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Abstract This paper deals, for the first time, with catastrophic fault diagnosis of
nonlinear analog circuits containing bipolar and MOS transistors having multiple
operating points (DC solutions). The faults are cuts of some connecting paths and
short-circuits of some pairs of points. Simulation-before-test approach is applied for
detection and identification of a single catastrophic fault. To build a fault dictionary,
a diagnostic test is arranged based on DC analysis. In the discussed circuits having
multiple DC solutions, the tested output voltage may assume different values for fixed
value of the input voltage. This fact considerably complicates the fault diagnosis. The
crucial point of the proposed approach is tracing large number of nonlinear multival-
ued input–output characteristics at different values of circuit parameters within their
tolerance ranges. For this purpose an efficient and fast algorithm is developed, based
on the theory known under the name a linear complementarity problem. To illustrate
the proposed approach and show its efficiency, four numerical examples are given.
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1 Introduction

Fault diagnosis of analog circuits is a fundamental problem for design validation
[8,10,11]. A fault can be soft if a parameter is drifted from its tolerance range, but
does not lead to any topological changes, or catastrophic which is defined as cut (open-
circuit) of some connecting path or short-circuit of some pair of points. They are
caused by contaminated phototools, defective raw material, improper solder leveling,
mechanical damage, etc. [8].

If circuit simulations take place before any testing, the diagnosis approach is termed
a simulation-before-test (SBT). The results of circuit simulations are stored as patterns
in a fault dictionary [1,6,9,13,18,19]. Comparing the voltages measured at testing
nodes with the information contained in the dictionary, the faulty element can be
identified. During the last decades a number of methods, concepts, and techniques
have been proposed to build and exploit fault dictionary, e.g., sensitivity analysis [13],
neural networks [1,2,6,18], and Householder formula in matrix theory [24,26]. The
fault masking by component tolerances is a difficult problem faced by SBT approach.

Diagnosing of analog circuits can be performed in DC, time and frequency domains.
For example, reference [16] offers a method for parametric and catastrophic fault
detection and location of linear circuits in the frequency domain, whereas the papers
[14,20,21,29] bring diagnostic methods using the time-domain features.

Most work devoted to SBT approach has been focused on detection and identifica-
tion of a single catastrophic fault. Building a fault dictionary usually requires a very
large computing power, especially in the case of multiple faults in nonlinear networks,
where the amount of computations increases dramatically [24,26].

In this paper, fault diagnosis of nonlinear circuits using SBT approach, based on
DC analysis, is considered. A method is proposed for detection and identification of
a single catastrophic fault in BJT and MOS circuits having multiple operating points.
The circuits are used, e.g., in signal conditioning applications, function generators and
switching power supplies. Even if the tested circuit does not contain any capacitors
and inductors, some parasitic capacitances and inductances exist. In DC analysis they
are ignored and the circuit is considered as purely resistive. The DC operating points
of the resistive circuit are the equilibrium points of the original circuit. Some of them
are unstable and cannot occur. Generally, to indicate the unstable operating points
among all operating points, the distribution and values of parasitic capacitances and
inductances are required. If a circuit has multiple DC operating points the tested output
voltage may assume different values for fixed value of the input voltage. The question
which of the possible values actually occurs depends on the transient state which
precedes the DC steady state. Since it is unknown, all the operating points should be
taken into account during fault diagnosis. According to our knowledge, no work has
been focused on fault diagnosis of such class of analog circuits till now. The crucial
point of the proposed approach is tracing a large number of nonlinear multivalued
input-output characteristics. For this purpose, an efficient algorithm is developed,
based on the theory known under the name a linear complementarity problem [5,7,27],
considering the deviations of the circuit parameters within their tolerance ranges. To
perform diagnostic test, a DC input voltage source is applied at the node accessible
for excitation and output voltages are read at the nodes accessible for measurement
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(usually one node). This is why the problem of selecting testing points of the circuit
under test is not considered in this paper. Since the method usually needs only one
node accessible for measurement it can be applied both to integrated circuits and
PCB-based circuitries.

2 The Theoretical Background

This section gives the theoretical background of the method proposed for tracing of
input–output characteristics in nonlinear circuits comprising bipolar and MOS tran-
sistors, having multiple DC solutions. Since large number of the characteristics is
required by the diagnostic method, developed in Sect. 5, a fast and efficient algorithm
for tracing the characteristics is necessary. If a circuit has multiple DC solutions, the
input–output characteristic is not necessarily a single-valued function of the input,
usually it is multivalued or even multibranched. The characteristic can be traced using
a brute-force method which is capable of finding all the solutions for different values
of the input voltage. Unfortunately, this method is very time-consuming and can be
applied to small-sized circuits only. There are several more efficient methods, e.g.,
[3,28,30]. However, they are rather difficult to implement and usually suffer from
major shortcoming due to sharp-turning-point problem. The method proposed in [23]
overcomes this problem, but it is dedicated to just BJT circuits. On the other hand,
SPICE simulator usually provides incomplete characteristics and often exhibits a sharp
hysteresis loop, whereas the actual characteristic is Z -type.

In this section, an efficient algorithm for tracing input–output characteristics in
circuits having multiple DC solutions is proposed, based on the theory known under
the name a linear complementarity problem [5,7]. The algorithm, which extends some
ideas presented in [27], is described using BJT circuits, but it can be directly adapted
to MOS circuits.

Consider a circuit consisting of bipolar transistors, diodes, resistors, and voltage
sources. The transistors are characterized by the Ebers–Moll model [4,27] shown in
Fig. 1. We approximate the exponential characteristics of the diodes included in the
model or acting alone using piecewise-linear functions similarly as in [27]. N -segment
piecewise-linear characteristic is shown in Fig. 2a. The diode specified by this char-
acteristic can be modeled by the circuit shown in Fig. 2b including N − 1 ideal diodes
having the characteristic shown in Fig. 3a. It is convenient to choose reversed reference
direction of the voltage across the ideal diode. Then the characteristic is as shown in
Fig. 3b and the diode is described by relations

i ≥ 0, v ≥ 0, iv = 0. (1)

To trace transfer characteristic v0 = f (y), where v0 is the output voltage and y
is the input voltage, we select from the circuit all the ideal diodes, the source y, and
the open-circuited branch with the output voltage v0 as shown in Fig. 4. As a result an
m-port is created (m = n + 2) consisting of linear resistors, current-controlled current
sources, and independent voltage sources.
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Fig. 1 Ebers–Moll model of NPN transistor

Fig. 2 N -segment characteristic of diode (a) and its model (b)

Fig. 3 Characteristic of the ideal diode

To form the hybrid representation of the circuit, we replace the ideal diodes by
voltage sources and connect to the output terminals a zero current source in+2 = 0
(see Fig. 5).

Using the hybrid representation of the m-port, we write

[
î
vn+2

]
= H

[
v̂

in+2

]
+ s, (2)
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Fig. 4 Circuit with extracted
ideal diodes, input voltage
source and the output open
circuited branch

Fig. 5 Rearranged circuit of Fig. 4

where

î =

⎡
⎢⎢⎢⎣

i1
...

in

in+1

⎤
⎥⎥⎥⎦ , v̂ =

⎡
⎢⎢⎢⎣

−v1
...

−vn

vn+1

⎤
⎥⎥⎥⎦ , s =

⎡
⎢⎣

s1
...

sn+2

⎤
⎥⎦

H =

⎡
⎢⎢⎢⎢⎢⎣

h11 · · · h1n h1,n+1 h1,n+2
... · · · ...

...
...

hn1 · · · hnn hn,n+1 hn,n+2
hn+1,1 · · · hn+1,n hn+1,n+1 hn+1,n+2
hn+2,1 · · · hn+2,n hn+2,n+1 hn+2,n+2

⎤
⎥⎥⎥⎥⎥⎦

.

Since in+2 = 0, we remove the column n + 2 of the hybrid matrix H . Moreover, we
remove (n + 1)-st equation of the hybrid representation because we are not interested
in current in+1 and extract (n + 2)-nd equation. As a result, we obtain
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i = Mv +
⎡
⎢⎣

h1,n+1
...

hn,n+1

⎤
⎥⎦ y +

⎡
⎢⎣

s1
...

sn

⎤
⎥⎦ , (3)

v0 = vn+2 = − [
hn+2,1 · · · hn+2,n

]
v + hn+2,n+1 y + sn+2, (4)

where

i =
⎡
⎢⎣

i1
...

in

⎤
⎥⎦ , v =

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦ , M = −

⎡
⎣ h11 · · · h1n

· · · · · · · · · · · · · · ·
hn1 · · · hnn

⎤
⎦ .

Letting z = [z1 · · · zn]T = i, x = [x1 · · · xn]T = v, b = [
h1,n+1 · · · hn,n+1

]T
,

q = [s1 · · · sn]T , where T denotes transposition, we rewrite Eq. (3) in the form

z = q + by + Mx. (5)

Since for each ideal diode, the relations (1) are fulfilled, we can write

x ≥ 0, z ≥ 0, zTx = 0. (6)

To trace the multibranched characteristic v0 = f (y) for y ∈ [0, Y ], we propose an
algorithm sketched in Sect. 3.

3 The Proposed Algorithm

Step1 Set y = 0 and write on the basis of (5) and (6)

z = q + b · 0 + Mx,

x ≥ 0 , z ≥ 0, zTx = 0.
(7)

Although b · 0 = 0, we retain this term in (7). The problem specified by (7) is called
a linear complementarity problem (LCP) [5,7,27]. To solve this problem, we choose
a positive vector d ∈ Rn such that d + q > 0, using the procedure described in [7],
and define the homotopy [7,27]

zTx = 0 , x ≥ 0 , z ≥ 0 ,

z = p − λd + b · 0 + Mx,
(8)

where p = d + q > 0 and λ is a variable. At λ = 0 Eq. (8) reduces to z = p + Mx
and the solution x = 0 (z = p > 0) of the homotopy system is obtained. At λ = 1,
we have the original LCP (7). To trace the homotopy path and find the solution, we
combine the homotopy approach with Lemke’s method as described in [7,27]. During
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the computation process, we execute the same operations on both terms p and b,
although the last one does not affect the solution. On any stage of the procedure, some
elements of vectors z and x are interchanged and q, b, and M are rearranged. At the
end, when λ = 1, we obtain an equation equivalent to (7)

w = q̂ + b̂ · 0 + M̂u, (9)

where vector w consists of some elements of vector z and some elements of vec-
tor x, whereas u consists of their complements. Equation (9) has the solution
u = 0 (w = q̂ > 0). Next we use Eq. (4), where vector v is composed of all elements
xi selected from u and w. As a result, we find voltage v0 at y = 0. To find other
possible solutions at y = 0, we continue the procedure as described in [27]. In this
way, we can find several solutions at y = 0 and the corresponding descriptions of the
form (9).

Step 2 Similarly, we find the solutions at y = Y . For this purpose, we modify Eq.
(5)

z = q̃ − bỹ + Mx, (10)

where q̃ = q + bY , set ỹ = 0 and write on the basis of (10) and (6)

z = q̃ − b · 0 + Mx ,

x ≥ 0 , z ≥ 0 , zTx = 0 .
(11)

Repeating the approach described in Step 1, we find the solutions at ỹ = 0 (or y = Y ).
Step 3 Form a new homotopy corresponding to the first solution provided by Step

1 (using (9)) with new homotopy parameter λ = y, as follows:

wTu = 0 , u ≥ 0 , w ≥ 0 ,

w = q̂ + b̂λ + M̂u.
(12)

At λ = y = 0, the solution of (12) is known. We apply again the method being a
combination of the homotopy approach and the Lemke method [7,27] adapted to (12).
Each step of this procedure leads to such value of λ = y that one of the complementary
pairs is xk = 0, zk = 0. It corresponds to a breakpoint of the piecewise-linear char-
acteristic. To find this breakpoint, we select all xi (i = 1, . . . , n), create the vector
v = [x1 · · · xn]T and use (4) to find v0 at this breakpoint. To find other branches of
the characteristic, we repeat the described approach taking into account in succession
all the solutions found in Step 1 of the algorithm. In this way, all the branches which
start from λ = y = 0 are traced.

Step 4 Repeat the approach described in Step 3 for (10) with λ = ỹ starting in
succession from these solutions obtained in Step 2 which have not been found in Step
3. As λ is increased, y = Y − ỹ decreases.

This step is applied to find the possible branches which cannot be traced starting
with y = 0, like the branch (c) in Fig. 6.
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Fig. 6 Characteristic y − v0 consisting of three branches (a), (b), and (c)

4 Circuit Example

The proposed method has been implemented in MATLAB 2012a and tested using PC
Pentium i7-2600, 4GB.

Example 1 Let us consider the BJT circuit shown in Fig. 7, being a connection of the
flip–flop circuit and the line receiver. Nominal values of the resistors are indicated in
this figure. The parameters of the Ebers–Moll model of the transistors are as follows:
αF = 0.99, αR = 0.5, IES = 7.07 fA, ICS = 14.00 fA, VT = 25.86 mV, RE = 10 Ω ,
RC = 10 Ω , and RB = 3 Ω . The emitter and collector diodes are modeled by the
circuit shown in Fig. 2, with N = 8 and the following parameters

Emitter diode

R̂d = 25.308 MΩ; R̂1 = 11.044 kΩ, V (1)
0 = 0.475 V; R̂2 = 2.060 kΩ,

V (2)
0 = 0.535 V; R̂3 = 430 Ω, V (3)

0 = 0.576 V; R̂4 = 77.3 Ω,

V (4)
0 = 0.618 V; R̂5 = 13.4 Ω, V (5)

0 = 0.665 V; R̂6 = 2.34 Ω,

V (6)
0 = 0.711 V; R̂7 = 0.54 Ω, V (7)

0 = 0.749 V.

Collector diode

R̂d = 19.752 MΩ; R̂1 = 16.256 kΩ, V (1)
0 = 0.445 V; R̂2 = 2.885 kΩ,

V (2)
0 =0.510 V; R̂3 =428 Ω, V (3)

0 =0.554 V; R̂4 =76.3 Ω, V (4)
0 =0.600 V;

R̂5 = 13.8 Ω, V (5)
0 = 0.648 V; R̂6 = 2.26 Ω, V (6)

0 = 0.694 V;
R̂7 = 0.53 Ω, V (7)

0 = 0.732 V.
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Fig. 7 BJT circuit for Example 1

Fig. 8 Input–output characteristic obtained using the method described in Sect. 2

The diode D1 is represented by the same model as the emitter diode with the series
resistance equal to 4 Ω .

In this circuit, we trace the input–output characteristic v0 = f (y), where y = vin.
For the nominal values of the resistors, we obtain the multivalued and multibranched
characteristic shown in Fig. 8. The time consumed by the method is 0.32 s.

To verify this characteristic we use the brute-force method [25] enabling us to find
all the solutions of the circuit for any value of the input voltage without any piecewise-
linear approximation. Plot of the characteristic obtained in this way is identical as the
one provided by the proposed method. On the other hand the characteristic traced by
PSPICE simulator, using up and down DC sweep analyses, is depicted in Fig. 9. A
comparison of the characteristics manifests that PSPICE gives a fragmentary charac-
teristic. Figure 10 shows a family of the characteristics traced by the proposed method
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Fig. 9 Input–output characteristic obtained using SPICE simulator

Fig. 10 Banded input–output characteristic

for 100 sets of the parameters values {R1, . . . , R14}. They are obtained by random
selection from their tolerance ranges (±5%), assuming uniform distribution.

The algorithm above-discussed can be adapted to the circuits containing MOS
transistors, characterized by the Shichman-Hodges model built in Level 1 of SPICE
[17]. For this purpose, the equivalent model, described in [22,27] having the structure
similar to the Ebers–Moll model of bipolar transistors, should be applied.
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Table F

Ranges of 0v variation

k ky 0F 1F ·    ·    · MF

0 −y
1 hy +−

2 hy 2+−

·
·
·

·
·
·

·
·
·

·
·
·

·    ·    ·
·    ·    ·
·    ·    ·

·
·
·

N +y

Fig. 11 Structure of table F

5 The Fault Dictionary

A method of building a fault dictionary for catastrophic fault diagnosis of circuits con-
taining bipolar and MOS transistors, having multiple DC operating points, is developed
in this section. The method is based on input–output characteristics of the circuit under
test, traced for all considered catastrophic faults and fault-free circuit. Every time the
deviations of the circuit parameters within their tolerance ranges are considered.

For fault-free circuit and for each circuit with a single fault, we trace a family of the
input-output characteristics v0 = f (y) for different values of the circuit parameters
randomly selected from their tolerance ranges assuming uniform distribution. If the
number of faults is M , we obtain M + 1 families of the characteristics. Each of the
families has banded branches like the characteristic depicted in Fig. 10. We choose
an interval [y−, y+] of y, divide it into N equal subintervals and consider the points
yk = y−+kh, h = (y+ − y−)/N , k = 0, 1, . . . , N of this interval. For any of the fam-
ilies of characteristics, we find and store the ranges of v0 variation at all these points.
For example, in the case shown in Fig. 10 at y = 5 V, we obtain four ranges of v0
variation: [−0.421,−0.357], [−0.245,−0.179], [0.268, 0.390], and [0.642, 0.664],
all in volts. The results are summarized in a table having the structure shown
in Fig. 11, labeled F, where Fi , i = 1, . . . , M , denotes i th fault and F0 means fault-free
circuit.

In the place specified by i th row (i ∈ {0, 1, . . . , N }) and j th column
( j ∈ {0, 1, . . . , M}), the ranges of v0 variation at yi = y− + ih in the circuit with fault
Fj are stored. On the basis of table F, we create N + 1 tables labelled T0, T1, . . . , TN

having the structure shown in Fig. 12. Each of the tables exploits the information con-
tained in one row of table F. For example, table Tl takes into account the information
contained in lth row of table F, where the ranges of v0 variation at yl = y− + lh are
stored for all faults and fault-free circuit. The blank spaces of Tl in Fig. 12 are filled in
as follows. At the crossing of i th row, corresponding to Fi (i ∈ {0, . . . , M − 1}) and
j th column corresponding to Fj ( j ∈ {1, . . . , M} , j > i), we insert 1 if the ranges
of v0 variation for faults Fi and Fj (at yl = y− + lh) have a common part, or 0
otherwise.
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Table lT

0F 1F 2F ·   ·   · 1−MF MF

0F ·   ·   ·

1F ·   ·   ·

2F ·   ·   ·

·   ·   · 1−MF

Fig. 12 Structure of table Tl

Next we consider tables T0 and T1 and form a new table T01 as follows. If in
table T0, the element which appears in i th row (i ∈ {0, . . . , M − 1}) and j th column
( j ∈ {1, . . . , M} , j > i) equals 1 and in table T1, the element located in the same place
equals 0, then in table T01 the element equal to zero is inserted in this place. Otherwise,
the element of table T0 is transferred invariable to table T01. Similarly, we consider
other pairs of the tables: T0 and T2, . . . , T0 and TN and create tables T02, . . . , T0N .
This procedure is continued leading to tables: T12, . . . , T1N , . . . , TN−1,N .

If at any stage of this procedure, a table having all entries equal to zero arises, the
algorithm is terminated and a fault dictionary enabling us to identify all the considered
faults is built. Let table Ts (s ∈ {0, 1, . . . , N }) have all elements equal to zero. Then
at point ys = y− + sh (corresponding to this table) all ranges of v0 variation relating
to all the faults are disconnected (no of them overlaps other one). Thus, having the
value of the measured tested voltage v0 = ṽ0 at this point, we take into account sth
row of table F and find such column j that ṽ0 belongs to a range located in sth row and
j th column. Index j defines the fault Fj . In this case, the fault dictionary consists of
sth row of table F. If table Tpr contains all elements equal to zero, the fault dictionary
consists of pth and r th rows of table F. If none of the tables is satisfactory (the sum
of the entries is not sufficiently small), we can repeat the described above procedure
taking into account for each table Ti j the tables Tm (m �= i, m �= j) and create tables
Ti jm . This procedure can be continued as long as the sum of the entries decreases.
Otherwise, the procedure terminates. Since the applied model of transistor employs
the piecewise-linear approximated characteristics (Fig. 2), the obtained regions of the
output voltage variation appeared in the fault dictionary are corrected. For this purpose,
the original transistor model is used, with the smooth characteristics described in Fig. 1,
and the Newton–Raphson algorithm applied.

Suppose that the built dictionary consists of two rows of table F. Then in order to
detect and identify the actual fault, we find all regions of v0 variation at the first of the
rows which include the measured voltage (at the point corresponding to this row) and
form a set of the corresponding potential faults. Similarly we treat the second of the
rows. As a result, we obtain two sets of potential faults and choose the common part of
the sets. If the fault dictionary has been built on the basis of a table having some entries
equal to one, the corresponding faults may be distinguishable or undistinguishable as
explained in Example 4.
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Ranges of 0v variation in volts

k ky
[V]

0F 1F 2F 3F

7 0.70 -0.4997 – -0.4194 -0.3805 – -0.3019 -0.2794 – -0.2081 -0.6047 – -0.5920
28 2.80 -0.4336 – -0.3712

-0.2646 – -0.1967
-0.0268 – 0.0585

-0.0241 – 0.0556 0.2774 – 0.3914
0.6277 – 0.6488

-0.5777 – -0.5301

Ranges of 0v variation in volts

k ky
[V]

4F 5F 6F 7F

7 0.70 0.0727 – 0.0786
0.2281 – 0.2470
0.5282 – 0.6192
0.6660 – 0.6759

-0.5464 – -0.4621 -0.3683 – -0.2937 -0.3769 – -0.2889

28 2.80 0.0541 – 0.0579
0.2319 – 0.2579
0.5127 – 0.5806
0.6269 – 0.6299
0.6627 – 0.6666

-0.0944 – -0.0238
0.0854 – 0.1556
0.3338 – 0.4238

-0.3071 – -0.2210 -0.2130 – -0.1296

Fig. 13 Fault dictionary for Example 2

6 Numerical Examples

Example 2 Let us consider the BJT circuit shown in Fig. 7. The transistors models
and the circuit parameters are as described in Example 1.

We want to diagnose fault-free circuit (F0) and M = 7 catastrophic faults: cuts of the
branches AB (F1), CE (F3), FG (F4), KL (F5), and short-circuits of the pairs of points
CD (F2), BM (F6), AM (F7). To build the fault dictionary, the procedure described
in Sect. 5 has been applied. We trace eight families of input–output characteristics
v0 = f (y), where y = vin ∈ [0, 10] V with h = 0.1 V, as described in Sect. 3.
To compute each of the families, 100 sets of the parameters values {R1, . . . , R14} are
randomly selected, assuming uniform distribution, within the tolerance ranges ±5%.
The size of table F is 101 × 8. We perform the procedure described in this section
and find table Ti j , where i = 7, j = 28 having one entry equal to 1, appeared in row
0 and column 5. The index i = 7 corresponds to vin = 0.70 V, whereas j = 28,
vin = 2.80 V. Hence, the fault dictionary consists of the rows 7 and 28 of table F as
shown in Fig. 13. It allows identifying all the discussed catastrophic faults except F0
and F5, which may be undistinguishable or distinguishable. To verify the proposed
method, the circuit was built using 5 % tolerance resistors and several catastrophic
faults were considered experimentally. Two of them are described below. In the case
of fault F6, the measured voltages were −0.328 V for the input voltage y = 0.7 V
and −0.230 V for y = 2.8 V. They allow identifying the fault correctly. In another
fault F5, the measured voltages were: −0.523 and −0.093 V, respectively, leading to
correct diagnosis.

The most time-consuming part of the algorithm is tracing input–output character-
istics for each of the circuit states considering a large number of sets of the parameters
values. Average time of tracing one input–output characteristic is 0.32 s. Since the
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number of the families of the characteristics, for fault-free circuit and 7 catastrophic
faults, is 8 and each of them consists of 100 characteristics corresponding to 100 sets
of the parameters values, the total number of the characteristics is 800. Hence, the
time consumed for their tracing is 256 s = 2.27 min. This time dominates the others,
used for selecting the test voltages (62 s) and correcting the voltage ranges using the
Newton–Raphson algorithm (2.8 s).

Example 3 Consider the operational amplifier-based Schmitt trigger shown in Fig. 14,
where the Ebers–Moll model parameters of the transistors are as in Example 1. The
emitter and collector diodes are modeled by the circuit shown in Fig. 2, with N = 4
and the following parameters:

Emitter diode

R̂d = 3250 MΩ; R̂1 = 51.5022 Ω, V (1)
0 = 0.61 V; R̂2 = 11.5745 Ω,

V (2)
0 = 0.672 V; R̂3 = 4.7551 Ω, V (3)

0 = 0.7077 V.

Collector diode

R̂d = 2663 MΩ; R̂1 = 54.2765 Ω, V (1)
0 = 0.6 V; R̂2 = 11.0595 Ω,

V (2)
0 = 0.6651 V; R̂3 = 4.0290 Ω, V (3)

0 = 0.7000 V.

We want to diagnose fault-free circuit (F0) and M = 9 catastrophic faults: cuts of the
branches DJ (F1), BC (F2), and short-circuits of the pairs of points HI (F3), CK (F4),
GL (F5), AL (F6), IL (F7), EL (F8), and FM (F9). To build the fault dictionary, the
procedure described in Sect. 5 has been applied. We trace 10 families of the input–
output characteristics v0 = f (y), where y = vin ∈ [0, 10] V, with h = 0.2 V.
To create each of the families, 100 sets of the parameters values {R1, . . . , R8} are
randomly selected, assuming uniform distribution within the tolerance limits ±5 %.
The size of table F is 51 × 10. Performing the procedure described in Sect. 5, we find
Table T0, having all elements equal to zero. The corresponding input–output voltage
is vin = 0 V. Hence, the fault dictionary consists of the row 0 of the table F, as shown
in Fig. 15. It allows identifying all the aforementioned catastrophic faults.

Average time of tracing one input–output characteristic of the circuit shown in
Fig. 14 is 7.6 s. Since the number of the families of the characteristics, for fault-free
circuit and 9 catastrophic faults, is 10 and each of them consists of 100 characteristics
corresponding to 100 sets of the parameters values, the total number of the charac-
teristics is 1,000. Hence, the time consumed for their tracing is 126.7 min. This time
dominates the others, used for selecting the test voltages (42 s) and correcting the
voltage ranges using the Newton–Raphson algorithm (101 s). The total time is 129
min., but it is the off-line operation.

Although the proposed diagnostic method has been explained in detail for BJT
circuits, it can be directly adapted to MOS circuits characterized by the Shichman–
Hodges model built in Level 1 of SPICE [17]. It can be shown [22,27] that this model
is equivalent to the circuit having the structure of the Ebers–Moll model of bipolar
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Fig. 14 Circuit for Example 3

Ranges of 0v variation in volts

k ky
[V]

0F 1F 2F 3F 4F

0 0 8.8212 – 8.8261 -8.3853 – -8.3567 7.0295 – 7.1862 -9.2831 – -9.2751 -8.8165 – -8.8119

Ranges of 0v variation in volts

k ky
[V]

5F 6F 7F 8F 9F

0 0 -9.2983 – -9.2922 -9.2694 – -9.2625
1.2833 – 1.2843
2.1850 – 2.2150

-9.2567 – -9.2478 2.9711 – 3.0134 -5.3324 – -5.3022

Fig. 15 Fault dictionary for Example 3
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transistors, with the gains of the controlled sources αF = αR = 1 and the diodes
described by the equations

i1 = iEF =
{

k(vgs − ∣∣vt0

∣∣ )2 for vgs ≥ ∣∣vt0

∣∣
0 for vgs <

∣∣vt0

∣∣ ,

i2 = iCF =
{

k(vgd − ∣∣vt0

∣∣ )2 for vgd ≥ ∣∣vt0

∣∣
0 for vgd <

∣∣vt0

∣∣ .

In the above equations vt0 is the threshold voltage, k = K p
2

W
L , where K p is the

transconductance parameter, W and L are the channel width and length, respectively.
Using this model, we can apply the theory developed in this paper. In the case of MOS
circuits, however, the circuit parameters are not resistances, but the threshold voltages
vt0 and the coefficients k, dissipated within their tolerance ranges.

Example 4 Let us consider the waveform-reshaping circuit [12] shown in Fig. 16. The
nominal values of the channel width W and length L in μm are indicated in Fig. 16.
Nominal values of the other parameters are as follows: PMOS−K p = 19.485 μA/V2,
vt0 = −0.8351 V, Rd = 16.4 Ω , Rs = 16.4 Ω , Rg = 0; NMOS−K p =
79.173 μA/V2, vt0 = 0.5705 V, Rd = 16.4 Ω , Rs = 16.4 Ω , Rg = 0. Having

W , L and K p, the coefficient k = K p
2

W
L can be calculated. In this circuit, we wish to

detect and identify M = 8 catastrophic faults: cuts of the branches AB (F1), EM (F2),
and short-circuits of the pairs of points HK (F3), GA (F4), MC (F5), GH (F6), HA
(F7), and LM (F8), as well as fault-free circuit (F0). MOS transistors are characterized
by the model described above where the diodes are approximated by a piecewise-linear
8-segment functions (see Fig. 2). To build a fault dictionary, we trace families of the
characteristics v0 = f (y), as described in Sect. 3, and consider y = vin ∈ [0.8, 4] V
with h = 0.1 V. To compute each of the families, 20 sets of values of the parameters
k and vt0 are randomly selected assuming uniform distribution within the tolerance
ranges ±5 %. The family corresponding to the fault-free circuit is shown in Fig. 17.

The size of the table F is 33×9. We perform the procedure described in Sect. 5 and
find T17 having two entries equal to one, appeared in row 0 and column 3 and row 1 and
column 6. It enables us to identify all the discussed faults except the fault-free circuit
and the fault F3, as well as F1 and F6, which may be undistinguishable, on the basis of
the measured output voltages at vin = 0.9 V and vin = 1.5 V corresponding to table
T17. Hence, the fault dictionary consists of rows 1 and 7 of table F, as illustrated in
Fig. 18. This dictionary shows that faults F0 and F3 are undistinguishable, whereas F1
and F6 can be undistinguishable or distinguishable depending on the measured output
voltages. For example, if ṽ0 = 4.9998 V at vin = 0.9 V then fault F1 is identified.
Average time of tracing one input–output characteristic of the circuit shown in Fig. 16
is 1.4 s. Since the number of the families of the characteristics, for fault-free circuit and
8 catastrophic faults, is 9 and each of them consists of 20 characteristics corresponding
to 20 sets of the parameters values, the total number of the characteristics is 180. Hence,
the time consumed for their tracing is 252 s = 4.2 min. This time dominates the others,
used for selecting the test voltages (12 s) and correcting the voltage ranges using the
Newton–Raphson algorithm (6.8 s).
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Fig. 16 MOS circuit for Example 4

7 Discussion and Concluding Remarks

This paper is focused on catastrophic fault diagnosis of nonlinear circuits containing
bipolar and MOS transistors using simulation-before-test approach. Unlike the other
works which deal with the circuits having a unique operating point, this paper, for the
first time, is devoted to the circuits having multiple operating points (DC solutions).

The proposed approach to the problem of fault diagnosis of analog circuits has a
general meaning, because a catastrophic fault changes the circuit topology and forms a
new circuit. The faulty circuit may possess multiple DC solutions, even if the original
circuit has a unique solution. For example, the universal preamplifier circuit with
the test voltage source vin = 0.8 V connected to the node accessible for excitation,
shown in Fig. 19 with the following transistors parameters: αF = 0.9975, αR = 0.8,
IES = 10.22 fA, ICS = 12.75 fA, VT = 25.86 mV, RE = 0.81 Ω , RC = 0.33 Ω , and
RB = 3.3 Ω , has a unique DC solution v0 = 19.473 V at vin = 0.8 V. However, if the
catastrophic fault, being short-circuit of points AB, occurs then the circuit possesses
three DC solutions v

(1)
0 = 0.438 V, v

(2)
0 = 10.052 V, and v

(3)
0 = 19.473 V at the

same input voltage vin = 0.8 V. In the real circuit built for verification purpose, with



370 Circuits Syst Signal Process (2015) 34:353–375

Fig. 17 Family of the characteristics of fault-free circuit shown in Fig. 16

Ranges of 0v variation in volts

k ky

[V]
0F 1F 2F 3F 4F

1 0.9 4.9989 – 4.9992 0.0000 – 0.0000
2.3056 – 2.4149
4.9998 – 4.9998

4.9989 – 4.9992 4.9989 – 4.9992 0.0288 – 0.0456
2.2831 – 2.4839
4.9954 – 4.9958

7 1.5 0.0000 – 0.0000
2.3040 – 2.4131
4.9963 – 4.9965

0.0000 – 0.0000
2.3053 – 2.4146
4.9991 – 4.9991

0.8551 – 1.1790 0.0000 – 0.0000
2.3040 – 2.4131
4.9963 – 4.9965

0.1858 – 0.2682
1.2568 – 1.6019
4.9963 – 4.9965

Ranges of 0v variation in volts

k ky

[V]
5F 6F 7F 8F

1 0.9 1.6228 – 1.7268 0.0000 – 0.0000 4.9989 – 4.9992 4.9751 – 4.9841
7 1.5 2.3040 – 2.4131 0.0000 – 0.0000 4.9930 – 4.9940 4.7804 – 4.8297

Fig. 18 Fault dictionary for Example 4

5% tolerance resistors, the measurements gave two output voltages: v
(1)
0 = 0.452 V

and v
(3)
0 = 19.460 V.

The input–output characteristic v0 = f (vin) of the original circuit depicted in
Fig. 20a is a single-valued curve, whereas the characteristic of the faulty circuit, shown
in Fig. 21a is a multivalued curve. These characteristics obtained experimentally are
shown in Figs. 20b and 21b. Since usually we do not know whether the circuit possesses
multiple DC solutions, the fault dictionary should be built using a method which allows
finding multiple solutions. Such a method works correctly also in the case of a unique
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Fig. 19 Circuit possessing a unique DC solution

solution. The approach developed in this paper fulfills this requirement and leads to
reliable results. This is the main achievement of this paper.

Fault diagnosis of the circuits possessing multiple solutions is much more complex
and requires larger computing power. This is why the CPU time is much longer than
in the case of circuits having a unique solution. Although the method developed in this
paper for tracing input–output characteristics is very efficient, necessity of finding a
great number of the characteristics makes the diagnostic approach time-consuming.
Fortunately, in the applied simulation-before-test approach this is the off-line oper-
ation. Consequently, the CPU time is not as crucial as in the simulation after test
approach. The method is based on the concept of linear complementarity problem
and is an extension of the idea presented in reference [27] devoted to finding multiple
DC operating points. Since tracing multivalued and multibranched characteristics is
a basic problem of the analysis of nonlinear dynamic circuits [15] the method is a
contribution to nonlinear circuit theory.

The fault dictionary, built using the proposed approach, allows detecting and identi-
fying the faults on the basis of a diagnostic test, which usually exploits measurements
at one accessible node only. The method does not make very restricted demands
about accuracy of the measurements. If the obtained fault dictionary is not satisfac-
tory another testing node should be taken and the procedure repeated.

The algorithm of the fault diagnosis, proposed in this paper, does not accept the
node approach, which is commonly used in user-oriented circuit analysis programs,
including SPICE. Instead, it exploits the hybrid analysis [4] to formulate the linear
complementarity problem. The hybrid representation of electronic circuits is employed
in almost all methods which allow finding all the DC solutions and is required by many
other methods in this field.

The proposed algorithm is difficult to implementation in a computer program, what
is a disadvantage. In addition the Level 1 transistors models have to be used and their
piecewise-linear representations exploited. Transistors of CMOS circuits manufac-
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tured in nanometer technology should be characterized by very complex BSIM 4 or
PSP 103 model. Each of these models is specified by several hundred equations, mostly
nonlinear. Methods for tracing input–output characteristics applied to this class of cir-
cuits are very time-consuming and inefficient. Since the proposed approach needs huge
number of the characteristics, it is not suitable for fault diagnosis of CMOS circuits
manufactured in nanometer technology.

Because in the circuit having multiple DC operating points, we do not know in
advance to which region of the output voltage variation belongs the measured voltage
we consider all of them. In some cases, it is possible to identify the fault, even if the
ranges corresponding to this fault and another one have common parts. The approach
can be also useful for generating the training data for neural networks if they are used
as the fault classifiers.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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