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Abstract We investigate the role played by particular field
representations of an intermediate massive spin-1 boson
in the context of spin-dependent interparticle potentials
between fermionic sources in the limit of low momentum
transfer. The comparison between the well-known case of
the Proca field and that of an exchanged spin-1 boson (with
gauge-invariant mass) described by a 2-form potential mixed
with a 4-vector gauge field is established in order to pursue
an analysis of spin- as well as velocity-dependent profiles
of the interparticle potentials. We discuss possible applica-
tions and derive an upper bound on the product of vector and
pseudo-tensor coupling constants.

1 Introduction

Most macroscopic phenomena originate either from grav-
itational or electromagnetic interactions. There has been
some experimental effort over the past decades towards the
improvement of low-energy measurements of the inverse-
square law, with fairly good agreement between theory and
experiment [1,2]. The equivalence principle has also been
recently tested to search for a possible spin-gravity coupling
[3]. On the other hand, a number of scenarios beyond the
Standard Model (BSM) motivated by high-energy phenom-
ena predict very light, weakly interacting sub-eV particles
(WISPs) that could generate new long-range forces, such as
axions [4], SUSY-motivated particles [5] or paraphotons [6–
9].

The discovery of a new, though feeble, fundamental
force would represent a remarkable advance. Besides the
Coulomb-like “monopole–monopole” force, it is also pos-
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sible that spin- and velocity-dependent forces arise from
monopole–dipole and dipole–dipole (spin–spin) interac-
tions. Those types of behavior are closely related to two
important aspects of any interacting field theory: matter–
mediator interaction vertices and the propagator of interme-
diate particles. The present paper is mainly concerned with
this issue and its consequences on the shape of the poten-
tial between two fermionic sources. This discussion is also
of relevance in connection with the study, for example, of
the quarkonium spectrum, for which spin-dependent terms
in the interaction potential may contribute considerable cor-
rections [10]. Other sources (systems) involving neutral and
charged particles, with or without spin, have been considered
by Holstein [11].

Propagators are read off from the quadratic part of a given
Lagrangean density and depend on intrinsic attributes of
the fields, such as their spin. Most of the literature is con-

cerned with spin-1 bosons in the
( 1

2 , 1
2

)
-representation of the

Lorentz group (e.g., photon). Here, we would like to address
the following questions: for two different fields represent-
ing the same sort of (on-shell) spin-1 particle, which role
does a particular representation play in the final form of the
interaction? Is the form of the mass term (corresponding to
some specific mass-generation mechanism) determinant for
the macroscopic characterization of the interparticle poten-
tial?

The amplitude for the elastic scattering of two fermions is
sensitive to the fundamental, microscopic, properties of the
intermediate boson. Our work sets out to study the potential
generated by the exchange of two different classes of neutral
particles: a Proca (vector) boson and a rank-2 anti-symmetric
tensor, the Cremer and Scherk [13] and Kalb and Ramond
[12] field, mixed to another vector boson, i.e., the

{
Aμ, Bνκ

}
-

system with a topological mixing term. Two-form gauge
fields are typical of off-shell SUGRA multiplets in four and
higher dimensions [14–18] and the motivation to take them
into consideration is twofold:
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(i) They may be the messanger, or the remnant, of some
physics BSM. This is why we are interested in under-
standing whether we may find out the track of a 2-form
gauge sector in the profile of spin-dependent potentials.

(ii) In four space-time dimensions, a pure on-shell rank-2
gauge potential actually describes a scalar particle. How-
ever, off-shell it is not so. This means that the quantum
fluctuations of a rank-2 gauge field may induce a new
pattern of spin-dependence. Moreover, its mixing with
an Abelian gauge potential sets up a different scenario to
analyse potentials induced by massive vector particles.

Our object of interest is a neutral massive spin-1 mediating
particle, which we might identify as a sort of massive pho-
ton. Such a particle is extensively discussed in the literature,
dubbed as Z0′

-particle. In the review articles of Refs. [19–
21], the authors present an exhaustive list of different Z0′

-
particles and phenomenological constraints on their masses
and couplings. In our paper, we shall be studying interac-
tion potentials between fermionic currents as induced by Z0′

virtual particles; their effects are then included in the inter-
paticle potentials we are going to work out. Therefore, the
velocity- and spin-dependence of our potentials appear as an
effect of the interchange of a virtual Z0′

-particle.
We exploit a variety of couplings to ordinary matter in

order to extract possible experimental signatures that allow
to distinguish between the two types of mediation in the
regime of low-energy interactions. Just as in the usual elec-
tromagnetic case, where the 4-potential is subject to gauge-
fixing conditions to reduce the number of degrees of free-
dom (d.o.f.), we shall also impose gauge-fixing conditions to
the

{
Aμ, Bνκ

}
-system in order to ensure that only the spin-1

d.o.f. survives. From the physical side, we expect those poten-
tials to exhibit a polynomial correction (in powers of 1/r )
to the well-known e−m0r/r Yukawa potential. This implies
that a laboratory aparatus with typical dimensions of ∼mm
could be used to examine the interaction mediated by massive
bosons with m0 ∼ 10−3 eV.

Developments in the measurement of macroscopic inter-
actions between unpolarized and polarized objects [1,2,22–
25] are able to constrain many of the couplings between
electrons and nucleons (protons and neutrons), so that we
can concentrate on more fundamental questions, such as the
impact of the particular field representation of the intermedi-
ate boson in the fermionic interparticle potential. To this end,
we discuss the case of monopole–dipole interactions in order
to directly compare the Proca and

{
Aμ, Bνκ

}
-mechanisms.

We shall also present bounds on the vector/pseudo-tensor
couplings that arise from a possible application to the study
of the hydrogen atom.

We would like to point out that our main contribution here
is actually to associate different field representations (which
differ from each other by their respective off-shell d.o.f.)

to the explicit spin-dependence in the particle potentials we
derive. Rather than focusing on the constraints on the param-
eters, we aim at an understanding of the interplay between
different field representations for a given spin and spin–spin
dependence of the potentials that appear from the associate
field-theoretic models. This shall be explicitly highlighted in
the end of Sect. 4.2. We anticipate here however that four
particular types of spin- and velocity-dependences show up
only in the topologically massive case we discuss here. The
Proca-type massive exchange do exclude these four terms,
as it shall become clear in Sect. 4.2.

Our paper is outlined according to what follows: in Sect. 2,
we introduce the concept of potential and briefly discuss the
notation and conventions employed. Next, we calculate the
potentials with different classes of couplings for the Proca
and

{
Aμ, Bνκ

}
-system in Sects. 3 and 4. In Sect. 4.1 we

present with due details the intermediate steps that yield the
final expressions of our set of propagators and we devote
some words to compare our results with the propagators
worked out by other authors. We present our Conclusions
and Perspectives in Sect. 5. Two appendices follow: in the
Appendix A, we cast the list of relevant vertices in the low-
energy limit. Next, in the Appendix B, we present the multi-
plicative algebra of a set of relevant spin operators that appear
in the attainment of a set of propagators we have to compute
in Sect. 4.

2 Methodology

Let us first establish the kinematics of our problem. We are
dealing with two fermions, 1 and 2, which scatter elasti-
cally. If we work in the center of mass frame (CM), we can
assign them momenta as indicated in Fig. 1 below, where �q
is the momentum transfer and �p is the average momemtum
of fermion 1 before and after the scattering.

Given energy conservation and our choice of reference
frame, one can readily show that �p · �q = 0 and that qμ

is space-like: q2 = −�q 2. The amplitude will be expressed

Fig. 1 Basic vertex structure and momentum assignments
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in terms of �q and �p and we shall keep only terms linear
in | �p|/m1,2. It will also include the spin of the particles
involved.

According to the first Born approximation, the two-
fermion potential can be obtained from the Fourier transform
of the tree-level momentum-space amplitude with respect to
the momentum transfer �q

V (r, v) = −
∫

d3 �q
(2π)3 ei �q· �r A(�q,m�v), (1)

where �r , r and v = | �p|/m1,2 are the relative position
vector, its modulus and average velocity of the fermions,
respectively. The long-range behaviour is related to the non-
analytical pieces of the amplitude in the non-relativistic limit
[26]. We evaluate the fermionic currents up to first order in
| �p|/m1,2 and |�q|/m1,2, as indicated in the Appendix A (an
important exception is discussed in Sect. 4.2 in connection
with the mixed propagator 〈AμBνκ 〉 since, in that case, con-
tact terms arise).

We restrict ourselves to tree-level amplitudes since we are
considering weakly interacting particles, thus carrying tiny
coupling constants that suppress higher-order diagrams. The
typical outcome are Yukawa-like potentials with extra 1/r
contributions which also depend on the spin of the sources,
as well as on their velocity. Contrary to the usual Coulomb
case, spin- and velocity-dependent terms are the rule, not
exception.

3 The pure spin-1 case: the Proca field

In order to establish the comparison between the two situa-
tions that involve a massive spin-1 particle, we start off by
quickly reviewing the simplest realization of a neutral mas-
sive vector particle, the Proca field Aμ(x), described by the
Lagrangean

LProca = −1

4
F2

μν + 1

2
m2

0 A2
μ (2)

with the field strength tensor given by Fμν = ∂μAν − ∂ν Aμ.
Since we are concerned with the interaction mediated

by such a field, it is necessary to calculate its propagator,
〈AμAν〉. The Lagrangean above can be suitably rewritten
as 1

2 A
μOμν Aν , in which the operator Oμν , essentially the

inverse of the propagator, isOμν = (
� + m2

0

)
θμν +m2

0ωμν ,
where we introduced the transverse and longitudinal projec-
tion operators defined as

θμν ≡ ημν − ∂μ∂ν

� , (3)

ωμν ≡ ∂μ∂ν

� , (4)

which satisfy θ2 = θ , ω2 = ω, θω = 0 and θ + ω = 1. Due
to these simple algebraic properties it is easy to invert Oμν

and, transforming to momentum space, we finally have

〈AμAν〉 = − i

k2 − m2
0

(

ημν − kμkν

m2
0

)

, (5)

from which we proceed to the calculation of the potentials.
Let us solve in more detail the case of two fermionic

vector currents interacting via the Proca field. Using the
parametrization of Fig. 1 and applying the Feynman rules,
we get

iAProca
V−V = ū(p + q/2){igV1 γ μ}u(p − q/2)〈AμAν〉

×ū(−p − q/2){igV2 γ ν}u(−p + q/2)

with gV1 and gV2 refering to the coupling constants. The equa-
tion above can be put in a simpler form as below

AProca
V−V = i Jμ

1 〈AμAν〉 J ν
2 . (6)

If we use thatq0 = 0 and current conservation, we find that
the amplitude is AProca

V−V = − 1
�q 2+m2

0
Jμ

1 J2μ and, according

to Eq. (A9), we have J i1 J2i ∼ O(v2/c2). Therefore, only
the term J 0

1 J20 ≈ gV1 gV2 δ1δ2 contributes to the scattering
amplitude, thus giving

AProca
V−V = −gV1 gV2

δ1δ2

�q 2 + m2
0

, (7)

where δi (i = 1, 2 labels the particles) is such that δi = +1
if the i-th particle experiences no spin flip in the interaction,
and δi = 0 otherwise. In the Eq. (7) above, the global term
δ1δ2 is present to indicate that the amplitude is non-trivial
only if both particles do not flip their respective spins. If one
of them changes its spin the potential vanishes. This means
that this interaction only occurs with no spin flip. In what
follows, we shall come across situations where only a single
δi appears, thus justifying the effort to keep the δi explicit.

Finally, we take the Fourier transform in order to obtain
the potential between two static (vector) currents,

V Proca
V−V = gV1 gV2 δ1δ2

4π

e−m0r

r
, (8)

which displays the well-known exponentially suppressed
repulsive Yukawa behaviour typical of a massive s = 1 boson
exchange. In our notation, the potential is indicated asVv1−v2 ,
where v1,2 refer to the vertices related to the particles 1 and 2.
In the case above, the subscripts V stand for vector currents.
As already announced, the typical decay length is 1/m0 and
we expect that very light bosons will be measurable for (labo-
ratory) macroscopic distances, e.g. for masses of ∼10−3 eV,
we have ranges of d ∼ mm.
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Following the same procedure, we can exploit other situ-
ations, namely: vector with pseudo-vector currents and two
pseudo-vector currents. The results are cast in what follows:

V Proca
V−PV = −gV1 gPV

2

4π

{
�p · 〈�σ 〉2

δ1

r

[
1

m1
+ 1

m2

]

+ (1 + m0r)

2m1r2

[〈�σ 〉1 × 〈�σ 〉2
] · r̂

}
e−m0r (9)

V Proca
PV−PV = −gPV

1 gPV
2

4π
〈�σ 〉1 · 〈�σ 〉2

e−m0r

r
, (10)

and we notice that all kinds of spin-dependent interactions
appear while the r factors are limited to r−2. It is also easy
to see that V Proca

PV−PV and V Proca
V−PV are even and odd against

a parity transformation, respectively. In the next section, we
shall conclude that a richer class of potentials is generated if
the massive spin-1 Abelian boson exhibits a gauge-invariant
mass that comes from the mixing between a 1- and a 2-form
potentials.

4 The topologically massive spin-1 case

The Proca vector field transforms under the
( 1

2 , 1
2

)
-represen-

tation of the Lorentz group and its Lagrangean is the simplest
extension leading to a massive intermediate vector boson, but
it is not the only one. A massive spin-1 particle can also be
described through a gauge-invariant formulation: a vector
and a tensor fields connected by a mixing topological mass
term [27]. Both the vector Aμ and the tensor Bμν are gauge
fields described by the following Lagrangean:

L0 = −1

4
F2

μν + 1

6
G2

μνκ + m0√
2

εμναβ Aμ∂νBαβ, (11)

where the field-strength for the anti-symmetric tensor is
Gμνκ = ∂μBνκ + ∂νBκμ + ∂κ Bμν . The action is invariant
under the independent local Abelian gauge transformations
given by

A′
μ = Aμ + ∂μα (12)

B ′
μν = Bμν + ∂μβν − ∂νβμ, (13)

and it can be shown that together with the equations of
motion, the pair {Aμ, Bνκ } carries three (on-shell) d.o.f.,
being, therefore, equivalent to a massive vector field. It is
interesting to note that, contrary to the typical Proca case,
the topological mass term does not break gauge invariance,
so that no spontaneous symmetry breakdown is invoked.

Even though the Proca field and the mixed {Aμ, Bνκ }-
system describe both an on-shell spin-1 massive particle,
these two cases are significantly different when considered

off-shell. Our topologically massive spin-1 system displays
six d.o.f. when considered off-shell (since gauge symmetry
allows us to eliminate four compensating modes), whereas
the Proca field carries four off-shell d.o.f. (the subsidiary con-
dition, which is an on-shell statement, eliminates one d.o.f.).
It is the on-shell spin-1 massive boson corresponding to the
mixed {Aμ, Bνκ }-system that we refer to as our Z0′

-type par-
ticle. Its exchange between external fermionic currents gives
rise to the classes of interparticle potentials we wish to cal-
culate and discuss in this paper.

On the other hand, since the potential evaluation is an off-
shell procedure, we consider relevant to compare both situa-
tions bearing in mind that the potential profiles may indicate
– if we are able to set up an experiment – whether a particu-
lar mechanism is preferable in the case of a specific physical
system. Characteristic aspects of the potentials in these two
situations might select one or other mechanism in some pos-
sible physical scenario, therefore being able to distinguish
between different BSM models.

Our goal is to investigate the potentials between fermions
induced by the exchange of the mixed vector and tensor fields
and compare the spin-, velocity- and distance-dependence
against the Proca case. To do that, we need, first of all, to
derive the whole set of propagators.

4.1 The propagators

As in Sect. 3, it is important to obtain suitable spin operators
in order to obtain the propagators of the model. The spin
operators that act on an anti-symmetric 2-form are
(
P1
b

)

μν, ρσ
≡ 1

2

(
θμρ θνσ − θμσ θνρ

)
(14)

(
P1
e

)

μν, ρσ
≡ 1

2

(
θμρ ωνσ + θνσ ωμρ − θμσ ωνρ − θνρ ωμσ

)

(15)

which are anti-symmetric generalizations of the projectors
θμν and ωμν [28–30]. The comma indicates that we have
anti-symmetry in changes μ ↔ ν or ρ ↔ σ . The algebra
fulfilled by these operators is collected in the Appendix B.
We quote them since they are very useful in the extraction of
the propagators from Lagrangean (11). Adding up the gauge-
fixing terms to the Lagrangean (11),

Lg. f. = 1

2α

(
∂μA

μ
)2 + 1

2β

(
∂μB

μν
)2

, (16)

yields the full Lagrangean L = L0 + Lg. f.. In terms of the
spin operators, L can be cast in a more compact form as:

L = 1

2

(
Aμ Bκλ

) (
Pμν Qμρσ

Rκλν Sκλ, ρσ

) (
Aν

Bρσ

)
, (17)

123



Eur. Phys. J. C (2015) 75 :238 Page 5 of 10 238

where we identify

Pμν ≡ �θμν − �
α

ωμν (18)

Qμρσ ≡ m0 Sμρσ /
√

2 (19)

Rκλν ≡ −m0 Sκλν/
√

2 (20)

Sκλ, ρσ ≡ −�
(
P1
b

)

κλ, ρσ
− �

2β

(
P1
e

)

κλ, ρσ
. (21)

With the help of Appendix B, we invert the matrix operator
in (17) and read off the 〈AμAν〉, 〈AμBκλ〉 and 〈BμνBκλ〉
momentum-space propagators, which turn out to be given as
below:

〈AμAν〉 = − i

k2 − m2
0

ημν + i

(
1

k2 − m2
0

+ α

k2

)
kμkν

k2

(22)

〈BμνBκλ〉 = i

k2 − m2
0

(
P1
b

)

μν, κλ
+ 2iβ

k2

(
P1
e

)

μν, κλ
(23)

〈AμBνκ 〉 = m0/
√

2

k2
(
k2 − m2

0

) εμνκλ k
λ. (24)

From the propagators above, we clearly understand that
the massive pole k2 = m2

0, present in (22)–(24), actu-
ally describes the spin-1 massive excitation carried by
the set {Aμ, Bνκ }. In contrast to the off-shell regime of
the so-called BF-model [31], our non-diagonal 〈AμBνκ 〉-
propagator exhibits a massive pole and it cannot be consid-
ered separately from the 〈AμAν〉- and 〈AμBκλ〉-propagators:
only the full set of fields together correspond to the three
d.o.f. of the on-shell massive spin-1 boson we consider in
our study.

Different from the point of view adopted in Ref. [32],
where the authors treat the topological mass term as a vertex
insertion (they keep the 〈AμBν〉- and 〈BμνBκλ〉-propagators
separately and with a trivial pole k2 = 0), we consider it
as a genuine bilinear term and include it in the sector of 2-
point functions. For that, we introduce the mixed spin oper-
ator Sμνκ in the algebra of operators and its final effect is to
yield the mixed 〈AμBνκ 〉-propagator. The commom pole at
k2 = m2

0 does not describe different particles, but a sin-
gle massive spin-1 excitation described by the combined{
Aμ, Bνκ

}
-fields, as already stated in the previous para-

graph. Ref. [32] sums up the (massive) vertex insertions into
the 〈AμAν〉-propagator which develops a pole at k2 = m2.
They leave the 〈BμνBκλ〉-propagator aside because the Bμν-
field does not interact with the fermions; the latter are mini-
mally coupled only to Aμ.

On the other hand, in Ref. [33], the topological mass term
that mixes Aμ and Bνκ is generated by radiative corrections
induced by the 4-fermion interactions. So, for the sake of
their calculations, the authors work with a massless vector
propagator whose mass is dynamically generated. This is

not what we do here. In a more recent paper [34], again an
induced topological mass term mixes Aμ and Bνκ but, in this
case, it is a topological current that radiatively generates the
mass.

We point out the seminal paper by Cremmer and Scherk
[13], where they show that, for the spectrum analysis, it is
possible to take the field-strength Gμνκ and its dual G̃μ, as
fundamental fields, thus enabling them to go into a new field
basis where a Proca-like field emerges upon a field redefini-
tion. We cannot follow this road here, for our Bμν is coupled
to a tensor and to a pseudo-tensor currents in the process
of evaluating some of our potentials. This prevents us from
adopting G̃μ as a fundamental field, as it is done in [13]; this
would be conflicting with the locality of the action. But, for
the sake of analysing the spectrum, Cremmer and Scherk’s
procedure works perfectly well.

Finally, we also point out the paper by Kamefuchi et al.
[35] that discusses the conditions on field reshufflings which
do not change the physical results, namely, the S-matrix ele-
ments. A crucial requirement is that the change of basis in
field space do not yield non-local interactions.

To conclude the present sub-section on the propagators,
we reinforce that once the Aμ- and Bμν-fields interact with
external currents, the diagonalization of the (free) bilin-
ear piece of the Lagrangean is not a good procedure, the
reason being that the topological mass term has a deriva-
tive operator, which would imply into non-local interac-
tions between the new (diagonalized) fields and the exter-
nal currents, so that the physical equivalence stated in the
Kamefuchi–O’Raifeartaigh–Salam’s paper can no longer be
undertaken.

4.2 The potentials

We have already discussed the procedure to obtain the spin-
and velocity-dependent potentials in previous sections. Thus,
we shall focus on the particular case in which we have the
propagator 〈BμνBκλ〉 and two tensor currents. In the fol-
lowing, we adopt the same parametrization of Fig. 1. After
applying the Feynman rules, we can rewrite the scattering
amplitude for this process as

A〈BB〉
T−T = i Jμν

1 〈BμνBκλ〉J κλ
2 (25)

with the tensor currents given by Eq. (A13). Substitut-
ing the propagator (23) in Eq. (25) and eliminating its
longitudinal sector (due to current conservation), we have

A〈BB〉
T−T = − 1

q2−m2
0
Jμρ

1 J2μρ . The product of currents leads

to Jμρ
1 J2μρ = 2J 0i

1 J2 0i + J i j1 J2 i j . However, according

to Eq. (A14), we conclude that J 0i
1 J2 0i ∼ O(v2/c2) does

not contribute to the non-relativistic amplitude. The term
J i j1 J2 i j can be simplified by using Eq. (A15) (with the
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appropriate changes to the second current), so that we get

A〈BB〉
T−T = 1

2
gT1 gT2
�q 2+m2

0
〈�σ 〉1 · 〈�σ 〉2. Performing the well-known

Fourier integral, we obtain the non-relativistic spin–spin
potential, namely

V 〈BB〉
T−T = −gT1 g

T
2

8π
〈�σ 〉1 · 〈�σ 〉2

e−m0r

r
, (26)

and, similarly, we find the interaction potentials between ten-
sor and pseudo-tensor currents currents to be

V 〈BB〉
T−PT = gT1 g

PT
2

8πr

{(
1

m1
+ 1

m2

)
�p · (〈�σ 〉1 × 〈�σ 〉2)

+ (1 + m0r)

2r

(
δ2

m2
〈�σ 〉1 − δ1

m1
〈�σ 〉2

)
· r̂

}
e−m0r

(27)

as well as two pseudo-tensors

V 〈BB〉
PT−PT = gPT

1 gPT
2

8π
〈�σ 〉1 · 〈�σ 〉2

e−m0r

r
. (28)

It is worthy comparing the potentials (26) and (28). We
observe that they differ by a relative minus sign. This means
that they exhibit opposite behaviors for a given spin configu-
ration: one is attractive and the other repulsive. The physical
reason is that the PT − PT and T − T potentials stem from
different sectors of the currents: the PT − PT amplitude is
composed by the (0i)−(0 j) terms of the currents; the T −T
amplitude, on the other hand, arises from the (i j)−(kl) com-
ponents, as it can be seen from Eq. (25).

In the light of that, we check the structure of the 〈BμνBκλ〉-
propagator and it becomes clear that, in the case of the
〈B0i B0 j 〉-mediator, an off-shell scalar mode is exchanged.
In contrast, in the 〈Bi j Bkl〉-sector the only exchange is of a
pure s = 1 (off-shell) quantum. It is well-known, however,
that the exchange of a scalar and a s = 1 boson between
sources of equal charges yields attractive and repulsive inter-
actions, respectively, therefore justifying the aforementioned
sign difference between Eqs. (26) and (28).

For the mixed propagator 〈AμBκλ〉, Eq. (24), we have four
possibilities envolving the following currents: vector with
tensor, vector with pseudo-tensor, pseudo-vector with tensor
and pseudo-vector with pseudo-tensor. The results are given
below:

V 〈AB〉
V−T = gV1 gT2 δ1

4π
√

2m0r2

[
1 − (1 + m0r) e

−m0r
] 〈�σ 〉2 · r̂ (29)

V 〈AB〉
PV−T = gPV

1 gT2
4π

√
2m0μr2

[
1 − (1 + m0r) e

−m0r
]

× (〈�σ 〉1 · �p) (〈�σ 〉2 · r̂) (30)

V 〈AB〉
PV−PT = gPV

1 gPT
2√

2m0

{
δ2

2m1m2

[

δ3(�r)

+ m2
0

4πr
e−m0r

]

〈�σ 〉1 · �p

+ 1

4πr2

[
1 − (1 + m0r) e

−m0r
]
(〈�σ 〉2 × 〈�σ 〉1) · r̂

}
. (31)

The richest potential is the one between vector and pseudo-
tensor sources, given by

V
〈AB〉
V−PT = gV1 gPT

2√
2m0

{
δ1δ2

2m2

[

δ3(�r) + m2
0

4πr
e−m0r

]

+ δ1

4πμr3

[
1 − (1 + m0r) e

−m0r
] �L · 〈�σ 〉2

+ 1

2m1

[

δ3(�r) + m2
0

4πr
e−m0r − 1

4πr3

× [
1 + (1 + m0r) e

−m0r
]
]

〈�σ 〉1 · 〈�σ 〉2

+ 1

8πm1r3

[
3 +

(
3 + 3m0r + m2

0r
2
)
e−m0r

]

× (〈�σ 〉1 · r̂) (〈�σ 〉2 · r̂)
}

(32)

where we have introduced the reduced mass of the fermion
system μ−1 = m−1

1 + m−1
2 and �L = �r × �p stands for the

orbital angular momentum.
Naturally, the contact terms do not contribute to a macro-

scopic interaction. Nevertheless, they are significant in
quantum-mechanical applications in the case of s-waves
which can overlap the origin. This is a peculiarity of
〈AμBκλ〉-sector due to the extra q2-factor in the denomina-
tor, which forces us to keep terms of order |�q|2 in the current
products.

For the propagator 〈AμAν〉, Eq. (22), we find the same
results as the ones in the Proca situation, due to cur-
rent conservation. This means that, even though the vector
field appears now mixed with the Bμν-field with a gauge-
preserving mass term, for the sake of the interaction poten-
tials, the results are the same as in the Proca case as far as
the Aμ-field exchange is concerned.

We mention in passing that the V 〈BB〉
T−T , V 〈BB〉

PT−PT , V 〈AB〉
PV−T

and V 〈AB〉
V−PT potentials are even under parity, while V 〈BB〉

T−PT ,

V 〈AB〉
V−T and V 〈AB〉

PV−PT are odd. This difference is due to the
presence of a single factor of the momentum transfer in the
mixed propagator, Eq. (24).

We point out that experiments with rare earth iron garnet
test masses [36] could be a possible scenario to distinguish
the two different mass mechanisms. In the Proca mechanism,
we obtained the following spin- and velocity-dependences:
�p · �σ , (�σ1×�σ2)·r̂ and �σ1 · �σ2. These also appear in the gauge-
preserving mass, but there we have additional profiles, given
by (�σ1 × �σ2) · �p, �σ · r̂ , (�σ1 · �p)(�σ2 · r̂) and (r̂ × �p) · �σ .
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Fig. 2 Monopole–dipole
potentials with
m1 = me = 105 eV,
m0 = 10−3 eV and source 1
velocity of order v � 10−6. The
scale is irrelevant and coupling
constants were not included for
simplicity
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The experiment provides six configurations (C1, . . . ,C6)

by changing the relative orientation of the detector and the
test mass (with respective spin polarizations and relative
velocities). One of these configurations is interesting to our
work, namely, the C5 is sensitive only to (r̂ × �p) · �σ depen-
dence, which is only present in the gauge-preserving mass
mechanism. For the other profiles we cannot distinguish
the contributions of different mechanisms in this experi-
ment. For example, the C2 configuration is sensitive to both
(�σ1 · �p)(�σ2 · r̂) and �σ1 · �σ2 dependences.

5 Conclusions and perspectives

The model we are investigating describes an extra Abelian
gauge boson, a sort of Z0′

, which appears as a neutral massive
excitation of a mixed {Aμ, Bνκ }-system of fields. It may be
originated from some sector of BSM physics, where the cou-
pling between an Abelian field and the 2-form gauge potential
in the SUGRA multiplet may yield the topologically mas-
sive spin-1 particle we are considering. To have detectable
macroscopic effect, this intermediate particle should have a
very small mass, of the order of meV. This would be possible
in the class of phenomenological models with the so-called
large extra dimensions.

It is clear that the considerable number of off-shell d.o.f.
of the {Aμ, Bνκ }-model accounts for the variety of poten-
tials presented above. In order to distinguish between the two
models, a possible experimental set-up could consist of a neu-
tral and a polarized source (1 and 2, respectively). Suppose,
furthermore, that the sources display all kinds of interactions
(V , PV , T , etc).

In this case, we must collect the terms proportional to
〈�σ 〉2 ≡ 〈�σ 〉 in the two scenarios

V Proca
mon-dip = −g2

μ

e−m0r

r
�p · 〈�σ 〉 (33)

and

V {A,B}
mon-dip = −g2

μ

e−m0r

r
�p · 〈�σ 〉

− g2

m1

(1 + m0r)e−m0r

r2 r̂ · 〈�σ 〉

+ g2

m0

[
1 − (1 + m0r) e−m0r

]

r2 r̂ · 〈�σ 〉

− g2m0

m1m2

e−m0r

r
�p · 〈�σ 〉

+ g2

μm0

[
1 − (1 + m0r) e−m0r

]

r3 (�r × �p) · 〈�σ 〉,
(34)

where, for simplicity, we have omitted the labels in the cou-
pling constants. In the macroscopic limit these would be
effectively substituted by g → gNi , being Ni the number
of interacting particles of type i in each source. If we con-
sider the case in which the source 1 carries momentum so
that �p // 〈�σ 〉, the last term above vanishes. Similarly, it is
easy to see that the third term is essencially constant, while
the fourth one is negligeable, since m0| �p|/m1m2 
 1 by
definition. In Fig. 2, we plot the two resulting potentials.

It would then be possible, in principle, to determine which
field representation, Proca or {Aμ, Bνκ }, better describes the
interaction at hand. It is worth mentioning that this difference
is regulated by the 1/m1 factor in the second term of Eq. (34),
so that only the lightest fermions (i.e., electrons and not the
protons or neutrons, provided that, in a macroscopic source,

123



238 Page 8 of 10 Eur. Phys. J. C (2015) 75 :238

we can safely neglect the internal structure of the nucleons)
would be able to contribute significantly.

The calculation we have performed is based on the
quantum field-theoretical scattering amplitude in the non-
relativistic limit, and the potential obtained – which can be
interpreted as an operator – is also suitable to be introduced
in the Schrödinger equation as a time-independent perturba-
tion to the full Hamiltonian. This is a reasonable approach if
these corrections are relatively small, which is to be expected,
given that the standard quantum mechanical/QED results are
in good agreement with experiments.

If we take the second line of Eq. (32), for example, we
notice a coupling of the angular momentum of the first
fermion with the spin of the second. Such a spin-orbit cou-
pling is also found in the hydrogen atom, contributing to its
fine structure (with typical order of magnitude of 10−6 eV).
Supposing that the proton and electron are charged under
the gauge symmetries leading to the

{
AμBνκ

}
-fields, we can

calculate a correction to the energy levels of their bound state
due to 〈AμBκλ〉 exchange as a means of estimation for the
V − PT coupling constants as a function of m0. Expanding
the exponential in 1 − (1 +m0r)e−m0r and keeping only the
leading term, the spin-orbit term simplifies to

V LS
V−PT =

√
2gV1 gPT

2 m0

8πμ

1

r
L · S (35)

with S = 〈�σ 〉2/2. Applying first-order perturbation theory
to this potential gives a correction to the energy of �ELS =

gV1 gPT2 m0

8π
√

2μ(n2a0)
Xl , where Xl = l for j = l + 1/2 and Xl =

−(l+1) for j = l−1/2. As we are interested in an estimate,
we suppose |Xl |/n2 ∼ 1. Given that the reduced mass and
the Bohr radius are μ � me = 5.11 × 105 eV and a0 =
2.69 × 10−4 eV−1, respectively, we can constrain �ELS

to be smaller than the current spectroscopic uncertainties of
one part in 1014 [37]. We then obtain |gV gPT | < 10−8, for
a mass of order m0 ∼10−2 eV, which poses a less stringent,
but consistent (in regard to the orders of magnitude of other
couplings [8]), upper bound on the couplings. We see that
this correction is much smaller than the typical spin-orbit
contribution. A more comprehensive study applying atomic
spectroscopy of both electronic and muonic hydrogen atoms
will be reported in a forthcoming paper.

At last, but not less interesting, we indicate that it is
possible to assign certain CP-transformation properties to
the fields Aμ and Bμν so that the topological mass term in
Eq. (11) violates CP . This would induce an electric dipole
moment (EDM) if we couple our model to fermionic fields.
Following the procedure employed by Mantry et al. [38] in
the context of axions, one could also use information from
the EDM to find further bounds on the coupling constants
and the mass of the intermediate spin-1 boson.
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Appendix A. Currents in the non-relativistic approxima-
tion

In the following we present a brief summary of the conven-
tions and main decompositions employed in the calculations
carried out in the previous sections.

A1. Basic conventions

The basic spinors used to compose the scattering amplitude
are the positive energy solutions to the Dirac equation in
momentum space [39], namely

u(p) =
(

ξ
�σ · �p
2m ξ

)
(A1)

where ξ =
(

1
0

)
or ξ =

(
0
1

)
for spin-up and -down,

respectively. Above we have assumed the non-relativistic
limit E + m ≈ 2m. The orthonormality relation ξ

′†
r ξs = δrs

is supposed to hold and we will usually suppress spinor
indices.

The gamma matrices are chosen as

γ 0 =
(

1 0
0 −1

)
and γ i =

(
0 σi

−σi 0

)
, (A2)

and the metric and Levi-Civita symbol are defined so that
ημν = diag(+,−,−,−) and ε0123 = +1, respectively. We
adopt natural units h̄ = c = 1 throughout.

A2. Current decompositions

In order to calculate the spin-dependent potentials, it is useful
to have the non-relativistic limit of the source currents, where
we assume

(1) | �p|2/m2 ∼ O (
v2

) → 0.
(2) Small momentum transfer: |�q|2/m2 → 0.
(3) The cross product tends to zero if | �p|/m and |�q|/m are

small. Energy–momentum conservation implies �p · �q =
0.
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Here, we show the results of the main fermionic currents.
We adopt the parametrization for the first current (i.e., first
vertex), following Fig. 1. We denote the generators of the
boosts and rotations by

�μν ≡ − i

4

[
γ μ, γ ν

]
, (A3)

and 〈σi 〉 ≡ ξ ′† σi ξ . In the Dirac representation, γ5 is given
by

γ5 =
(

0 1
1 0

)
. (A4)

Making use of the Dirac spinor conjugate, ū ≡ u†γ 0, we
have the following set of identities, omitting the coupling
constants:

(1) Scalar current (S):

ū(p + q/2) u(p − q/2) ≈ δ. (A5)

(2) Pseudo-scalar current (PS):

ū(p + q/2) iγ5 u(p − q/2) = − i

2m
�q · 〈�σ 〉. (A6)

(3) Vector current (V ):

ū(p + q/2) γ μ u(p − q/2). (A7)

(3i) For μ = 0,

ū(p + q/2) γ 0 u(p − q/2) ≈ δ. (A8)

(3ii) For μ = i ,

ū(p + q/2) γ i u(p − q/2) = �pi
m

δ − i

2m
εi jk �q j 〈.σk〉

(A9)

(4) Pseudo-vector current (PV ):

ū(p + q/2)γ μγ5u(p − q/2). (A10)

(4i) For μ = 0,

ū(p + q/2) γ 0 γ5 u(p − q/2) = 1

m
〈�σ 〉 · �p. (A11)

(4ii) For μ = i ,

ū(p + q/2) γ i γ5 u(p − q/2) ≈ 〈σi 〉. (A12)

(5) Tensor current (T ):

ū(p + q/2)�μν u(p − q/2). (A13)

(5i) For μ = 0 and ν = i ,

ū(p+q/2)�0i u(p−q/2) = 1

2m
εi jk �p j 〈σk〉+ i

4m
δ �qi .

(A14)

(5ii) For μ = i and ν = j ,

ū(p + q/2)�i j u(p − q/2) ≈ −1

2
εi jk〈σk〉. (A15)

(6) Pseudo-tensor current (PT ):

ū(p + q/2) i �μν γ5 u(p − q/2). (A16)

(6i) For μ = 0 and ν = i ,

ū(p + q/2) i �0i γ5 u(p − q/2) ≈ 1

2
〈σi 〉. (A17)

(6ii) For μ = i and ν = j

ū(p + q/2)i �i j γ5 u(p − q/2)

= 1

2m

( �pi 〈σ j 〉 − �p j 〈σi 〉
) + i

4m
δ εi jk �qk . (A18)

In the manipulations above, we have kept the rs indices
implicit in the δrs , as adopted in the main text, pointing out
only the particle label. Due to momentum conservation and
our choice of reference frame (CM), the second current (or
second vertex) can be obtained by performing the changes
q → −q and p → −p in the first one.

Appendix B. Spin operators

The spin operators satisfy the following algebra:

(
P1
b + P1

e

)

μν, ρσ
= 1

2

(
ημρηνσ − ημσ ηνρ

) ≡ 1a.s.
μν, ρσ

(B1)
(
P1
b

)

μν, αβ

(
P1
b

)αβ

, ρσ
=

(
P1
b

)

μν, ρσ
(B2)

(
P1
e

)

μν, αβ

(
P1
e

)αβ

, ρσ
=

(
P1
e

)

μν, ρσ
(B3)

(
P1
b

)

μν, αβ

(
P1
e

)αβ

, ρσ
= 0 (B4)

(
P1
e

)

μν, αβ

(
P1
b

)αβ

, ρσ
= 0. (B5)
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We notice that the mixing term between Aμ and Bμν intro-
duces a new operator, Sμνκ ≡ εμνκλ ∂λ, which is not a pro-
jector, since

εμναβ Aμ∂νBαβ = 1

2

[
Aμ SμκλB

κλ − Bκλ Sκλμ Aμ
]
, (B6)

so that we need to study the algebra of Sμνκ with the projec-
tors (14) and (15), giving us

SμναS
ακλ = −2�

(
P1
b

) κλ

μν,
(B7)

(
P1
b

)

μν, αβ
Sαβκ = S κ

μν (B8)

Sκαβ
(
P1
b

) μν

αβ,
= Sκμν (B9)

(
P1
e

)

μν, αβ
Sαβκ = 0 (B10)

Sκ
αβ

(
P1
e

)αβ,μν = 0 (B11)

Sμαβ S
αβ

ν = −2�θμν. (B12)

The possibility to obtain a closed algebra is not only desir-
able, but very important, in order to complete the inversion
of the matrix in Eq. (17).
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