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Abstract We study the putative emission of gravitational
waves (GWs) in particular for pulsars with measured braking
index. We show that the appropriate combination of both GW
emission and magnetic dipole brakes can naturally explain
the measured braking index, when the surface magnetic field
and the angle between the magnetic dipole and rotation axes
are time dependent. Then we discuss the detectability of these
very pulsars by aLIGO and the Einstein Telescope. We call
attention to the realistic possibility that aLIGO can detect
the GWs generated by at least some of these pulsars, such as
Vela, for example.

1 Introduction

Recently, gravitational waves (GWs) have finally been
detected [1]. The signal was identified as coming from the
final fraction of a second of the coalescence of two black
holes (BHs), which resulted in a spinning remnant black
hole. Such an event had been predicted (see e.g., [2]) but
never been observed before.

As is well known, pulsars (spinning neutron stars) are
promising candidates for producing GW signals which would
be detectable by aLIGO (Advanced LIGO) and AdV Virgo
(Advanced Virgo). These sources might generate continuous
GWs whether they are not perfectly symmetric around their
rotation axes.

The so-called braking index (n), which is a quantity
closely related to the pulsar spindown, can provide informa-
tion as regards the pulsars’ energy loss mechanisms. Such
mechanisms can include GW emission, among others.

Until very recently, only eight of the ∼2400 known pulsars
have braking indices measured accurately. All these brak-
ing indices are remarkably smaller than the canonical value
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(n = 3), which is expected for pure magneto-dipole radiation
model (see e.g., [3–9]).

Several interpretations for the observed braking indices
have been put forward, like the ones that propose either accre-
tion of fall-back material via a circumstellar disk [10], rela-
tivistic particle winds [11,12], or modified canonical models
to explain the observed braking index ranges (see e.g., [13–
15], and references therein for further models). Alternatively,
it has been proposed that the so-called quantum vacuum fric-
tion (QVF) effect in pulsars can explain several aspects of
their phenomenology [16]. However, so far no developed
model has yet explained satisfactorily all measured braking
indices, nor any of the existing models has been totally ruled
out by current data. Therefore, the energy loss mechanisms
for pulsars are still under continuous debate.

Recently, Archibald et al. [17] showed that PSR J1640-
4631 is the first pulsar having a braking index greater than 3,
namely n = 3.15 ± 0.03. PSR J1640-4631 has a spin period
of P = 206 ms and a spindown rate of Ṗ = 9.758(44) ×
10−13 s/s, yielding a spindown power Ėrot = 4.4×1036 erg/s,
and an inferred dipole magnetic field B0 = 1.4×1013 G. This
source was discovered by using X-ray timing observations
with NuStar and a measured distance of 12 kpc (see [18]).

The braking index of PSR J1640-4631 reignites the ques-
tion about energy loss mechanisms in pulsars. With the
exception of this pulsar, all other eight, as previously men-
tioned, have braking indices n < 3 (see Table 1), which
may suggest that other spindown torques act along with the
energy loss via dipole radiation. Recently, we showed that
such a braking index can be accounted for if the spindown
model combines magnetic dipole and GW brakes (see [19]).
Therefore, each of these mechanisms alone cannot account
for the braking index found for PSR J1640-4631.

Since pulsars can also spindown through gravitational
emission associated to asymmetric deformations (see e.g.,
[20,21]), it is appropriate to take into account this mechanism
in a model which aims to explain the braking indices which
have been measured. Thus, our interest in this paper is to
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Table 1 The periods (P) and
their first derivatives (Ṗ) for
pulsars with known braking
indices (n) (see also ATNF
catalog [22,23])

Pulsar P (s) Ṗ (10−13 s/s) n Ref.

PSR J1734-3333 1.17 22.8 0.9 ± 0.2 [7]

PSR B0833-45 (Vela) 0.089 1.25 1.4 ± 0.2 [4]

PSR J1833-1034 0.062 2.02 1.8569 ± 0.0006 [8]

PSR J0540-6919 0.050 4.79 2.140 ± 0.009 [5]

PSR J1846-0258 0.324 71 2.19 ± 0.03 [9]

PSR B0531+21 (Crab) 0.033 4.21 2.51 ± 0.01 [3]

PSR J1119-6127 0.408 40.2 2.684 ± 0.002 [6]

PSR J1513-5908 0.151 15.3 2.839 ± 0.001 [5]

PSR J1640-4631 0.207 9.72 3.15 ± 0.03 [17]

explore both gravitational and electromagnetic contributions
in the context of pulsars with braking indices measured accu-
rately. Based on the above reasoning, the aim of this paper
is to extend the analysis of [19] for all pulsars of Table 1.
In the next section we revisit the fundamental energy loss
mechanisms for pulsars. We also derive its associated energy
loss focusing mainly on the energy balance, when both grav-
itational and classic dipole radiation are responsible for the
spindown. Also, we elaborate upon the evolution of other
pulsars’ characteristic parameters, such as the surface mag-
netic field B0 and magnetic dipole direction φ. In Sect. 3 we
briefly discuss the detectability of these pulsars by aLIGO
and the planned Einstein Telescope (ET) in its more recent
design (ET-D). Finally, in Sect. 4, we summarize the main
conclusions and remarks. We work here with Gaussian units.

2 Modeling pulsars’ braking indices

If the pulsar magnetic dipole moment is misaligned with
respect to its spin axis by an angle φ, the energy per second
emitted by the rotating magnetic dipole is (see e.g., [24,25]),

Ėd = −8π4

3

B2
0 R

6 sin2 φ

c3 f 4
rot, (1)

where B0 is taken as the surface magnetic field (coming from
a magnetic dipole) of a star of radius R and rotational fre-
quency frot , and c is the speed of light.

A body with moment of inertia I and equatorial ellipticity
ε emits GWs, and the luminosity associated with this emis-
sion reads [26]

ĖGW = −2048π6

5

G

c5
I 2ε2 f 6

rot. (2)

The upper limit for the GW strain from isolated pulsars,
known as the spindown limit, can be calculated by assum-
ing that the observed loss of rotational energy (Ėrot =
4π2 I frot ḟrot) is all due to gravitational radiation ĖGW.

Instead, we consider in this paper that the total energy of
the star is provided by its rotational energy, Erot = 2π2 I f 2

rot,
and any change on it is attributed to both Ėd and ĖGW. There-
fore, the energy balance reads

Ėrot ≡ ĖGW + Ėd, (3)

consequently, it follows immediately that

ḟrot = −512π4

5

G

c5
Iε2 f 5

rot − 2π2

3

B2
0 R

6 sin2 φ

I c3 f 3
rot. (4)

This equation can be interpreted as follows: the term on the
left side stands for the resulting deceleration (spindown) due
to magnetic dipole and GWs brakes, the first and the second
terms on the right side denote the independent contributions
of these decelerating processes, respectively. Equation (4)
can be rewritten in the following form:

ḟrot = ḟGW + ḟd. (5)

Now, we can define the fraction of deceleration related to
GW emission, namely

η ≡ ḟGW

ḟrot
, (6)

which, by replacing the appropriate quantities, reads

η = 1

1 + 5
768

c2B2
0 R

6 sin2 φ

Gπ2 I 2ε2 f 2
rot

. (7)

From Eq. 6, it follows immediately that

ĖGW = ηĖrot, (8)

thus η can be interpreted as the efficiency of GWs generation.
Now, we show that Eq. 7 is closely related to the equation
for the braking index n. Recall that n is given by

n = frot f̈rot

ḟ 2
rot

. (9)

Before proceeding, it is also worth recalling that a pure
magnetic brake, in which a dipole magnetic configuration is
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adopted, leads to n = 3, whereas a pure GW brake leads
to n = 5. From the observational point of view, the liter-
ature shows that almost all pulsars with measured braking
index have n < 3 (see Table 1). As discussed earlier, there
is one exception: PSR J1640-4631 has a braking index of
n � 3.15. Therefore, neither a pure GW brake nor a pure
magnetic dipole brake are supported by the observations.
We have recently shown (see [19]) that the PSR J1640-4631
braking index can be accounted for a combination of GWs
and magnetic dipole brake. Alternatively, it has been pro-
posed that magnetic quadrupolar radiation could explain the
braking index n > 3 (see e.g., [9,27], and references therein).
On the other hand, for all other pulsars with known braking
indices (see Table 1), additional mechanisms invoking an
external torque similar to that from stellar wind [28,29] must
be considered to explain the fact that n < 3. In this work
we explore a possible way to explain brake indices n < 3
considering that the magnetic field and/or the angle between
the rotation and magnetic axes are time dependent.

It is believed that magnetic fields should decay in pul-
sars [usually due to Ohmic decay, Hall drift and ambipo-
lar diffusion [30,31]] on timescales of (106 − 107) yr (see
e.g., [31,32], and references therein). Nevertheless, there are
also suggestions that the timescales for B0 could actually be
smaller, of the order of 105 yr [33,34].

To proceed, by substituting Eq. 4 and its first derivative in
Eq. 9, the braking index reads

n = n0 + frot

ḟrot
(5 − n0)

[
Ḃ0

B0
+ φ̇ cot φ

]
, (10)

with

n0 = 3 + 2

1 + 5
768

c2B2
0 R

6 sin2 φ

Gπ2 I 2ε2 f 2
rot

, (11)

where we consider that Ḃ0 and φ̇ are not null. Also, sub-
stituting Eq. 7 into Eq. 10 we finally obtain an equation that
relates the braking index to the efficiency of GWs generation,
namely

n = 3 + 2η − 2
P

Ṗ
(1 − η)

[
Ḃ0

B0
+ φ̇ cot φ

]
(12)

(see [35], for a similar analysis), conveniently written in
terms of the rotational period (P = 1/ frot) and its first deriva-
tive (Ṗ), in order to be directly applied to the data of Table
1. Notice that for a given η, the above equation shows that
in principle it is possible to obtain n < 3 if the appropriate
combination of Ḃ0 and φ̇ turns the term in brackets positive.
In order to proceed, it is interesting to calculate the term in
brackets as a function of η for the pulsars of Table 1. For
the sake of simplicity, the term in brackets is rewritten as
follows:

Fig. 1 The term in brackets (g) as a function of η

g = g(B0, Ḃ0, φ, φ̇) ≡
[
Ḃ0

B0
+ φ̇ cot φ

]
. (13)

Thus, the term in brackets as a function of η for a given pulsar
reads

g = − (n − 3 − 2η)

2(1 − η)

Ṗ

P
. (14)

In Fig. 1 we present the term in brackets (g) as a func-
tion of η. This figure shows that it is in principle possi-
ble, as already mentioned, to find a combination of Ḃ0 and
φ̇ in order to have n < 3 and GWs be generated. Thus,
bearing in mind that magnetic fields for pulsars are within
(1012 − 1013) G, let us assume Ḃ0 < 0 and |Ḃ0| of the order
of (10−2 − 10−1) G/s. Since the Crab pulsar has an observa-
tionally inferred φ̇ � 3×10−12 rad/s [36–38], let us consider
the implications of these parameters. For instance, consider
the representative angle φ = π/4 and Ḃ0 = −0.05 G/s; from
this we obtain g � 3 × 10−12 s−1. Figure 1 shows that this
value for g implies that η < 0.1. Therefore, our model can
provide a consistent picture. In addition, our results show that
for reasonable values of g, η cannot be arbitrarily large, or
vice versa.

Notice that PSR J1640-4631 can also have its braking
index n = 3.15 consistently explained. In our previous
paper (see [19]) η = 0.075, in the present model we can
have 0 ≤ η ≤ 1, depending on the values of Ḃ0 and φ̇.

Also, it is worth mentioning that an appropriate negative
value of g can account for braking indices n > 3. For exam-
ple, scenarios in which the pulsar’s magnetic field decays
implies g < 0.

Finally, it is worth noting that [35] studied in particular
four of the nine pulsars in Table 1 in this present paper. More-
over, our parametrization and interest are different, since we
here relate η and g, which are not used and nor explicitly
defined, in the referred paper, to explain the braking indices
in Table 1.
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3 Relating η and ε with the amplitude of GWs

Now, it is appropriate to consider how the GW amplitudes
for pulsars with n < 5 can be calculated. Recall that one
usually finds in the literature the following equation:

h2 = 5

2

G

c3

I

r2

| ḟrot |
frot

(15)

(see, e.g., [39]), where one is considering that the whole con-
tribution to ḟrot comes from GW emission, which means that
one is implicitly assuming that n = 5. This equation must be
modified to take into account that n < 5.

From Eq. 6 we can write

˙̄frot = η ḟrot, (16)

where ˙̄frot can be interpreted as the part of ḟrot related to the
GW emission brake. Thus, the amplitude of the GWs is now
given by

h̄2 = 5

2

G

c3

I

r2

| ˙̄frot |
frot

= 5

2

G

c3

I

r2

| ḟrot |
frot

η. (17)

On the other hand, recall that the amplitude of GWs can also
be written as follows:

h = 16π2G

c4

Iε f 2
rot

r
(18)

(see, e.g., [26]), which with the use of Eq. 17 yields an equa-
tion for ε in terms of P , Ṗ (observable quantities), η and I ,
namely

ε =
√

5

512π4

c5

G

Ṗ P3

I
η. (19)

Assuming that I ≈ 1038 kg m2 (fiducial value) and substitut-
ing the values of P , Ṗ from the pulsars listed in Table 1, we
obtain ε as a function of η for these pulsars. Figure 2 shows
ε as a function of η. Notice that even for an efficiency of GW

Fig. 2 ε as a function of η

Fig. 3 g as a function of ε

generation (η) of 1 %, ε is relatively large. This could well
be an indication that η � 0.01 for some pulsars of Table 1,
if it is required that ε < 10−3. Equation (19) also allows one
to write the equation for g now as a function of ε. In Fig. 3
we just show a graph thereof.

At this point it is interesting to see what kind of informa-
tion we can obtain from [39], since these authors studied GWs
from known pulsars. In such a paper the authors searched for
GWs from 195 pulsars from the LIGO and Virgo S3/S4, S5,
S6, VSR2, and VSR4 runs. Although they did not find any
evidence for GWs, it was possible to provide upper limits
to the GW amplitudes. Moreover, using different statistical
methods, they could also find upper limits for ε and η. Also,
they pointed out seven pulsars of high interest. Notice that
only three (Vela, Crab, and PSR J1833-1034) of the nine pul-
sars here studied (see Table 1) were studied in Ref. [39]. For
Crab and Vela, their results are consistent with η ∼ 0.01
and ε ∼ 10−4, just like ours. For PSR J1833-1034, however,
their results indicated an inconsistent value of η � 15–20,
since this efficiency violates the energy balance. On the other
hand, our results indicate that for ε � 10−4, η � 1 % for
this very same pulsar, which is a more acceptable value. It is
worth mentioning that the above comparison is limited to the
consistency of the results, since these authors are considering
statistical tools to find upper limits for a series of parameters,
we instead perform an analytical approach.

Now, we calculate the amplitudes of the GWs generated
by the pulsars considered in this present paper. Figure 4
shows the amplitudes of the GWs generated by the pul-
sars listed in Table 1 as a function of the GW frequency,
fGW = 2 frot. In doing this we use a range of neutron star
masses in Eq. 17, using selected up-to-date nuclear equa-
tions of state (EOS). In particular, for the sake of simplicity,
we adopt the GM1 parametrization [40]. Figure 4 shows a
range of possible amplitudes (for two distinct efficiencies,
η = 0.01 and η = 1, represented by red and green bars
respectively) calculated from the realistic moment of iner-
tia (7.03 × 1036 ≤ I ≤ 3.28 × 1038) kg.m2. Also plotted
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Fig. 4 Amplitude of the GWs for the pulsars listed in Table 1 as a
function of the GW frequency, fGW = 2 frot , for η = 0.01 (red bars)
andη = 1 (greenbars) for 7 × 1036 � I � 3 × 1038 kg.m2 (see the text
for further details). Also we plotted the strain sensitivities for eLIGO
S6, aLIGO, and ET-D for one-year integration time. The stars represent
such amplitudes when they are calculated for η = 1 and Ifiducial =
1038 kg.m2

the strain sensitivities for eLIGO S6, aLIGO, and ET-D for
one-year integration time [41–43].

4 Discussion and final remarks

In this paper we study the putative emission of GWs gener-
ated in particular by pulsars with measured braking indices.
We model the braking indices of these pulsars taking into
account in the spindown the magnetic dipole and GWs
brakes, besides the surface magnetic dipole and the angle
between the magnetic and rotation axes dependent on time.
We show that the appropriate combination of these very quan-
tities can account for the braking indices observed for pulsars
listed in Table 1.

Notice that even for η = 0.01 our model predicts that some
pulsars would have large values of ε. This can be an indica-
tion that η � 0.01 for these pulsars, implying in smaller
ellipticities, i.e., ε < 10−3.

Moreover, we study the detectability of these pulsars by
aLIGO and ET. Besides considering the efficiency effect of
GWs generation, we take into account the role of the moment
of inertia. To do so we take into account different values for
I that come from models of neutron stars for a given and
acceptable equation of state.

We show that aLIGO can well detect at least some of the
pulsars considered here in particular Vela within one year of
observation.

Last, but not least, even if one studies scenarios in which
alternative models to explain the pulsars’ braking index are
considered, it is quite important to include the putative contri-
bution of GWs. Since it is quite reasonable to expect that pul-
sars have deformations, which implies in a finite value for the

ellipticity, which is one of the main quantities in the calcula-
tion of the GW amplitudes. On the other hand, from the point
of view of the search for continuous GWs, there is a quite
recently published paper [44] with interesting strategies in
which not only GWs are considered as emission mechanisms.
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