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1 Introduction

One of the fascinating topics in string theory is the AdS/CFT correspondence [1–3]. The

most well-studied example is the duality between type IIB superstring on the AdS5×S5

background [4] (often called the AdS5×S5 superstring) and the N = 4 SU(N) super Yang-

Mills (SYM) theory in four dimensions (in the large N limit). It has been revealed that

an integrable structure exists behind the duality and it plays a fundamental role in testing

the correspondence of physical quantities (for a comprehensive review, see [5]).

Our interest here is the integrability on the string-theory side. The classical integrable

structure of the AdS5×S5 superstring is closely related to the Z4-grading property of the

supercoset [6],1

PSU(2, 2|4)/[SO(1, 4)× SO(5)] .

The supercosets with the grading property are classified, including the stringy conditions

in [10].

The next step is to consider integrable deformations. There are two approaches, the one

is based on deformed S-matrices and the other is based on deformed target spaces. For the

first approach, the deformed S-matrices are constructed in a mathematically well-defined

1For the classical integrability based on the Roiban-Siegel formulation [7], see [8, 9].
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way [11–18], but the corresponding geometry of the target space is unclear. In the sec-

ond direction, the classical integrable structure has been well studied for three-dimensional

examples such as squashed S3 (for the classic works and the recent progress, see [19–21]

and [22–29], respectively) and warped AdS3 [30–33]. The deformed geometries are repre-

sented by non-symmetric cosets [34] and there is no general prescription to argue their inte-

grability. For generalizations to higher dimensions, see [35, 36]. In particular, the method

utilized in [36] is based on Yang-Baxter sigma models [37, 38]. The standard q-deformation

of su(2) [39–41] and its affine extension are also presented [24, 25, 36] and [26], respectively.

Recently, a q-deformed AdS5×S5 superstring action was constructed [42] by general-

izing the result in [36]. Then the bosonic part of the action was determined and, by using

this action, the world-sheet S-matrix of bosonic excitations was computed in [43]. The

resulting S-matrix exactly agrees with the q-deformed S-matrix in the large tension limit.

Thus the two approaches are now related to each other and there are many directions to

study q-deformations of the AdS5×S5 superstring.

In this paper, we consider how to twist the q-deformed AdS5×S5 superstring action.

This twisting is regarded as a non-standard q-deformation. Indeed, it would also be seen

as a higher-dimensional generalization of 3D Schrödinger sigma models in which the q-

deformed Poincaré algebra [44, 45] and its infinite-dimensional extension are realized as

shown in a series of works [30–32]. In particular, it is possible to perform a partial de-

formation, for example, of the AdS5 part only, or of the S5 part only. This would make

the resulting geometry much simpler. Some extensions of the twisted R operators are also

discussed. Then the classical action and the Lax pair are constructed with a linear, twisted

and extended R operator. It is shown that the action preserves the κ-symmetry.

The paper is organized as follows. Section 2 is a short review of the q-deformed

AdS5×S5 action. Section 3 describes how to twist the q-deformed action. Then we

construct the Jordanian deformed action of the AdS5×S5 superstring preserving the κ-

symmetry. The Lax pair is also presented. Section 4 is devoted to conclusion and discus-

sion. Appendix A describes the notation of the superconformal generators. In appendix

B, the notation of the classical R-matrix is explained. A general prescription to twist the

classical r-matrix for the standard q-deformation of Drinfeld-Jimbo type is also provided.

2 A review of the q-deformed AdS5×S5 superstring

In this section, we will give a short review of the q-deformed AdS5×S5 superstring action

constructed in [42], using the notation therein.

2.1 The linear R operator

A key ingredient in the construction is the classical R-matrix, which is a linear map R : g →

g over a Lie algebra g satisfying the modified classical Yang-Baxter equation (mCYBE);

[R(M), R(N)]−R ([R(M), N ] + [M,R(N)]) = −c2 [M,N ] , (2.1)

– 2 –



J
H
E
P
0
4
(
2
0
1
4
)
1
5
3

where M,N ∈ g and c is a complex parameter. When c 6= 0, the parameter is regarded as a

scaling of the R-matrix. When c = 0, the mCYBE is nothing but the classical Yang-Baxter

equation (CYBE).

The standard q-deformation of the superstring action presented in [42] is described by

the following R-matrix,

R(Eij) =

{
+cEij for i < j

−cEij for i > j
and R(Eii) = 0 , (2.2)

where Eij (i, j = 1, · · · , 8) are the gl(4|4) generators. For the standard notation of the

superconformal generators, see appendix A. The parity of the indices is given by ī = 0 for

i = 1, · · · , 4 and ī = 1 for i = 5, · · · , 8. The associated tensorial r-matrix is

rDJ = c
∑

1≤i<j≤8

Eij ∧ Eji (−1)ī j̄ , (2.3)

where the super skew-symmetric symbol is introduced as

Eij ∧ Ekl ≡ Eij ⊗ Ekl − Ekl ⊗ Eij(−1)(̄i+j̄)(k̄+l̄) . (2.4)

The relations between the linear R operator and the tensorial notation r are summarized

in appendix B. The classical r-matrix given in (2.3) describes the standard q-deformation

of Drinfeld-Jimbo (DJ) type [39–41].

Note that the linear R operator is defined here as a map from gl(4|4) to gl(4|4) , while

the original action of the AdS5×S5 superstring is concerned with su(2, 2|4) , rather than

gl(4|4). The compatibility of R operator with the real-form condition fixes the normaliza-

tion factor in (2.3) as c = i up to real scalar multiplication.

2.2 The classical action and the Lax pair

With the help of the linear R operator defined in (2.2), the q-deformed classical action S

is given by2

S = −
(1 + η2)2

2(1− η2)

∫ ∞

−∞

dτ

∫ 2π

0
dσ Pαβ

− Str

(
Aα d ◦

1

1− ηRg ◦ d
(Aβ)

)
. (2.5)

Here τ and σ are time and spatial coordinates of the string world-sheet and the periodic

boundary conditions are imposed for the σ direction. The real constant η ∈ [0, 1) measures

the deformation.3 The super Maurer-Cartan one-form Aα is defined as

Aα ≡ g−1∂αg , g ∈ SU(2, 2|4) ,

2Here we have normalized the parameter as c = 1 in (2.2).
3Since the deformation is measured by η , it is often called “η-deformation”. On the other hand, η is

related to the q parameter of the standard q-deformation by Drinfeld-Jimbo [39–41] as shown in [36]. Hence

we will refer this deformation as to q-deformation, following [42].
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and Aα takes the value in the Lie superalgebra su(2, 2|4). The action of the R-matrix (2.2)

on Aα is induced from gl(4|4) by imposing a suitable reality condition. Note that Aα

automatically satisfies the flatness condition,

Z ≡
1

2
ǫαβ (∂αAβ − ∂βAα + [Aα, Aβ ]) = 0 . (2.6)

The projection operators Pαβ
± are defined as

Pαβ
± ≡

1

2

(
γαβ ± ǫαβ

)
.

Then operators d and d̃ are linear combinations of the projection operators Pi (i = 1, 2, 3) ,

d ≡ P1 +
2

1− η2
P2 − P3 , d̃ ≡ −P1 +

2

1− η2
P2 + P3 . (2.7)

The symbol Rg indicates a chain of the adjoint operation and the linear R operation,

Rg(M) ≡ Ad−1
g ◦R ◦Adg(M) = g−1R(gMg−1)g . (2.8)

Note that the usual AdS5×S5 superstring action is reproduced from (2.5) when η = 0. For

a pedagogical review of the undeformed AdS5×S5 superstring, see [46].

It is convenient to introduce the following notations,

Jα ≡
1

1− ηRg ◦ d
(Aα) , J̃α ≡

1

1 + ηRg ◦ d̃
(Aα) , Jα

− ≡ Pαβ
− Jβ , J̃α

+ ≡ Pαβ
+ J̃β .(2.9)

Then the equations of motion are written in a simpler form,

E = d(∂αJ
α
−) + d̃(∂αJ̃

α
+) + [J̃+α, d(J

α
−)] + [J−α, d̃(J̃

α
+)] = 0 . (2.10)

The Lax pair is given by

Lα
+ = J̃

α(0)
+ + λ

√
1 + η2 J̃

α(1)
+ + λ−2

(
1 + η2

1− η2

)
J̃
α(2)
+ + λ−1

√
1 + η2 J̃

α(3)
+ ,

Mα
− = J

α(0)
− + λ

√
1 + η2 J

α(1)
− + λ2

(
1 + η2

1− η2

)
J
α(2)
− + λ−1

√
1 + η2 J

α(3)
− , (2.11)

where λ is the spectral parameter that takes a complex value. The flatness condition (2.6)

can be rewritten in terms of Jα
− and J̃α

+ like

Z = ∂αJ̃
α
+ − ∂αJ

α
− + [J−α, J̃

α
+] + η2[d(J−α), d̃(J̃

α
+)] + ηRg(E) = 0 . (2.12)

With the definition Lα ≡ L+α +M−α , the zero-curvature condition

∂αLβ − ∂βLα + [Lα,Lβ] = 0 (2.13)

is equivalent to the equations of motion given in (2.10) and the flatness condition (2.12).

For the κ-symmetry argument, see [42].
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3 Jordanian deformations of the AdS5×S5 superstring

In this section we shall consider Jordanian deformations of the AdS5×S5 superstring action.

The deformations correspond to a non-standard q-deformation and contain twists of the

linear R operator. The twist procedure is realized as an adjoint operation for the linear R

operator with an arbitrary bosonic root.

We first explain how to construct Jordanian R operators by twisting the linear R op-

erator used in the q-deformed AdS5×S5 superstring action (2.5). There are two remarkable

features of Jordanian R operators. The first is that they satisfy the CYBE rather than the

mCYBE (2.1). The second is the nilpotency of them. That is

[R(M), R(N)]−R ([R(M), N ] + [M,R(N)]) = 0 , (3.1)

Rn(M) = 0 for n ≥ 3 , (3.2)

for M,N ∈ g. Then, by using the Jordanian R operators, the Jordanian deformed action

with the κ-symmetry and the Lax pair are presented.

3.1 Jordanian R operators from twists and their extension

We shall give a description to twist the linear R operator for basic examples of Jordanian

R operators here. Then some extensions of twisted R operators are discussed.

First of all, note that the classical r-matrix of Drinfeld-Jimbo type (2.3) has vanishing

Cartan charges,

[∆(Eii), rDJ] = 0 for i = 1, · · · , 8 , (3.3)

where the coproduct is given by

∆(X) = X ⊗ 1 + 1⊗X for X ∈ g .

On the other hand, one may introduce a classical r-matrix which has non-zero Cartan

charges for the deformation of AdS5× S5 superstring. In this sense, we refer to these as to

Jordanian r-matrices. In general, such an r-matrix can be constructed by a twist of rDJ

with an arbitrary bosonic root Eij with i < j ,

r
(i,j)
tw ≡ [∆(Eij), rDJ] . (3.4)

One may also consider twists by negative bosonic roots Eij (i > j), but the corresponding

r-matrix has the same property because gl(4|4) algebra enjoys the automorphism

Eij 7→ E9−j,9−i . (3.5)

Thus positive roots Eij (i < j) are enough for our later argument. The twisted, linear R

operator is defined as

R
(i,j)
tw (X) ≡ 〈r

(i,j)
tw , 1⊗X〉

= [Eij , R(X)]−R([Eij , X]) for X ∈ g . (3.6)
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It is straight forward to read off the R operator from the tensorial r-matrix via (3.6) and

inner product (A.2).

So far, we have constructed the Jordanian R operators via twists of rDJ. One may also

consider the extension of the twisted R operators by adding bilinear terms of fermionic root

generators. It should be noted that the latter cannot be obtained with the twists. Thus

there are the two classes: 1) Jordanian R operators stemming from twists and 2) extended

Jordanian R operators. We will introduce some examples below.

1) Jordanian R operators from twists

The first example is twists by simple roots. Then the corresponding subsectors of the

superstring action are deformed. For instance, let us consider twists by positive simple

root generators Ek,k+1 (k = 1, . . . , 4̌, . . . , 7).4 Then the associated classical r-matrix is

given by

r
(k,k+1)
tw = [∆(Ek,k+1), rDJ] = cEk,k+1 ∧

(
Ekk(−1)k̄ − Ek+1,k+1(−1)k+1

)
. (3.7)

The twists give rise to deformations of the AdS3 or S3 subspace. For each of the values

k = 1, 2, 3 , the resulting geometry is given by a deformed AdS3 spacetime. It would contain

a three-dimensional Schrödinger spacetime and may be regarded as a generalization of the

previous works [30–32]. The explicit relation is presented in [47].

More interesting examples are deformations of either AdS5 or S5. These partial defor-

mations are realized by twists with the maximal bosonic generators E14 = P14 in su(2, 2)

and E58 = R58 in su(4) , respectively;5

AdS5 : r
(1,4)
tw = [∆(E14), rDJ] = c

(
E14 ∧ (E11 − E44)− 2

∑

κ=2,3

E1κ ∧ Eκ4

)
, (3.8)

S5 : r
(5,8)
tw = [∆(E58), rDJ] = c

(
E58 ∧ (−E55 + E88) + 2

∑

k=6,7

E5k ∧ Ek8

)
. (3.9)

The deformation of S5 should be interesting because it would provide a simpler geometry

without deforming AdS5. The associated linear operator acts on the generators as follows:

R
(5,8)
tw (E55) = +cE58 , R

(5,8)
tw (Ek5) = +2cEk8 ,

R
(5,8)
tw (E88) = −cE58 , R

(5,8)
tw (E8k) = −2cE5k ,

R
(5,8)
tw (E85) = c(−E55 + E88) , R

(5,8)
tw (others) = 0 ,

where k = 6, 7.

Remarks. More generally, the Reshetikhin twist [48] or the Jordanian twist [49, 50] is

closely related to the present prescription. The Jordanian twists for Lie superalgebras are

considered in [51–54]. This relation will be elaborated somewhere else.

As a side remark, we have worked with a particular choice of the simple roots associated

with the Dynkin diagram O-O-O-X-O-O-O of the superconformal algebra. It would be also

4 For k = 4 , the simple root E45 = S̄45 is fermionic and it is regarded as a fermionic twist.
5For the map between the Eij generators and the superconformal generators, see appendix A.
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interesting to see the twisting based on the different choice of simple roots such as O-X-O-

O-O-X-O. It is true that the distinguished Dynkin diagrams give the isomorphic algebras,

but the coordinate transformations among them would be quite non-trivial.

2) Extended Jordanian R operators

Let us now consider some extensions of the twisted classical r-matrices given in (3.7), (3.8)

and (3.9). Recall that these are obtained by twisting rDJ. Here we are concerned with

some extensions of the twisted r-matrices, which are not described as twists.

It is easy to see that a linear combination of (3.8) and (3.9)

r
(1,4),(5,8)
tw ≡ c1r

(1,4)
tw + c2r

(5,8)
tw (3.10)

with c = 1 is also a solution of the CYBE, due to the relation

[r
(1,4)
tw , r

(5,8)
tw ] = 0 . (3.11)

The r-matrix r
(1,4),(5,8)
tw implies independent deformations of AdS5 and S5 with different

parameters c1 and c2 respectively.

Furthermore, these r-matrices may be extended to contain supercharges in their tails,

including two parameters, like

r̃
(1,4)
tw = E14 ∧ (αE11 − βE44)− (α+ β)

∑

j 6=1,4

E1j ∧ Ej4 , (3.12)

r̃
(5,8)
tw = E58 ∧ (α′E55 − β′E88)− (α′ + β′)

∑

j 6=5,8

E5j ∧ Ej8 . (3.13)

Here α, β, α′, β′ are arbitrary parameters. The extended r-matrices satisfy the CYBE (3.1).

As a remark, it would not be obvious that the multi-parameter deformations lead to

consistent string theories. The vanishing β-function has not been confirmed even for the

single parameter case. The multi-parameter case would be much more difficult.

Comments on fermionic twists

One may think of twists by fermionic generators called fermionic twists. An example is

given by the maximal root E18, (Also see appendix B.2)

r
(1,8)
tw = [∆(E18), rDJ] = −cE18 ∧ (E11 + E88) . (3.14)

Note that c is a Grassmann odd element [51], so that the r-matrix is Grassmann even.

This is a solution of the CYBE. For this fermionic twist, we have no clear understanding

for the physical interpretation because the deformation is measured by a Grassmann odd

parameter. It would be interesting to interpret the fermionic twist in type IIB supergravity.

Generically the r-matrices of the fermionic twists do not satisfy the CYBE (3.1). As

an example, let us consider E45 = S̄45. This is a simple root generator but it gives rise to

– 7 –
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the maximal twist. That is, the corresponding geometry is also maximally deformed. The

associated classical r-matrix is given by

r
(4,5)
tw = [∆(E45), rDJ]

= c
[
(E44 + E55) ∧ E45 + 2

3∑

κ=1

E4κ ∧ Eκ5 − 2
8∑

k=6

E4k ∧ Ek5

]
. (3.15)

However it is not a solution of the CYBE.

3.2 Jordanian deformed action

Next we consider Jordanian deformations of the classical action of the AdS5×S5 superstring.

Although the construction is almost parallel to the one in [42], it is necessary to take account

of small modifications coming from the fact that the Jordanian linear operator RJor satisfies

the CYBE rather than the mCYBE.

In the following, RJor is used as a representative of arbitrary (extended) Jordanian R

operators.6 The detail expression of RJor is not relevant to the subsequent analysis.

The Jordanian deformed classical action is given by

S = −
1

2

∫ ∞

−∞

dτ

∫ 2π

0
dσ Pαβ

− Str

(
Aα d ◦

1

1− η [RJor]g ◦ d
(Aβ)

)
. (3.16)

Here, by using Jordanian R-matrix RJor , a chain of the operations [RJor]g is defined as

[RJor]g (M) ≡ Ad−1
g ◦RJor ◦Adg(M) = g−1RJor(gMg−1)g . (3.17)

In the present case, d and d̃ are not deformed and do not contain η like

d ≡ P1 + 2P2 − P3 , d̃ ≡ −P1 + 2P2 + P3 , (3.18)

and the overall factor of the action (2.5) is not needed to be multiplied. As in the case

of [42], the equations of motion can be written simply with the following quantities:

Jα ≡
1

1− η [RJor]g ◦ d
(Aα) , Jα

− ≡ Pαβ
− Jβ , (3.19)

J̃α ≡
1

1 + η [RJor]g ◦ d̃
(Aα) , J̃α

+ ≡ Pαβ
+ J̃β .

There are two ways to rewrite the action given in (3.16). The first is based on Jα and

the action is written as

S = −
1

4

∫ ∞

−∞

dτ

∫ 2π

0
dσ

(
γαβ − ǫαβ

)
Str (Jαd (Jβ))

+
η

4

∫ ∞

−∞

dτ

∫ 2π

0
dσ

(
γαβ − ǫαβ

)
Str

(
[RJor]g ◦ d(Jα)d (Jβ)

)

= −
1

2

∫ ∞

−∞

dτ

∫ 2π

0
dσ γαβStr

(
J (2)
α J

(2)
β

)
−

1

2

∫ ∞

−∞

dτ

∫ 2π

0
dσ ǫαβStr

(
J (1)
α J

(3)
β

)

+
η

4

∫ ∞

−∞

dτ

∫ 2π

0
dσ ǫαβStr

(
d(Jα) [RJor]g ◦ d (Jβ)

)
. (3.20)

6The (extended) Jordanian operators are easily derived from the tensorial r-matrix presented in sec-

tion 3.1 by using the relations (B.4) and the inner product (A.2).
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The second is based on J̃α and the action becomes

S = −
1

4

∫ ∞

−∞

dτ

∫ 2π

0
dσ

(
γαβ − ǫαβ

)
Str

(
d̃(J̃α)J̃β

)

−
η

4

∫ ∞

−∞

dτ

∫ 2π

0
dσ

(
γαβ − ǫαβ

)
Str

(
d̃(J̃α) [RJor]g ◦ d̃(J̃β)

)

= −
1

2

∫ ∞

−∞

dτ

∫ 2π

0
dσ γαβStr

(
J̃ (2)
α J̃

(2)
β

)
−

1

2

∫ ∞

−∞

dτ

∫ 2π

0
dσ ǫαβStr

(
J̃ (1)
α J̃

(3)
β

)

+
η

4

∫ ∞

−∞

dτ

∫ 2π

0
dσ ǫαβStr

(
d̃(J̃α) [RJor]g ◦ d̃(J̃β)

)
. (3.21)

The two expressions are useful to discuss the Virasoro conditions and the κ-invariance.

Then equations of motion are given by

E = d(∂αJ
α
−) + d̃(∂αJ̃

α
+) + [J̃+α, d(J

α
−)] + [J−α, d̃(J̃

α
+)] = 0 , (3.22)

and the flatness condition is represented by

Z =
1

2
ǫαβ (∂αAβ − ∂βAα + [Aα, Aβ ])

= ∂αJ̃
α
+ − ∂αJ

α
− + [J−α, J̃

α
+] + η [RJor]g (E) = 0 . (3.23)

Note that the flatness condition does not contain η2 terms, in comparison to the one given

in (2.12). This modification comes from the fact that the Jordanian operator RJor satisfies

the CYBE, rather than the mCYBE.

For later computations, it is convenient to decompose the equations of motion (3.22)

and the flatness condition (3.23) as follows:

∂αJ̃
α(0)
+ − ∂αJ

α(0)
− +

[
J
(0)
−α, J̃

α(0)
+

]
+
[
J
(1)
−α, J̃

α(3)
+

]
+
[
J
(2)
−α, J̃

α(2)
+

]
+
[
J
(3)
−α, J̃

α(1)
+

]
= 0 ,

[
J
(3)
−α, J̃

α(2)
+

]
= 0 ,

∂αJ̃
α(1)
+ − ∂αJ

α(1)
− +

[
J
(0)
−α, J̃

α(1)
+

]
+
[
J
(1)
−α, J̃

α(0)
+

]
+

[
J
(2)
−α, J̃

α(3)
+

]
= 0 ,

∂αJ̃
α(2)
+ +

[
J
(0)
−α, J̃

α(2)
+

]
+

[
J
(3)
−α, J̃

α(3)
+

]
= 0 , (3.24)

∂αJ
α(2)
− −

[
J
(1)
−α, J̃

α(1)
+

]
−

[
J
(2)
−α, J̃

α(0)
+

]
= 0 ,

[
J
(2)
−α, J̃

α(1)
+

]
= 0 ,

∂αJ̃
α(3)
+ − ∂αJ

α(3)
− +

[
J
(0)
−α, J̃

α(3)
+

]
+
[
J
(1)
−α, J̃

α(2)
+

]
+

[
J
(3)
−α, J̃

α(0)
+

]
= 0 .

Then the Lax pair is given by

Mα
− = J

α(0)
− + λJ

α(1)
− + λ2J

α(2)
− + λ−1J

α(3)
− , (3.25)

Lα
+ = J̃

α(0)
+ + λJ̃

α(1)
+ + λ−2J̃

α(2)
+ + λ−1J̃

α(3)
+ . (3.26)

Note that the η2 terms are again not present, in comparison to the Lax pair given in (2.11) ,

while the parameter η is still contained in J
α(n)
− and J̃

α(n)
+ (n = 0, . . . , 3). With Lα ≡
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L+α+M−α , it is an easy task to show that the zero curvature condition (2.13) is equivalent

to the equation of motion (3.22) and the flatness condition (3.23).

The next is to consider the Virasoro conditions. The expression given in (3.20) leads

to the Virasoro conditions,

Str
(
J (2)
α J

(2)
β

)
−

1

2
γαβγ

ρσStr
(
J (2)
ρ J (2)

σ

)
= 0 . (3.27)

On the other hand, the expression in (3.21) gives rise to

Str
(
J̃ (2)
α J̃

(2)
β

)
−

1

2
γαβγ

ρσStr
(
J̃ (2)
ρ J̃ (2)

σ

)
= 0 . (3.28)

The above two representations of the Virasoro conditions given in (3.27) and (3.28) should

be equivalent.

3.3 κ-symmetry

Let us consider the κ-symmetry of the action (3.16).

We consider a fermionic local transformation (called the κ-transformation) of g given by

δg = gǫ , ǫ ≡
(
1− η [RJor]g

)
ρ(1) +

(
1 + η [RJor]g

)
ρ(3) , (3.29)

where ρ(1) and ρ(3) are arbitrary functions on the string world-sheet to be determined later,

and hence ǫ also depends on the world-sheet coordinates. Then the variation of the action

given in (3.16) is described as

δgS =
1

2

∫ ∞

−∞

dτ

∫ 2π

0
dσ Str (ǫ E) (3.30)

=
1

2

∫ ∞

−∞

dτ

∫ 2π

0
dσ Str

(
ρ(1)P3 ◦

(
1 + η [RJor]g

)
(E)

+ρ(3)P1 ◦
(
1− η [RJor]g

)
(E)

)

= −2

∫ ∞

−∞

dτ

∫ 2π

0
dσ Str

(
ρ(1)

[
J
(2)
−α, J̃

α(1)
+

]
+ ρ(3)

[
J̃
(2)
+α, J

α(3)
−

])
.

Here the following relations have been used in the second equality,

P1 ◦
(
1− η [RJor]g

)
(E) = −4

[
J̃
(2)
+α, J

α(3)
−

]
− P1(Z) , (3.31)

P3 ◦
(
1 + η [RJor]g

)
(E) = −4

[
J
(2)
−α, J̃

α(1)
+

]
+ P3(Z) .

Now let the forms of ρ(1) and ρ(3) be

ρ(1) = iκ
α(1)
+ J

(2)
−α + J

(2)
−αiκ

α(1)
+ , ρ(3) = iκ

α(3)
− J̃

(2)
+α + J̃

(2)
+αiκ

α(3)
− . (3.32)

Note that these forms are compatible to the grading assignment. Then one can show the

relation

Str
(
ρ(1)

[
J
(2)
−α, J̃

α(1)
+

])
= Str

(
J
(2)
−αJ

(2)
−β

[
J̃
α(1)
+ , iκ

β(1)
+

])
. (3.33)
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The derivation is the following,

Str
(
ρ(1)

[
J
(2)
−α, J̃

α(1)
+

])
= Str

[(
iκ

τ(1)
+ J

(2)
−τ + J

(2)
−τ iκ

τ(1)
+ + iκ

σ(1)
+ J

(2)
−σ + J

(2)
−σiκ

σ(1)
+

)

×
(
J
(2)
−τ J̃

τ(1)
+ − J̃

τ(1)
+ J

(2)
−τ + J

(2)
−σ J̃

σ(1)
+ − J̃

σ(1)
+ J

(2)
−σ

)]

= Str
[
J
(2)
−τ J

(2)
−τ

(
J̃
τ(1)
+ iκ

τ(1)
+ − iκ

τ(1)
+ J̃

τ(1)
+

)

+J
(2)
−τ J

(2)
−σ

(
J̃
τ(1)
+ iκ

σ(1)
+ − iκ

σ(1)
+ J̃

τ(1)
+

)

+J
(2)
−σJ

(2)
−τ

(
J̃
σ(1)
+ iκ

τ(1)
+ − iκ

τ(1)
+ J̃

σ(1)
+

)

+ J
(2)
−σJ

(2)
−σ

(
J̃
σ(1)
+ iκ

σ(1)
+ − iκ

σ(1)
+ J̃

σ(1)
+

)]

= Str
(
J
(2)
−αJ

(2)
−β

[
J̃
α(1)
+ , iκ

β(1)
+

])
.

The second equality comes from the fact that J
(2)
−τ is proportional to J

(2)
−σ . Similarly, one

can show the relation,

Str
(
ρ(3)

[
J̃
(2)
+α, J

α(3)
−

])
= Str

(
J̃
(2)
+αJ̃

(2)
+β

[
J
α(3)
− , iκ

β(3)
−

])
. (3.34)

Furthermore, for any grade 2 traceless matrix A
(2)
±α , the following relation is satisfied [46] ,

A
(2)
±αA

(2)
±β =

1

8
Str

(
A

(2)
±αA

(2)
±β

)
Υ+ cαβ18 , (3.35)

by using the matrix representation, where Υ is the following 8× 8 matrix:

Υ = diag(14,−14) . (3.36)

Thus the following relations are obtained,

Str
(
ρ(1)

[
J
(2)
−α, J̃

α(1)
+

])
=

1

8
Str

(
J
(2)
−αJ

(2)
−β

)
Str

(
Υ
[
J̃
α(1)
+ , iκ

β(1)
+

])
, (3.37)

Str
(
ρ(3)

[
J̃
(2)
+α, J

α(3)
−

])
=

1

8
Str

(
J̃
(2)
+αJ̃

(2)
+β

)
Str

(
Υ
[
J
α(3)
− , iκ

β(3)
−

])
. (3.38)

With the relations (3.37) and (3.38) , the variation of the classical action (3.16) under the

transformation (3.29) is evaluated as

δgS = −
1

4

∫ ∞

−∞

dτ

∫ 2π

0
dσ Str

(
Str

(
J
(2)
−αJ

(2)
−β

)
Υ
[
J̃
α(1)
+ , iκ

β(1)
+

]

+Str
(
J̃
(2)
+αJ̃

(2)
+β

)
Υ
[
J
α(3)
− , iκ

β(3)
−

])
. (3.39)

Then we will show that this variation is canceled out with the variation of the action

with respect to the world-sheet metric γαβ . Let the variation of γαβ be

δγαβ = −
1

4
Str

(
Υ
[
J̃
α(1)
+ , iκ

β(1)
+

]
+Υ

[
J̃
β(1)
+ , iκ

α(1)
+

]
(3.40)

+Υ
[
J
α(3)
− , iκ

β(3)
−

]
+Υ

[
J
β(3)
− , iκ

α(3)
−

])
.
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Then, by using the expressions of the classical action given in (3.20) and (3.21) , the

variation of the action is evaluated as

δγS =
1

4

∫ ∞

−∞

dτ

∫ 2π

0
dσ

[
Str

(
Υ
[
J̃
α(1)
+ , iκ

β(1)
+

])
Str

(
J (2)
α J

(2)
β

)

+Str
(
Υ
[
J
α(3)
− , iκ

β(3)
−

])
Str

(
J̃ (2)
α J̃

(2)
β

)]

=
1

4

∫ ∞

−∞

dτ

∫ 2π

0
dσ

[
Str

(
Υ
[
J̃
α(1)
+ , iκ

β(1)
+

])
Str

(
J
(2)
−αJ

(2)
−β

)

+Str
(
Υ
[
J
α(3)
− , iκ

β(3)
−

])
Str

(
J̃
(2)
+αJ̃

(2)
+β

)]
. (3.41)

In order to show the second equality, the following relations have been used,

Aα
±Bα = Aα

±B±α +Aα
±B∓α = Aα

±B∓α . (3.42)

Thus, the total variation of the classical action (3.16) becomes zero,

δgS + δγS = 0 . (3.43)

That is, the action (3.16) is invariant under the κ-transformation.

3.4 Comment on the real-form condition

Here we would like to discuss the real-form condition of su(2, 2|4). So far, we are work-

ing with a linear R operator from gl(4|4) to gl(4|4) , hence the image is not necessarily

su(2, 2|4) , even if the domain is restricted to su(2, 2|4). In the case of the standard q-

deformation [36], the real-form condition is preserved. On the other hand, in the case of

Jordanian deformations, it is not preserved. However, this fact does not always lead to

serious problems like complex actions. Preserving the real-form condition is just a sufficient

condition for real actions and it is not necessary to impose it inevitably.

In fact, without preserving the real-form condition, one can get the real actions for some

Jordanian deformations as shown in [47]. In particular, different r-matrices may give rise

to identical string action, up to coordinate transformations and (double) Wick rotations.

So far, we have not found the general criterion for which of Jordanian deformations lead

to real and physical actions. It would be interesting to specify it in order to classify the

physical Jordanian deformations.

As a matter of course, Jordanian deformations contain some unphysical ones where

there are two time directions or the action contains imaginary parts. For example, a

Jordanian deformed S5 contains imaginary parts but it might have some gauge-theoretical

interpretations as a complex integrable deformation.

4 Conclusion and discussion

We have discussed Jordanian deformations of the AdS5×S5 superstring action. The descrip-

tion to construct Jordanian R operators via twists has been explained in detail. Notably
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the Jordanian R operators satisfy the CYBE rather than the mCYBE and they have non-

vanishing Cartan charge. Then we have constructed the Jordanian deformed action that

preserves the κ-symmetry. The Lax pair has also been presented.

It should be remarked that partial deformations are possible in our procedure. This

fact implies that one may perform a deformation of the AdS5 part only, or of the S5

part only, for example. Then the background geometry for the deformed S5 would be

much simpler because the AdS5 part is not modified and the gauge-theory dual would be

identified with a deformation of the scalar sector such as Leigh-Strassler deformations [55].

A promising way is to consider a twist of the q-deformation of the SO(6) sector argued

in [56, 57]. As a matter of course, even for the maximal twist, the metric of the twisted

geometry can be determined, for example, by following [43]. The background geometries

associated with simple Jordanian twists are presented in [47] as well as the solution of type

IIB supergravity.

In principle, it should be possible to classify all of the skew-symmetric classical r-

matrices of gl(4|4) and its real form su(2, 2|4). This classification would enable us to reveal

all of the possible deformations of the AdS5×S5 superstring from the algebraic point of view.

We believe that the study of integrable deformations of the AdS5×S5 superstring will

shed light on new aspects of the integrable structure behind the AdS/CFT correspondence.
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A Notations of superconformal generators

In this paper, we work with the gl(4|4) generators rather than u(2, 2|4) generators because

the former generators are more convenient for the algebraic argument. The superconformal

algebra u(2, 2|4) is obtained from gl(4|4) by imposing a suitable condition. Thus, we will

spell out the explicit relations among the generators. This is enough for our purpose.

The Lie superalgebra gl(4|4) is a 32|32 dimensional algebra and generated by Eij with

i, j = 1, · · · , 8 satisfying the relations,7

[Eij , Ekl] = δkjEil − δilEkj(−1)(̄i+j̄)(k̄+l̄) . (A.1)

7 The commutator is assumed to be supercommutator here and also in (2.1), (3.1), (A.1) and (B.9).

The other commutators are not graded in constructing the action of the AdS5×S5 superstring, because we

consider a Grassmann envelope of the superalgebra by following [42].
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Here the parity of indices are defined as ī = 0 for i = 1, · · · , 4 and ī = 1 for i = 5, · · · , 8.

The invariant super-symmetric non-degenerate linear form is defined as

〈Eij , Ekl〉 = δkjδil(−1)j̄ , (A.2)

with i, j, k, l = 1, · · · , 8 , which satisfies the following properties

〈Eij , Ekl〉 = 〈Ekl, Eij〉(−1)(̄i+j̄)(k̄+l̄) ,

〈Eij , Ekl〉 = 0 for ī+ j̄ 6= k̄ + l̄ . (A.3)

The bosonic part of the superconformal algebra is related to gl(4|4) generators as

Lαβ = Eαβ − 1
2δαβEλλ , D = 1

2(Eλλ − E
λ̇λ̇
) , P

αβ̇
= E

αβ̇
,

L̄
α̇β̇

= E
α̇β̇

− 1
2δα̇β̇Eλ̇λ̇

, C = 1
2(Eλλ + E

λ̇λ̇
+ Ell) , Kα̇β = Eα̇β ,

Rab = Eab −
1
4δabEll , B = −1

2Ell , (A.4)

where α, β, λ = 1, 2, α̇, β̇, λ̇ = 3, 4 and a, b, l = 5, · · · , 8. The conformal algebra su(2, 2)

contains two su(2) subalgebras generated by Lαβ and L̄
α̇β̇

as well as the translations P
αβ̇

and the conformal boosts Kα̇β . The R-symmetry su(4) is generated by Rab. The diago-

nal generators D,C,B are dilatation, central charge and hyper charge, respectively. The

supertranslations Qαb, Q̄aβ̇
and superconformal boosts Saβ , S̄α̇b are given by

Qαb = Eαb , Q̄
aβ̇

= E
aβ̇

, Saβ = Eaβ , S̄α̇b = Eα̇b . (A.5)

B Constant classical R-matrix

We summarize here the notation of the classical R-matrix, which is independent of the

spectral parameter (For example, see [58]).

B.1 Classical Yang-Baxter equation

Let g be a bosonic Lie algebra over C. For ai, bi ∈ g, an element denoted by

r =
∑

i

ai ⊗ bi ∈ g⊗ g (B.1)

is called classical r-matrix if it satisfies the classical Yang-Baxter equation (CYBE);

[r12, r13] + [r13, r23] + [r12, r23] = 0 , (B.2)

where the action of rij is extended to three sites g⊗ g⊗ g such as

r12 =
∑

i

ai ⊗ bi ⊗ 1 r23 =
∑

i

1⊗ ai ⊗ bi r13 =
∑

i

ai ⊗ 1⊗ bi . (B.3)

Suppose that there exists the invariant non-degenerate symmetric bilinear form 〈 , 〉

on g. With the bilinear form, the linear operator R : g → g can be introduced though the

following relation;

R(X) = 〈r, 1⊗X〉 =
∑

i

ai〈bi, X〉 ∈ g (B.4)
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for any X ∈ g. This operator R is also referred as to the classical R-matrix. With this

notation, the CYBE (B.2) is equivalent to

[R(X), R(Y )]−R([R(X), Y ] + [X,R(Y )]) = 0 , (B.5)

if and only if the r-matrix is skew-symmetric;

r21 =
∑

i

bi ⊗ ai = −r . (B.6)

Indeed, noting the following relations for any X,Y ∈ g ,

[R(X), R(Y )] = 〈[r12, r13], 1⊗X ⊗ Y 〉 ,

−R([R(X), Y ]) = 〈[r13,−r32], 1⊗X ⊗ Y 〉 ,

−R([X,R(Y )] = 〈[r12, r23], 1⊗X ⊗ Y 〉 , (B.7)

one can see that the relation (B.5) is nothing but (B.2) if R is skew-symmetric.

Here it is worth mentioning the generalization of the CYBE (B.5) such as

[R(X), R(Y )]−R([R(X), Y ] + [X,R(Y )]) = −c2[X,Y ] , (B.8)

for any X,Y ∈ g with c ∈ C. The relation (B.8) is called the modified classical Yang-Baxter

equation (mCYBE). The standard examples of the classical r-matrix (or R-matrix) satisfy

the CYBE (B.2) (or (B.5)) , while (twice of) the skew-symmetric parts of them satisfy the

mCYBE (B.8).

B.2 Skew-symmetric r-matrix for gl(M |N)

Let us summarize typical constant r-matrices for the Lie superalgebra gl(M |N). The Lie

superalgebra gl(M |N) is (M +N)2-dimensional algebra over C and generated by Eij with

i, j = 1, · · · ,M +N satisfying the relations;

[Eij , Ekl] = δkjEil − δilEkj(−1)(̄i+j̄)(k̄+l̄) . (B.9)

Here the parity of indices are defined as ī = 0 for i = 1, · · · ,M and ī = 1 for i =

M + 1, · · · , N +M .

There are three typical solutions of the (m)CYBE. The first one is the trivial solution

r = 0 for the CYBE. The second one is the classical r-matrix rDJ of Drinfeld-Jimbo

type [39–41]

rDJ = c
∑

1≤i<j≤M+N

Eij ∧ Eji(−1)ī j̄ . (B.10)

This is a solution of the mCYBE.

The third solution is the non-standard classical r-matrix r
(i,i)
tw , which are obtained by

twisting rDJ with a root generator Eij .
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The twists by the bosonic roots Eαβ and Eab with α < β and a < b (α, β = 1, · · · ,M

and a, b = M + 1, · · · , N +M) are given by

r
(α,β)
tw ≡ [∆(Eαβ), rDJ] = c

[
(−Eαα + Eββ) ∧ Eαβ − 2

β−1∑

κ=α+1

Eακ ∧ Eκβ

]
,

r
(a,b)
tw ≡ [∆(Eab), rDJ] = c

[
(Eaa − Ebb) ∧ Eab + 2

b−1∑

k=a+1

Eak ∧ Ekb

]
,

where the coproduct is defined in (3.1). These are solutions of the CYBE rather than the

mCYBE. We will call them the bosonic twists.

Also, one may consider a twist by a fermionic root, which is referred as to a fermionic

twist. An example is given by E1,M+N ,

r
(1,M+N)
tw = [∆(E1,M+N ), rDJ] = −cE1,M+N ∧ (E11 + EM+N,M+N ) , (B.11)

where c is a Grassmann odd parameter rather than a complex number, so that the r-matrix

should be Grassmann even [51]. This is a solution of the CYBE. When M = N = 4, it

reproduces (3.14).

In general, the fermionic twist by the fermionic root Eα,b gives rise to

r
(α,b)
tw ≡ [∆(Eαb), rDJ]

= c

[
(Eαα + Ebb) ∧ Eαb + 2

α−1∑

κ=1

Eακ ∧ Eκb − 2
M+N∑

k=a+1

Eαk ∧ Ekb

]
. (B.12)

However it does not seem to be a solution of the (m)CYBE except for (B.11).
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Phys. Lett. B 264 (1991) 331 [INSPIRE].

[45] Ch. Ohn, A ∗-product on SL(2) and the corresponding nonstandard quantum-U(sl(2)), Lett.

Math. Phys. 25 (1992) 85 [INSPIRE].

– 18 –

http://dx.doi.org/10.1088/1742-6596/343/1/012055
http://arxiv.org/abs/1110.6748
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6748
http://dx.doi.org/10.1007/JHEP04(2012)115
http://arxiv.org/abs/1201.3058
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3058
http://dx.doi.org/10.1007/JHEP06(2012)082
http://arxiv.org/abs/1203.3400
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3400
http://dx.doi.org/10.1016/j.physletb.2011.06.007
http://arxiv.org/abs/1104.0738
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0738
http://arxiv.org/abs/1311.4696
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4696
http://dx.doi.org/10.1007/JHEP11(2011)094
http://arxiv.org/abs/1109.0872
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0872
http://dx.doi.org/10.1007/JHEP02(2013)024
http://arxiv.org/abs/1209.4147
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4147
http://dx.doi.org/10.1007/JHEP08(2013)013
http://arxiv.org/abs/1305.6556
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6556
http://dx.doi.org/10.1007/JHEP05(2013)146
http://arxiv.org/abs/1304.1286
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1286
http://dx.doi.org/10.1088/1126-6708/2009/05/038
http://arxiv.org/abs/0903.4245
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4245
http://dx.doi.org/10.1016/j.nuclphysb.2012.09.003
http://arxiv.org/abs/1207.0413
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0413
http://dx.doi.org/10.1007/JHEP11(2013)192
http://arxiv.org/abs/1308.3581
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3581
http://dx.doi.org/10.1088/1126-6708/2002/12/051
http://arxiv.org/abs/hep-th/0210095
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210095
http://dx.doi.org/10.1063/1.3116242
http://arxiv.org/abs/0802.3518
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3518
http://inspirehep.net/search?p=find+J+Sov.Math.Dokl.,32,254
http://dx.doi.org/10.1007/BF01247086
http://inspirehep.net/search?p=find+J+J.Sov.Math.,41,898
http://dx.doi.org/10.1007/BF00704588
http://inspirehep.net/search?p=find+J+Lett.Math.Phys.,10,63
http://dx.doi.org/10.1103/PhysRevLett.112.051601
http://arxiv.org/abs/1309.5850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5850
http://dx.doi.org/10.1007/JHEP04(2014)002
http://arxiv.org/abs/1312.3542
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3542
http://dx.doi.org/10.1016/0370-2693(91)90358-W
http://inspirehep.net/search?p=find+J+Phys.Lett.,B264,331
http://inspirehep.net/search?p=find+Lett.Math.Phys.,25,85


J
H
E
P
0
4
(
2
0
1
4
)
1
5
3

[46] G. Arutyunov and S. Frolov, Foundations of the AdS5 × S5 Superstring. Part I,

J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].

[47] I. Kawaguchi, T. Matsumoto and K. Yoshida, A Jordanian deformation of AdS space in type

IIB supergravity, arXiv:1402.6147 [INSPIRE].

[48] N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras,

Lett. Math. Phys. 20 (1990) 331 [INSPIRE].

[49] A. Stolin and P.P. Kulish, New rational solutions of Yang-Baxter equation and deformed

Yangians, Czech. J. Phys. 47 (1997) 123 [q-alg/9608011].

[50] P.P. Kulish, V.D. Lyakhovsky and A.I. Mudrov, Extended Jordanian twists for Lie algebras,

J. Math. Phys. 40 (1999) 4569 [math/9806014] [INSPIRE].

[51] V.N. Tolstoy, Chains of extended Jordanian twists for Lie superalgebras, math.QA/0402433.

[52] A. Borowiec, J. Lukierski and V.N. Tolstoy, New twisted quantum deformations of D = 4
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