian continuous, it follows from (.) and (.) that

∥∥xiN+j – Tj(t)xiN+j
∥∥

≤ ∥∥xiN+j – TiN+j
j (t)xiN+j

∥∥ +
∥∥TiN+j

j (t)xiN+j – Tj(t)xiN+j
∥∥

≤ ηiN+j + L
∥∥TiN+j–

j (t)xiN+j – xiN+j
∥∥

≤ ηiN+j + L
{∥∥TiN+j–

j (t)xiN+j – TiN+j–
j (t)xiN+j–

∥∥

+
∥∥TiN+j–

j (t)xiN+j– – xiN+j–
∥∥ + ‖xiN+j– – xiN+j‖

}

≤ ηiN+j + L( + L)‖xiN+j – xiN+j–‖ + LηiN+j–,

from (.) and (.), we have

lim inf
n→∞

∥∥xiN+j – Tj(t)xiN+j
∥∥ = . (.)

This implies that

lim inf
n→∞

∥∥xn – Tn(t)xn
∥∥ = , (.)

where Tn(t) = Tn(modN)(t), ∀n≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/178
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For l ∈ {, , . . . ,N}, we have
∥∥xn – Tn+l(t)xn

∥∥

≤ ‖xn – xn+l‖ +
∥∥xn+l – Tn+l(t)xn+l

∥∥ +
∥∥Tn+l(t)xn+l – Tn+l(t)xn

∥∥

≤ ( + L)‖xn – xn+l‖ +
∥∥xn+l – Tn+l(t)xn+l

∥∥,

from (.) and (.), we obtain

lim inf
n→∞

∥∥xn – Tn+l(t)xn
∥∥ = . (.)

It follows from (.) that lim infn→∞ ‖xn–Tm(t)xn‖ = , ∀m ∈ {, , . . . ,N}. This completes
the proof.
Step . Finally, we prove the sequence {xn} converges strongly to some element in F .
By (.), we have lim infn→∞ ‖xn–Tm(t)xn‖ = , ∀m ∈ {, , . . . ,N}. If⋂t≥Tl(t)(C)⊂ G

for some compact subsetG of E and some l ∈ {, , . . . ,N}, then there exists a subsequence
{xnk } of {xn} and q ∈ C such that

lim
k→∞

Tl(t)xnk = q, lim
k→∞

∥∥xnk – Tl(t)xnk
∥∥ = . (.)

Hence, it follows from (.) that

lim
k→∞

xnk = q. (.)

Now, for any m ∈ {, , . . . ,N}, since lim infk→∞ ‖xnk – Tm(t)xnk‖ = , there exists a subse-
quence {xnkj } of {xnk } such that limj→∞ ‖xnkj –Tm(t)xnkj ‖ = . Using (.) and the fact that
Tm is Lipschitzian, we get q ∈ ⋂

t≥ F(Tm(t)). Since m ∈ {, , . . . ,N} is arbitrarily chosen,
we have q ∈ F .
Since xnk → q as k → ∞ and the limit limn→∞ ‖xn –q‖ exists, this implies that xn → q ∈

F as n→ ∞. This completes the proof. �

The following theorem can be obtained from Theorem . immediately.

Theorem . Let E be a real Banach space, and let C be a nonempty, closed convex subset
of E. Let {�i}Ni= be a finite family of uniformly Li(t)-Lipschitzian and ({kin},λi(t))-asymp-
totically strictly pseudocontractive semigroups of C, Li(t), λi(t), Li, λi, Fi, L, λ, F be as in
Theorem .. kn = max≤i≤N {kin}. Let {xn} be the sequence defined by (.), {αn} is a se-
quence in (, ) and let {tn} be an increasing sequence in [,∞). If the following conditions
are satisfied:
()

∑∞
n= αn = ∞,

∑∞
n= α


n <∞,

∑∞
n= αn(kn – ) < ∞.

() Assume for any i ∈ {, , . . . ,N} and for any bounded subset D⊂ C,

lim
n→∞ sup

x∈D,s∈R+
∥∥Tn

i (s + tn)x – Tn
i (tn)x

∥∥ = .

() There exists a compact subset G of E such that
⋂

t≥Tl(t)(C)⊂G for some
l ∈ {, , . . . ,N}.
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Then the sequence {xn} converges strongly to some element in F .

Proof Taking φ(λ) = λ, ξn = , μn = kn –  in Theorem ., since all conditions in The-
orem . are satisfied. It follows from Theorem . that the sequence xn → q ∈ F :=⋂

t≥ F(T(t)) as n→ ∞.
This completes the proof of Theorem .. �

Remark . Theorems . and . extend and improve the corresponding results of
Chang et al. [], Shioji and Takahashi [], Suzuki [], Xu [], Aleyner and Reich [] and
others.

Open problem It may be interesting to post the following open problem: Can Theo-
rem . be generalized to a finite family of semigroups of mappings S which are represen-
tation, so commutative or left reversible (see Liu and Zhang [] and related references
there), which is not necessarily the positive real number with addition?
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