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Abstract

A low-complexity multiple-input multiple-output (MIMO) subspace detection algorithm is proposed. It is based on
decomposing a MIMO channel into multiple subsets of decoupled streams that can be detected separately. The new
scheme employs triangular decomposition followed by elementary matrix operations to transform the channel into a
generalized elementary matrix whose structure matches the subsets of streams to be detected. The proposed
approach avoids matrix inversion and allows subsets to overlap, thus achieving better diversity gain. An optimized
detector architecture based on a 2-by-2 ML detector core is also presented. Simulations demonstrate that the
proposed algorithm performs to within a few tenths of a dB from the optimum detection algorithm.
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1 Introduction
With the advent of smart mobile devices, the demand for
wireless access to broadband networks has been rapidly
increasing in the past decade. Service providers are con-
stantly faced with a major challenge of meeting contradic-
tory requirements for higher data rates, improved quality
of service (QoS), and better network capacity, while main-
taining the transmit power and bandwidth budgets. To
achieve these targets, novel enabling technologies need to
be considered.
Exploiting the spatial dimension by usingmultiple-input

multiple-output (MIMO) antenna systems is one of the
key-enabling technologies for achieving high spectral effi-
ciency in modern wireless communications standards.
MIMO technology improves both the spectral efficiency
and the QoS of wireless communication systems. How-
ever, detection of spatially multiplexed MIMO streams
plays a key role in receiver design both in terms of perfor-
mance and complexity [1] and has remained an active area
of research. Schemes forMIMOdetection are either based
on joint-stream detection to separate the streams, such
as maximum likelihood (ML) detection [2-4], or subset-
stream detection such as those employed in successive
interference cancellation (SIC), interference coordination,
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transmit beamforming, network MIMO, and coordinated
multi-point transmission and reception [5-9].
A plethora of MIMO detectors have appeared in the

literature on this subject, offering various performance-
complexity tradeoffs. Suboptimal zero-forcing (ZF) and
minimum mean-squared error (MMSE) detectors [10], as
well as the nonlinear parallel and successive interference
cancellation schemes [11-14], require relatively low com-
plexity but sacrifice performance. On the other hand, tree-
search or list-based detectors require substantially higher
complexity but can offer (near-)ML performance such as
the well-known sphere decoding algorithm [2-4,15-19].
Other tree-search schemes, such as the K-Best algo-
rithm [20-26], address the non-deterministic through-
put aspects of sphere decoders. Practical implementation
aspects have been investigated in [18,23,25-39].
Subspace detection based on channel decomposition

offers a good compromise between performance and
complexity. In [6,7], a method was presented in which the
effective MIMO channel matrix H is uniformly decom-
posed into identical parallel subchannels using geometric
mean decomposition (GMD). In [8], a related scheme was
presented in which H is block-wise diagonalized to nar-
row down the number of jointly detected streams to two,
and then GMD is applied to balance capacity within each
pair of subchannels. The scheme was generalized in [9] to
allow joint detection of several overlapping subchannels
using QR decomposition (QRD). By allowing subspaces
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to overlap, additional diversity can be gathered by putting
a low reliable data stream into several detection sets.
Other subspacemethods employ projection operators and
lists to generate candidates for interference cancellation in
equalization schemes (e.g., [40-44]).
The LORD algorithm proposed in [45,46] can be viewed

as a special class of subspace MIMO detectors. It achieves
ML performance (in theMax-log-MAP [47] sense) on two
transmit antennas, but its performance degrades when the
number of antennas increases. In [48], the LORD algo-
rithm was generalized to four transmit antennas by using
matrix inversion to decomposeH into single streams.
Contributions: In this paper, we propose an efficient

near-ML soft-output MIMO detection algorithm that
jointly detects subsets of decoupled streams by trans-
forming H into a generalized elementary matrix. A
matrix transformation is analytically derived to induce
the desired structure on H, while avoiding computation-
ally complex operations such as pseudo-inversion. This
is achieved by applying QL decomposition followed by
elementary matrix operations on H in a manner analo-
gous to the modified QL decomposition algorithm based
on the Gram-Schmidt orthogonalization procedure, thus
avoiding the need for expensive matrix inversion opera-
tions. Various decomposition structures are investigated,
including the option of allowing the decomposition sets
to overlap resulting in additional diversity gain. Further-
more, we show that a parallel MIMO detector can be
constructed from 2 × 2 component detector cores that
decouple the streams in the subsets in parallel. Finally, we
show that for two streams, the proposed algorithm is opti-
mal and reduces to the LORD algorithm [45,46]. When
the subsets include single streams only, the algorithm
reduces to that of [48]. The advantages of the proposed
algorithm in attaining near-ML performance outperform-
ing that of the sphere decoder [30] and the near-ML
algorithm of [48] are demonstrated through computer
simulations of the bit error-rate of a MIMO system.
The rest of the paper is organized as follows. Section 2

introduces the system model, and Section 3 reviews ML
detection for two streams. Sections 4 and 5 present the
proposed matrix decomposition scheme and a simpli-
fied construction using QLD. The detection algorithm
is detailed in Section 6. Section 7 presents simulation
results, while Section 8 ends the paper with concluding
remarks.

2 Systemmodel
Consider a MIMO system with N transmit (Tx) anten-
nas and M ≥ N receive (Rx) antennas. Assuming perfect
channel knowledge at the receiver, the equivalent complex
baseband input-output system relation can be modeled as
y = Hx+n, where y ∈ CM×1 is the received complex sig-
nal vector, H∈ CM×N is the complex channel matrix, and

x=[x1 x2 · · · xN ]T ∈ X =X1×· · ·×XN is theN×1 transmit-
ted complex symbol vector. Each symbol xn belongs to a
complex constellation Xn of size Qn=2qn and normalized
so that E

[
x∗
nxn
]= 1, and is formed from a set of qn coded

bit-interleaved sequence bn = (
bn,1, bn,2, · · · , bn,qn

)
over

the binary fieldF2. The effect of thermal noise is modeled
as a zero-mean complex Gaussian circularly symmetric
random vector n∈CM×1 with covariance matrix E[nn∗]=
σ 2
nIM. The signal-to-noise ratio (SNR) is defined as SNR=

N/σ 2
n . E[·] stands for the expected value, (·)T and (·)∗

for the transpose and conjugate transpose, and IM for the
M×M identity matrix.
Assuming equiprobable symbols, ML MIMO detection

algorithms achieve optimum performance by finding the
symbol vector x ∈ X that is closest to the received vector
y under the Euclidean distance metric

d (x) �
∥∥y − Hx

∥∥2 = ∥∥ỹ − Lx
∥∥2 , (1)

where H = QL is the QL decomposition (QLD) [49] of
H into a unitary matrix Q ∈ CM×N and a lower triangu-
lar matrix (LTM) L ∈ CN×N with positive real diagonal
elements, and Qy = Q∗y = Lx + Q∗n ∈ CN×1 denotes
the transformed received signal vector. Since Q is uni-
tary, it preserves Euclidean norm as well as noise statistics.
Hence, for equiprobable symbols, a ‘hard-decision’ ML
MIMO detector finds xML ∈X such that HxML is closest
to y in CM×1 (or equivalently, LxML is closest toQy in CN×1).
This is essentially an integer least-squares problem [4] of
the form

dML = min
x∈X

∥∥ỹ − Lx
∥∥2 (2)

xML = arg
x∈X

min
∥∥ỹ − Lx

∥∥2. (3)

In MIMO systems employing soft-input channel
decoders however, ML MIMO detectors generate soft-
outputs (SO) in the form of log-likelihood ratios (LLRs)
by searching for other ‘closest’ symbol vectors to ỹ. The
(unscaled) LLR value associated with bit bn,k is given by

�ML
n,k =min

x∈X (0)
n,k

d(x)−min
x∈X (1)

n,k

d(x), n=1,· · ·,N ; k=1, · · · , qn, (4)

where X (0)
n,k = {

x ∈ X : bn,k = 0
}
and X (1)

n,k = {x ∈ X :
bn,k =1

}
are the subsets of symbol vectors in X that have

their corresponding kth bit in the nth symbol 0 and 1,
respectively.

3 Optimum 2 × 2 soft-output MIMO detection
In general, finding the ML solution requires computing∏N

n=1Qn distance metrics. When N = 2, a simplifica-
tion [45] can be applied to reduce the number of computa-
tions fromQ1 ·Q2 toQ1+Q2 by triangularizing the channel
matrix asH=Q1L1, withQ1 being unitary and L1 being a
LTM, leading to:
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y − Hx −→
[
ỹ1
ỹ2

]
−
[
a1 0
c1 b1

]
·
[
x1
x2

]
= ỹ1−L1x, (5)

where ỹ1=Q∗
1y, with a1, b1 ∈ R+ and c1 ∈ C. Then

min
x∈X

∥∥ỹ1−L1x
∥∥2= min

x1∈X1
x2∈X2

(∣∣ỹ1−a1x1
∣∣2+∣∣ỹ2−c1x1−b1x2

∣∣2)
=min
x1∈X1

(∣∣ỹ1−a1x1
∣∣2+min

x2∈X2

∣∣ỹ2−c1x1−b1x2
∣∣2)

=min
x1∈X1

(∣∣ỹ1−a1x1
∣∣2+∣∣ỹ2−c1x1−b1x̂2

∣∣2)
�min
x1∈X1

d1(x1) (6)

where x̂2 is obtained by slicing (ỹ2 − c1x1)/b1 ∈ C to
the nearest constellation point in X2 using the operator
�α�Xn � argmin

x∈Xn

|α − x|:

x̂2 = ⌊
(ỹ2−c1x1)/b1

⌉
X2

∈ X2. (7)

Hence (6) requires only |X1| = Q1 distance computa-
tions. The LLRs of the bits in symbol x1 can simply be
obtained as

�ML
1,k = min

x1∈X (0)
1,k

d1(x1) − min
x1∈X (1)

1,k

d1(x1), k=1, · · · , q1. (8)

To obtain the LLRs of the bits in x2 however, we trian-
gularizeH asQ2L2 so that a zero appears in the upper left
corner:

y − Hx −→
[
ȳ1
ȳ2

]
−
[
0 a2
b2 c2

]
·
[
x1
x2

]
= ȳ2−L2x, (9)

where now ȳ2 = Q∗
2y, and a2, b2 ∈ R+ and c2 ∈ C. Then

min
x∈X

∥∥ȳ2−L2x
∥∥2 = min

x1∈X1
x2∈X2

(∣∣ȳ1−a2x2
∣∣2+∣∣ȳ2−c2x2−b2x1

∣∣2)
= min

x2∈X2

(∣∣ȳ1−a2x2
∣∣2+∣∣ȳ2−c2x2−b2x̂1

∣∣2)
� min

x2∈X2
d2(x2) (10)

where x̂1 = ⌊(ȳ2−c2x2)/b2
⌉
X1
. The LLRs of the bits in x2

are given by

�ML
2,k =min

x∈
2X

(0)
2,k

d2(x2) −min
x∈
2X

(1)
2,k

d2(x2), k=1, · · · , q2. (11)

Since Q1,Q2 are unitary, the ML solutions in (6), (10)
are identical. To find the hard-decision ML solution, only
one-sided QLD is needed on either layer 1 or 2. A list
of Qn distances {dn(x), ∀x∈Xn} is generated by enumer-
ating all symbols x ∈ Xn, n = 1 or n = 2, and the
minimum is selected. However, to generate soft LLRs,
two-sided decompositions are needed, and two lists of dis-
tances for n=1 and n=2 must be computed to select the
appropriate minima in (8) and (11).

4 Extensions to higher-order layers
The previous optimization cannot be extended in a
straightforward manner to N = 3 or more layers because
the structure of the lower triangular matrix L includes
off-diagonal terms that prevent searching for theML solu-
tion by enumerating symbols on one layer and finding
the minima through slicing individually on all other lay-
ers in parallel. More specifically, in Figure 1a, the presence
of the de-marked entries in the LTM implies that deter-
mining the ML solution requires enumerating symbols on
N−1 layers and slicing only on the last layer, as is typically
done in tree-based detectors (e.g., [30]), and hence still
requiring O

(∏
n Qn

)
complexity rather than O

(∑
n Qn

)
.

One desirable structure of H for a four-layer MIMO
system would be as shown in Figure 1b, in which the
red-marked entries are zeroed-out. Here, by enumerating
symbols on layer 1, the minimum distances and associated
symbols on layers 2 to 4 can be searched for in parallel
through slicing only on the corresponding layers, simi-
lar to the two-layer system. This suffices to compute the
LLRs associated with the bits on layer-1 symbol. A sim-
ilar process is repeated by decomposing H according to
the structures shown in Figure 1c,d,e [48] to compute the
LLRs for bits associated with layers 2 to 4.
Other ‘punctured’ structures are also possible for a 4×4

system as illustrated in Figure 2. They differ in 1) the num-
ber of layers over which symbols are enumerated (enumer-
ation set), 2) the submatrix structure used to propagate
these enumerated symbols and cancel their interference
effect from the remaining layers (interference cancellation
set), and 3) the number of layers in which the minimum
distance and associated symbol can be obtained by slicing
after interference cancellation (slicer set). Let E denote the
size of the enumeration set, S the size of the slicer set, and

(a) (b) (c) (d) (e)

Figure 1 4 × 4 channel matrix structures: (a) full; and (b-e) punctured structures for every layer.
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Figure 2 (1, 3 × 1, 3) (a), (2, 2 × 2, 2) (b), and (3, 1 × 3, 1) (c) punctured structures.

S×E the size of the interference cancellation set. We refer
to this structure using the triplet (E, S×E, S). For example,
in Figure 2a, we enumerate over E = 1 layer only, cancel
interference from this layer to the three other layers using
a 3×1 structure, and slice over S = 3 layers. In the struc-
ture in Figure 2b, we enumerate over E = 2 layers, cancel
interference using a 2×2 structure, and slice over S = 2
layers.
LLR values are generated for bits in symbols included in

the enumeration set only. Complementary structures that
enumerate symbols on other layers are required to gen-
erate their respective LLRs. For example, the (1, 3×1, 3)
structure requires three other similar structures to gener-
ate LLRs for layers 2 to 4 (see Figure 1c,d,e). The (2, 2×2, 2)
structure of Figure 2b on the other hand requires only one
identical structure to generate LLRs for both layers 3 and
4, while Figure 2c requires one non-identical (1, 3×1, 3)
structure to handle layer 4.

4.1 Preliminaries
Let H = [h1 h2 · · · hN ], and assume H has full column
rank. For simplicity, we assumeN=M in the remainder of
this work. We seek a matrix W= [w1 w2 · · · wN ]∈CN×N

that transforms H into a punctured LTM L =[ lij]∈ CN×N

with lii∈R+, such that:

W∗H = L. (12)

The aim is to induce a specific pattern of zeros below the
main diagonal of L by appropriately choosing the columns
of W. Setting W = (H∗H)−1H∗ to be the left Moore-
Penrose pseudo-inverse ofH would obviously zero-out all
entries in L below the main diagonal, resulting in L= IN .
On the other hand, choosing W to be an orthonormal
basis of the column space of H, would transform H into a
regular (i.e., unpunctured) LTM, withW being unitary.
In general, if L is punctured, then W is non-unitary.

However, we impose the condition on the column vectors
ofW to have unit length, i.e.,w∗

nwn=1 for n=1, · · · ,N , or

diag
(
W∗W

) =[ 1 1 · · · 1]T1×N . (13)

This guarantees that, when y is left-multiplied by W∗,
the transformed noise vector W∗n has an unaltered
covariance matrix E[W∗nn∗W] = σ 2

nIN . Note also that
non-zero off-diagonal entries of the Gram matrix W∗W
correspond to pairs of column vectors in W that are
non-orthogonal.

4.2 ProposedWL decomposition scheme
Let P = H(H∗H)−1H∗ be the orthogonal projection onto
the column space of H, and P⊥ = I−H(H∗H)−1H∗ be the
orthogonal projection onto the left nullspace ofH. LetHI
be the submatrix formed by the columns ofHwhose index
n belongs to set I . For example, if H = [h1 h2 h3 h4] and
I={1, 2}, thenHI =[h1 h2].
Let In be column index set of the entries in the nth row

ofH to be zeroed out. Define the nth column vector w̃n=
P⊥
Inhn, where

P⊥
In = IN − HIn

(
H∗

InHIn
)−1H∗

In (14)

andHIn ={hm |m ∈ In}. To satisfy (13), first note that

w̃∗
nw̃n = h∗

n

(
P⊥
In

)∗
P⊥
Inhn = h∗

nP⊥
Inhn = w̃∗

nhn,

where the second equality follows since P⊥
In is a projection

matrix, and hence
(
P⊥
In

)∗ =P⊥
In and P⊥

InP
⊥
In =P⊥

In . Hence
the normalized vector wn, defined as

wn = w̃n
‖w̃n‖ ,

with ‖w̃n‖=
√
h∗
nP⊥

Inhn, has unit length.
We have the following main result:

Theorem 1 (WL decomposition). Let In, n = 1, · · · ,N,
be the column index sets where puncturing is desired in
each row n of H. Form the submatrices HIn and their pro-
jection matrices P⊥

In as noted above. Let D =[ dn]∈ R+
be a diagonal matrix whose entries are given by dn =
1
/√

h∗
nP⊥

Inhn , n=1, · · · ,N. Then the matrix
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W∗ = D

⎡⎢⎢⎢⎣
h∗
1P⊥

I1
h∗
2P⊥

I2
...

h∗
NP⊥

IN

⎤⎥⎥⎥⎦ , (15)

when right multiplied byH, zeros out the entries in the rows
ofH at column positions given in In, for all n, and satisfies
condition (13).

Proof. Consider the product of w∗
n withHIn :

w∗
nHIn = dnh∗

n

(
IN − HIn

(
H∗

InHIn
)−1H∗

In

)
HIn

= dnh∗
n
(
HIn − HIn

) = 01×|HIn |
Also, w∗

nhm �= 0 for all m /∈ In, 1 ≤ m ≤ N . Hence wn
nulls the nth row of H only at the column indices given in
In.

Example 1. For a 4×4MIMO system, choosing the punc-
turing sets as I1 = {2, 3, 4}, I2 = {3, 4},I3 = {2, 4},I4 =
{2, 3}, transforms H into a LTM L with entries l32 = l42 =
l43=0 as follows (Figure 2a):

W∗H = D

⎡⎢⎢⎣
h∗
1P⊥

2,3,4
h∗
2P⊥

3,4
h∗
3P⊥

2,4
h∗
4P⊥

2,3

⎤⎥⎥⎦H =

⎡⎢⎢⎣
×
× ×
× ×
× ×

⎤⎥⎥⎦ = L

Choosing I1 = {2, 3, 4}, I2 = {1, 3, 4}, I3 = {4}, I4 = {3},
results in the form of Figure 2b, while the choice I1 =
{2, 3, 4}, I2 ={1, 3, 4}, I3 ={1, 2, 4}, I4 ={∅} results in the
form of Figure 2c.

TheW,L pair in (12) that puncturesH into a given lower
triangular structure is not unique sinceW is non-unitary.
But any other pair that generates the same structure is
related to W,L by a matrix transformation as the next
lemma shows.

Lemma 1 (Similar WL decompositions). Let W1,W2
be two distinct matrices that transform H into two dis-
tinct but identically punctured LTMs L1 and L2. Then the
orthonormal bases of the column space ofW1 andW2 are
both identical to that ofH, and

L1 = R∗
1
(
R∗
2
)−1 L2, W1 = R1R

−1
2 W2 (16)

Proof. We have W∗
1H = L1 and W∗

2H = L2. Let W1 =
Q1R1 and W2 = Q2R2 denote the QR decompositions
of W1 and W2, respectively. Then H = Q1

(
R∗
1
)−1L1 =

Q2
(
R∗
2
)−1L2 where Q1 and Q2 are unitary, with both(

R∗
1
)−1L1 and

(
R∗
2
)−1L2 being lower triangular matrices.

But H admits a unique QLD in the form H = QL, hence
Q1=Q2 =Q and

(
R∗
1
)−1L1=(R∗

2
)−1L2.

5 Reduced-complexity WL decomposition using
QLD

A brute force approach for computing W involves exten-
sive matrix inversion, which is computationally expensive
and prone to numerical error when executed on DSP or
dedicated hardware with finite precision.We develop next
an efficient scheme to determine W using the modified
Gram-Schmidt orthogonalization procedure [49-51] fol-
lowed by elementary matrix operations. From Lemma 1,
any otherW that produces an identical structure is related
by (16).
Assume that H is decomposed into a unitary matrix

Q1 = [q1 q2 · · · qN ] and a lower triangular matrix L1 =
[ lij]N×N with real and positive diagonal elements.We then
have Q∗

1H = L1. Obviously, q∗
1q1 = 1 and q∗

1hm = 0 for
all m = 2, · · · ,N . Hence, w1 = q1. Now consider row
1< n≤N of L1, and assume the mth entry lnm, m< n, is
to be nulled. We have q∗

nhm = lnm ∈ C and q∗
mhm = lmm ∈

R+, from which it follows that
(
q∗
n − q∗

m
lnm
lmm

)
hm = 0.

Therefore, the matrix operations

qn = qn − qml∗nm/lmm (17)

lnj = lnj − lmjlnm/lmm, for j = 1, · · · ,m, (18)

puncture the required entry and update the columns of
Q1 accordingly. These operations are repeated for all other
column entriesm<n to be punctured in row n. Finally, qn
is normalized to have unit length, and the non-zero entries
in row n of L1 are updated:

lnj = lnj
/‖qn‖ , for j = 1, · · · , n (19)

qn = qn
/‖qn‖ (20)

The operations in (17)-(18) followed by the normal-
ization steps (19)-(20) are repeated for all rows n where
puncturing is required. The resulting Q1 is W, and L1 is
the desired punctured LTM L.
In matrix form, we can write (17)-(18) using elementary

matrices Em =[ enj], 1≤m≤N , which differ from IN by a
single elementary row operation, and defined as follows:

enj =
⎧⎨⎩
1, if j = n;
−lnm/lmm, if j = m, j ∈ In;
0, otherwise.

(21)

The product of these elementary matrices forms the
unscaled matrices L2 = (En · · ·E1)L1 and Q∗

2 =(
E∗
n · · ·E∗

1
)
Q∗

1.



Mansour EURASIP Journal onWireless Communications and Networking  (2015) 2015:95 Page 6 of 11

The scaling operations (19)-(20) can be written using
the diagonal matrix D = [dn] ∈ R+, where dn =
1
/√[

Q∗
2Q2

]
nn and [ ·]nn denotes the nth diagonal ele-

ment. The desired (scaled) matrices are given by W∗ =
DQ∗

2 and L=DL2.
For detection, the product W∗y must be formed as

well. This can simply be handled by first left-augmenting
y to H, and then performing QLD on the augmented
matrix to form Q̃L̃ = [

y |H]. When carrying out
the orthogonalization procedure, the same operations
applied to the columns of H are applied to the aug-
mented column. This results in Q̃ = [0N×1 | Q] and
L̃ = [̃

y | L], where QL = H and ỹ = Q∗y, with ỹ
essentially generated as a by-product of the decomposi-
tion. Next, when carrying out operations (17)-(18) fol-
lowed (19)-(20) to puncture a given entry, these operations
are also applied on the leftmost column of L̃ which
contains ỹ.
Algorithm 1 summarizes the steps of the proposed

WLD scheme. Step 1 performs augmented QLD, while
Step 2 performs nulling and normalization.

5.1 Complexity
We next analyze the complexity in terms of floating-point
operations (flops) based on real multiplication (RMUL)

Algorithm 1:Optimized WL decomposition algorithm
L = WLD(H, y,I)

Input: ChannelH, y, and puncturing sets I={I2, · · · ,IN }
Output: Transformed L=[W∗y | W∗H

]
# Note: col indices below account for augmented col inQ and
L

# Step 1: perform augmented QL decomposition
Q←[

y | H] ,L ← 0N×(N+1)
for n=N+1 :−1 :2 do # loop over cols ofH

L(n−1, n) ← ‖qn‖
qn ← qn/L(n − 1, n)

form = n − 1 : −1 : 1 do # loop over cols left of hn
L(n−1,m) ← q∗

nqm
qm ← qm − L(n−1,m)qn

end
end
# Step 2: puncture using elementary row operations
for n=2 :N do # loop over rows of L that need puncturing

form=1 :n−1,m ∈ In do # loop over cols to be
punctured

α ← L(n,m+1)/L(m,m+1)
qn+1 ← qn+1 − α∗qm+1
L(n, 1 :m+1) ← L(n, 1 :m+1) − αL(m, 1 :m+1)

end
L(n, 1 :n+1) ← L(n, 1 :n+1)/ ‖qn+1‖
qn+1 ← qn+1/ ‖qn+1‖ # included only for completeness

end

and addition (RADD). We assume that real division and
square-root operations are equivalent to a RMUL. Also,
complex multiplication requires 4 RMUL and 2 RADD,
while complex addition requires 2 RADD operations. Aug-
mented QLD requires

θ1=(4N3−N2−N)RADD+(4N3+3N2)RMUL (22)

flops, while puncturing requires

θ2= 2
3
(8N3−15N2+4N − 12)RADD

(
16
3
N3−7N2+ 8

3
N−20

)
RMUL

(23)

flops, assuming a (1, (N−1)×1,N−1) structure. In com-
parison, [48] requires (16N4 − 4N3)RMUL and (16N4 −
4N3)RADD.

6 Optimized detection algorithm
We next present a detection algorithm based on the pro-
posed WLD scheme. We decompose H into T punctured
LTMs having identical structure (E, S×E, S) where T =
N/E as follows. The N streams are decoupled E at a time
in T steps by cyclically shifting the columns ofH using the
permutation

πt(i) = mod(i+(t−1)E−1,N)+1, i = 1, · · · ,N , (24)

for t = 1, · · · ,T . Each permuted H is then WL-
decomposed into W(t),L(t), wherein the E leftmost
columns of L(t) correspond to E distinct decoupled
streams. For example, to decouple all four streams of a
4× 4 MIMO system using the (2, 2× 2, 2) structure of
Figure 2b, T = 2 such decompositions are required, one
on [h1 h2 h3 h4] to decouple streams 1 and 2 and one
on [h3 h4 h1 h2] to decouple streams 3 and 4. To allow
decoupled subsets to overlap, the permutation is altered
to place a stream with low reliability in several detec-
tion sets. For example, to decompose the four streams
in the previous example into overlapping (2, 2 × 2, 2)
structures, four decompositions are needed based on
[h1 h2 h3 h4], [h2 h3 h4 h1], [h3 h4 h1 h2], and
[h4 h3 h2 h1]. For simplicity, we assume identical constel-
lations Xn=O on all layers.
One simple approach to low-complexity MIMO detec-

tion is zero-forcing. Left-multiplying y by W(t)∗ to
get W(t)∗y = ỹ(t) = L(t)x + W(t)∗n results
in E decoupled streams corresponding to columns
h1, · · · ,hE . These streams can be detected separately
by slicing the layers individually to find their closest
symbols.
A more powerful detection scheme takes full advantage

of the punctured structure of L(t). Instead of merely slic-
ing to find the E closet symbols in the enumeration set,
we enumerate all symbol vectors in the set OE and then
slice to find the closest symbols in the remaining S layers,
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Figure 3 Block diagram of the proposedWL detection algorithm.

populating the Euclidean distance of the resulting symbol
vectors along the way. First partition ỹ(t), L(t), and x as

ỹ(t) =
[
ỹ(t)
1
ỹ(t)
2

]
, L(t) =

[
A(t) 0
B(t) C(t)

]
, x=

[
x1
x2

]
,

(25)

where ỹ(t)
1 ∈ CE×1, ỹ(t)

2 ∈ CS×1, Ã(t) ∈ RE×E , B̃(t) ∈ RS×E ,
C̃(t) ∈RS×S, x1∈OE , and x2∈OS. Then the symbol vector
with minimum distance for the partitioned structure t is
given by

x̃WL
t �argmin

x∈X

∥∥∥̃y(t)−L(t)x
∥∥∥2

=argmin
x1∈OE

(∥∥∥̃y(t)
1 −A(t)x1

∥∥∥2+∥∥∥̃y(t)
2 −B(t)x1−C(t)x̂2

∥∥∥2)
(26)

x̂2=
⌊(̃

y(t)
2 −B(t)x1

)
/C(t)

⌉
OS

(27)

Note that the first argument of the slicing operator
in (27) is a vector of length S sinceC(t) is a diagonalmatrix.
Here slicing is applied to the individual elements of the
vector over the constellationO. The symbols in the vector
x̃WL
t are rearranged back to their normal order using (24),

and the permuted vector is denoted as xWL
t :

xWL
t = π−1

t
(̃
xWL
t
)
.

The minimum distance dWL
t itself is computed as the

Euclidean distance of y from HxWL
t (rather than the dis-

tance of ỹ(t) from L(t)x̃WL
t ):

dWL
t =

∥∥∥y − H(t)xWL
t

∥∥∥2 �=
∥∥∥̃y(t) − L(t)x̃WL

t

∥∥∥2 . (28)

To compute the LLRs, we expand distances similar
to (26) when taking argmin to determine the symbol
vector

Figure 4 Block diagram of four-sided MAP detector.
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ũWL
n,k,t=argmin

x∈X (0)
n,k

∥∥∥̃y(t)−L(t)x
∥∥∥2 (29)

=argmin
x1∈O(0)

n,k

(∥∥∥̃y(t)
1 −A(t)x1

∥∥∥2+∥∥∥̃y(t)
2 −B(t)x1−C(t)x̂2

∥∥∥2)

where O(0)
n,k = {

x1∈OE : bn,k =0
}
, and x̂2 is defined as

in (27) but with x1∈O(0)
n,k . A similar computation is needed

for the other hypothesis in the set X (1)
n,k to determine:

ṽWL
n,k,t=argmin

x∈X (1)
n,k

∥∥∥̃y(t)−L(t)x
∥∥∥2. (30)

Then (24) is applied to permute the symbols in ũWL
n,k,t

and ṽWL
n,k,t and form the reordered symbol vectors uWL

n,k,t and
vWL
n,k,t :

uWL
n,k,t = π−1

t
(̃
uWL
n,k,t
)
,

vWL
n,k,t = π−1

t
(̃
vWL
n,k,t
)
.

The LLR values are then computed as

�WL
n,k,t = ∥∥y − HuWL

n,k,t
∥∥2 − ∥∥y − HvWL

n,k,t
∥∥2 , (31)

for n=1, · · · ,N , k=1 · · · , log2 |O|, and t=1, · · · ,T .
Finally, one simple way to approximate the ML distance

and LLRs is by selecting the minimum over all t in (28)
and (31), respectively:

dML ≈ min
t=1,··· ,T

(
dWL
t
)
, �ML

n,k ≈ min
t=1,··· ,T

(
�WL

n,k,t
)
.

(32)

Tighter LLRs can be produced by tracking global min-
imum distances rather than just minimizing over the per
stream LLRs. Specifically, when using (26)-(27) for every
stream t, t = 1, · · · ,T , instead of just retaining the
minimum distance and its corresponding argmin symbol
vector, a list of all

∣∣OE∣∣ distances and their corresponding
symbol vectors is populated. These T lists are then used
to compute the LLR values by selecting the minimum dis-
tances for symbol vectors from these lists having 0 or 1
in the desired bit position where the LLR value is to be
computed.
The pseudo-code in Algorithm 2 summarizes the steps

of the proposed WLD detection algorithm. It produces
tight LLRs according to the previous discussion, using the
equations marked with (�). Figure 3 shows a block dia-
gram describing the dataflow of the algorithm. For N = 2
layers, the algorithm is optimal and reduces to that in [45]
since theWs are unitary in this case. When E=1 and dis-
tances in (28) are computed based on L instead of H, the
algorithm reduces to that in [48].

Algorithm 2:Optimized detection algorithm
� = WDetector(H, y)
Input: Channel matrixH∈CN×N ; received vector

y∈CN×1

Output: LLR values �∈Rq×1

Data: T punctured matrices L of structure
(E, S×E, S); puncturing set I ; distance
vectors d=[ dj], d0, d1∈ RE×1; binary-mask
matrix B ∈ FE×q

2
for t=1 :T do # loop over all decompos.
structures ofH

πt(i) ← mod(i+(t−1)E−1,N)+1, i =
1, · · · ,N
[ ỹ |L]← WLD (H (:,π) , y, I) # WL
decomposition function
for j = 1 :

∣∣OE∣∣ do # loop over enum set E
x1 ← next partial symbol vector inOE

x̂2 ← ⌊
(̃y2−Bx1) /C

⌉
OS # vector slice

x =[ xi]← [x1; x̂2] ∈ ON # for symbol
vector
x ← [

xπ(i)
]
# reorder its symbols

dj←
∥∥y−Hx

∥∥2 # compute distances using
H
Bj,: ← BinMask(x) # get binary sequence;
store in row j

end
(�) d1 ← min (d1,min (d,B)) # masked-min

operation using B
(�) d0 ← min

(
d0,min

(
d,B

))
# B is binary

complement of B
end
� ← d0 − d1

6.1 Multi-core detector architectures
Depending on the target throughput and the number of
antennasN in the MIMO systems, multiple 2×2 detector
cores can be configured to construct an N-stream MIMO
detector. Figure 4 shows a four-sided fully parallel 4× 4
MIMO detector that uses four cores to process the four
streams. Here distance buffering and accumulation are
needed before LLR processing in order to adjust the indi-
vidual LLRs according to earlier discussion. It is assumed
that an external digital signal processor (DSP)must supply
the WLD matrix inputs for all four streams according to
the decompositions in (25). If chip area is the constraining
factor, a MIMO detector can be built using a single core
that is time-multiplexed among the four streams.

7 Performance simulation results
The coded bit-error rate (BER) performance of the
proposed detection algorithm was evaluated through
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simulations of a MIMO system employing four transmit
and four receive antennas. The channel encoder is based
on the LTE turbo encoder specification [52] with inter-
leaver length 1,024, using 16-QAM and 64-QAM mod-
ulation constellations. The channel entries are assumed
to be independent and identically distributed (i.i.d.) com-
plex Gaussian random variables. At the receiver end, we
assume perfect channel knowledge. The turbo decoder
implements the true A Posteriori Probability algorithm,
and performs four (full) decoding iterations.
Figure 5 compares the BER versus SNR per receive

antenna of the proposed WLD scheme with E = 1 and
2 structures, versus ML, ZF, the approach of [48], and
the sphere decoder with radius clipping [30], for 16-
QAM. Both overlapping and non-overlapping subsets are
considered. Furthermore, two scenarios for distance com-
putations in (28) are followed; one based on H and one
on L. The curve labeled WLD-H1 corresponds to the pro-
posed WLD detection scheme with E = 1 and distance
computations based on H in (28), while the curve labeled
WLD-L1 corresponds to the proposed scheme with E = 1
but with distance computations based on L in (28). Simi-
larly for the curves labeledWLD-H2 andWLD-L2, but with
E = 2 and non-overlapping decomposition sets. Finally
the curve labeled WLD-H2ov corresponds to E = 2 but
with four overlapping (2, 2 × 2, 2) structures.
As shown in the figure, the plots demonstrate that the

proposed WLD algorithm with E = 2 using H dis-
tances with overlapping subsets performs virtually as ML
and is less than 0.1 dB away from ML with no overlap-
ping subsets. Furthermore, the WLD-L2 scheme performs
much worse than WLD-H2. For decompositions with sin-
gle streams, L distances perform better than H distances;
the WLD-H1 scheme exhibits an error floor. Compared to

Figure 5 BER vs. SNR plots for 16-QAM constellation.

the well-known sphere decoding algorithm with radius-
clipping [30], the proposed WLD-based schemes achieve
better performance especially with E = 2 structures.
Figure 6 compares the BER performance of the WLD

schemes using 64-QAM constellations. The plots demon-
strate again that the WLD scheme with E = 2 using H
distances and overlapping subsets performs very close to
ML. It is worth mentioning that WLD-H2 again performs
very close toWLD-H2ov (and hence toML), which has sig-
nificant hardware saving implications. Note here that the
WLD-L2ov scheme using L-distances with E = 2 overlap-
ping decompositions performs the worst among theWLD
schemes.
Finally, another important advantage of the proposed

schemes is the significant reduction in simulation time
observed when generating the BER plots. On a typical
multi-core server machine, one simulation point takes
in the order of few hours to complete, while the sphere
decoder andML approaches require few days. This is very
valuable for designers when doing rapid evaluations and
tradeoff analyses of various MIMO system features.

8 Conclusions
A low-complexity MIMO subspace detection algorithm
has been presented. By decomposing the channel matrix
of anM-streamMIMO system into a generalized elemen-
tary matrix structure, the detection problem becomes a
generalization of that of a two-stream detection problem,
which admits a simple architecture suitable for high-speed
implementation. Multiple two-stream detector cores can
be employed in parallel to improve detection throughput.
The channel decomposition scheme is cast in terms of
the standard Gram-Schmidt QL decomposition, which is
supported in most modern DSPs.

Figure 6 BER vs. SNR plots for 64-QAM constellation.
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