
J
H
E
P
0
8
(
2
0
1
5
)
0
1
7

Published for SISSA by Springer

Received: August 12, 2014

Revised: May 16, 2015

Accepted: July 15, 2015

Published: August 5, 2015

Deviation from bimaximal mixing and leptonic CP

phases in S4 family symmetry and generalized CP

Cai-Chang Li and Gui-Jun Ding

Department of Modern Physics, University of Science and Technology of China,

Hefei, Anhui 230026, China

E-mail: lcc0915@mail.ustc.edu.cn, dinggj@ustc.edu.cn

Abstract: The lepton flavor mixing matrix having one row or one column in common

with the bimaximal mixing up to permutations is still compatible with the present neutrino

oscillation data. We provide a thorough exploration of generating such a mixing matrix

from S4 family symmetry and generalized CP symmetry HCP. Supposing that S4 oHCP

is broken down to ZST
2SU

2 ×Hν
CP in the neutrino sector and ZTST

2U
4 oH l

CP in the charged

lepton sector, one column of the PMNS matrix would be of the form
(
1/2, 1/

√
2, 1/2

)T
up to

permutations, both Dirac CP phase and Majorana CP phases are trivial to accommodate

the observed lepton mixing angles. The phenomenological implications of the remnant

symmetry K
(TST 2,T 2U)
4 ×Hν

CP in the neutrino sector and ZSU2 ×H l
CP in the charged lepton

sector are studied. One row of PMNS matrix is determined to be
(
1/2, 1/2,−i/

√
2
)
, and

all the three leptonic CP phases can only be trivial to fit the measured values of the mixing

angles. Two models based on S4 family symmetry and generalized CP are constructed

to implement these model independent predictions enforced by remnant symmetry. The

correct mass hierarchy among the charged leptons is achieved. The vacuum alignment and

higher order corrections are discussed.
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1 Introduction

The neutrino flavor mixing and neutrino oscillation have been firmly established so far. The

standard three flavor neutrino oscillation relates the flavor eigenstates of neutrinos to the

mass eigenstates through the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix.

This matrix is a 3 × 3 unitary matrix and can be parameterized by three mixing angles

θ12, θ13, θ23, one Dirac type CP violating phase δCP similar to the quark sector and two

additional Majorana phases α21, α31 if neutrinos are Majorana particles. Recently the last

lepton mixing angle θ13 has been precisely measured to be about 9◦ [1–10]. This discovery

pushes neutrino oscillation experiments into a new era of precise determination of the lepton

mixing angles and neutrino mass squared differences, and it also opens up new windows to

probe leptonic CP violation. Although we still don’t have convincing evidence for lepton CP

violation, the current global fit to the neutrino oscillation data indicates nontrivial values

of the Dirac type CP phase [11–13]. The present T2K data already exclude values of δCP

between 0.14π ∼ 0.87π at the 90% confidence level [14, 15]. Furthermore, several long-

baseline neutrino oscillation experiments such as LBNE [16, 17], LBNO [18–22] and Hyper-

Kamiokande [23, 24] are proposed to measure CP violation. Study of neutrino mixing

including the CP violating phase would allow us to distinguish different flavor models.
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In view of the fantastic experimental program of observing lepton CP violation and

the fundamental role played by CP violation, it is crucial to be able to predict CP phases.

The idea of combining flavor symmetry with generalized CP symmetry is a very interesting

approach to predict both flavor mixing angles and CP phases from symmetry principle.

The concept of generalized CP transformations has been put forward about thirty years

ago. CP invariance at high energy scale and its subsequent breaking lead to nontrivial

constraints on the fermion mass matrices [25–29]. It is somewhat tricky to include the

generalized CP symmetry in the presence of a family symmetry. Generally the generalized

CP transformation must be subject to the so-called consistency condition, which implies

that the generalized CP transformation corresponds to an automorphism of the family

symmetry group [30, 31]. Furthermore, it is shown that physical CP transformations

always have to be class-inverting automorphisms of family symmetry group [32]. As a

result, in some cases the conventional CP transformation ϕ 7→ ϕ∗ can not be consistently

defined, but rather a non-trivial transformation in flavor space is needed. Here we would

like to remind that the concrete form of the CP transformation matrix is basis dependent.

Generalized CP symmetry together with family symmetry can give us interesting phe-

nomenological predictions. The simplest example is the so-called µ−τ reflection symmetry

which is a combination of the canonical CP transformation and the µ−τ exchange symme-

try. The invariance of the light neutrino mass matrix under µ− τ reflection in the charged

lepton diagonal basis leads to maximal atmospheric mixing angle θ23 and maximal Dirac CP

phase δCP with δCP = ±π/2 [33–39]. The phenomenological implications of the generalized

CP symmetry has been analyzed within the context of popular A4 [40], S4 [30, 41–44] and

T ′ [45] family symmetries. By breaking the full symmetry down to Z2×CP in the neutrino

sector, the TM1 and TM2 mixing patterns in which the first and the second columns of the

tri-bimaximal mixing is kept respectively, can be exactly produced. The Dirac CP phase

δCP is predicted to be conserved or maximally broken. Concrete models in which these

symmetry breaking patterns are achieved dynamically have been proposed. Furthermore,

the generalized CP has been extended to ∆(48) [46, 47], ∆(96) [48] and ∆(6n2) series [49–

51] family symmetries as well. Some new mixing textures compatible with the experimental

data are found, in particular CP phases can be neither vanishing nor maximal. A number

of interesting models with definite predictions for CP phases have been constructed. There

are other approaches to dealing with family symmetry and CP violation [52–62].

Besides the well-known tri-bimaximal mixing, the bimaximal (BM) mixing can also

be naturally derived from the S4 family symmetry [63–65]. Since θ13 is not so small as

expected and θ12 is not maximal, the BM pattern has been ruled out. However, the scheme

with only one row or one column of the BM mixing preserved is still viable. In the present

work, we shall assume S4 family symmetry and generalized CP symmetry which is then

spontaneously broken down to Z2×CP in the neutrino sector or the charged lepton sector.

As a consequence, only one column or one row of the BM mixing is preserved and the PMNS

matrix deviates from BM pattern. Moreover, the concrete forms of the deviation from the

BM mixing are constrained by the remnant symmetry, the corresponding predictions for the

mixing angles and CP phases are investigated in a model independent way. Furthermore

two models realizing these scenarios are built.

– 2 –
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The paper is organized as follows. In section 2, we present the basic concept of gener-

alized CP symmetry and model independent approach of predicting lepton flavor mixing

from remnant symmetry. The deviation from BM mixing induced by a rotation between

two generation neutrinos or a rotation between two generation charged lepton fields is in-

vestigated in section 3, and the corresponding phenomenological predictions for the lepton

mixing parameters are discussed. In section 4, the phenomenological implications of the

symmetry breaking pattern of S4 o HCP into K
(TST 2,T 2U)
4 × Hν

CP in the neutrino sector

and ZSU2 ×H l
CP in the charged lepton sector are studied in a model-independent way. The

resulting PMNS matrix has a row of form
(
1/2, 1/2,−i/

√
2
)
, and all the the three leptonic

CP phases are conserved to fit the measured values of the mixing angles. In section 5,

we construct an S4 model with generalized CP symmetry, where the mixing pattern with

one column
(
1/2, 1/

√
2, 1/2

)T
and conserved CP found in ref. [30] are produced exactly at

leading order. Agreement with experimental data can be achieved after subleading order

contributions are considered. The model reproducing all aspects of the general results of

section 4 is presented in section 6. Section 7 is devoted to our conclusion. The group

theory of S4 and the Clebsch-Gordan coefficients in our basis are collected in appendix A.

2 Basic framework

We now consider a theory which is invariant under both family symmetry S4 and generalized

CP at high energy scale. For a field multiplet ϕ(x) in a irreducible representation r of S4,

it transforms under the action of S4 as

ϕ(x)
g7−→ ρr(g)ϕ(x), g ∈ S4 , (2.1)

where ρr(g) is the representation matrix for the element g in the representation r. The

generalized CP transformation on ϕ is defined as

ϕ(x)
CP7−→ Xrϕ

∗(t,−x) , (2.2)

where Xr is the generalized CP transformation matrix, and it is a unitary matrix to keep

the kinetic term invariant. Note that the obvious action of CP on the possible spinor

indices has been suppressed in eq. (2.2). One subtle point that we should treat with care

is that the family symmetry and the generalized CP must be compatible with each other.

The following consistency condition has to be fulfilled [29–31],

Xrρ
∗
r(g)X−1

r = ρr(g
′), g, g′ ∈ S4 , (2.3)

which maps one element g into another element g′. For the faithful representation r = 3,3′,

the representation matrices of no two elements are identical. As a consequence, the map-

ping of g → g′ is bijective, and then the consistency equation of eq. (2.3) will define a unique

mapping of the family symmetry group S4 to itself. Hence the generalized CP transfor-

mation Xr corresponds an automorphism of S4 [31]. It has been shown that only the

class-inverting automorphisms can lead to physical CP transformations [32]. For a given

solution Xr of eq. (2.3), we can easily check that ρr(h)Xr is also a solution for any h ∈ S4.

Since ρr(h)Xr maps one group element g into hg′h−1,1 the effect of ρr(h) is equivalent to an

1We have
(
ρr(h)Xr

)
ρ∗r(g)

(
ρr(h)Xr

)−1
= ρr(h)

(
Xrρ

∗(g)X−1
r

)
ρ−1
r (h) = ρr(h)ρr(g

′)ρ−1
r (h) = ρr(hg

′h−1).

– 3 –
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inner automorphism σh : g′ → hg′h−1 for any h, g′ ∈ S4. Furthermore, since g′ and hg′h−1

belong to the same conjugacy class, the automorphism g → hg′h−1 induced by ρr(h)Xr is

also class-inverting if the automorphism for Xr is class-inverting. Generically this automor-

phism for ρr(h)Xr is not necessarily involuntary, but it can be. In other words, ρr(h)Xr

is a physical one as well if Xr is a physical CP transformation. Generally the element g is

distinct from g′ in eq. (2.3). Hence the mathematical structure of the full symmetry group

comprising family symmetry S4 and generalized CP symmetry is in general a semi-direct

product [30]. Consequently, the imposed symmetry at high energy scale is S4 oHCP.

Since the outer automorphism group of S4 is trivial [31, 51], all the automorphisms of

S4 are inner automorphisms, and can be generated by group conjugation. As the inverse

of each conjugacy class of S4 is equal to itself, all the inner automorphisms of S4 are class-

inverting. Consequently the generalized CP transformation compatible with S4 family sym-

metry is defined by the inner automorphism of S4 through the consistency condition. Now

we determine the explicit form of these CP transformation matrices in our working basis.

We consider the representative inner automorphism σTST 2 : (S, T, U)→ (S, ST, SU). The

corresponding generalized CP transformation denoted by X0
r should satisfy the following

consistency equations:

X0
rρ
∗
r(S)

(
X0

r

)−1
= ρr (σTST 2(S)) = ρr(S),

X0
rρ
∗
r(T )

(
X0

r

)−1
= ρr (σTST 2(T )) = ρr(ST ),

X0
rρ
∗
r(U)

(
X0

r

)−1
= ρr (σTST 2(U)) = ρr(SU) . (2.4)

Given the representation matrices listed in table 4, we see that the following relations are

satisfied for any irreducible representations r of S4,

ρ∗r(S) = ρr(S), ρ∗r(T ) = ρr(ST ), ρ∗r(U) = ρr(SU) . (2.5)

Therefore X0
r is determined to be a unity matrix up to an overall phase,

X0
r = 1 . (2.6)

Including the remaining inner automorphisms, we obtain that the generalized CP trans-

formations compatible with the S4 family symmetry are of the form

ρr(h)X0
r = ρr(h), h ∈ S4 , (2.7)

where h can be any of the 24 group elements of S4. In particular we see that the canonical

CP transformation with ρr(1) = X0
r = 1 is allowed. Therefore all coupling constants would

be constrained to be real in a S4 model with imposed CP symmetry.

Being similar to the paradigm of family symmetry, the imposed symmetry is S4 oHCP

at high energy in the present work, where HCP is the CP transformation consistent with S4

family symmetry and its elements are given in eq. (2.7). Subsequently S4 oHCP is broken

down to different residual symmetry subgroups Gν×Hν
CP and GloH l

CP in the neutrino and

the charged lepton sectors respectively. The misalignment between Gν×Hν
CP and GloH l

CP

leads to particular predictions for mixing angles and CP phases. The basic procedure of

– 4 –
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predicting lepton flavor mixing from remnant symmetries in a model independent way has

been stated clearly in refs. [30, 40, 41, 46–48]. In the following, we briefly review the

most important points which will be exploited later. Without loss of generality, the three

generations of left-handed lepton doublets are assigned to be a S4 triplet 3. The irreducible

representation 3′ is distinct from 3 in the overall sign of the generator U , therefore the

same results are obtained if the lepton doublet fields are embedded into 3′ instead of 3.

Firstly, invariance under the residual symmetries Gl and Gν implies

ρ†3(gl)m
†
lmlρ3(gl) = m†lml, gl ∈ Gl

ρT3 (gν)mνρ3(gν) = mν , gν ∈ Gν , (2.8)

where the charged lepton mass matrix ml is given in the convention in which the right-

handed (left-handed) fields are on the left-hand (right-hand) side of ml. Furthermore, the

neutrino and the charged lepton mass matrices are subject to the constraint of residual CP

symmetry as follows,

XT
ν3mνXν3 = m∗ν , Xν3 ∈ Hν

CP ,

X†l3m
†
lmlXl3 =

(
m†lml

)∗
, Xl3 ∈ H l

CP . (2.9)

From the residual CP invariant condition of eq. (2.9), we can straightforwardly derive [30,

36–38, 66, 67]

U †νXν3U
∗
ν = diag(±1,±1,±1), U †l Xl3U

∗
l = diag(eiρ1 , eiρ2 , eiρ3) , (2.10)

where ρi(i = 1, 2, 3) is an arbitrary real phase, Uν and Ul are the unitary diagonal-

ization matrices of mν and m†lml respectively with UTν mνUν = diag(m1,m2,m3) and

U †l m
†
lmlUl = diag(m2

e,m
2
µ,m

2
τ ). As a result, the residual CP transformations Xν3 and

Xl3 should be symmetric otherwise the neutrino or the charged lepton masses would be

constrained to be partially degenerate which is not compatible with experimental data.

Note that the conclusion that the remnant CP transformations in the neutrino sector have

to be symmetric is also reached in ref. [30]. In the same manner, the residual flavor sym-

metry invariant condition of eq. (2.8) leads to [66, 67]

U †νρ3(gν)Uν = diag(±1,±1,±1), U †l ρ3(gl)Ul = diag(eiαe , eiαµ , eiατ ) , (2.11)

where αe, αµ and ατ are real parameters. Combining the consistency equation of eq. (2.3),

eq. (2.10) and eq. (2.11), we see that the remnant flavor and CP symmetries should satisfy

the following restricted consistency conditions:

Xνrρ
∗
r(gν)X−1

νr = ρr(gν), gν ∈ Gν ,
Xlrρ

∗
r(gl)X

−1
lr = ρr(g

−1
l ), gl ∈ Gl , (2.12)

which implies that the residual flavor symmetry and residual CP symmetry in the neutrino

sector should generically commute. This is the reason why the residual symmetry in the

neutrino sector is assumed to be Gν ×Hν
CP instead of Gν oHν

CP. Given a set of solutions

– 5 –
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Xνr and Xlr, we can straightforwardly check that the CP transformations ρr(gν)Xνr and

ρr(gl)Xlr with gν ∈ Gν , gl ∈ Gl are admissible as well, and they lead to the same constraints

shown in eq. (2.9) on the lepton mass matrices as Xνr and Xlr.

We can obtain the most general form of mν and m†lml from the invariant requirements

of eq. (2.8) and eq. (2.9), then diagonalize them, and finally we can determine the lepton

mixing matrix UPMNS . Last but not least, generally we have many possible choices for the

residual symmetry subgroups. However, if the residual family symmetries are taken to be

another pair of subgroups G′ν and G′l which are conjugate to Gν and Gl under the same

element h belonging to S4,

G′ν = hGνh
−1, G′l = hGlh

−1, h ∈ S4 . (2.13)

Solving the restricted consistency condition of eq. (2.12), we find that the residual CP

symmetries Hν′
CP and H l′

CP compatible with G′ν and G′l are of the form

Hν′
CP = ρr(h)Hν

CPρ
T
r (h), H l′

CP = ρr(h)H l
CPρ

T
r (h) . (2.14)

This means that the elements of Hν′
CP and H l′

CP are given by ρr(h)Xνrρ
T
r (h) and

ρr(h)Xlrρ
T
r (h) respectively with Xνr ∈ Hν

CP and Xlr ∈ H l
CP. The neutrino and charged

lepton mass matrices m′ν and m′†l m
′
l invariant under G′ν ×Hν′

CP and G′l oH l′
CP respectively

are determined to be

m′ν = ρ∗3(h)mνρ
†
3(h), m′†l m

′
l = ρ3(h)m†lmlρ

†
3(h) . (2.15)

Obviously the lepton mixing matrix would be predicted to be of the same form as that

in Gν , Gl case. As a result, we only need to analyze few independent residual family

symmetries not related by group conjugation and the compatible remnant CP. We assume

that the light neutrinos are Majorana particles, and hence the remnant family symmetry

Gν in the neutrino sector must be K4 or Z2 subgroups. The case that S4 oHCP is broken

down to Z2 × Hν
CP in the neutrino sector and Z3 o H l

CP in the charged lepton sector

has been comprehensively studied [30, 41, 44]. One column of the PMNS matrix is then

determined to be proportional to (2,−1,−1)T or (1, 1, 1)T , i.e. the so-called TM1 and TM2

mixing patterns can be produced exactly. Besides the Z3 subgroup, the residual family

symmetry Gl in the charged lepton sector can be Z4 or K4 subgroups of S4.2 For example,

the choice Gl = ZTST
2U

4 (or Gl = K
(S,U)
4 ) and Gν = K

(TST 2,T 2U)
4 leads to BM mixing

no matter whether the generalized CP is included or not. In order to be in accordance

with experimental data, we degrade Gν from K4 to Z2 or Gl from Z4(K4) to Z2 such

that only one column or one row of the BM mixing matrix is fixed. After the generalized

CP transformation defined in eq. (2.7) is taken into account further, the resulting lepton

mixing matrix UPMNS is found to depend on only one free real parameter. In the following,

we shall firstly investigate the phenomenological predictions of preserving one column or

one row of BM mixing, which may originate from a 2 × 2 rotation in the neutrino or the

charged lepton sector. Furthermore, the S4 family symmetry together with the generalized

2Choosing Gl to be a non-abelian subgroup would lead to a degenerate mass spectrum.

– 6 –
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CP is imposed onto the theory, and then lepton flavor mixings arising from the symmetry

breaking into different residual subgroups in the neutrino and the charged lepton sectors

are discussed in section 4 and section 5. We find that the PMNS matrix has one column

or one row in common with BM mixing up to permutations, and moreover the CP phases

are predicted to take definite values because of the constraint of generalized CP symmetry.

3 Phenomenological analysis of deviation from bimaximal mixing

In a particular phase convention, the BM mixing matrix UBM (ignoring possible Majorana

phases) is of the following form [68]

UBM =


1√
2
− 1√

2
0

1
2

1
2 − 1√

2
1
2

1
2

1√
2

 , (3.1)

which leads to the three lepton mixing angles

θBM12 = θBM23 = 45◦, θBM13 = 0◦ . (3.2)

Comparing with the latest global fitting results [11–13], we see that rather large corrections

are needed to be compatible with the experimental data. In the following, we shall consider

the minimal modifications for simplicity. The additional rotation of the 1-2, 1-3 or 2-3

generations of charged leptons or neutrinos in the BM basis would be considered. As a

consequence, one column or one row of BM mixing would be retained. Similar deviation

from tri-bimaximal mixing has been widely studied [69–74]. Notice that the Majorana

CP violating phases are not constrained at all in this phenomenological approach, since

they are indeterminant in the starting BM mixing. First of all, we discuss the case of an

extra 1-2 rotation in the charged lepton sector. The PMNS mixing matrix is obtained by

multiplying the BM matrix UBM by a 1-2 rotation matrix in the left-hand side as follows:

UPMNS =


cos θ − sin θe−iδ 0

sin θeiδ cos θ 0

0 0 1

UBM , (3.3)

where θ and δ are real free parameters, and their values can be fitted by the experimental

data. Then the three mixing angles read as

sin2 θ13 =
1

2
sin2 θ, sin2 θ12 =

1

2
+

√
2 sin 2θ cos δ

3 + cos 2θ
, sin2 θ23 = 1− 2

3 + cos 2θ
. (3.4)

We see that the atmospheric and reactor mixing angles are related with each other by

sin2 θ23 =
1

2
− 1

2
tan2 θ13 . (3.5)

Hence θ23 is constrained to lie in the first octant, i.e. θ23 <
π
4 . The Jarlskog invariant JCP

is given by

JCP =
sin 2θ sin δ

8
√

2
. (3.6)

– 7 –
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Then the Dirac CP phase δCP in the standard parameterization [75] is

sin δCP =
(3 + cos 2θ) sin 2θ sin δ

| sin 2θ|
√

(3 + cos 2θ)2 − 8 sin2 2θ cos2 δ
.

For the value of δ = 0, the above mixing parameters are simplified into

sin2 θ13 =
1

2
sin2 θ, sin2 θ12 =

1

2
+

√
2 sin 2θ

3 + cos 2θ
, sin2 θ23 =

2 cos2 θ

3 + cos 2θ
, sin δCP = 0 , (3.7)

where the Dirac CP is conserved. Since the rotation of 2-3 generations of charged leptons

gives a vanishing θ13, we turn to investigate an additional rotation of 1-3 generations. We

can obtain the PMNS mixing matrix by multiplying the BM matrix by a 1-3 rotation

matrix in the left-hand side as

UPMNS =


cos θ 0 − sin θe−iδ

0 1 0

sin θeiδ 0 cos θ

UBM . (3.8)

The lepton mixing angles can be straightforwardly extracted as follows,

sin2 θ13 =
1

2
sin2 θ, sin2 θ12 =

1

2
+

√
2 sin 2θ cos δ

3 + cos 2θ
, sin2 θ23 =

2

3 + cos 2θ
. (3.9)

The atmospheric and reactor mixing angles are related by,

sin2 θ23 =
1

2
+

1

2
tan2 θ13 . (3.10)

which implies θ23 > π/4 and θ23 is in the second octant. The Jarlskog invariant reads as

JCP = −sin 2θ sin δ

8
√

2
, (3.11)

and then the Dirac CP phase is given by

sin δCP = − (3 + cos 2θ) sin 2θ sin δ

| sin 2θ|
√

(3 + cos 2θ)2 − 8 sin2 2θ cos2 δ
. (3.12)

We perform numerical analysis by scanning the free parameters θ and δ in the regions of

−π < θ ≤ π and−π < δ ≤ π. The correlations and the possible allowed values of the mixing

parameters are obtained, as shown in figure 1. We see that there is a strong correlation

between sin2 θ23 and sin θ13, which is given in eq. (3.5) and eq. (3.10). Note that the allowed

regions of the mixing parameters are rather large although only two free parameters θ and

δ are involved. Furthermore, we take into account the current bounds for three neutrino

mixing angles presented in ref. [12], then the values of the mixing parameters would shrink

to quite small areas. It is remarkable that the Dirac CP phase δCP is constrained to be

in the range of ± [2.52, π] and [−0.62, 0.62] for 1-2 and 1-3 rotations respectively. For

comparison with the above phenomenological analysis, the theoretical predictions of the

generalized CP symmetry discussed in section 4 are also shown in figure 1.

– 8 –
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Figure 1. Correlations among mixing angles (sin θ13, sin
2 θ12, sin

2 θ23) and CP phase δCP for ad-

ditional rotations of 1-2 and 1-3 generations of charged leptons in the BM basis. In the first panel,

the results of sin2 θ23 vs. sin θ13 for 1-2 and 1-3 rotations are shown in solid line and dashed line

respectively. The pink regions in the last two subfigures are the predictions for sin2 θ12 and δCP with

respect to sin θ13 if both θ and δ vary in the range of −π to π. The black areas in the third panel de-

note the allowed region by the experimental data of three mixing angles for 1-2 rotation and the blue

areas for 1-3 rotation. In the second subfigure, the allowed regions for 1-2 and 1-3 rotations coincide.

The red stars represent the best fit values in S4 family symmetry combined with generalized CP.

Then we study the deviation from BM mixing induced by a rotation in the neutrino

sector. Since the rotation of 1-2 generations leads to θ13 = 0, we do not discuss this

scenario. Firstly we consider the case that the neutrino mass matrix is rotated between

1-3 generations in the BM basis. The PMNS matrix is obtained by multiplying the BM

matrix UBM by a 1-3 rotation matrix in the right-hand side as follows:

UPMNS = UBM


cos θ 0 sin θe−iδ

0 1 0

− sin θeiδ 0 cos θ

 , (3.13)

which gives rise to the solar mixing angle sin2 θ12 = 2
3+cos 2θ ≥

1
2 . This mixing pattern

is obviously not compatible with the experimental data [11–13]. Next we consider the

rotation of 2-3 generations of neutrinos. The PMNS matrix is given by

UPMNS = UBM


1 0 0

0 cos θ e−iδ sin θ

0 − eiδ sin θ cos θ

 . (3.14)

The relation 2 cos2 θ12 cos2 θ13 = 1 is found be fulfilled due to the fixed form of the first

column. Using the 3σ range 1.76 × 10−2 ≤ sin2 θ13 ≤ 2.98 × 10−2 as input, we obtain

0.485 ≤ sin2 θ12 ≤ 0.491 which is outside of the experimentally preferred 3σ range [11–

13]. Consequently this case doesn’t agree with the experimental data as well. In short

summary, simple perturbative rotation to the BM mixing in the neutrino sector is not

viable because the observed values of θ12 and θ13 can not be produced simultaneously. It

is notable that agreement with the experimental data could be achieved if permutations of

– 9 –
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Figure 2. Correlations among mixing angles (sin θ13, sin
2 θ12, sin

2 θ23) and the Dirac CP phase δCP

for the perturbation from the neutrino sector with permutations of rows and columns. The pink

areas denote the allowed parameter values when both θ and δ vary in the range of [−π, π]. The

blue ones are allowed regions if both θ13 and θ23 are required to lie in the experimentally preferred

3σ ranges [12]. The red stars represent the best fit values in generalized CP which will be discussed

at the beginning of section 5.

rows and columns are allowed. If we perform both 2-3 rotation of neutrino and exchanges

of rows and columns, the following PMNS matrix can be obtained

UPMNS =
1

2


√

2 cos θ + sin θe−iδ 1 cos θ −
√

2 sin θeiδ

−
√

2 sin θe−iδ
√

2 −
√

2 cos θ

−
√

2 cos θ + sin θe−iδ 1 cos θ +
√

2 sin θeiδ

 . (3.15)

The three mixing angles read as

sin2 θ13 =
1

8
(3− cos 2θ − 2

√
2 sin 2θ cos δ),

sin2 θ12 =
2

5 + cos 2θ + 2
√

2 sin 2θ cos δ
,

sin2 θ23 =
2 + 2 cos 2θ

5 + cos 2θ + 2
√

2 sin 2θ cos δ
. (3.16)

The following correlation is found

4 sin2 θ12 cos2 θ13 = 1 . (3.17)

For the fitted 3σ range of θ13, the solar mixing angles is constrained to be in the interval of

0.254 ≤ sin2 θ12 ≤ 0.258 which is rather close to its 3σ lower limit 0.259 [12]. As a result,

we suggest this mixing pattern is a good leading order approximation since accordance

with experimental data should be easily achieved after subleading contributions are taken

into account. The Jarlskog invariant JCP is given by

JCP = −sin 2θ sin δ

8
√

2
, (3.18)
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Figure 3. Correlations among sin θ13, sin2 θ23 and Dirac CP phase δCP for the lepton mixing

obtained by exchanging the second and the third row of eq. (3.15). The result for sin2 θ12 with

respect to sin θ13 are not shown here since it is the same as the one in figure 2. The black areas

denote the allowed regions after the measured 3σ bounds of θ13 and θ23 are imposed.

The Dirac CP phase δCP is determined to be

sin δCP = − (5 + cos 2θ + 2
√

2 sin 2θ cos δ) sin 2θ sin δ

|cos θ|
√

2
(
3 + cos 2θ + 2

√
2 sin 2θ cos δ

) [
(3− cos 2θ)2 − 8 sin2 2θ cos2 δ

] .
(3.19)

Similar to perturbative rotation from the charged lepton sector discussed above, the numer-

ical results are presented in figure 2, where we demand that θ13 and θ23 are in their 3σ inter-

vals [12] while θ12 is fixed by the correlation of eq. (3.17) and it is slightly beyond the present

3σ range. We see that θ23 is constrained to be smaller than 45◦, and δCP is in the range of

± [2.04, π]. The situation of θ23 in the second octant can be accounted for by exchanging the

second and the third rows in eq. (3.15). Then θ23 would become π/2−θ23 and δCP becomes

π+δCP while the predictions for θ12 and θ13 are the same as those in eq. (3.16). It is straight-

forward to get numerical results for this case, as shown in figure 3. δCP is constrained to be

in the range [−1.10, 1.10]. In the following, we shall show a lepton mixing matrix with one

column or one row in common with BM mixing can be achieved from S4 family symmetry,

and δCP is predicted to take specific values 0 or π after generalized CP is imposed.

4 Lepton flavor mixing from remnant symmetries K
(TST 2,T 2U)
4 ×Hν

CP in

the neutrino sector and ZSU
2 × H l

CP in the charged lepton sector

In this work, we shall extend the flavor symmetry to include additional CP symmetry.

Analogous to the paradigm of flavor symmetry, lepton flavor mixing still arises from the

mismatch between the remnant symmetries in the neutrino and the charged lepton sectors.

The phenomenological implications of the breaking pattern of S4 and generalized CP into

Z2 × CP in the neutrino sector and an abelian subgroup of S4 in the charged lepton
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sector have been investigated in ref. [30]. In this section, we shall study another scenario

that S4 is broken down to K4 and Z2 subgroups in the neutrino and the charged lepton

sectors respectively. Including the generalized CP symmetry, the representative remnant

symmetry considered here is K
(TST 2,T 2U)
4 × Hν

CP in the neutrino sector and ZSU2 × H l
CP

in the charged lepton sector. Other possible choices of remnant symmetry are related to

this one by similarity transformations or lead to a vanishing reactor mixing angle. In this

case, only one row (instead of one column) of the PMNS matrix can be fixed because of

the residual ZSU2 in the charged lepton sector. In this approach the remnant symmetries

are assumed and we do not consider how the required vacuum alignment needed to achieve

the remnant symmetries is dynamically realized, since the resulting lepton flavor mixing is

independent of vacuum alignment mechanism although there are generally many possible

symmetry breaking implementation schemes. Furthermore, we shall present dynamical

models realizing the concerned symmetry breaking pattern in section 6.

Firstly we consider the neutrino sector. The full symmetry S4 o HCP is broken to

K
(TST 2,T 2U)
4 × Hν

CP. In order to consistently formulate such a setup, the element Xνr of

Hν
CP must satisfy the following consistence conditions:

Xνrρ
∗
r(h)X−1

νr = ρr(h), with h ∈ K(TST 2,T 2U)
4 , (4.1)

which follows from the consistency equation of eq. (2.12) for the remnant symmetries. We

find that the residual CP transformation Xνr can take 4 possible values,

Hν
CP = {ρr(1), ρr(TST

2), ρr(T
2U), ρr(ST

2SU)} . (4.2)

The light neutrino mass matrix mν is constrained by the residual family symmetry

K
(TST 2,T 2U)
4 and the residual CP symmetry Hν

CP as

ρT3 (h)mνρ3(h) = mν , h ∈ K(TST 2,T 2U)
4 , (4.3)

XT
ν3mνXν3 = m∗ν , Xν3 ∈ Hν

CP . (4.4)

Eq. (4.3) constrains the light neutrino mass matrix to be of the form

mν = a


0 0 1

0 1 0

1 0 0

+ b


3 0 −1

0 2 0

−1 0 3

+ c


0 1 0

1 0 1

0 1 0

 , (4.5)

which can be diagonalized by a unitary matrix Uν , i.e.

UTν mνUν = diag
(
a+ 2b−

√
2c, a+ 2b+

√
2c,−a+ 4b

)
, (4.6)

where

Uν =
1

2


1 1 −

√
2

−
√

2
√

2 0

1 1
√

2

 . (4.7)
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Note that Uν is fixed up to column permutations since the order of the eigenvalues of

mν in eq. (4.6) is not determined. Furthermore, the residual CP symmetry invariant

condition of eq. (4.4) implies that all the three parameters a, b and c are real for Xνr =

ρr(1), ρr(TST
2), ρr(T

2U), ρr(ST
2SU). Then the light neutrino masses are determined by

three real parameters a, b and c. As a consequence, either normal ordering (NO) or inverted

ordering (IO) neutrino mass spectrum can be accommodated.

Now we turn to the charged lepton sector. The S4 flavor symmetry is broken down to

Gl = ZSU2 . The remnant CP symmetry H l
CP has to be consistent with the remnant family

symmetry ZSU2 . That is to say, its element Xlr should satisfy the consistency equation

Xlrρ
∗
r(SU)X−1

lr = ρr(SU) . (4.8)

This restricted consistency equation can be derived from the general consistency condition

of eq. (2.3) with g, g′ ∈ ZSU2 . For g = SU , g′ can only be SU (can not be identity element)

since it is the unique element which has the same order as g = SU . This implies that

the remnant CP symmetry H l
CP is commutable with the remnant family symmetry ZSU2 ,

and therefore the semidirect product between family and generalized CP symmetries will

reduce to a direct product. As a consequence, the residual symmetry in the charged lepton

sector would be ZSU2 ×H l
CP in this case. In fact, the reduction of the semidirect product

structure to direct product holds true for a generic residual Z2 family symmetry [30]. It is

easy to check that only four generalized CP transformations are acceptable,

H l
CP = {ρr(TST 2), ρr(TST

2U), ρr(T
2ST ), ρr(T

2STU)} . (4.9)

We are able to construct the hermitian combination m†lml of the charged lepton mass

matrix from its invariance under the residual symmetry ZSU2 ×H l
CP,

ρ†3(SU)m†lmlρ3(SU) = m†lml,

X†l3m
†
lmlXl3 =

(
m†lml

)∗
.

(4.10)

Since Xlr and ρr(gl)Xlr with gl ∈ ZSU2 lead to the same constraints on the charged lepton

mass matrix, as shown in section 2 and ref. [30]. Two distinct phenomenological predictions

arise for the four possible generalized CP transformations in eq. (4.9). Firstly we focus on

the case of Xlr = ρr(TST
2), ρr(TST

2U). The most general m†lml satisfying eq. (4.10) is

of the following form

m†lml =


α (1 + i)β iε

(1− i)β γ (1 + i)β

−iε (1− i)β α

 , (4.11)

where α, β, γ and ε are real. It can be diagonalized by the unitary transformation

Ul =
1√
2


e
iπ
4 sin θ e

iπ
4 cos θ e−

iπ
4

−
√

2 cos θ
√

2 sin θ 0

e−
iπ
4 sin θ e−

iπ
4 cos θ e

iπ
4

 (4.12)
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Figure 4. Correlations between sin θ13 and sin2 θ12 for the mixing pattern of eq. (4.16). In this

case, a residual symmetry Z2×CP is preserved in the charged lepton sector. The best fitting value

is marked with a red star, and the points for θ = 0, π/6, π/3, π/2, 2π/3 and 5π/6 are labelled with

a cross to guide the eye. The shown 1σ and 3σ ranges for the mixing angles are taken from ref. [12].

up to rephasings and column permutations, and the angle θ is specified by

tan 2θ =
4β

α+ ε− γ
. (4.13)

The charged lepton masses are

m2
e =

1

2

[
α+ ε+ γ − sign ((α+ ε− γ) cos(2θ))

√
16β2 + (α+ ε− γ)2

]
,

m2
µ =

1

2

[
α+ ε+ γ + sign ((α+ ε− γ) cos(2θ))

√
16β2 + (α+ ε− γ)2

]
,

m2
τ = α− ε . (4.14)

Combining the unitary transformations Uν and Ul from neutrino and charged lepton sectors,

we obtain the predictions for the PMNS matrix:

UPMNS = U †l Uν =
1

2


sin θ +

√
2 cos θ sin θ −

√
2 cos θ i

√
2 sin θ

cos θ −
√

2 sin θ cos θ +
√

2 sin θ i
√

2 cos θ

1 1 − i
√

2

 , (4.15)

The lepton mixing parameters can be straightforwardly extracted as follows

sin δCP = sinα21 = sinα31 = 0,

sin2 θ13 =
1

2
sin2 θ, sin2 θ12 =

1

2
−
√

2 sin 2θ

3 + cos 2θ
, sin2 θ23 =

1 + cos 2θ

3 + cos 2θ
, (4.16)

where the PDG convention for the lepton mixing angles and CP phases is adopted [75],

δCP is the Dirac CP phase, α21 and α31 stand for the Majorana CP phases. We see that
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all CP phases are trivial, this is because that a common CP transformation Xlr = Xνr =

ρr(TST
2) is shared by the charged lepton and neutrino sectors. In contrast with the general

phenomenological analysis of section 3, the CP phases are predicted to be of definite value 0

or π due to the imposed CP symmetry. Furthermore, the mixing angles are closely related

with each other as follows,

sin2 θ12 =
1

2
± tan θ13

√
1− tan2 θ13, 2 cos2 θ13 cos2 θ23 = 1 . (4.17)

The measured values of reactor mixing angle sin2 θ13 = 0.0234 fixes the parameter θ '
12.494◦, and then the other two mixing angles are determined to be sin2 θ12 ' 0.347,

sin2 θ23 ' 0.488 which are in the experimentally allowed regions. The correlations among

the mixing angles are plotted in figure 4 and figure 5. We see that the predictions for the

lepton mixing angles agree rather well with their measured values for certain values of the

parameter θ. The best fitting results of this mixing pattern for NO (IO) are:

θbf = 0.225(0.227), sin2 θ12(θbf ) = 0.342(0.341), (4.18)

sin2 θ13(θbf ) = 0.0250(0.0253), sin2 θ23(θbf ) = 0.487(0.487), χ2
min = 6.938(4.288) .

Hence this mixing pattern can describe the experimental data very well, as the global

minimum of the χ2 is quite small: 4.288 for IO and 6.938 for NO spectrum. From eq. (4.17),

we have sin2 θ23 = 1− 1/(2 cos2 θ13) < 1/2, namely θ23 is in the first octant, as can be seen

from figure 5. The present neutrino oscillation data can not tell us whether θ23 is larger or

smaller than 45◦. θ23 in the second octant can be achieved by exchanging the second and

the third rows of the PMNS matrix in eq. (4.15). The observed values of the three mixing

angles can also be accommodated. Results of the χ2 analysis are as follows:

θbf = 0.224(0.227), sin2 θ12(θbf ) = 0.343(0.341), (4.19)

sin2 θ13(θbf ) = 0.0248(0.0253), sin2 θ23(θbf ) = 0.513(0.513), χ2
min = 9.890(4.409)

for NO (IO) mass spectrum.

It is notable that the Dirac CP δCP is predicted to be conserved here. The present

experiments have very low sensitivity to leptonic CP. T2K has recently reported a weak in-

dication for δCP around 3π/2 [14]. Analysis of the SuperKamiokande atmospheric neutrino

data gives preferable range (1.2± 0.5)π [78]. The global analysis of all oscillation data

gives δCP = 1.39+0.38
−0.27π(1σ) for NO and δCP = 1.31+0.29

−0.33π(1σ) for IO and no restriction ap-

pears at 3σ level [12]. Hence conserved CP with δCP = 0, π can be accommodated by both

present experimental data and global analysis. Future long baseline neutrino experiments

LBNE [16, 17], LBNO [18–22] and Hyper-Kamiokande [23, 24] are designed to measure the

Dirac phase. If the signal of leptonic CP violation is discovered, our proposal would be

ruled out. In addition, the predictions for the atmospheric mixing angle θ23 can be tested

by future atmospheric neutrino oscillation experiments such as the India-based Neutrino

Observatory.

Furthermore, the predictions for the conserved Dirac and Majorana CP phases in

eq. (4.16) can be checked by the neutrinoless double beta (0νββ) decay experiment which
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Figure 5. sin2 θ23 with respect to sin θ13, sin2 θ12 in the case of Z2 ×CP preserved in the charged

lepton sector. The solid lines and dashed lines represent the results for θ23 < π/4 and θ23 > π/4

respectively. The best fitting value is marked with a red star, and the points for θ = 0, π/6, π/3,

π/2, 2π/3 and 5π/6 are labelled with a cross to guide the eye. The shown 1σ and 3σ ranges for the

mixing angles are taken from ref. [12].

is an important probe for the Majorana nature of neutrino and lepton number violation. It

is well-known that the 0νββ-decay amplitude depends on the following effective Majorana

mass:

|mee| =
∣∣∣(m1c

2
12 +m2s

2
12e

iα21)c2
13 +m3s

2
13e

i(α31−2δCP)
∣∣∣ , (4.20)

where cij ≡ cos θij and sij ≡ sin θij . The predictions for the effective mass are plotted in

figure 6. We see that |mee| is determined to be around the 3σ upper limit (0.049eV) or lower

limit (0.013eV) for inverted hierarchy, which is within the reach of the forthcoming 0νββ

experiments. A large region of possible values of |mee| is allowed in case of NO, and |mee|
could be rather small depending on the value of the lightest neutrino mass. Consequently

this mixing pattern would be preferred if the |mee| is measured to be close to 0.049eV or

0.013eV in future. Note that the effective mass |mee| doesn’t depend on θ23, and therefore

it is invariant under the exchange of the 2nd and the 3rd rows of the PMNS matrix.
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Figure 6. The allowed values of the effective mass |mee| with respect to the lightest neutrino mass

in the case of Z2 × CP preserved in the charged lepton sector, where the light red and light blue

bands denote the regions for the 3σ ranges of the oscillation parameters in the inverted and normal

neutrino mass spectrum respectively [12]. The red and blue regions are the predictions for inverted

hierarchy and normal hierarchy with the PMNS matrix given in eq. (4.15). The upper bound

|mee| < (0.120 − 0.250) eV comes from the combination of the EXO-200 [82, 83] and KamLAND-

ZEN experiments [84]. The upper limit on the mass of the lightest neutrino is derived from the

latest Planck result m1 +m2 +m3 < 0.230 eV at 95% confidence level [80].

The phenomenological implications for the remaining two remnant CP transformations

Xlr = ρr(T
2ST ), ρr(T

2STU) can be studied in the same way. However, we find that the

observed values of the three lepton mixing angles can not be fitted simultaneously. Hence

this case will not be discussed in detail.

In short, the perturbative rotations to the BM mixing from the charged lepton sector,

which is discussed in section 3, can be realized by breaking the S4 family symmetry to a Z2

subgroup in the charged lepton and to K4 in the neutrino sector. By further extending the

S4 family symmetry to consistently include generalized CP symmetry, the phase δ of the

perturbative rotation can not take arbitrary value anymore. We have definite predictions

for the leptonic CP phases: both Dirac CP phase and Majorana CP phases are trivial in

order to fit the data of mixing angles.

5 Model predicting one column of BM mixing with S4 and generalized

CP

The scenario of the S4 flavor symmetry breaking to Z2 and Z4 subgroups in the neutrino and

charged lepton sectors respectively with generalized CP symmetry has been investigated
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in ref. [30]. In terms of the notation of present work, the representative residual symme-

tries can be chosen to be ZST
2SU

2 ×Hν
CP in the neutrino sector and ZTST

2U
4 oH l

CP in the

charged lepton sector, where Hν
CP = {ρr(1), ρr(ST

2SU)} and H l
CP ={ρr(1), ρr(TST

2U),

ρr(S), ρr(T
2STU)}. Before presenting the model, we shall firstly review the lepton mix-

ing arising from this breaking pattern. Note that the residual CP transformations Hν
CP =

{ρr(T 2U), ρr(TST
2)} are also compatible with the remnant flavor symmetry ZST

2SU
2 . How-

ever the measured values of the three mixing angles can not be accommodated simultane-

ously in that case. As the representation matrix of TST 2U is diagonal in all irreducible

representations of S4, the hermitian combination m†lml is diagonal. Hence lepton flavor

mixing completely arises from the neutrino sector. Straightforward calculations demon-

strate that the neutrino mass matrix preserving ZST
2SU

2 ×Hν
CP is of the following form:

mν = α


0 0 1

0 1 0

1 0 0

+ β


−3 0 1

0 −2 0

1 0 −3

+ γ


0 1 0

1 0 1

0 1 0

+ ε


√

2 − 1 0

−1 0 1

0 1 −
√

2

 , (5.1)

where the all four parameters α, β, γ and ε are real. The lepton mixing matrix UPMNS ,

which diagonalizes the neutrino mass matrix in eq. (5.1), is determined to be of the form

UPMNS =
1

2


sin θ +

√
2 cos θ 1 cos θ −

√
2 sin θ

−
√

2 sin θ
√

2 −
√

2 cos θ

sin θ −
√

2 cos θ 1 cos θ +
√

2 sin θ

Kν , (5.2)

up to row and column permutations, where Kν is a unitary diagonal matrix with entries

±1 or ±i which renders the light neutrino masses positive. The rotation angle θ is given by

tan 2θ =
−4ε

2α+ 2β −
√

2 γ
. (5.3)

The light neutrino masses are

m1 =
1

2

∣∣∣∣6β +
√

2γ + sign((2α+ 2β −
√

2γ) cos 2θ)

√
16ε2 + (2α+ 2β −

√
2γ)2

∣∣∣∣ ,
m2 = |α− 2β +

√
2γ|,

m3 =
1

2

∣∣∣∣6β +
√

2γ − sign((2α+ 2β −
√

2γ) cos 2θ)

√
16ε2 + (2α+ 2β −

√
2γ)2

∣∣∣∣ . (5.4)

Notice that the mixing pattern with one column (1/2, 1/
√

2, 1/2)T has been proposed in

ref. [76, 77], where the scenario of only one Z2 symmetry imposed in the neutrino sector

was analyzed in a general way. The lepton mixing angles and CP phases can be read out

from eq. (5.2) as follow

sin2 θ13 =
1

8
(3− cos 2θ − 2

√
2 sin 2θ) , sin2 θ12 =

2

5 + cos 2θ + 2
√

2 sin 2θ
,

sin2 θ23 =
4 cos2 θ

5 + cos 2θ + 2
√

2 sin 2θ
, sin δCP = sinα21 = sinα31 = 0 , (5.5)
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Figure 7. The allowed values of the effective mass |mee| in the case of Z2 × CP preserved in the

neutrino sector, where the light red and light blue bands denote the regions for the 3σ ranges of

the oscillation parameters in the inverted and normal neutrino mass spectrum respectively [12].

The red and blue regions are the predictions for inverted hierarchy and normal hierarchy with the

PMNS matrix given in eq. (5.2). The upper bound |mee| < (0.120 − 0.250) eV comes from the

combination of the EXO-200 [82, 83] and KamLAND-ZEN experiments [84]. The upper limit on

the mass of the lightest neutrino is derived from the latest Planck result m1 +m2 +m3 < 0.230 eV

at 95% confidence level [80].

which match with the expressions of mixing parameters in ref. [30] after parameter

redefinition θ → π/4 + θ. We see that the three mixing angles are strongly correlated with

each other

4 cos2 θ13 sin2 θ12 = 1, sin2 θ23 =
1

3
+

tan θ13

9

(
tan θ13 ± 2

√
6− 2 tan2 θ13

)
. (5.6)

The measured value of the reactor angle sin2 θ13 = 0.0234 [12] can be reproduced for θ '
25.091◦. With this value of θ, sin2 θ12 ' 0.256 and sin2 θ23 ' 0.420 follow from eq. (5.5). We

see that θ23 in the experimentally preferred regions can be achieved while θ12 is predicted to

be quite close to its 3σ lower bound [12] due to the correlation with θ13 shown in eq. (5.6).

As has been emphasized in section 3, agreement with experimental data can be easily

achieved after subleading corrections are included. A concrete model realization of this

scenario will be presented in the following. In order to see quantitatively to which extent

this mixing pattern can accommodate the present experimental data, we perform a conven-

tional χ2 analysis. The minimum of the χ2 is χ2
min = 9.865 for NO and 10.454 for IO with

θbf = 0.436(0.434), sin2 θ12(θbf ) = 0.256(0.256),

sin2 θ13(θbf ) = 0.0238(0.0244), sin2 θ23(θbf ) = 0.421(0.422) , (5.7)
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where the number before (in) the parenthesis denotes the best fitting value for NO (IO)

spectrum. Obviously θ23 in the first octant is favored, and θ23 in the second octant can also

be accommodated by interchanging the second and third rows of eq. (5.2). The resulting

predictions for θ13, θ12 and CP phases remain the same as those given by eq. (5.5), while

θ23 becomes its complementary angle. The best fitting results are as follows:

θbf = 0.433(0.435), sin2 θ12(θbf ) = 0.256(0.256), (5.8)

sin2 θ13(θbf ) = 0.0246(0.0242), sin2 θ23(θbf ) = 0.578(0.579), χ2
min = 27.807(10.086) ,

for NO (IO) neutrino mass spectrum. Furthermore, the predictions for the effective

mass |mee| is plotted in figure 7. |mee| is found to be around 0.049eV or 0.023eV for IO

spectrum, which can be tested by forthcoming 0νββ decay experiments. Nevertheless

the allowed regions of |mee| are somewhat complex for NO spectrum, and the effective

mass can be very small for certain values of the lightest neutrino mass. In concrete

models where the mixing pattern in eq. (5.5) is produced at leading order, |mee| could

lie outside of the red and blue areas of figure 7 after possible subleading order corrections

are considered. Depending on the specific form of the corrections and how large they

are, different predictions for |mee| can be obtained. Notice that the same mixing pattern

of eq. (5.2) can also be derived from the symmetry breaking pattern of S4 o HCP into

ZST
2SU

2 ×Hν
CP in the neutrino sector and K

(S,U)
4 oH l

CP in the charged lepton sector [30].

In the following we shall construct a model based on S4 family symmetry and gener-

alized CP symmetry HCP. The auxiliary symmetry Z3 × Z4 is introduced to disentangle

the flavon fields associated with the neutrino sector from those associated with the charged

lepton sector and to eliminate unwanted dangerous operators. By a judicious choice of

flavons, the above discussed symmetry breaking pattern of S4 oHCP into ZST
2SU

2 ×Hν
CP

and ZTST
2U

4 oH l
CP is explicitly realized at leading order. As a result, the interesting mixing

texture in eq. (5.2) is reproduced exactly in this model, and realistic θ12 can be achieved

after higher order corrections are included. This model is formulated in the context of

supersymmetry. We assign the three generations of left-handed lepton doublets l and of

right-handed neutrino νc to S4 triplet 3. The right-handed charged leptons ec, µc and τ c

are singlet states of S4, and they transform as 1, 1′ and 1 respectively. The matter fields,

flavon fields, driving fields and their transformation properties under the family symmetry

S4 × Z3 × Z4 ×U(1)R are summarized in table 1.

5.1 Vacuum alignment

The issue of vacuum alignment is handled with the help supersymmetric driving field

mechanism [79]. This approach utilises a global U(1)R continuous symmetry which contains

the discrete R−parity as a subgroup. The flavon and Higgs fields are uncharged under

U(1)R, the matter fields carry R charge +1 and the driving fields ρ0, ϕ0
T , η0 and ϕ0

S carry

two units of R charge. Consequently all terms in the superpotential either contain two

matter superfields or one driving field. The leading order (LO) driving superpotential wd
invariant under the family symmetry S4 × Z3 × Z4 is of the form

wd = wld + wνd , (5.9)
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Field l νc ec µc τ c hu,d ϕT φ ξ η ϕS ρ0 ϕ0
T η0 ϕ0

S

S4 3 3 1 1′ 1 1 3 3′ 1 2 3 2 3 2 3

Z3 ω3 1 ω2
3 ω2

3 ω2
3 1 1 1 ω2

3 ω2
3 ω2

3 1 1 ω2
3 ω2

3

Z4 −1 1 −i 1 i 1 i i −1 −1 −1 −1 −1 1 1

U(1)R 1 1 1 1 1 0 0 0 0 0 0 2 2 2 2

Table 1. The field contents and their classification under the family symmetry S4 × Z3 × Z4 and

U(1)R, where ω3 = ei2π/3.

where wld and wνd are responsible for the LO vacuum alignment of the charged lepton sector

and neutrino sector respectively, and they can be expressed as

wld = f1(ρ0(ϕTϕT )2)1 + f2(ρ0(ϕTφ)2)1 + f3(ρ0(φφ)2)1 + f4(ϕ0
T (ϕTϕT )3)1

+f5(ϕ0
T (ϕTφ)3)1 + f6(ϕ0

T (φφ)3)1, (5.10)

wνd = g1ξ(η
0η)1 + g2(η0(ηη)2)1 + g3(η0(ϕSϕS)2)1 + g4ξ(ϕ

0
SϕS)1 + g5(ϕ0

S(ηϕS)3)1

+g6(ϕ0
S(ϕSϕS)3)1 , (5.11)

where the subscripts 1, 2, 3 etc stand for contractions into the corresponding S4 irreducible

representations. Note that the terms proportional to f4, f6 and g6 give null contributions

because of the antisymmetric contractions (3⊗ 3)3 and (3′ ⊗ 3′)3. As we require the theory

invariant under the generalized CP transformations defined in eq. (2.7), all couplings fi
and gi would be real. The driving field is assumed to have vanishing vacuum expectation

value (VEV). In the limit of unbroken supersymmetry, the vacuum configuration is fixed

by the vanishing F−term of the driving field. For the vacuum alignment of the charged

lepton sector, we have

∂wld
∂ρ0

1

= 2f1(ϕ2
T2 − ϕT1ϕT3) +

√
3f2(ϕT1φ1 + ϕT3φ3) + 2f3(φ2

2 − φ1φ3) = 0,

∂wld
∂ρ0

2

=
√

3f1(ϕ2
T1 + ϕ2

T3) + f2(ϕT1φ3 − 2ϕT2φ2 + ϕT3φ1) +
√

3f3(φ2
1 + φ2

3) = 0,

∂wld
∂ϕ0

T1

= f5(ϕT1φ2 + ϕT2φ1) = 0,

∂wld
∂ϕ0

T2

= f5(ϕT1φ1 − ϕT3φ3) = 0,

∂wld
∂ϕ0

T3

= −f5(ϕT2φ3 + ϕT3φ2) = 0 . (5.12)

The most general solution to these equations can be obtained by a straightforward calcu-

lation. We find two independent solutions up to symmetry transformations belonging to

S4. The first is

〈ϕT 〉 =


1

0

0

 vT , 〈φ〉 =


0

0

1

 vφ, vφ = −f2 ±
√
f2

2 − 12f1f3

2
√

3f3

vT . (5.13)
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This vacuum preserves the Z
(D)
4 subgroup generated by iT 2STU defined as a simultaneous

transformation of T 2STU ∈ S4 and i ∈ Z4, although it breaks completely the S4 family

symmetry. Indeed the generator iT 2STU is given by ±diag(1, i,−1), with the plus (minus)

sign for the 3 (3′) representation. Moreover, the VEVs vφ and vT are naturally of the same

order of magnitude, since they are related through the couplings f1, f2 and f3 which are

expected to have absolute values of order one. To reproduce the observed hierarchy among

the charged lepton masses, we choose

vφ
Λ
∼ vT

Λ
∼ λ2 , (5.14)

where λ ' 0.23 is the Cabibbo angle [75]. The second solution to eq. (5.12) is given by

〈ϕT 〉 =


1

0

i

 vT , 〈φ〉 =


i

0

1

 vφ, vφ =

√
3f2 ±

√
3f2

2 − 4f1f3

2f3
vT , (5.15)

which preserves the ZSU2 subgroup. The first vacuum in eq. (5.13) is required in our

model. Since the two configurations of VEVs in eq. (5.13) and eq. (5.15) are degenerate in

the supersymmetric limit, supersymmetry breaking effects are needed to discriminate the

first one as the lowest minimum of the scalar potential. Here we consider the possibility

of lifting the vacuum degeneracy by the soft supersymmetry breaking terms. The soft

breaking terms involving ϕT and φ can be written as

Lsoft = m2
ϕT
|ϕT |2 +m2

φ|φ|2 , (5.16)

where the trilinear terms are forbidden by Z4. We assume m2
ϕT ,φ

< 0 to stabilize the

potential for both vacuum configurations. One can straightforwardly check that these soft

terms take different values for the two alignments in eqs. (5.13), (5.15). With an appropriate

choice of the soft parameters, it is possible to distinguish the two configurations and assure

the desired one in eq. (5.13) as the setting with the lowest minimum. Now we turn to the

F−term conditions of the neutrino sector,

∂wνd
∂η0

1

= g1ξη1 + g2(η2
2 − η2

1) + 2g3(ϕ2
S2
− ϕS1ϕS3) = 0,

∂wνd
∂η0

2

= g1ξη2 + 2g2η1η2 +
√

3 g3(ϕ2
S1

+ ϕ2
S3

) = 0,

∂wνd
∂ϕ0

S1

= g4ξϕS3 + g5(
√

3 η2ϕS1 − η1ϕS3) = 0,

∂wνd
∂ϕ0

S2

= g4ξϕS2 + 2g5η1ϕS2 = 0,

∂wνd
∂ϕ0

S3

= g4ξϕS1 + g5(
√

3 η2ϕS3 − η1ϕS1) = 0 . (5.17)

It is then straightforward to work out the most general solutions to these equations. Disre-

garding the ambiguity caused by S4 family symmetry transformations we find two possible

– 22 –



J
H
E
P
0
8
(
2
0
1
5
)
0
1
7

non-trivial solutions. The first one is given by

〈ξ〉 = vξ, 〈η〉 =

(
1

0

)
vη, 〈ϕS〉 =


0

1

0

 vS , (5.18)

with

vη = −
g4vξ
2g5

, v2
S =

g4(2g1g5 + g2g4)

8g3g2
5

v2
ξ , (5.19)

where vξ is undetermined and generally complex. Given the representation matrices in

appendix A, it is easy to check that this vacuum breaks the S4 family symmetry to ZT
2STU

4 .

The second solution takes the form

〈ξ〉 = vξ, 〈η〉 =

(
1
√

3

)
vη, 〈ϕS〉 =


1
√

2

1

 vS , (5.20)

where

vη = −
g4vξ
2g5

, v2
S =

g4(g1g5 − g2g4)

4g3g2
5

v2
ξ , vξ undetermined , (5.21)

We see that the two VEVs vη and vξ share the same phase modulo π, while the phase

difference between vS and vξ is 0, π for g3g4(g1g5−g2g4) > 0 or ±π/2 for g3g4(g1g5−g2g4) <

0. Since the phase of vξ can always be absorbed by lepton fields, we could take vξ to be

real without loss of generality. Consequently vη is real, and vS is either real or pure

imaginary depending on the combination g3g4(g1g5 − g2g4) being positive or negative.

We find that the symmetry S4 o HCP is broken to ZST
2SU

2 × Hν
CP by the VEVs of ξ,

η and ϕS , where the remnant CP symmetry Hν
CP = {ρ3(1), ρ3(ST 2SU)} for real vS and

Hν
CP = {ρ3(T 2U), ρ3(TST 2)} for pure imaginary vS . Only the second solution in eq. (5.20)

can allow us to derive the interesting mixing texture of eq. (5.2) discussed above. Some

supersymmetry breaking effects are needed to select it as the lowest minimum of the scalar

potential. We attempt to achieve this by considering the soft supersymmetry breaking

terms for the flavons ξ, η and ϕS , which is of the following form

Lsoft = m2
ξ |ξ|2 +m2

η|η|2 +m2
ϕS
|ϕS |2 . (5.22)

Note that the trilinear soft breaking term for ξ, η, ϕS is forbidden by the auxiliary Z3×Z4

symmetry. For properly chosen values of the soft masses m2
ξ,η,ϕS

, the minimum of the

potential for the second solution could be smaller than that for the first one, and therefore

the required vacuum in eq. (5.20) would be picked out. Furthermore, the three VEVs vξ,

vη and vS are expected to be of the same order of magnitude without fine tuning among

the parameters gi(i = 1, 2, 3, 4, 5). As usual, we shall take them to be of the same order as

the VEVs of charged lepton sector flavons, i.e.

vξ
Λ
∼ vη

Λ
∼ vS

Λ
∼ λ2 . (5.23)
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5.2 The structure of the model

The superpotential for the charged lepton masses is

wl =
yτ
Λ
τ c(lϕT )1hd +

yµ1
Λ2

µc(l(ϕTϕT )3′)1′hd +
yµ2
Λ2

µc(l(ϕTφ)3′)1′hd

+
yµ3
Λ2

µc(l(φφ)3′)1′hd +
4∑
i=1

yei
Λ3
ec(lOi)1hd + . . . , (5.24)

where

O = {ϕTϕTϕT , ϕTϕTφ, ϕTφφ, φφφ} . (5.25)

Notice that all possible S4 contractions should be considered. Dots stand for higher dimen-

sional operators corrections which we will be discussed later. All the Yukawa couplings are

real because of the generalized CP symmetry. Substituting the flavon VEVs in eq. (5.13),

we find the charged lepton mass matrix is diagonal with

me =

∣∣∣∣ye v3
T

Λ3

∣∣∣∣ vd, mµ =

∣∣∣∣∣yµ1 v2
T

Λ2
− yµ2

vφvT
Λ2
− yµ3

v2
φ

Λ2

∣∣∣∣∣ vd, mτ =
∣∣∣yτ vT

Λ

∣∣∣ vd , (5.26)

where vd = 〈hd〉, ye stands for the total result of all the different contributions of the yei
terms. For vφ ∼ vT ∼ λ2Λ, the mass hierarchies of the charged lepton are obtained, i.e.

me : mµ : mτ ' λ4 : λ2 : 1 . (5.27)

As the representation matrix of the element T 2STU is diagonal ρ3(T 2STU) =

diag (−i, 1, i), we have ρ†3(T 2STU)m†lmlρ3(T 2STU) = m†lml. It is easy to check that

the Z
(D)
4 subgroup is preserved by the vacuum of ϕT and φ, where Z

(D)
4 is the diagonal

subgroup generated by ZT
2STU

4 and the auxiliary Z4 in usual way. Consequently the com-

bination m†lml is predicted to be diagonal due to this residual Z
(D)
4 symmetry, and the

lepton mixing arises from the neutrino sector.

The light neutrino masses are generated via type-I seesaw mechanism. The LO super-

potential responsible for neutrino masses is

wν =
y1

Λ
ξ(νcl)1hu +

y2

Λ
((νcl)2η)1hu +

y3

Λ
((νcl)3ϕS)1hu +M(νcνc)1 , (5.28)

where again all couplings are real due to the invariance under the generalized CP. The last

term is the Majorana mass term for the right-handed neutrinos,

mM = M


0 0 1

0 1 0

1 0 0

 . (5.29)

Hence the three right-handed neutrinos have a degenerate mass M . With the vacuum

alignment of ξ, η and ϕS in eq. (5.20), we find the Dirac mass matrix is of the following form,

mD = y1vu
vξ
Λ


0 0 1

0 1 0

1 0 0

+ y2vu
vη
Λ


3 0 −1

0 2 0

−1 0 3

+ y3vu
vS
Λ


0 1 −

√
2

−1 0 1
√

2 − 1 0

 . (5.30)
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The light neutrino mass matrix is given by the see-saw relation: mν = −mT
Dm

−1
M mD, we

find that mν is of the same form as the one shown in eq. (5.1) with

α =

(
8

3
y2 − 8x2 − 1

)
m0, β =

(
2x− 2x2 +

1

3
y2

)
m0, γ = −

√
2y2m0, ε = −6xym0 ,

(5.31)

where

x =
y2vη
y1vξ

, y =
y3vS
y1vξ

, m0 = y2
1

v2
ξ

Λ2

v2
u

M
. (5.32)

Note that the phase of vξ can be factorized out as an overall phase of mν and therefore it can

be absorbed by field redefinition. Accordingly eq. (5.21) implies that the VEVs vξ and vη are

real while vS is real for g3g4(g1g5−g2g4) > 0 and pure imaginary for g3g4(g1g5−g2g4) < 0.

In case of real vS , all the four parameters α, β, γ and ε are real. The VEVs of the

flavon ξ, η and ϕS break the S4 family symmetry to ZST
2SU

2 and break the generalized

CP to Hν
CP =

{
ρr(1), ρr(ST

2SU)
}

in the neutrino sector. Hence the desired symmetry

breaking pattern discussed at the beginning of this section is exactly reproduced here.

The lepton flavor mixing matrix is of the form shown in eq. (5.2), and the predictions

for light neutrino masses and mixing parameters are presented in eqs. (5.4), (5.5) with

tan 2θ = − 12xy
1−2x+10x2−4y2

. Since the BM mixing has to undergo somewhat large corrections

in order to be in accordance with experimental data, tan 2θ should be around 1.2, as shown

in eqs. (5.7), (5.8). This required value of θ can be naturally achieved in our model since

both parameters x and y are of order one. On the other hand, if vS is pure imaginary, α, β

and γ are real while ε is an imaginary parameter. The remnant symmetry in the neutrino

sector would be ZST
2SU

2 ×Hν
CP with Hν

CP =
{
ρr(T

2U), ρr(TST
2)
}

. However, the mixing

pattern enforced by this residual symmetry can not fit the measured values of the mixing

angles. Consequently we shall focus on the case of real vS henceforth.

It is useful to study the constraints on the model imposed by the observed values of

the mass-squared splitting δm2 ≡ m2
2 − m2

1, ∆m2 ≡ m2
3 − (m2

1 + m2
2)/2 and the reactor

mixing angle θ13. As the light neutrino mass matrix effectively depends on three real

(imaginary) parameters x, y and m0, their values can be completely fixed. Given the

best fitting results δm2 = 7.54 × 10−5eV2, ∆m2 = 2.43 × 10−3(−2.38 × 10−3)eV2 and

sin2 θ13 = 0.0234(0.0240) for NO (IO) neutrino mass spectrum from ref. [12], the possible

solutions for x, y and the corresponding predictions for the light neutrino masses, the lepton

mixing angles, CP phases and the effective mass |mee| of neutrinoless double-beta decay are

collected in table 2. Note that there are other solutions predicting θ23 = 30.137◦ which is

out of the 3σ range [12], and consequently they are not included in table 2. It is remarkable

that the absolute values of the light neutrino masses are fixed at leading order in the present

model. We find that the light neutrino mass spectrum can be either NO or IO. Regarding

the sum of the light neutrino masses, the latest Planck result is
∑
mν < 0.23eV at 95%

confidence level [80]. This bound is saturated for all the solutions except the second one

which gives m1 +m2 +m3 ' 0.238eV close to the upper bound. Furthermore, the effective

mass |mee| can take the values 12.650 meV, 33.044 meV, 22.821meV and 48.936meV in

this model. The most stringent upper limit on |mee| from GERDA [81], EXO-200 [82, 83]

and KamLAND-ZEN [84] is |mee| < (120− 250)meV. Hence our predictions for |mee| are
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(x, y) m1 m2 m3 |mee| α21 α31 δCP θ23/
◦ θ12/

◦ mass order

(−0.109,−0.729) 13.535 16.081 51.487 12.650 0

π π

40.392 30.395 NO
(0.855,−0.602) 73.975 74.483 89.106 33.044 π

(−0.057, 0.468) 48.529 49.300 3.569 22.821 π
40.459 30.405 IO

(0.093, 0.606) 50.284 51.028 13.644 48.936 0

Table 2. The predictions for light neutrino masses mi(i = 1, 2, 3), the lepton flavor mixing

parameters and the effective mass |mee| of the neutrinoless double-beta decay, where the unit of

mass is meV.

compatible with present experimental measurements. Our model could be directly tested

by future neutrinoless double-beta decay experiments such as nEXO which is expected to

have the mass sensitivity of 5 ∼ 11 meV [85].

Higher dimensional operators, suppressed by additional powers of the cutoff scale Λ,

can be added to the leading terms studied above. As a result, the LO predictions would

be modified. The subleading corrections to the driving superpotential are,

∆wld =
1

Λ
(ρ0Ψ3

ν)1 +
1

Λ
(ϕ0

TΨ3
ν)1 , ∆wνd =

1

Λ4
(η0Ψ4

l Ψ
2
ν)1 +

1

Λ4
(ϕ0

SΨ4
l Ψ

2
ν)1 . (5.33)

where Ψν = {ξ, η, ϕS}, Ψl = {φ, ϕT } and the couplings in front of each operators are

omitted. Notice that there are generally several independent S4 contractions for each

operator. The new VEV configuration is obtained by imposing the vanishing of the first

derivative of wd + ∆wd with respect to the driving fields ρ0, ϕ0
T , η0 and ϕ0

S . To the first

order in the 1/Λ expansion, it is straightforward to find that the LO vacuum in eq. (5.13)

and eq. (5.20) is modified into

〈ϕT 〉 = (vT , δvT2 , δvT3) , 〈φ〉 = (δvφ1 , δvφ2 , vφ + δvφ3) ,

〈η〉 =
(
vη + δvη1 ,

√
3vη + δvη2

)
, 〈ϕS〉 =

(
vS + δvS1 ,

√
2vS + δvS2 , vS + δvS3

)
. (5.34)

Note that all components of 〈ϕT 〉, 〈φ〉, 〈η〉 and 〈ϕS〉 acquire different corrections so that

their alignments are tilted. Moreover, Since ∆wld and ∆wνd are suppressed by 1/Λ and 1/Λ4

respectively, the shifts δvT2 , δvT3 , δvφ1 , δvφ2 and δvφ3 are of relative order λ2 with respect

to the LO results, while the deviations δvη1 , δvη2 , δvS1 , δvS2 and δvS3 in the neutrino sector

are of relative order λ8.

In the same fashion, the subleading terms of the Yukawa superpotential wν and wl,

which are invariant under the family symmetry S4 × Z3 × Z4, are of the following form:

∆wl =
1

Λ5
τ c(lΨ5

l )1hd +
1

Λ3
µc(lΨ3

ν)1′hd +
1

Λ4
ec(lΨlΨ

3
ν)1hd ,

∆wν =
1

Λ5
(lνcΨ4

l Ψν)1hu +
1

Λ3
(νcνcΨ4

l )1 . (5.35)

The subleading corrections to the lepton mass and mixing matrices are obtained by in-

serting the corrected VEV alignment into the LO operators plus the contribution of the

higher dimensional Yukawa operators evaluated with the unperturbed VEVs. It is easy
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to check that the neutrino mass matrix receives a relative corrections of order λ8. As a

result, the subleading corrections to lepton mixing of the neutrino sector are suppressed

by 〈Φl〉4/Λ4 ∼ λ8 with respect to LO results and thus they can be ignored. In the charged

lepton sector, all non-diagonal entries become non-vanishing after the inclusion of the

subleading contributions. Eventually the corrected charged lepton mass matrix has the

following structure,

ml ∼


me λ2me λ

2me

λ2mµ mµ λ2mµ

λ2mτ λ
2mτ mτ

 . (5.36)

We can estimate the higher order corrections to the LO predictions for the lepton mixing

angles in eq. (5.5) as follows,

δ sin2 θ13 ∼ λ2, δ sin2 θ12 ∼ λ2, δ sin2 θ23 ∼ λ2 . (5.37)

Therefore the LO relation 4 cos2 θ13 sin2 θ12 = 1 is violated by small terms of order λ2 when

the subleading contributions are included. As a consequence, the observed value of θ12

can be achieved although a value of θ12 close to the present 3σ upper bound would be

unnatural in our model.

6 Model predicting one row of BM mixing with S4 and generalized CP

In this section, we shall present an explicit model realization for the mixing pattern in-

vestigated in section 4. The model is also based on S4 family symmetry and generalized

CP, which is supplemented by Z5 × Z6. The flavon fields and driving fields are properly

arranged such that S4oHCP is broken to K
(TST 2,T 2U)
4 ×Hν

CP with Hν
CP = {ρr(1), ρr(T

2U),

ρr(TST
2), ρr(ST

2SU)} in the neutrino sector at leading order, and the flavor symmetry

preserved by the charged lepton mass matrix m†lml is K
(S,U)
4 . As a result, the lepton flavor

mixing is predicted to be of the BM form at leading order. Furthermore, the next-to-

leading-order (NLO) corrections break the remnant symmetry down to ZSU2 ×H l
CP in the

charged lepton sector. Consequently the resulting PMNS matrix has one row of the form(
1/2, 1/2, 1/

√
2
)

which is exactly the third row of the BM mixing pattern, and agreement

with experimental data can be achieved. As we shall show below, the general model inde-

pendent results of section 4 can be naturally reproduced in this model. The involved fields

and their transformation rules under the family symmetry are summarized in table 3. We

start to explore the vacuum structure of the model in the following section.

6.1 Vacuum alignment

The most general flavon superpotential invariant under the symmetry of the model is

wd =Mξξ
0ξ + f1ξ

0(ϕTϕT )1 + f2ρ
0ξ2 + f3ρ

0(ηη)1 + f4ζ
0(ϕTφ)1′ + f5ξ(η

0η)1

+f6(η0(ϕTφ)2)1+f7(ϕ0
T (ϕTφ)3)1+M2

κκ
0+f8κ

0(φφ)1+g1ρ(σ0σ)1+g2(σ0(σσ)2)1

+g3(σ0(ϕSϕS)2)1 + g4ρ(ϕ0
SϕS)1 + g5(ϕ0

S(σϕS)3′)1 + g6(ϕ0
S(ϕSϕS)3′)1 , (6.1)
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Field l νc ec µc τ c hu,d ξ η ϕT φ ρ σ ϕS ξ0 ρ0 ζ0 η0 ϕ0
T κ0 σ0 ϕ0

S

S4 3 3 1′ 1′ 1 1 1 2 3 3′ 1 2 3′ 1 1 1′ 2 3 1 2 3′

Z5 ω3
5 ω2

5 ω2
5 ω2

5 ω2
5 1 1 1 1 1 ω5 ω5 ω5 1 1 1 1 1 1 ω3

5 ω3
5

Z6 1 1 ω4
6 ω5

6 ω4
6 1 ω4

6 ω6 ω2
6 ω3

6 1 1 1 ω2
6 ω4

6 ω6 ω6 ω6 1 1 1

U(1)R 1 1 1 1 1 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

Table 3. The particle contents and their transformation properties under the family symmetry

S4 × Z5 × Z6 and U(1)R, where ω5 = e2iπ/5 and ω6 = e2iπ/6.

where all couplings fi and gi are real due to the imposed generalized CP symmetry. In the

charged lepton sector, the equations for the vanishing of the derivatives of wd with respect

to each component of the driving fields are as follows:

∂wd
∂ξ0

= Mξξ + f1(2ϕT1ϕT3 + ϕ2
T2) = 0,

∂wd
∂ρ0

= f2ξ
2 + f3(η2

1 + η2
2) = 0,

∂wd
∂ζ0

= f4(ϕT1φ3 + ϕT2φ2 + ϕT3φ1) = 0,

∂wd
∂η0

1

= f5ξη1 +
√

3f6(ϕT1φ1 + ϕT3φ3) = 0,

∂wd
∂η0

2

= f5ξη2 + f6(ϕT1φ3 − 2ϕT2φ2 + ϕT3φ1) = 0,

∂wd
∂ϕ0

T1

= f7(ϕT1φ2 + ϕT2φ1) = 0,

∂wd
∂ϕ0

T2

= f7(ϕT1φ1 − ϕT3φ3) = 0,

∂wd
∂ϕ0

T3

= −f7(ϕT2φ3 + ϕT3φ2) = 0,

∂ωld
∂κ0

= M2
κ + f8(2φ1φ3 + φ2

2) = 0 . (6.2)

By straightforward calculations, we find a unique alignment (up to S4 transformations):

〈ξ〉 = vξ, 〈η〉 =

(
1

0

)
vη, 〈ϕT 〉 =


1 + i

0

i− 1

 vT , 〈φ〉 =


i− 1

0

1 + i

 vφ , (6.3)

where the VEVs vξ, vη, vT and vφ are related by

v2
η = −f2

f3
v2
ξ , v2

T =
Mξvξ
4f1

, vφ =
f5vξvη

4
√

3f6vT
, (6.4)

with

v3
ξ = −

3f3f
2
6MξM

2
κ

f1f2f2
5 f8

. (6.5)
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Hence the VEV vξ is fixed to be

vξ = −
(

3f3f
2
6MξM

2
κ

f1f2f2
5 f8

)1/3

,

(
3f3f

2
6MξM

2
κ

f1f2f2
5 f8

)1/3

eiπ/3, or

(
3f3f

2
6MξM

2
κ

f1f2f2
5 f8

)1/3

e5iπ/3 .

(6.6)

In the present paper, we shall concentrate on the first solution, i.e. real vξ. The other

two options of complex vξ would not be considered. Similar to previous cases, the soft

supersymmetry breaking terms for the flavons ξ, η, ϕT and φ, which are compatible with

the imposed symmetry, are of the following form:

Lsoft = m2
ξ |ξ|2 +m2

η|η|2 +m2
ϕT
|ϕT |2 +m2

φ|φ|2 + m̃2
φ (φφ)1

+λ1ξ (ηη)1 + λ2 (η (ϕTφ)2)1 + λ3ξ
3 + h.c. , (6.7)

where the terms in the second line are the so-called trilinear terms. We expect that

these soft breaking terms could discriminate the real vξ solution as the lowest minimum

of the scalar potential. Accordingly the VEVs vη, vT and vφ would be real or pure

imaginary. If vη, vT and vφ are all real parameters, this can be achieved for f2f3 < 0

and f1Mξvξ > 0, the residual CP symmetry preserved by the vacuum of eq. (6.3) is

H l
CP = {ρr(TST 2), ρr(TST

2U)}. If vη is real and vT , vφ are pure imaginary, this can

be realized for f2f3 < 0 and f1Mξvξ < 0, another two of the 24 generalized CP symmetries

are preserved with H l
CP = {ρr(T 2ST ), ρr(T

2STU)}. On the other hand, the generalized

CP symmetry H l
CP will be completely broken for imaginary vη no matter vT , vφ are real

or imaginary. It is easy to check that the determined vacuum in eq. (6.3) breaks S4 fam-

ily symmetry to ZSU2 subgroup. Furthermore, since the different VEVs are related via

dimensionless couplings in eq. (6.4), these VEVs are expected to have the same order of

magnitude which we choose to be λ2Λ.

In the neutrino sector, the vacuum is determined by F−term conditions associated

with the driving fields σ0 and ϕ0
S ,

∂wd
∂σ0

1

= g1ρσ1 + g2(σ2
2 − σ2

1) + 2g3(ϕ2
S2
− ϕS1ϕS3) = 0,

∂wd
∂σ0

2

= g1ρσ2 + 2g2σ1σ2 +
√

3g3(ϕ2
S1

+ ϕ2
S3

) = 0,

∂wd
∂ϕ0

S1

= g4ρϕS3 + g5(
√

3σ2ϕS1 − σ1ϕS3) + 2g6ϕS1ϕS2 = 0,

∂wd
∂ϕ0

S2

= g4ρϕS2 + 2g5σ1ϕS2 + g6(ϕ2
S1
− ϕ2

S3
) = 0,

∂wd
∂ϕ0

S3

= g4ρϕS1 + g5(
√

3σ2ϕS3 − σ1ϕS1)− 2g6ϕS2ϕS3 = 0 . (6.8)

We find two classes of solutions for the vacuum: the first class comprises the vacua with

vanishing VEV of one of ρ, σ and ϕS , this type of solutions can be eliminated by adding

soft breaking mass terms for the scalar fields with m2
ρ,σ,ϕS

< 0, and all flavons acquire
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non-zero VEVs for the second class with

〈ρ〉 = vρ, 〈σ〉 =

(
1
√

3

)
vσ, 〈ϕS〉 =


1

0

−1

 vS , (6.9)

where the VEVs obey the relations

vσ =
g4vρ
4g5

, vS =
vρ
4g5

√
−g4(2g1g5 + g2g4)

g3
, (6.10)

with vρ undetermined. The vacuum alignment in eq. (6.9) is invariant under the action of

both the TST 2 and T 2U elements of S4, consequently it breaks the S4 family symmetry

to Klein four K
(TST 2,T 2U)
4 subgroup. Furthermore, since all couplings gi are real, then

eq. (6.10) implies that vσ and vρ have the same phase up to π, and the phase difference

between vρ and vS is 0, π or ±π
2 determined by the sign of g3g4(2g1g5 + g2g4). Similar to

previous model, we expect a common order of magnitude for all the VEVs which is taken

to be λ2Λ.

6.2 Leading order results

The charged lepton masses are described by the following superpotential

wl =
yτ
Λ
τ c(lϕT )1hd +

yµ
Λ2
µcξ(lφ)1′hd + . . . , (6.11)

where dots represent higher dimensional operators which we will consider later. After the

electroweak and flavor symmetries breaking by the VEVs shown in eq. (6.3), we obtain a

charged lepton mass matrix as follows

ml =


0 0 0

(1+i)yµvξvφ
Λ2 0

(i−1)yµvξvφ
Λ2

(i−1)yτvT
Λ 0 (1+i)yτvT

Λ

 vd . (6.12)

As a consequence the unitary matrix Ul, which corresponds to the transformation of the

charged leptons used to diagonalize m†lml, is of the following form:

Ul =
1√
2


0 e

iπ
4 e−

iπ
4

−
√

2 0 0

0 e−
iπ
4 e

iπ
4

 . (6.13)

The charged lepton masses are given by,

m2
e = 0, m2

µ = 4y2
µ

|vξvφ|2

Λ4
v2
d, m2

τ = 4y2
τ

|vT |2

Λ2
v2
d . (6.14)

Note that the correct mass hierarchy between muon and tau is generated for vξ/Λ ∼
vT /Λ ∼ vφ/Λ ∼ λ2. The electron is massless at LO and its mass is generated by higher
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dimensional operators, which will be studied in section 6.3. From the view of symmetry

and its breaking, although the VEVs of ξ, η, ϕT and φ leave ZSU2 invariant, the remnant

flavor symmetry of m†lml is K
(S,U)
4 . In other words, we have ρ†3(S)m†lmlρ3(S) = m†lml

and ρ†3(U)m†lmlρ3(U) = m†lml. The enhancement of the remnant flavor symmetry from

ZSU2 to K
(S,U)
4 is because that |vT |2 and |vφ|2 instead of vT and vφ are involved in m†lml.

Moreover, it is straightforward to check that the residual CP symmetry preserved by the

combination m†lml is H l
CP =

{
ρr(TST

2), ρr(TST
2U), ρr(T

2ST ), ρr(T
2STU)

}
.

Now we come to the neutrino sector. The LO superpotential of for the neutrino masses

is

wν = y(νcl)1hu + y1ρ(νcνc)1 + y2((νcνc)2σ)1 + y3((νcνc)3′ϕS)1 , (6.15)

where the first term is Dirac mass term and the last three are Majorana mass terms. The

generalized CP symmetry constrains all the couplings to be real. The flavons ρ, σ and

ϕS get VEVs shown in eq. (6.9), and then the Dirac and right-handed Majorana neutrino

mass matrices read as

mD = yvu


0 0 1

0 1 0

1 0 0

 , mM = y1vρ


0 0 1

0 1 0

1 0 0

+ y2vσ


3 0 −1

0 2 0

−1 0 3

+ y3vS


0 1 0

1 0 1

0 1 0

 .

(6.16)

The light neutrino mass matrix is given by the seesaw relation mν = −mT
Dm

−1
M mD, and

we find mν is of the same form as that in eq. (4.5) with

a =

[
−3y2

1v
2
ρ + 2

(
6y2

2v
2
σ + y2

3v
2
S

)]
y2v2

u

3(y1vρ − 4y2vσ)
[
(y1vρ + 2y2vσ)2 − 2y2

3v
2
S

] ,
b =

[
3y2vσ(y1vρ + 2y2vσ)− y2

3v
2
S

]
y2v2

u

3(y1vρ − 4y2vσ)
[
(y1vρ + 2y2vσ)2 − 2y2

3v
2
S

] ,
c =

y3y
2vSv

2
u

(y1vρ + 2y2vσ)2 − 2y2
3v

2
S

. (6.17)

Hence mν is exactly diagonalized by the unitary transformation Uν shown in eq. (4.7),

and the resulting mass eigenvalues are a + 2b −
√

2 c, a + 2b +
√

2 c and −a + 4b. As

shown in eq. (6.15), here the VEVs of ρ, σ and ϕS breaks both S4 family symmetry

and generalized CP in the neutrino sector. From the vacuum alignment of section 6.1,

we know that the remnant family symmetry is K
(TST 2,T 2U)
4 . Since the phase of vρ can

be factored out from mν , vρ can be taken to be real. As a consequence, vσ is real and

vS can be real or purely imaginary. Since imaginary vS leads to a partially degenerate

neutrino mass spectrum, vS will be considered as real hereafter, and this scenario can

be achieved for g3g4(2g1g5 + g2g4) < 0. The residual CP symmetry would be Hν
CP =

{ρr(1), ρr(T
2U), ρr(TST

2), ρr(ST
2SU)} which has been discussed in section 4. Then all the

three parameters a, b and c are real. The phenomenological constraints of δm2 ≡ m2
2−m2

1

and ∆m2 ≡ m2
3− (m2

1 +m2
2)/2 can be easily satisfied by properly choosing the values of a,

b and c. Either NO or IO neutrino mass spectrum is allowed.
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In the end, combining the unitary transformation Ul and Uν from the charged lepton

and the neutrino sectors, we obtain the lepton mixing matrix

UPMNS = U †l Uν =
1

2


√

2 −
√

2 0

1 1
√

2 i

1 1 −
√

2 i

 . (6.18)

Therefore the lepton flavor mixing is the BM pattern at LO. In the following section, we

shall analyze the higher order corrections needed to modify the BM mixing in order to

obtain an acceptable lepton mixing pattern.

6.3 Next-to-leading-order corrections

In brief, at leading order the model gives rise to a vanishing electron mass (me = 0) and

the BM mixing pattern leading to θ13 = 0◦ and θ12 = θ23 = 45◦ which obviously don’t

match with the experimental measurements. Therefore the next-to-leading-order (NLO)

corrections are crucial to achieve agreement with the present data. We will demonstrate

in the following that a non-zero electron mass and realistic mass hierarchies among the

charged lepton are obtained after the NLO contributions are included. In addition, the LO

remnant symmetry K
(S,U)
4 of m†ml is further broken down to ZSU2 such that the symmetry

breaking patterns discussed in section 4 are realized and the resulting PMNS matrix is of

the form of eq. (4.15). We first start with the corrections to the flavon superpotential wd
in eq. (6.1) which determines the vacuum alignment. The symmetry allowed NLO terms

including the driving fields ξ0, ρ0, ζ0, η0, ϕ0
T and κ0 are

∆wld = f9ξ
0ξ(φφ)1/Λ + f10ρ

0ξ(ϕTϕT )1/Λ + f11ρ
0(ϕT (φφ)3)1/Λ + f12ζ

0(η(ϕTϕT )2)1′/Λ

+f13(η0η)1(ϕTϕT )1/Λ + f14((η0η)2(ϕTϕT )2)1/Λ + f15((ϕ0
T η)3(ηφ)3)1/Λ

+f16((ϕ0
T η)3′(ηφ)3′)1/Λ + f17((ϕ0

T η)3(ϕTϕT )3)1/Λ + f18((ϕ0
T η)3′(ϕTϕT )3′)1/Λ

+f19κ
0ξ3/Λ+f20κ

0ξ(ηη)1/Λ+f21κ
0(η(ϕTφ)2)1/Λ+f22κ

0(ϕT (ϕTϕT )3)1/Λ .(6.19)

We see that they are suppressed by one of power of 1/Λ with respect to the LO terms

in eq. (6.1). The new vacuum configuration is obtained by searching for the zeros of the

F−terms of wd + ∆wld with respect to the driving fields ξ0, ρ0, ζ0, η0, ϕ0
T and κ0. To

the first order in 1/Λ expansion, the LO vacuum alignment of the charged lepton sector is

modified into

〈ξ〉 = vξ + δvξ, 〈η〉 =

(
vη + δvη1

δvη2

)
,

〈ϕT 〉 =


(1 + i)(vT + δvT1)

δvT2

(i− 1)(vT + δvT3)

 , 〈φ〉 =


(i− 1)(vφ + δvφ1)

−iδvφ2
(1 + i)(vφ + δvφ3)

 . (6.20)

The shifts δvξ, δvηi , δvTi and δvφi are solved to be

δvξ = X
Mξvξ

Λ
, δvη1 =

(
X − f10

2f1f2

)
Mξvη

Λ
, (6.21)
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δvη2 = δvT2 = 0, δvT1 = δvT3 =

(
X − f9M

2
κ

2f8M2
ξ

)
MξvT

2Λ
,

δvφ1 = δvφ3 =
3f6 [f2(f6f20 − f5f21)− f3f6f19]

2f1f2f2
5 f8

Mξvφ
Λ

, δvφ2 = −
√

3(f15 + f16)v2
ηvφ

f7vTΛ
,

where X is a real parameter of order one with

X =

[
f2f5

(
2f8(f13 + f14)− 3f6f21

)
+ f2

5 f8f10 + 3f2
6 (f2f20 − f3f19)

]
M2
ξ − f1f2f

2
5 f9M

2
κ

3f1f2f2
5 f8M2

ξ

.

(6.22)

Notice that the shifts of the vacuum are suppressed by λ2 compared with the LO VEVs,

and the structures of the LO vacuum of the flavons η and ϕT are unchanged by the NLO

corrections. Because the NLO driving superpotental ∆wld only contain the charged lepton

flavon fields ξ, η, ϕT and φ, hence their VEVs still preserve the ZSU2 subgroup even at

NLO. Indeed the vacuum in eq. (6.20) is the most general form which is compatible with

the residual family symmetry ZSU2 in the charged lepton sector.

In the same way, the subleading corrections to the flavon superpotential of ρ, σ and

ϕS are of the form

∆wνd = (σ0ξϕTΨ2
ν)1/Λ

2 + (σ0φ2Ψ2
ν)1/Λ

2 + (ϕ0
SξϕTΨ2

ν)1/Λ
2 + (ϕ0

Sφ
2Ψ2

ν)1/Λ
2 . (6.23)

where Ψν = {ρ, σ, ϕS} denotes the neutrino flavon fields, and the real coupling constant in

front of each term has been omitted. The resulting contributions to the F−terms of the

driving fields σ0 and ϕ0
S are suppressed by 〈ξ〉〈ϕT 〉/Λ2 ∼ 〈φ〉2/Λ ∼ λ4 with respect to the

LO terms in eq. (6.1). Hence they induce shifts in the VEVs of ρ, σ and ϕS at relative

order λ4. After some straightforward algebra, the new VEVs can be written as

〈ρ〉 = vρ, 〈σ〉 =

(
1 + ε1λ

4

√
3 + ε2λ

4

)
vσ , 〈ϕS〉 =


1 + ε3λ

4

ε4λ
4

−1 + ε5λ
4

 vS , (6.24)

where vρ remains undetermined, and the coefficients εi(i = 1, 2, . . . 5) are unspecified con-

stants with absolute value of order one. In the following we study the subleading corrections

to the LO mass matrices from both the modified vacuum and higher dimensional operators

in the Yukawa superpotential wl and wν .

In the neutrino sector, the subleading operators are obtained by adding to each term

of wν the factor of ξϕT or φ2 in all possible ways, i.e.

∆wν = (νclξϕT )1hu/Λ
2 + (νclφ2)1hu/Λ

2 + (νcνcξϕTΨν)1/Λ
2 + (νcνcφ2Ψν)1/Λ

2 . (6.25)

In addition to these corrections, we have to consider the ones from wν in eq. (6.15) with

the deviations of the VEVs at NLO, as shown in eq. (6.24). Eventually we find that the

neutrino mass matrix is corrected by terms of relative order λ4 in every entry. As a result,

the lepton mixing parameters acquire corrections of order λ4 which can be safely neglected.
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The NLO operators contributing to the charged lepton masses are given by

∆wl = ye1e
cξ(l(ηφ)3′)1′hd/Λ

3 + ye2e
cξ(l(ϕTϕT )3′)1′hd/Λ

3 + ye3e
c((lϕT )2(φφ)2)1′hd/Λ

3

+ye4e
c((lϕT )3(φφ)3′)1′hd/Λ

3 + ye5e
c((lϕT )3′(φφ)3)1′hd/Λ

3 + yµ1µ
cξ(l(ηϕT )3′)1′hd/Λ

3

+yµ2µ
c((lη)3(φφ)3′)1′hd/Λ

3 + yµ3µ
c((lη)3′(φφ)3)1′hd/Λ

3 + yµ4µ
c(lφ)1′(ϕTϕT )1hd/Λ

3

+yµ5µ
c((lφ)2(ϕTϕT )2)1′hd/Λ

3 + yµ6µ
c((lφ)3(ϕTϕT )3′)1′hd/Λ

3

+yµ7µ
c((lφ)3′(ϕTϕT )3)1′hd/Λ

3 + yτ1τ
cξ(l(ηφ)3)1hd/Λ

3 + yτ2τ
cξ(l(ϕTϕT )3)1hd/Λ

3

+yτ3τ
c(lϕT )1(φφ)1hd/Λ

3 + yτ4τ
c((lϕT )2(φφ)2)1hd/Λ

3

+yτ5τ
c((lϕT )3(φφ)3)1hd/Λ

3 + yτ6τ
c((lϕT )3′(φφ)3′)1hd/Λ

3 . (6.26)

The charged lepton mass matrix is obtained by inserting the shifted vacuum alignment of

eq. (6.20) into the LO operators plus the contribution of these higher dimensional operators

evaluated with the LO VEVs of eq. (6.3). We find that the charged lepton mass matrix

including NLO corrections takes the following form

ml =


−(1 + i)a1vT v

2
φ/Λ

3 4iye2vξv
2
T /Λ

3 (1− i)a1vT v
2
φ/Λ

3

(1 + i)yµvξvφ/Λ
2 − ib1vξvφv2

η/(Λ
3vT ) (i− 1)yµvξvφ/Λ

2

(i− 1)yτvT /Λ 0 (1 + i)yτvT /Λ

 vd , (6.27)

where yµ and yτ have been redefined to absorb the NLO contributions, and both a1 and

b1 are real parameters with

a1 = 4(
√

3 ye3 + ye4) + ye1
vξvη
vT vφ

= 4(
√

3 ye3 + ye4) + 4
√

3ye1
f6

f5
,

b1 =
vT

vξvφv2
η

(
yµvξδvφ2Λ + 8yµ2vηv

2
φ

)
=

2yµ2f5√
3f6

−
√

3yµ(f15 + f16)

f7
. (6.28)

In order to diagonalize the charged lepton mass matrix m†lml, it is helpful to apply the LO

unitary transformation Ul in eq. (6.13) firstly, i.e.

U †l m
†
lmlUl =


16y2

e2
|vξ|2|vT |4

Λ6 + b21
|vξ|2|vφ|2|vη |4
|vT |2Λ6 2b1yµ

|vξ|2|vφ|2v∗2η
v∗TΛ5 +O(λ12) 0

2b1yµ
|vξ|2|vφ|2v2η

vTΛ5 +O(λ12) 4y2
µ
|vξ|2|vφ|2

Λ4 +O(λ12) 0

0 0 4y2
τ
|vT |2
Λ2

 v2
d ,

(6.29)

which can be easily diagonalized by a rotation in the (1, 2) sector. From eq. (6.4)

and eq. (6.6), we see that v2
η is real since vξ is chosen to be real, while the VEV vT

can be real or pure imaginary depending on the sign of the product f2f3f8. In case

of f2f3f8 < 0, vT is real. The combination m†lml is invariant under ZSU2 × H l
CP with

H l
CP =

{
ρr(TST

2), ρr(TST
2U)

}
. As a consequence, the scenario analyzed in section 4 is

realized. Then the lepton mixing matrix is of the form

UPMNS =
1

2


sin θ +

√
2 cos θ sin θ −

√
2 cos θ i

√
2 sin θ

cos θ −
√

2 sin θ cos θ +
√

2 sin θ i
√

2 cos θ

1 1 − i
√

2

 , (6.30)
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where the parameter θ is

tan 2θ ' − b1
yµ

v2
η

vTΛ
. (6.31)

The predictions for lepton mixing parameters are given in eq. (4.16). In this case both

Dirac CP phase and Majorana CP phases are trivial, and very good agreement with the

experimental data can be achieved for appropriate values of the parameter θ, as shown

in eq. (4.18) and eq. (4.19). In order to achieve the correct size of θ ∼ λ, an accidental

enhancement of the combination b1
yµ

=
2yµ2f5√

3yµf6
−
√

3(f15+f16)
f7

of order 1/λ is required. If the

two terms
2yµ2f5√

3yµf6
and

√
3(f15+f16)

f7
are of opposite sign, then the two factors sum up and the

required values can be easily explained. The charged lepton masses are determined to be

me ' 4

∣∣∣∣ye2 vξv2
T

Λ3

∣∣∣∣ vd, mµ ' 2
∣∣∣yµ vξvφ

Λ2

∣∣∣ vd, mτ ' 2
∣∣∣yτ vT

Λ

∣∣∣ vd . (6.32)

The electron mass is generated at NLO level, and realistic charged lepton mass hierarchy

me : mµ : mτ ' λ4 : λ2 : 1 is produced.

For the mixing pattern shown in eq. (6.30), the atmospheric mixing angle θ23 fulfills

sin2 θ23 =
1 + cos 2θ

3 + cos 2θ
=

1

1 + sec2 θ
≤ 1

2
. (6.33)

As a result, θ23 deviates from maximal mixing and it lies in the first octant in this model.

Since the octant of θ23 is not known so far, we would like to minimally modify this model

to accommodate the situation of θ23 > 45◦. The family symmetry is still S4×Z5×Z6. For

the assignment of the fields, only the right-handed charged leptons µc and τ c are changed

to be in
(
1, ω2

5, ω
3
6

)
and

(
1′, ω2

5, ω
3
6

)
under S4 × Z5 × Z6. Because both flavon fields and

driving fields are kept intact, the vacuum is unchanged. Then the LO vacuum configuration

is still given in eqs. (6.3) and (6.9), and the NLO VEVs are given by eqs. (6.20) and (6.24).

After including the subleading contributions in the same manner described in previous

paragraphs, we find that the PMNS matrix is related to the corresponding one of previous

model by exchanging its second and third rows. As a consequence, the atmospheric angle

θ23 is in the second octant.

7 Summary and conclusions

Although the BM mixing pattern has already been ruled out by experiment data, the

scheme of keeping one column or one row of BM mixing is viable. We perform a com-

prehensive analysis of how to naturally realize this scheme from S4 family symmetry and

generalized CP symmetry in this paper. Furthermore, two models with S4 family symmetry

and generalized CP are constructed to implement the model independent results enforced

by remnant symmetry.

We firstly study the deviation from BM mixing which originates from a rotation be-

tween two generations of neutrinos or charged leptons. The phenomenological predictions

for the lepton mixing angles and Dirac CP phase are discussed in detail. In this approach,

all mixing parameters depend on two real parameters θ and δ while the Majorana CP
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phases are indeterminate. For an additional rotation of 1-2 or 1-3 generations of charged

leptons in the BM basis, good agreement with experiment data can be achieved, and the

Dirac CP phase δCP is constrained to be in the range of ± [2.52, π] or [−0.62, 0.62] respec-

tively, after the present 3σ bounds of mixing angles from global data analysis are taken into

account. For rotations in the neutrino sector, the measured values of the lepton mixing

angles can not be accommodated. With the help of independent permutations of rows and

columns of the PMNS matrix, interesting mixing patterns shown in eq. (3.15) is found.

The Dirac CP phase is in the range of ± [2.04, π] or [−1.10, 1.10]. Note that δCP can vary

within a quite wide range.

Since the BM mixing can be derived if we impose S4 family symmetry and sponta-

neously break it down to Gν = K
(TST 2,T 2U)
4 in the neutrino sector and to Gl = ZTST

2U
4

or Gl = K
(S,U)
4 in the charged lepton sector. It is easy to see that one column of the BM

matrix would be retained if we degrade Gν from K4 to Z2 subgroup, and one row of the

BM mixing would be preserved once Gl is degraded from K4 (or Z4) to Z2. In order to have

definite predictions for the leptonic CP violating phases, we extend the S4 family symmetry

to include generalized CP symmetry. The phenomenological implications of the symmetry

breaking of S4 o HCP into ZST
2SU

2 × Hν
CP in the neutrino sector and ZTST

2U
4 o H l

CP in

the charged lepton sector have been discussed by Feruglio et al. [30]. The resulting PMNS

matrix is found to have one column of the form
(
1/2, 1/

√
2, 1/2

)T
up to permutation of

elements, and the Dirac CP phase δCP as well as the Majorana CP phases are predicted

to be conserved to account for the measured values of the mixing angles. In this work, the

predictions for 0ν2β decay are studied. The effective mass |mee| is predicted to be around

0.049 eV and 0.023 eV for inverted ordering spectrum. Hence this mixing pattern can be

tested by future 0ν2β experiments.

It is usually assumed the remnant symmetry in the neutrino sector is Z2×CP in the

context of family symmetry combined with generalized CP. In this work, we also consider

another situation that Z2×CP is preserved in the charged lepton sector instead of in the

neutrino sector. The lepton flavor mixing arising from the remnant symmetryK
(TST 2,T 2U)
4 ×

Hν
CP in the neutrino sector and ZSU2 ×H l

CP in the charged lepton sector is explored in a

model independent way. One row of PMNS matrix is determined to be
(
1/2, 1/2,−i/

√
2
)
,

and both Dirac CP and Majorana CP are fully conserved as well to fit the data on mixing

angles. In this case, The effective mass |mee| is determined to be around the 3σ upper or

lower limit for inverted hierarchy. This prediction can also be tested by future 0ν2β exper-

iments. Furthermore, our above prediction for δCP can be directly tested by forthcoming

long baseline neutrino oscillation experiments LBNE, LBNO and Hyper-Kamiokande. If

signal of leptonic CP violation is discovered, our proposal would be ruled out.

Inspired by the above fascinating results, we construct a model based on S4oHCP which

is spontaneously broken down to ZST
2SU

2 ×Hν
CP in the neutrino sector and ZTST

2U
4 oH l

CP

in the charged lepton sector by the VEVs of flavons. The PMNS matrix is really found

to be of the form predicted in ref. [30]. At leading order, the light neutrino mass matrix

effectively contains only three real parameters which can be fixed by the measured values of

the mass-squared difference δm2 ≡ m2
2−m2

1 and ∆m2 ≡ m2
3− (m2

1 +m2
2)/2 and the reactor
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angle θ13. As a consequence, the light neutrino masses are completely determined. The

predictions for the effective mass |mee| are safely below the present upper limit, and yet they

are within the future sensitivity of planned neutrinoless double-beta decay experiments.

Although θ12 is slightly smaller than its 3σ lower bound at leading order, agreement with

experimental data can be achieved after subleading corrections are included.

Moreover, we present another model and its variant where the BM mixing is realized at

LO. After the NLO corrections are included, the charged lepton mass hierarchy is obtained

and the BM mixing is corrected by the effect of charged lepton diagonalization. One row of

PMNS matrix is determined to be
(
1/2, 1/2,−i/

√
2
)
, and all the general model independent

predictions for lepton flavor mixing in section 4 are naturally reproduced. The Dirac CP

phase δCP is trivial 0 or π for f2f3f8 < 0.

In the past years, family symmetry and generalized CP symmetry has been shown

to be a very powerful and promising framework to predict lepton mixing angles and CP

violating phases. It is intriguing to extend this approach to the quark sector to understand

the established CP violation at B−factory and strong CP problem.
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A Group theory of S4 and Clebsch-Gordan coefficients

S4 is a symmetric group of degree four, and it is a good candidate for a family symmetry to

realize the tri-bimaximal and BM mixing. Hence S4 has been widely studied in the litera-

ture. For the sake of being self-contained, in the following we shall present our convention

for the S4 group, the working basis and the associated Clebsch-Gordan coefficients. S4

group can be generated by three generators S, T and U obeying the relations [44]

S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1 . (A.1)

Note that the chosen generators S̃ and T̃ of ref. [63] are related to our generators S, T and

U via S̃ = ST 2SU and T̃ = T 2STU or vice versa S = T̃ 2, T = T̃ S̃, U = S̃T̃ 2S̃T̃ . It is

straightforward to check that the multiplication rules T̃ 4 = S̃2 =
(
S̃T̃
)3

=
(
T̃ S̃
)3

= 1 are

satisfied. The 24 group elements can be divided into the five conjugacy classes as follows:

1C1 = {1} ,
3C2 =

{
S, TST 2, T 2ST

}
,

6C ′2 =
{
U, TU, SU, T 2U, STSU, ST 2SU

}
,

8C3 =
{
T, ST, TS, STS, T 2, ST 2, T 2S, ST 2S

}
,

6C4 =
{
STU, TSU, T 2SU, ST 2U, TST 2U, T 2STU

}
, (A.2)

where kCn denotes a conjugacy class with k elements and the subscript n is the order of

its elements. Since the number of conjugacy class is equal to the number of irreducible
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S T U

1, 1′ 1 1 ±1

2

(
1 0

0 1

)
1
2

(
−1

√
3

−
√

3 − 1

) (
1 0

0 − 1

)

3, 3′


−1 0 0

0 1 0

0 0 −1

 1
2


i −
√

2 i − i
√

2 0
√

2

i
√

2 i −i

 ∓


0 0 −i
0 1 0

i 0 0


Table 4. The representation matrices of the generators S, T and U for the five irreducible repre-

sentations of S4 in our working basis.

representation, S4 has five irreducible representations: two singlet representations 1 and

1′, one doublet representation 2 and two triplet representations 3 and 3′. Note that both

3 and 3′ are faithful representations of S4. Our choice for the representation matrices of

the generators S, T and U are listed in table 4. For the three-dimensional representation

3, the representation matrices for the elements are as follows:

1C1 : 1=


1 0 0

0 1 0

0 0 1

 ,

3C2 : S=


−1 0 0

0 1 0

0 0 −1

 , TST 2 =


0 0 −1

0 −1 0

−1 0 0

 , T 2ST =


0 0 1

0 −1 0

1 0 0

 ,

6C′2 : U=


0 0 i

0 −1 0

−i 0 0

 , TU=
1

2


−1

√
2 i −1

−
√

2 i 0
√

2 i

−1 −
√

2 i −1

 , SU =


0 0 −i
0 −1 0

i 0 0

 ,

T 2U=
1

2


−1 −

√
2 1

−
√

2 0 −
√

2

1 −
√

2 −1

 , STSU=
1

2


−1 −

√
2 i −1

√
2 i 0 −

√
2 i

−1
√

2 i −1

 ,

ST 2SU=
1

2


−1
√

2 1
√

2 0
√

2

1
√

2 −1

 ,

8C3 : T =
1

2


i −

√
2 i − i

√
2 0

√
2

i
√

2 i −i

 , ST =
1

2


−i

√
2 i i

√
2 0

√
2

−i −
√

2 i i

 , TS =
1

2


−i −

√
2 i i

−
√

2 0 −
√

2

−i
√

2 i i

 ,

STS=
1

2


i

√
2 i −i

−
√

2 0 −
√

2

i −
√

2 i −i

 , T 2 =
1

2


−i
√

2 −i
√

2 i 0 −
√

2 i

i
√

2 i

 , ST 2 =
1

2


i −

√
2 i

√
2 i 0 −

√
2 i

−i −
√

2 −i

 ,
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χ1 χ1′ χ2 χ3 χ3′ Example

1C1 1 1 2 3 3 1

3C2 1 1 2 −1 −1 S

6C ′2 1 −1 0 −1 1 U

8C3 1 1 −1 0 0 T

6C4 1 −1 0 1 −1 STU

Table 5. Character table of S4. We give an example of the elements for each class in the last

column.

T 2S=
1

2


i
√

2 i

−
√

2 i 0
√

2 i

−i
√

2 −i

 , ST 2S=
1

2


−i −

√
2 −i

−
√

2 i 0
√

2 i

i −
√

2 i

 ,

6C4 : STU=
1

2


1 −

√
2 i 1

−
√

2 i 0
√

2 i

1
√

2 i 1

 , TSU=
1

2


1
√

2 i 1
√

2 i 0 −
√

2 i

1 −
√

2 i 1

 ,

T 2SU=
1

2


1 −

√
2 −1

√
2 0

√
2

−1 −
√

2 1

 , ST 2U=
1

2


1
√

2 −1

−
√

2 0 −
√

2

−1
√

2 1

 , TST 2U =


i 0 0

0 1 0

0 0 − i

 ,

T 2STU=


−i 0 0

0 1 0

0 0 i

 .

For the 3′ representation, the matrices representing the elements of 1C1, 3C2 and 8C3 are

the same as those listed above for the representation 3, while they are the opposite for 6C ′2
and 6C4. The reason is that the generator U changes its sign in 3 and 3′ representations,

the elements in 1C1, 3C2 and 8C3 contain an even number of U , while those in 6C ′2 and

6C4 contain an odd number of U . Character of an element is the trace of its representation

matrix. The character table of S4 group can be easily obtained, as shown in table 5. The

Kronecker products between various irreducible representations follow immediately:

1⊗R = R⊗ 1 = R, 1′ ⊗ 1′ = 1, 1′ ⊗ 2 = 2, 1′ ⊗ 3 = 3′, 1′ ⊗ 3′ = 3,

2⊗ 2 = 1⊕ 1′ ⊕ 2, 2⊗ 3 = 2⊗ 3′ = 3⊕ 3′,

3⊗ 3 = 3′ ⊗ 3′ = 1⊕ 2⊕ 3⊕ 3′, 3⊗ 3′ = 1′ ⊕ 2⊕ 3⊕ 3′ . (A.3)

where R denotes any S4 irreducible representation. In the following, we shall present the

Clebsch-Gordan (CG) coefficients in our basis. we use αi to indicate the elements of the

first representation of the product and βi to indicate those of the second representation.

– 39 –



J
H
E
P
0
8
(
2
0
1
5
)
0
1
7

We first report the CG coefficients associated with the singlet representation 1′:

1′ ⊗ 1′ = 1 ∼ αβ

1′ ⊗ 2 = 2 ∼

(
αβ2

−αβ1

)

1′ ⊗ 3 = 3′ ∼


αβ1

αβ2

αβ3



1′ ⊗ 3′ = 3 ∼


αβ1

αβ2

αβ3



(A.4)

The CG coefficients for the products involving the doublet representation 2 are the following

ones:

2⊗ 2 = 1⊕ 1′ ⊕ 2 with



1 ∼ α1β1 + α2β2

1′ ∼ α1β2 − α2β1

2 ∼

(
α2β2 − α1β1

α1β2 + α2β1

)

2⊗ 3 = 3⊕ 3′ with



3 ∼


√

3α2β3 − α1β1

2α1β2√
3α2β1 − α1β3



3′ ∼


√

3α1β3 + α2β1

−2α2β2√
3α1β1 + α2β3



2⊗ 3′ = 3⊕ 3′ with



3 ∼


√

3α1β3 + α2β1

−2α2β2√
3α1β1 + α2β3



3′ ∼


√

3α2β3 − α1β1

2α1β2√
3α2β1 − α1β3



(A.5)
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Finally the CG coefficients involving the three-dimensional representations 3 and 3′ are as

follows:

3⊗ 3 = 3′ ⊗ 3′ = 1⊕ 2⊕ 3⊕ 3′ with



1 ∼ α1β3 + α2β2 + α3β1

2 ∼

(
2α2β2−α1β3−α3β1√

3(α1β1 + α3β3)

)

3 ∼


α1β2 − α2β1

α3β1 − α1β3

α2β3 − α3β2



3′ ∼


−α2β3 − α3β2

α1β1 − α3β3

α1β2 + α2β1



3⊗ 3′ = 1′ ⊕ 2⊕ 3⊕ 3′ with



1′ ∼ α1β3 + α2β2 + α3β1

2 ∼

( √
3(α1β1 + α3β3)

α1β3+α3β1−2α2β2

)

3 ∼


−α2β3 − α3β2

α1β1 − α3β3

α1β2 + α2β1



3′ ∼


α1β2 − α2β1

α3β1 − α1β3

α2β3 − α3β2


(A.6)

Note that all the CG coefficients are real. The group structure of S4 has been studied

comprehensively in ref. [86–90]. It has nine Z2 subgroups, four Z3 subgroups, three Z4

subgroups, four K4
∼= Z2 × Z2 subgroups, four S3 subgroups, three D4 subgroups3 and

the alternating group A4 as a subgroup. In the present work, we focus on the Abelian

subgroups as the remnant symmetry, which can be expressed in terms of the generators S,

T and U as follows:

3Here D4 is the symmetry group of the square, and its order is eight. Its mathematical definition is

D4 = 〈r, s|r4 = s2 = (rs)2 = 1〉.
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• Z2 subgroups

ZST
2SU

2 = {1, ST 2SU}, ZTU2 = {1, TU}, ZSTSU2 = {1, STSU},

ZT
2U

2 = {1, T 2U}, ZU2 = {1, U}, ZSU2 = {1, SU},

ZS2 = {1, S}, ZT
2ST

2 = {1, T 2ST}, ZTST
2

2 = {1, TST 2} .

(A.7)

The former six Z2 subgroups are related to each other by group conjugation, and the

latter three subgroups are conjugate to each other as well.

• Z3 subgroups

ZST3 = {1, ST, T 2S}, ZT3 = {1, T, T 2},
ZSTS3 = {1, STS, ST 2S}, ZTS3 = {1, TS, ST 2} .

(A.8)

All the above Z3 subgroups are conjugate to each other.

• Z4 subgroups

ZTST
2U

4 = {1, TST 2U, S, T 2STU}, ZST
2U

4 = {1, ST 2U, TST 2, T 2SU},
ZTSU4 = {1, TSU, T 2ST, STU} , (A.9)

which are related with each under group conjugation.

• K4 subgroups

K
(S,TST 2)
4 ≡ ZS2 × ZTST

2

2 = {1, S, TST 2, T 2ST},

K
(S,U)
4 ≡ ZS2 × ZU2 = {1, S, U, SU},

K
(TST 2,T 2U)
4 ≡ ZTST 2

2 × ZT 2U
2 ≡ {1, TST 2, T 2U, ST 2SU},

K
(T 2ST,TU)
4 ≡ ZT 2ST

2 × ZTU2 = {1, T 2ST, TU, STSU} ,

(A.10)

where K
(S,TST 2)
4 is a normal subgroup of S4, and the other three K4 subgroups are

conjugate to each other.
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