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Czech (HYPEST/CADCZ; n  =  358) samples to identify 
CDH13 promoter SNPs acting as methylation Quantitative 
Trait Loci (meQTLs) and to investigate their associations 
with CMT. In silico data were extracted from genome-
wide DNA methylation and genotype datasets of the pop-
ulation-based sample Estonian Genome Center of the Uni-
versity of Tartu (EGCUT; n  =  165). HYPEST–CADCZ 
meta-analysis identified a rare variant rs113460564 as 
highly significant meQTL for a 134-bp distant CpG site 
(P  =  5.90  ×  10−6; β  =  3.19  %). Four common SNPs 
(rs12443878, rs12444338, rs62040565, rs8060301) exhib-
ited effect on methylation level of up to 3 neighboring 
CpG sites in both datasets. The strongest association was 
detected in EGCUT between rs8060301 and cg09415485 
(false discovery rate corrected P value  =  1.89  ×  10−30). 
Simultaneously, rs8060301 showed association with dias-
tolic blood pressure, serum high-density lipoprotein and 
HMW adiponectin (P < 0.005). Novel strong associations 
were identified between rare CDH13 promoter meQTLs 
(minor allele frequency <5  %) and HMW adiponectin: 
rs2239857 (P =  5.50 ×  10−5, β = −1,841.9 ng/mL) and 
rs77068073 (P = 2.67 × 10−4, β = −2,484.4 ng/mL). Our 
study shows conclusively that CDH13 promoter harbors 
meQTLs associated with CMTs. It paves the way to deeper 
understanding of the interplay between DNA variation and 
methylation in susceptibility to common diseases.

Introduction

The relevance of the Cadherin-13 gene (CDH13; 1.2 Mb) 
in a wide spectrum of biomedical fields—oncology, neu-
rology, cardiovascular physiology—was recognized 
over a decade ago (Takeuchi and Ohtsuki 2001). CDH13 
encodes T-cadherin, which belongs to the cadherin gene 

Abstract  CDH13 encodes T-cadherin, a receptor for 
high molecular weight (HMW) adiponectin and low-den-
sity lipoprotein, promoting proliferation and migration of 
endothelial cells. Genome-wide association studies have 
mapped multiple variants in CDH13 associated with car-
diometabolic traits (CMT) with variable effects across 
studies. We hypothesized that this heterogeneity might 
reflect interplay with DNA methylation within the region. 
Resequencing and EpiTYPER™ assay were applied for 
the HYPertension in ESTonia/Coronary Artery Disease in 
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family of cell adhesion molecules (Ranscht and Dours-
Zimmermann 1991). Its expression was first described in 
the developing chicken embryo and shown to be widely 
distributed throughout the entire avian and mammalian 
nervous systems (Rivero et  al. 2013). Subsequent studies 
in vascular tissue identified high expression of T-cadherin 
in endothelial and smooth muscle cells, as well as specifi-
cally in cardiac myocytes (Philippova et al. 2009). Local-
ized in membrane lipid rafts, T-cadherin functions in pro-
moting survival, proliferation and migration of endothelial 
cells and in protecting cells from oxidative stress-induced 
apoptosis (Philippova et al. 2009; Joshi et al. 2005). In car-
diovascular metabolism, it exhibits ligand-binding ability 
uncommon to classical cadherins, acting as the third recep-
tor for high molecular weight (HMW) adiponectin and 
also binding low-density lipoprotein (LDL) (Tkachuk et al. 
1998; Hug et  al. 2004). Low circulating adiponectin lev-
els (hypoadiponectinemia: <4 μg/mL) are associated with 
not only various cardiovascular and metabolic phenotypes 
[e.g., type 2 diabetes (T2D), hypertension, dyslipidemia, 
atherosclerosis, coronary artery disease and stroke], but 
also with gastrointestinal diseases, osteoporosis and can-
cers (Kishida et al. 2014). A considerable number of human 
cancer genomes are characterized by hypermethylated 
CDH13 promoter, and down-regulation of its transcription 

promotes tumor growth and invasiveness (Andreeva and 
Kutuzov 2010).

The era of genome-wide association studies (GWAS) has 
brought further evidence of pleiotropic effects attributed to 
CDH13. Genetic risk variants in CDH13 have been identi-
fied for cancer (Thomas et al. 2008) and neuropsychiatric 
disorders such as attention-deficit/hyperactivity disorder 
(ADHD), autism and dependence on psychotic substances 
(Rivero et al. 2013; Redies et al. 2012). However, the most 
notable genetic association signals in the CDH13 gene have 
been detected for a spectrum of cardiovascular and meta-
bolic traits (Fig. 1). The strongest and the largest number of 
associations, mainly for a cluster of SNPs in the promoter 
region, have been reported for serum adiponectin levels and 
many of these findings have been replicated in diverse eth-
nic populations (Ling et al. 2009; Jee et al. 2010; Wu et al. 
2010; Chung et  al. 2011; Morisaki et  al. 2012; Dastani 
et al. 2012; Gao et al. 2013). Decreased serum adiponectin 
levels have recently been showed for ADHD patients sug-
gesting its possible involvement in the pathophysiology 
of ADHD (Mavroconstanti et  al. 2014). SNPs in CDH13 
have been associated with total cholesterol and LDL levels 
(Dong et al. 2011; Lee et al. 2013), coronary artery disease 
(CAD) (Wellcome Trust Case Control Consortium 2007), 
hypertension and blood pressure (Org et  al. 2009; Levy 
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Fig. 1   Resequencing of the CDH13 promoter region in the HYPEST 
and CADCZ sample sets. a Illustrative map of previously identi-
fied genetic associations between cardiometabolic traits and SNPs 
in the CDH13 genomic region (1.17  Mb; GRCh37/hg19 Chr.16: 
82,660,399–83,830,215; exons 1–14) is shown at the relative 
genomic scale. Numbers in superscript indicate the respective pub-
lications in the Reference List. b The CDH13 promoter region tar-
geted for resequencing (2,602  bp; Chr.16: 82,659,441–82,662,042; 
bordered by arrows ‘>’) is zoomed, comprising the 5′ UTR (hori-
zontal box), exon 1 (vertical box) and CpG island (grey box) of the 
gene. The location of SNPs and the polymorphic (TG)n microsatellite 

detected in the current study is shown; population-specific SNPs are 
marked with ‘*’ (HYPEST) or ‘#’ (CADCZ). CAD coronary artery 
disease, LDL low-density lipoprotein, SBP systolic blood pressure. 
aWallace et  al. (2008); bOrg et  al. (2009), Fava et  al. (2011), Wan 
et al. (2013); cJee et al. (2010); dJee et al. (2010), Wu et al. (2010), Jo 
et al. (2012); eJee et al. (2010), Chung et al. (2011); fLee et al. (2013); 
gChung et al. (2011), Morisaki et al. (2012), Gao et al. (2013), Uetani 
et al. (2014); hMorisaki et al. (2012), Dastani et al. (2012); iDastani 
et al. (2012); jLee et al. (2013); kWellcome Trust Case Control Con-
sortium (2007); lLing et al. (2009); mLevy et al. (2007)
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et al. 2007; Lee et  al. 2013), hyperlipidemia and myocar-
dial infarction (Shia et al. 2011), metabolic syndrome (Fava 
et al. 2011) and preeclampsia (Wan et al. 2013).

Despite convincing evidence of the contribution of 
genetic variation in CDH13 to cardiometabolic traits, the 
primary causative SNP has not been identified and a multi-
tude of contributing common variants with variable effects 
across studies has been reported (Fig. 1). DNA methylation 
has been suggested as a potential mediator of genetic risk 
for common diseases (Liu et al. 2013; Koestler et al. 2014). 
Low DNA methylation level in genomic regions associated 
with T2D in GWA studies was reported as an early marker 
of T2D suggesting early-onset, inter-individual methyla-
tion variation at isolated genomic sites that modify the pre-
disposition to T2D (Toperoff et al. 2012). For the CDH13 
gene, seminal reports have shown significant inter-individ-
ual variation in DNA methylation and described SNPs in 
the CDH13 gene that affect the methylation of nearby CpG 
sites (Flanagan et al. 2006, 2009; Zhi et al. 2013).

In the current study, we hypothesized that the heteroge-
neity of the identified genetic associations in CDH13 with 
a number of cardiometabolic traits might reflect interplay 
of inter-individual differences in DNA methylation varia-
tion. The study aimed (i) to identify SNPs in the CDH13 
promoter region modulating DNA methylation of nearby 
CpG sites referred as methylation Quantitative Trait Loci 
(meQTLs); (ii) to investigate the genetic association of 
the identified meQTLs with serum adiponectin, lipids and 
blood pressure and (iii) to address the effect of DNA meth-
ylation level per se on the studied quantitative cardiometa-
bolic parameters (Figure S1). We relied on the investigation 
of DNA extracted from whole blood, as the basic inter-
individual variations in DNA methylation levels stemming 
from the difference in the genetic composition among study 
subjects are expected to be detectable across the majority 
of the cell types.

Materials and methods

HYPEST and CADCZ subjects for CDH13 DNA 
methylation analysis and resequencing

Participants of HYPertension in ESTonia (HYPEST; full 
sample: n = 1,966) have been recruited across Estonia dur-
ing 2004–2007 with the aim to analyze genetic-epidemio-
logical risk factors for cardiovascular disease (CVD) (Org 
et al. 2011). Subjects of Coronary Artery Disease in Czech 
study (CADCZ; full sample: n = 869) have been recruited 
across Czech Republic during 1998–2000 with the aim to 
study genetic factors related to homocysteine metabolism 
in coronary artery disease (CAD) (Janosíková et al. 2003). 
The recruitment has been carried out in compliance with 

the Helsinki Declaration and all participants have given 
written informed consent. The HYPEST study has been 
approved by the Ethics Committee on Human Research of 
the University of Tartu (permissions 122/13, 22.12.2003; 
137/20, 25.04.2005). The CADCZ study has been approved 
by the Ethics Committee of Charles University—First Fac-
ulty of Medicine (December 1996).

The current (epi)genetic study used a subset of middle-
aged patients (total, n  =  358) from HYPEST (n  =  192; 
aged 34–62, mean 50.5 ± 5.2 years) and CADCZ (n = 166; 
aged 33–61, 50.1 ± 4.6 years) sample sets (Table 1). Study 
inclusion criteria, measurement of blood pressure and 
serum lipids and correction of the measured values prior to 
the genetic data analysis for the subjects under medication 
are described in the Supplemental Methods. Serum sam-
ples of HYPEST subjects were stored at −86 °C immedi-
ately after blood draw. The concentration of high molecu-
lar weight (HMW) adiponectin in serum was measured 
for the study subjects with available stored serum samples 
(n  =  184) using the Human HMW Adiponectin/Acrp30 
ELISA assay (R&D Systems) according to the manufac-
turer’s protocol (Supplemental Methods).

EGCUT sample subjected to genome‑wide DNA 
methylation profiling and genotyping

The population-based biobank of the Estonian Genome 
Center of the University of Tartu (EGCUT) has been 
recruited across Estonia in 2003–2010 (http://www.geeni-
varamu.ee/en/). EGCUT includes epidemiological–clinical 
datasets and DNA samples extracted from blood for Esto-
nian adults across all age groups (n = 51,515; Leitsalu et al. 
2014). Measurement of blood pressure and serum lipids 
in the EGCUT samples are provided in the Supplemental 
Methods. In this study, in silico data for the CDH13 region 
were extracted and analyzed for the EGCUT samples with 
available datasets for both genome-wide DNA methyla-
tion and genome-wide imputed genotypes (n = 165; aged 
18–84; 41.6 ± 22.7 years).

EpiTYPER™ analysis of DNA methylation in the CDH13 
promoter in HYPEST and CADCZ samples

The suitability of DNA extracted from whole blood for the 
reliable CpG methylation profiling at the CDH13 locus was 
assessed using a published genome-wide DNA methylation 
dataset of purified human blood cells (Reinius et al. 2012) 
(Supplemental Methods). All analyzed blood cell types 
demonstrated similar CpG methylation profile across the 
CDH13 region (Figure S2).

The MassARRAY EpiTYPER™ assay (Sequenom, San 
Diego, CA, USA) was applied to measure DNA meth-
ylation in the CDH13 promoter for the HYPEST/CADCZ 

http://www.geenivaramu.ee/en/
http://www.geenivaramu.ee/en/
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subjects. The targeted CpG sites were located within the 
CpG island (1,162 bp; GRCh37/hg19, Chr16: 82,660,652–
82,661,813) and in the flanking 361 bp 5′ upstream region 
(Figure S3). Four EpiTYPER™ assays were designed 
to cover 110 CpG sites (13–40 CpG sites/assay) within 
a ~1.5  kb target region using the EpiDesigner software 
as instructed by the manufacturer (Table S1; Figure S3). 
Measurement of DNA methylation at targeted CpG sites 
followed the established experimental and analytical pro-
tocols (Ehrich et  al. 2005) (http://bioscience.sequenom.
com/sites/bioscience.sequenom.com/files/EpiTYPER%20
Application%20Note.pdf) and was implemented using 
MassARRAY Analyzer 4 (Sequenom Inc.). The analyzed 
sequence fragments (1–57  bp) containing >1 CpG sites 
were named as CpG units and the methylation value for a 
CpG unit was calculated as average methylation across the 
CpG sites forming a unit. Singleton CpG sites per fragment 
were assessed individually. Experimental details of the Epi-
TYPER™ assay and quality control (QC) steps of CpG 
methylation measurements performed prior to the statistical 
association testing are provided in the Supplemental Meth-
ods. After stringent QC, DNA methylation at 66 CpG sites 
in the CDH13 promoter (33 CpG sites clustered in 13 CpG 
units and 33 individual CpG sites; Table S2) was subjected 
to the association testing with nearby SNPs and phenotypic 
traits.

Resequencing of CDH13 promoter region in HYPEST 
and CADCZ samples

The promoter region of CDH13 was resequenced in 
HYPEST (n =  192) and CADCZ (n =  166) samples. The 
resequenced region spanned 2,602  bp (GRCh37/hg19, 
Chr16: 82,659,441–82,662,042) and included the entire CpG 
island of the CDH13 gene (1,162 bp, Chr:16: 82,660,652–
82,661,813) (Fig. 1, Figure S3). The region was amplified by 
long-range PCR (Supplemental Methods) and resequenced 
as described by Hallast et  al. (2005) on both forward and 
reverse strands using 10 sequencing primers (Table S1). 
Sequences were assembled and SNPs were identified using 
CodonCode Aligner (http://www.codoncode.com/aligner/). 
Estimation of allele frequencies and conformance to Hardy–
Weinberg Equilibrium (HWE; χ2, P  >  0.05) were imple-
mented in the PLINK v1.07 software (Purcell et al. 2007).

Extraction of CpG methylation data for the CDH13 
promoter region from EGCUT genome‑wide DNA 
methylation dataset

Genome-wide DNA methylation profiling (Infinium 
HumanMethylation450 BeadChips) of EGCUT samples 
(n = 165) was performed according to the manufacturer’s 
recommendations (Supplemental Methods). The original 

Table 1   Characteristics of study samples for (epi)genetic analysis

HMW high molecular weight, CADCZ Coronary Artery Disease in Czech, CVD cardiovascular disease, EGCUT University of Tartu Estonian 
Genome Center, HYPEST HYPertension in ESTonia
#  HYPEST versus CADCZ, * HYPEST + CADCZ versus EGCUT, P < 0.05; the Chi-square test for categorical and the Student’s t test or 
Mann–Whitney test for continuous variables that had a normal or skewed distribution, respectively
a  Men 3,268.3 ± 2,811.5 ng/mL; women 5,701.6 ± 3,842.8 ng/mL

Parameter (mean ± SD) CVD study participants Population cohort

HYPEST CADCZ EGCUT

No of individuals 192 166 165

Men/women 93/99 114/52# 72/93*

Age (years) 50.5 ± 5.2 50.1 ± 4.6 41.6 ± 22.7*

BMI (kg/m2) 30.2 ± 5.4 27.3 ± 4.1# 25.0 ± 4.8*

SBP (mmHg) 140.1 ± 18.7 127.1 ± 16.2# 123.1 ± 17.4*

DBP (mmHg) 88.6 ± 11.7 81.5 ± 9.5# 76.5 ± 10.6*

Total cholesterol (mmol/L) 5.6 ± 1.2 5.3 ± 0.9# 5.3 ± 1.1

LDL (mmol/L) 3.7 ± 1.0 3.1 ± 0.8# 3.2 ± 0.9*

HDL (mmol/L) 1.5 ± 0.4 1.3 ± 0.4# 1.6 ± 0.4*

Triglycerides (mmol/L) 1.7 ± 1.2 1.9 ± 1.2 1.4 ± 0.9*

HMW adiponectin (ng/mL) 4,564.3 ± 3,602.9a NA NA

Clinically diagnosed hypertension (%) 86.4 25.5# 11.5*

Coronary artery disease (%) 22.2 50# 6.1*

Early (<58 years) myocardial infarction (%) 14.6 44.6# 0.6*

Antihypertensive treatment (%) 86.4 25.5 # 24.2*

Antilipidemic treatment (%) 15.6 32.5# 5.5*

http://bioscience.sequenom.com/sites/bioscience.sequenom.com/files/EpiTYPER%20Application%20Note.pdf
http://bioscience.sequenom.com/sites/bioscience.sequenom.com/files/EpiTYPER%20Application%20Note.pdf
http://bioscience.sequenom.com/sites/bioscience.sequenom.com/files/EpiTYPER%20Application%20Note.pdf
http://www.codoncode.com/aligner/
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IDAT files were extracted from the HiScanSQ scanner. 
Data pre-processing and QC analyses were performed in R 
using the Bioconductor package minfi version 3.0.1 (Aryee 
et  al. 2014) (Supplemental Methods). After QC steps, 
DNA methylation levels at the 57 CpG sites across the 
CDH13 genic region (GRCh37/hg19, Chr16: 82,474,489–
83,829,911) were tested in association with allelic profile 
of the SNPs at the CDH13 promoter. Eight promoter CpG 
sites analyzed in EGCUT overlapped with the HYPEST–
CADCZ dataset (EpiTYPER™ assays; Table S3).

Extraction of CDH13 genotyping data from EGCUT 
genome‑wide dataset

Genomic DNA of EGCUT subjects (n =  165) was geno-
typed using HumanOmniExpress BeadChips (Illumina) 
according to the manufacturer’s instructions. The following 
QC filters were applied: sample call rate > 0.95, SNP call 
rate > 0.95, MAF > 0.01 and HWE P value > 0.00001. Gen-
otype imputation is detailed in the Supplemental Methods.

In the current study, four SNPs in the CDH13 promoter 
region, which overlapped between HYPEST/CADCZ 
and EGCUT datasets were targeted in the genetic asso-
ciation testing of CpG methylation levels and cardiometa-
bolic parameters. One of these SNPs had been genotyped 
(rs12443878) and the other three imputed (rs12444338, 
rs62040565, rs8060301). EGCUT genotype data was also 
exploited to calculate linkage disequilibrium (LD; r2) 
between these SNPs and previously reported SNPs associ-
ated with cardiometabolic traits (Table S4).

Genetic association testing with CpG methylation levels: 
meQTL analysis

Seven CDH13 promoter SNPs shared by HYPEST and 
CADCZ (Fig.  1c) were tested for association with DNA 
methylation levels at the 46 studied cis-CpG sites/units (Fig-
ure S3). Prior to association analysis, the effect of age as a 
potential confounder of CpG methylation was assessed and 
no correlations remained significant after multiple testing cor-
rection (Table S5). Tests were performed using linear regres-
sion with an additive model (age, gender and experiment 
series as covariates) implemented in PLINK v1.07 (Purcell 
et al. 2007) and the combined meta-analysis was carried out 
using the inverse-variance method under a fixed-effects model 
implemented in R, ver. 3.0.2 (R Development Core Team 
2014, http://www.r-project.org/). Meta-analysis of HYPEST 
and CADCZ results was used instead of joint analysis of the 
study subjects to eliminate confounding factors due to poten-
tial population stratification. Only those associations (nomi-
nal P value < 0.05) supported by enhanced statistical signifi-
cance in the meta-analysis compared to separate tests for both 
HYPEST and CADCZ datasets were considered as potentially 

true results. Bonferroni threshold was calculated: α = 0.05/[2 
(studies) × 7 (SNPs) × 46 (CpG sites/units)] = 7.76 × 10−5.

For meQTL confirmation analysis in the EGCUT sam-
ple set, the SNPs in the CDH13 promoter region overlap-
ping with the HYPEST/CADCZ dataset (rs12443878, 
rs12444338, rs62040565, rs8060301) were assessed for the 
effect on the DNA methylation level at the CpG sites meas-
ured across the CDH13 gene (n = 57) in EGCUT. Linear 
regression coefficients were calculated to detect association 
between SNPs and the variation in the methylation levels. 
To correct for multiple testing, Benjamin–Hochberg false 
discovery rate (FDR) was estimated at 5 %, implemented 
using the p.adjust package in R.

Genetic association testing with cardiometabolic 
parameters

The effect of genotypes on cardiometabolic traits [total cho-
lesterol, low- and high-density lipoproteins (LDL, HDL), 
triglycerides, systolic and diastolic blood pressure (SBP, 
DBP)] was tested in HYPEST, CADCZ and ECGUT meta-
analysis using linear regression implemented in PLINK 
v1.07 (Purcell et  al. 2007), and models were adjusted for 
age and gender. Multiple testing threshold was estimated: 
α =  0.05/[3 (studies) ×  4 (SNPs) ×  5 (SBP, DBP, HDL, 
LDL and triglycerides] = 8.33 × 10−4.

Genetic association testing with serum HMW adiponec-
tin levels was applicable for 11 SNP detected in resequenc-
ing the HYPEST samples. In addition to gender and age, 
BMI [obesity affects adiponectin level (Arita et al. 1999)] 
and plate batch in the ELISA assay (to minimize the inter-
assay effect) were incorporated into the model as covari-
ates. Tests were implemented with natural logarithm-trans-
formed adiponectin values.

Analysis of association between DNA methylation levels 
and cardiometabolic traits

The effect of methylation levels at the 46 CDH13 CpG sites/
units on serum lipids and BP in HYPEST and CADCZ sub-
jects was tested using linear regression in R incorporating 
age, gender and experiment series in the model. The results 
were combined in a meta-analysis as described above and the 
Bonferroni threshold was estimated: α  =  0.05/[2  ×  (stud-
ies) × 5 (parameters) × 46 (CpG sites/units)] = 1.09 × 10−4.

Results

CDH13 promoter meQTLs

The methylation profiling of the CDH13 promoter in the 
HYPEST/CADCZ (HYPertension in ESTonia/Coronary 

http://www.r-project.org/
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Artery Disease in Czech) study sample (n = 358) resulted 
in the methylation levels of 46 CpG sites/units within 
1,162 bp of its CpG island and flanking 361 bp 5′ upstream 
region (Fig.  1, Figure S3). Resequencing of the CDH13 
promoter (2,602  bp) resulted in 14 SNPs, seven shared 
among the HYPEST and CADCZ samples (Fig.  1; Table 
S6). The rest of the SNPs were population-specific, includ-
ing one and two novel variants for CADCZ and HYPEST, 
respectively. In addition, a highly polymorphic TG micro-
satellite (19 length variants) within the CpG island was 
detected with similar allelic distribution in the two sam-
ple sets (Supplemental Methods, Figure S4). One SNP, 
rs62040565 was located inside the TG microsatellite 
(Fig. 1).

Association testing was performed between the seven 
shared SNPs and DNA methylation levels at the 46 CpG 
sites/units measured in HYPEST/CADCZ. A rare vari-
ant rs113460564 (MAF: HYPEST 0.8 %, CADCZ 2.1 %) 
within the CpG island was identified as a statistically sig-
nificant meQTL located 134  bp from the major modu-
lated CpG site (HYPEST: P  =  4.25  ×  10−4; CADCZ: 
P = 2.64 × 10−3; meta-analysis: P = 5.90 × 10−6, resist-
ant to multiple testing correction; Table 2; Fig. 2a, b). Car-
rying one copy of the rs113460564 minor allele accounted 
for 2.8 or 5.5  % increased methylation at the CpG unit 
CpG_73–74 in HYPEST and CADCZ, respectively [meta-
analysis: β (SE)  =  3.19 (0.70)]. Five additional SNPs 
showed a non-significant trend for acting as meQTLs, 
potentially affecting DNA methylation levels of up to 3 
CpG sites located 74–1,737  bp from the respective SNPs 
(Table 3). The length of the TG microsatellite did not show 
any evidence of association with DNA methylation levels 
at the tested CpG sites (data not presented).

Four SNPs (rs12443878, rs12444338, rs62040565 
and rs8060301) showing evidence to act as meQTLs in 
HYPEST and CADCZ analysis overlapped with SNPs 
genotyped or imputed in the EGCUT (Estonian Genome 
Center of the University of Tartu) sample set. These SNPs 
were tested for association with methylation levels at 57 
CpG sites measured across the CDH13 genic region in the 
EGCUT sample (Table S7). All four SNPs were confirmed 
as meQTLs and showed significant effects (FDR  <  0.05) 
on the methylation levels of up to 3 CpG sites located 
19–167,744  bp from the respective SNPs. The strongest 
association was detected between rs8060301 located within 
the CpG island and a CpG site cg09415485 at a distance of 
1.3 kb (FDR 1.89 × 10−30; Table 3; Fig. 2a, c).

Associations between CDH13 promoter meQTLs 
and cardiometabolic parameters

Next, genetic associations of identified meQTLs with cardi-
ometabolic parameters were investigated. As the strongest 

associations of the CDH13 promoter region have been 
published for serum adiponectin, we firstly tested associa-
tion with HMW adiponectin levels measured in HYPEST 
blood samples (unavailable for CADCZ, EGCUT). The 
strongest association was detected for two rare variants 
flanking the CpG island [rs2239857, C/G: MAF = 4.2 %, 
P  =  5.50  ×  10−5, β (SE)  =  −1,841.9 (711.9) ng/mL; 
rs77068073, C/T: MAF  =  1  %, P  =  2.67  ×  10−4, β 
(SE)  =  −2,484.4 (1,463.1) ng/mL; Table  4; Fig.  1]. The 
lowest adiponectin levels (mean 1,095.1  ng/mL) were 
detected among the individuals who were heterozygous for 
both rs77068073 T-allele and rs2239857 G-allele (n =  4; 
Fig. 3). This represents approximately 4.5-fold lower adi-
ponectin concentration compared to the study subjects car-
rying neither of these variants (mean 4,680.2 ng/mL). Sub-
jects heterozygous for only rs2239857 (n =  12) also had 
reduced adiponectin levels (mean 3,356.8  ng/mL). In the 
SNP–CpG methylation association testing, rs2239857 had 
exhibited potential as a meQTL for 3 CpG sites (Table 2).

Additionally, two common CDH13 SNPs (r2  =  0.65) 
were associated with significantly lower adiponectin level: 
rs8060301 [T/A, A-allele =  54.2 %, P =  1.63 ×  10−3, β 
(SE)  =  −955.2 (273.2)  ng/mL] and rs12444338 [G/T, 
T-allele  =  59.9  %, P  =  2.13  ×  10−2, β (SE)  =  −682.1 
(278.3)  ng/mL; Table  2]. These two SNPs are in strong 
LD (r2  =  0.67–0.98; Table S4) with rs3865188 (9.7  kb 
upstream of CDH13) and rs4783244 SNPs (455  bp from 
CpG island) previously associated with serum adiponectin 
(Jee et  al. 2010; Chung et  al. 2011). Both rs8060301 and 
rs12444338 were shown to affect methylation of neighbor-
ing CpG sites in the HYPEST–CADCZ and EGCUT data-
sets (Tables 2, 3).

Four identified meQTLs in the CDH13 promoter repre-
sented common SNPs (rs8060301, rs1244438, rs62040565, 
rs12443878) with genotype and phenotype data available 
in HYPEST, EGCUT and CADCZ and enabled us to per-
form a meta-analysis (n  =  523) of association tests for 
serum lipids (total cholesterol, LDL, HDL, triglycerides) 
and blood pressure (BP). The meQTL rs8060301 exhibited 
a suggestive pleiotropic effect on HDL and DBP (nominal 
P < 0.005; Table 5). It is noteworthy, that all SNPs showed 
a trend for association with serum HDL.

No significant effect of CDH13 promoter CpG methylation 
level on cardiometabolic traits

The effect of methylation levels at the individual CpG sites 
within the CDH13 promoter (HYPEST, CADCZ: n =  46 
CpG sites/units) was assessed on serum lipid and BP lev-
els. Although 16 of 276 conducted tests reached nominal 
P  <  0.05 (Table S8), no associations remained significant 
after multiple testing correction and none of the involved 
CpG sites were identified to be modulated by meQTLs.
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Discussion

We hypothesized that the pleiotropy and heterogeneity of 
genetic associations in CDH13 with a number of cardio-
metabolic traits might reflect interplay of inter-individual 
differences in DNA methylation variation. It has recently 
been shown that genetic variability extensively impacts 
DNA methylation (Shi et  al. 2014). Consistent with the 
study hypothesis, several SNPs in the CDH13 promoter 
region were significantly associated with the level of DNA 
methylation at nearby CpG sites (Tables  2, 3, 6; Fig.  3). 
These genetic variants showed simultaneous association 
signals with serum HMW adiponectin and lipid levels and 
were in LD with previously reported GWAS hits (Fig.  1; 
Tables 4, 5, 6).

Among the identified meQTLs, rs8060301 located at the 
edge of the CDH13 CpG island within intron 1 modulated 

significantly DNA methylation in both study samples 
HYPEST/CADCZ and EGCUT (Table  6). Simultane-
ously, it exhibited the strongest genetic associations among 
the tested CDH13 SNPs with HDL (P  =  1.25  ×  10−3) 
and blood pressure levels (DBP  =  4.97  ×  10−3; 
SBP  =  5.43  ×  10−2) in the HYPEST–CADCZ–EGCUT 
meta-analysis. Association testing with serum HMW adi-
ponectin in HYPEST highlighted rs8060301 as a common 
SNP (tested A-allele frequency 54.2 %) with the most sig-
nificant and notable effect on this trait [P = 1.63 × 10−3, β 
(SE) = −955.2 (273.2) ng/mL]. Previously mapped serum 
adiponectin GWAS hit in Han Chinese (Chung et al. 2011) 
and Filipinos (Wu et  al. 2010) rs4783244 is located only 
524 bp from rs8060301 and these SNPs are in strong LD 
(Fig. 1; Table S4). However, only the rs8060301 (and not 
rs4783244) is located in the middle of the strongest bind-
ing site of RNA polymerase II (Pol2) within the CDH13 

Table 2   Results of HYPEST–CADCZ meta-analysis for genetic association tests between SNPs and DNA methylation at the CpG sites within 
the CDH13 promoter region

SE standard error, CI confidence interval
a  Numbering and the precise localization of CpG sites/units within the CDH13 promoter region are provided in Figure S3. Promoter CpG sites 
1–15 are located upstream of the CpG island, sites 16–116 are within the CpG island and sites 18–26 are in the first exon. Genomic position on 
chromosome 16 is according to GRCh37/hg19. In case of CpG units, the position of the first CpG site in the unit is given
b  In case of CpG units, distance between SNP and the closest CpG site in the unit is given
c  Tested allele effect on DNA methylation measured on a scale from 0 to 100 units; P values are calculated using linear regression, including 
age, gender and experiment series as covariates in the model
d  Only associations, which demonstrated enhanced statistical significance in meta-analysis compared to both sample-specific tests, are shown; 
results were combined using the inverse-variance method under a fixed-effects model; underlined P-value denotes statistically significant asso-
ciation after Bonferroni correction (α = 7.76 × 10−5)
e  Located within a polymorphic TG microsatellite and polymorphic substitution T to C creates an additional CpG site

SNP/tested 
allele

CpG site/unit:  
its position  
at chr. 16a

Distance 
between SNP 
and CpG (bp)b

HYPEST CADCZ Meta-analysisd

β (SE)c

95 % CI
P value β (SE)

95 % CI
P value β (SE)

95 % CI
P value

rs113460564
C

CpG_73–74
82,661,285

134 2.77 (0.77)
[1.27, 4.27]

4.25 × 10−4 5.46 (1.78)
[1.96, 8.95]

2.64 × 10−3 3.19 (0.70)
[1.81, 4.56]

5.90 × 10−6

rs2239857
G

CpG_13
82,660,554

611 −1.01 (0.38)
[−1.76, −0.26]

9.56 × 10−3 −0.97 (1.58)
[−4.07, 2.14]

5.42 × 10−1 −1.01 (0.37)
[−1.74, −0.27]

7.04 × 10−3

CpG_106
82,661,670

1,727 3.12 (2.04)
[−0.88, 7.12]

1.30 × 10−1 5.57 (2.84)
[0.01, 11.13]

5.17 × 10−2 3.96 (1.66)
[0.71, 7.20]

1.70 × 10−2

CpG_3
82,660,376

433 −3.28 (1.61)
[−6.43, −0.12]

4.37 × 10−2 −3.68 (4.78)
[−13.05, 5.69]

4.43 × 10−1 −3.32 (1.53)
[−6.31, −0.33]

2.97 × 10−2

rs12444338
T

CpG_116
82,661,812

1,657 3.11 (1.50)
[−6.04, −0.17]

4.10 × 10−2 1.35 (0.70)
[−0.02, 2.73]

5.60 × 10−2 1.67 (0.64)
[0.42, 2.91]

8.61 × 10−3

CpG_106
82,661,670

1,515 −0.92 (0.75)
[−0.55, 2.39]

2.23 × 10−1 −0.74 (0.46)
[−1.64, 0.16]

1.11 × 10−1 −0.79 (0.39)
[−1.56, −0.02]

4.43 × 10−2

rs62040565e

C
CpG_106
82,661,670

724 −1.18 (0.70)
[−0.19, 2.54]

9.59 × 10−2 −0.94 (0.48)
[−1.88, 0.01]

5.28 × 10−2 −1.02 (0.40)
[−1.79, −0.24]

1.03 × 10−2

CpG_3
82,660,376

570 0.82 (0.64)
[−2.07, 0.44]

2.04 × 10−1 1.50 (0.71)
[0.10, 2.90]

3.70 × 10−2 1.12 (0.48)
[0.19, 2.05]

1.85 × 10−2

rs12443878
A

CpG_106
82,661,670

1,737 −1.10 (0.69)
[−0.25, 2.45]

1.14 × 10−1 −0.83 (0.48)
[−1.76, 0.10]

8.35 × 10−2 −0.92 (0.39)
[−1.68, −0.15]

1.91 × 10−2

rs8060301
A

CpG_106
82,661,670

74 −1.07 (0.73)
[−0.35, 2.50]

1.43 × 10−1 −0.73 (0.49)
[−1.69, 0.24]

1.44 × 10−1 −0.84 (0.41)
[−1.64, −0.04]

4.06 × 10−2
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promoter (ENCODE Project Consortium 2012) and can 
thus exhibit direct effect on gene expression. The effect on 
the gene expression level of CDH13 may lead to altered 
protein expression and the affected sufficiency/abundance 
of T-cadherin molecules to bind adiponectin and lipids. 
Further functional studies need to be conducted to directly 
address its potential effect on CDH13 transcription level.

We used a complementary approach to identify 
meQTLs, which has both advantages and limitations. The 

HYPEST/CADCZ cardiovascular diseases samples were 
targeted to fine scale analysis of CpG sites at the CDH13 
promoter using resequencing and the EpiTYPER™ assay. 
Using more dense assays provides additional value ena-
bling to identify SNP–CpG associations that are not 
included in genome-wide assays. Data for a population-
based cohort (EGCUT) were extracted from DNA meth-
ylation and genotyping arrays with highly standardized 
experimental and analytical methods. However, DNA 

Fig. 2   Identified CDH13 promoter meQTLs modulating meth-
ylation levels in neighboring CpG sites. a Dotted lines connect 
meQTLs and CpG sites (boxed) showing significantly modulated 
methylation (*) in HYPEST–CADCZ (CpG_106, CpG_73–74) and 
EGCUT (cg19369556, cg09415485). Common SNPs are marked in 
bold. b Genotype effects of identified mQTLs on DNA methylation 
at selected CpG sites in HYPEST–CADCZ meta-analysis. Y-axis 

depicts measured DNA methylation level (%; 0  % no methylation, 
100 % full methylation). P value was calculated using linear regres-
sion, including age, gender and experiment series as covariates in the 
model. c Genotype effects of tested mQTLs on DNA methylation var-
iation in the EGCUT dataset. Y-axis represents relative DNA meth-
ylation level on transformed scale (M value). FDR-corrected P values 
were calculated using linear regression
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methylation and genotyping chips do not cover dense runs 
of CpG sites within the CpG islands and rare SNPs, respec-
tively. Thus, it was not possible to directly replicate the 
identified HYPEST/CADCZ top SNP–CpG site association 
pairs in EGCUT, although the same SNPs were confirmed 
as meQTLs in both study samples. An additional limitation 
in our study design was the not perfectly matched sample 
sets. Although both derived from Eastern/Central Europe, 
HYPEST (Estonia)/CADCZ (Czech) subjects have been 
recruited based on CVD (characterized by hypertension, 

CAD, MI), but EGCUT (Estonia) is a population-based 
cohort. This may introduce SNP-independent effects on 
the DNA methylation profiles and weaken the meQTL 
analysis.

GWAS studies have mapped the strongest genetic asso-
ciations in the CDH13 gene with serum adiponectin levels. 
In the current study, we measured serum HMW adiponec-
tin levels only for 184 HYPEST subjects and identified 
significant associations with rs8060301 and rs12444338 
(Table 4), which are in strong LD with previously detected 

Table 3   Genetic association between four overlapping common SNPs identified in the HYPEST and CADCZ study groups and DNA methyla-
tion in the EGCUT sample set

SE standard error, CI confidence interval
a  CpG site ID on Infinium HumanMethylation450 BeadChip
b  Genomic position on chromosome 16 (GRCh37/hg19)
c  False discovery rate (FDR) corrected P value; only associations, significant after FDR correction, are given. Effects (tested allele effect on 
DNA methylation on transformed scale, see “Materials and methods”) and P values are calculated using linear regression

SNP Tested 
allele

CpG sitea CpG position  
at chr. 16b

Distance between 
SNP and CpG (bp)

β (SE)c 95 % CI P value FDRc

rs8060301 A cg09415485 82,663,111 1,367 −0.68 (0.06) [−0.79, −0.57] 1.53 × 10−32 1.89 × 10−30

cg19369556 82,661,725 19 −0.35 (0.07) [−0.49, −0.20] 2.84 × 10−6 7.04 × 10−5

rs12444338 T cg09415485 82,663,111 2,956 −0.57 (0.06) [−0.70, −0.45] 8.53 × 10−19 5.29 × 10−17

cg19369556 82,661,725 1,570 −0.31 (0.07) [−0.46, −0.16] 3.35 × 10−5 6.92 × 10−4

rs12443878 A cg09415485 82,663,111 3,178 −0.49 (0.07) [−0.62, −0.35] 1.78 × 10−12 7.36 × 10−11

cg19369556 82,661,725 1,792 −0.26 (0.08) [−0.41, −0.11] 6.15 × 10−4 1.09 × 10−2

cg09044981 82,827,677 167,744 0.26 (0.08) [0.11, 0.41] 7.53 × 10−4 1.17 × 10−2

rs62040565 C cg09415485 82,663,111 2,165 −0.39 (0.07) [−0.53, −0.24] 1.10 × 10−7 3.40 × 10−6

Table 4   Association testing of CDH13 promoter SNPs with HMW adiponectin level in blood serum (ng/mL) in HYPEST

HMW adiponectin in serum was measured for the study subjects with available stored HYPEST serum samples (n = 184) using Human HMW 
Adiponectin/Acrp30 ELISA assay (R&D Systems)

SE standard error, CI confidence interval
a  Major/minor alleles were defined according to UCSC Genome Browser (GRCh37/hg19)
b  Effects and P values are calculated using linear regression, additive model including age, gender, BMI and ELISA plate as covariates in the 
model. Estimated significance threshold after correction for multiple testing P < 4.55 × 10−3

SNP Major/minor  
allelea

Tested  
allele

Tested allele  
frequency

β (SE)
[ng/mL]

95 % CI P valueb

rs2239857 C/G G 0.042 −1,841.9 (711.7) [−2,318.3, −1,147.9] 5.50 × 10−5

rs77068073 C/T T 0.010 −2,484.4 (1,463.1) [−2,928.4, −1,582.3] 2.67 × 10−4

rs8060301 T/A A 0.542 −955.2 (273.2) [−1,669.9, −342.2] 1.63 × 10−3

rs12444338 G/T T 0.599 −682.1 (278.3) [−1,364.3, −98.4] 2.13 × 10−2

rs113460564 A/C C 0.008 6,492.0 (3,684.4) [−1,051.7, 38,677.6] 1.48 × 10−1

rs62040565 T/C C 0.536 −321.2 (264.9) [−911.5, 187.6] 2.31 × 10−1

rs12443878 C/A A 0.549 −231.7 (267.2) [−812.7, 268.5] 3.85 × 10−1

rs185121433 G/T T 0.018 558.8 (1,107.1) [−1,117.2, 3,488.5] 5.90 × 10−1

ss947846715 C/G G 0.005 −649.2 (2,362.3) [−2,405.0, 4,336.8] 6.87 × 10−1

rs118163260 A/T T 0.003 −764.3 (3,777.2) [−2,766.2, 8,006.3] 7.32 × 10−1

ss947846714 A/G G 0.003 −664.9 (3,715.4) [−2,733.3, 8,235.9] 7.68 × 10−1
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SNPs in GWASs [rs3865188 (Jee et  al. 2010); rs4783244 
(Chung et  al. 2011)]. Additionally, our resequenc-
ing approach allowed identification of two novel rare 
(MAF < 5 %) variants (rs2239857 and rs77068073) with a 
highly significant, strong effect on serum HMW adiponec-
tin (Fig. 3). Notably, rs2239857 also exhibited potential as 
a meQTL for 3 CpG sites (Table 2).

We did not identify any significant associations between 
DNA methylation levels in the CDH13 promoter and blood 
pressure or lipid levels. Alternative reasons (each one sepa-
rately and also cumulatively), which may have affected 
achieving sufficient statistical power in testing these asso-
ciations could be cross-sectional (whole blood cells) 
measurement of DNA methylation and its narrow range 
of variability within the promoter region, heterogenous 
study sample with regard to other variables modulating 
DNA methylation (e.g., age) and also possibly insufficient 
sample size failing to detect real correlations. In addition, 
investigation of direct effect of DNA methylation on car-
diovascular phenotype trait would be more relevant using 
tissues with high and specific expression of CDH13, such 

Fig. 3   Novel genetic variants rs2239857 and rs77068073 associated 
with adiponectin level in blood serum. HMW adiponectin levels are 
shown for analyzed HYPEST subjects stratified based on their gen-
otypes: heterozygotes for rs2239857 minor allele (n = 12, CG/CC), 
‘double’ heterozygotes for both, rs2239857 and rs77068073 (n = 4, 
CG/CT) and homozygotes for major alleles of both SNPs (n = 168, 
CC/CC). The boxes represent the 25th and 75th percentiles. The 
median is denoted as the line that bisects the boxes. The whiskers are 
lines extending from each end of the box covering the extent of the 
data on 1.5× interquartile range. Circles represent the outlier val-
ues. P values from the t test comparing adiponectin levels of CC/CC 
group with CG/CT group and combined group of CG/CC and CG/CT 
are shown
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as endothelium. In general, our study indicates that effects 
of SNPs on studied cardiometabolic traits could be primary, 
but due to strong meQTLs in the region, we suggest that 
these effects are dependent on DNA methylation levels, 
which further modulate the SNP trait effects.

DNA methylation changes in the CDH13 promoter 
region are well characterized in the development of vari-
ous cancers. In perspective, the meQTLs identified in this 
study in the context of CVD could be further subjected to 
studies of cancer patients. We speculate that meQTLs in the 
CDH13 promoter may serve as potential prognostic mark-
ers for an increased risk to trigger more extensive changes 
in the DNA methylation pattern. Recently, a comprehensive 
meQTL catalog was published containing DNA methyla-
tion associations for 21 % of interrogated cancer risk poly-
morphisms (Heyn et al. 2014).

In summary, our study shows conclusively that the 
CDH13 promoter harbors meQTLs associated with cardio-
metabolic traits. It paves the way to deeper understanding 
of the interplay between DNA variation and methylation in 
susceptibility to common diseases.

Acknowledgments  We acknowledge all participants of the 
HYPEST, CADCZ and EGCUT studies. Wellcome Trust International 
Senior Research Fellowship (070191/Z/03/A) in Biomedical Science 
in Central Europe; Estonian Ministry of Education and Research 
Core Grants (SF0180022s12); European Union through the Euro-
pean Regional Development Fund (project HAPPY PREGNANCY, 
3.2.0701.12-0047); Estonian Science Foundation Grants (ETF9030, 

ETF9353, ETF9293 and ETF7491); Center of Excellence in Genom-
ics (EXCEGEN); University of Tartu (SP1GVARENG), the Esto-
nian Research Council Grant (IUT20-60), and the Estonian Research 
Roadmap through the Estonian Ministry of Education and Research 
(3.2.0304.11-0312). V.K. was receiving institutional support by 
research programs of the Charles University in Prague PRVOUKP24/
LF1/3 and UNCE 20401.

Conflict of interest  The authors declare that they have no conflict 
of interest.

Ethical standards  Experiments comply with the current laws of the 
countries in which they were performed.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s) 
and the source are credited.

References

Andreeva AV, Kutuzov MA (2010) Cadherin 13 in cancer. Genes 
Chromosomes Cancer 49(9):775–790

Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, 
Hotta K, Shimomura I, Nakamura T, Miyaoka K et al (1999) Par-
adoxical decrease of an adipose-specific protein, adiponectin, in 
obesity. Biochem Biophys Res Commun. 257(1):79–83

Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Fein-
berg AP, Hansen KD, Irizarry RA (2014) Minfi: a flex-
ible and comprehensive Bioconductor package for the analy-
sis of Infinium DNA methylation microarrays. Bioinformatics 
30(10):1363–1369

Table 6   Summary results of the study

SNP rs8060301 overlapping between the analysis results, is highlighted in bold
a  Genotype data: targeted resequencing of the CDH13 promoter region; CpG methylation data: EpiTYPER™ assay covering majority of the 
CpG sites
b  Genotype data: HumanOmniExpress BeadChips (Illumina); CpG methylation data: selected CpG sites at the Infinium HumanMethylation450 
BeadChips
c  HMW adiponectin measurements were only available for HYPEST
d  Significant after multiple testing correction

Analysis/trait Study group Significance level after  
correction for multiple testing

SNP showing statistically significant  
or suggestive for association

A. meQTL identification

CpG methylation HYPEST–CADCZ meta-analysisa P < 7.76 × 10−5 rs113460564d, rs12443878, rs12444338, 
rs62040565, rs8060301, rs2239857

EGCUTb P < 7.53 × 10−4 rs12443878d, rs12444338d, rs62040565d, 
rs8060301d

B. SNP and trait association testing

Adiponectinc HYPEST P < 4.55 × 10−3 rs8060301d, rs2239857d, rs77068073d, 
rs12444338

HDL HYPEST–CADCZ–EGCUT meta-analysis P < 8.33 × 10−4 rs12443878, rs12444338, rs62040565, 
rs8060301

SBP, DBP HYPEST–CADCZ–EGCUT meta-analysis P < 8.33 × 10−4 rs8060301

C. DNA methylation-trait association

Methylation level of individual CDH13 promoter CpGs was not significantly modulating cardiometabolic traits



302	 Hum Genet (2015) 134:291–303

1 3

Chung CM, Lin TH, Chen JW, Leu HB, Yang HC, Ho HY, Ting 
CT, Sheu SH, Tsai WC, Chen JH et  al (2011) A genome-wide 
association study reveals a quantitative trait locus of adiponec-
tin on CDH13 that predicts cardiometabolic outcomes. Diabetes 
60(9):2417–2423

Dastani Z, Hivert MF, Timpson N, Perry JR, Yuan X, Scott RA, 
Henneman P, Heid IM, Kizer JR, Lyytikäinen LP et  al (2012) 
Novel loci foradiponectin levels and their influence on type 2 dia-
betes and metabolic traits: a multi-ethnic meta-analysis of 45,891 
individuals. PLoS Genet 8(3):e1002607

Dong C, Beecham A, Wang L, Slifer S, Wright CB, Blanton SH, 
Rundek T, Sacco RL (2011) Genetic loci for blood lipid levels 
identified by linkage and association analyses in Caribbean His-
panics. J Lipid Res 52(7):1411–1419

Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinari-
anos G, Cantor CR, Field JK, van den Boom D (2005) Quanti-
tative high-throughput analysis of DNA methylation patterns by 
base-specific cleavage and mass spectrometry. Proc Natl Acad 
Sci 102(44):15785–15790

ENCODE Project Consortium (2012) An integrated encyclopedia of 
DNA elements in the human genome. Nature 489(7414):57–74

Fava C, Danese E, Montagnana M, Sjögren M, Almgren P, Guidi GC, 
Hedblad B, Engström G, Lechi A, Minuz P et al (2011) A variant 
upstream of the CDH13 adiponectin receptor gene and metabolic 
syndrome in Swedes. Am J Cardiol 108(10):1432–1437

Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadza-
deh A, Schumacher A, Zangeneh M, Lau L, Virtanen C, Wang 
SC et al (2006) Intra- and interindividual epigenetic variation in 
human germ cells. Am J Hum Genet 79(1):67–84

Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, John-
son N, Fletcher O, Dos Santos Silva I, Peto J, Boshoff C et  al 
(2009) Gene-body hypermethylation of ATM in peripheral 
blood DNA of bilateral breast cancer patients. Hum Mol Genet 
18(7):1332–1342

Gao H, Kim YM, Chen P, Igase M, Kawamoto R, Kim MK, Kohara 
K, Lee J, Miki T, Ong RT et  al (2013) Genetic variation in 
CDH13 is associated with lower plasma adiponectin levels but 
greater adiponectin sensitivity in East Asian populations. Diabe-
tes 62(12):4277–4283

Hallast P, Nagirnaja L, Margus T, Laan M (2005) Segmental duplica-
tions and gene conversion: human luteinizing hormone/chorionic 
gonadotropin beta gene cluster. Genome Res 15(11):1535–1546

Heyn H, Sayols S, Moutinho C, Vidal E, Sanchez-Mut JV, Stefans-
son OA, Nadal E, Moran S, Eyfjord JE, Gonzalez-Suarez E et al 
(2014) Linkage of DNA methylation quantitative trait loci to 
human cancer risk. Cell Rep. 7(2):331–338

Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF (2004) T-cad-
herin is a receptor for hexameric and high-molecular-weight forms 
of Acrp30/adiponectin. Proc Natl Acad Sci 101(28):10308–10313

Janosíková B, Pavlíková M, Kocmanová D, Vítová A, Veselá K, 
Krupková L, Kahleová R, Krijt J, Kraml P, Hyánek J et al (2003) 
Genetic variants of homocysteine metabolizing enzymes and the 
risk of coronary artery disease. Mol Genet Metab 79(3):167–175

Jee SH, Sull JW, Lee JE, Shin C, Park J, Kimm H, Cho EY, Shin 
ES, Yun JE, Park JW et al (2010) Adiponectin concentrations: a 
genome-wide association study. Am J Hum Genet 87(4):545–552

Jo J, Sull JW, Park EJ, Jee SH (2012) Effects of smoking and obesity 
on the association between CDH13 (rs3865188) and adiponectin 
among Korean men: the KARE study. Obesity (Silver Spring). 
20(8):1683–1687

Joshi MB, Philippova M, Ivanov D, Allenspach R, Erne P, Resink TJ 
(2005) T-cadherin protects endothelial cells from oxidative stress-
induced apoptosis. FASEB J. 19(12):1737–1739

Kishida K, Funahashi T, Shimomura I (2014) Adiponectin as a rou-
tine clinical biomarker. Best Pract Res Clin Endocrinol Metab. 
28(1):119–130

Koestler DC, Chalise P, Cicek MS, Cunningham JM, Armasu S, Lar-
son MC, Chien J, Block M, Kalli KR, Sellers TA et  al (2014) 
Integrative genomic analysis identifies epigenetic marks that 
mediate genetic risk for epithelial ovarian cancer. BMC Med 
Genomics 7:8

Lee JH, Shin DJ, Park S, Kang SM, Jang Y, Lee SH (2013) Association 
between CDH13 variants and cardiometabolic and vascular phe-
notypes in a Korean population. Yonsei Med J 54(6):1305–1312

Leitsalu L, Haller T, Esko T, Tammesoo ML, Alavere H, Snieder H, 
Perola M, Ng PC, Mägi R, Milani L et al (2014) Cohort profile: 
Estonian Biobank of the Estonian Genome Center, University of 
Tartu. Int J Epidemiol. [Epub ahead of print]

Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang 
SJ, Vasan RS, Mitchell GF (2007) Framingham Heart Study 
100K Project: genome-wide associations for blood pressure and 
arterial stiffness. BMC Med Genet 8(Suppl 1):S3

Ling H, Waterworth DM, Stirnadel HA, Pollin TI, Barter PJ, Kes-
äniemi YA, Mahley RW, McPherson R, Waeber G, Bersot TP et al 
(2009) Genome-wide linkage and association analyses to identify 
genes influencing adiponectin levels: the GEMS Study. Obesity 
(Silver Spring). 17(4):737–744

Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson 
A, Reinius L, Acevedo N, Taub M, Ronninger M et al (2013) Epi-
genome-wide association data implicate DNA methylation as an 
intermediary of genetic risk in rheumatoid arthritis. Nat Biotech-
nol 31(2):142–147

Mavroconstanti T, Halmøy A, Haavik J (2014) Decreased serum lev-
els of adiponectin in adult attention deficit hyperactivity disorder. 
Psychiatry Res 216(1):123–130

Morisaki H, Yamanaka I, Iwai N, Miyamoto Y, Kokubo Y, Okamura T, 
Okayama A, Morisaki T (2012) CDH13 gene coding T-cadherin 
influences variations in plasma adiponectin levels in the Japanese 
population. Hum Mutat 33(2):402–410

Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N, 
Veldre G, Döring A, Viigimaa M, Sõber S et al (2009) Genome-
wide scan identifies CDH13 as a novel susceptibility locus con-
tributing to blood pressure determination in two European popu-
lations. Hum Mol Genet 18(12):2288–2296

Org E, Veldre G, Viigimaa M, Juhanson P, Putku M, Rosenberg M, 
Tomberg K, Uuetoa T, Laan M (2011) HYPEST study: profile of 
hypertensive patients in Estonia. BMC Cardiovasc Disord. 11:55

Philippova M, Joshi MB, Kyriakakis E, Pfaff D, Erne P, Resink TJ 
(2009) A guide and guard: the many faces of T-cadherin. Cell 
Signal 21(7):1035–1044

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender 
D, Maller J, Sklar P, de Bakker PI, Daly MJ et al (2007) PLINK: 
a tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet 81(3):559–575

Ranscht B, Dours-Zimmermann MT (1991) T-cadherin, a novel cad-
herin cell adhesion molecule in the nervous system lacks the con-
served cytoplasmic region. Neuron 7(3):391–402

Redies C, Hertel N, Hübner CA (2012) Cadherins and neuropsychiat-
ric disorders. Brain Res 1470:130–144

Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, 
Greco D, Söderhäll C, Scheynius A, Kere J (2012) Differential 
DNA methylation in purified human blood cells: implications 
for cell lineage and studies on disease susceptibility. PLoS One 
7(7):e41361

Rivero O, Sich S, Popp S, Schmitt A, Franke B, Lesch KP (2013) 
Impact of the ADHD-susceptibility gene CDH13 on develop-
ment and function of brain networks. Eur Neuropsychopharmacol 
23(6):492–507

Shi J, Marconett CN, Duan J, Hyland PL, Li P, Wang Z, Wheeler 
W, Zhou B, Campan M, Lee DS et al (2014) Characterizing the 
genetic basis of methylome diversity in histologically normal 
human lung tissue. Nat Commun. 5:3365



303Hum Genet (2015) 134:291–303	

1 3

Shia WC, Ku TH, Tsao YM, Hsia CH, Chang YM, Huang CH, Chung 
YC, Hsu SL, Liang KW, Hsu FR (2011) Genetic copy number 
variants in myocardial infarction patients with hyperlipidemia. 
BMC Genom 12(Suppl 3):S23

Takeuchi T, Ohtsuki Y (2001) Recent progress in T-cadherin (CDH13, 
H-cadherin) research. Histol Histopathol 16(4):1287–1293

Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, 
Chatterjee N, Welch R, Hutchinson A et al (2008) Multiple loci 
identified in a genome-wide association study of prostate cancer. 
Nat Genet 40(3):310–315

Tkachuk VA, Bochkov VN, Philippova MP, Stambolsky DV, Kuz-
menko ES, Sidorova MV, Molokoedov AS, Spirov VG, Resink 
TJ (1998) Identification of an atypical lipoprotein-binding pro-
tein from human aortic smooth muscle as T-cadherin. FEBS Lett 
421(3):208–212

Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B, 
Wainstein J, Friedlander Y, Levy-Lahad E, Glaser B et al (2012) 
Genome-wide survey reveals predisposing diabetes type 2-related 
DNA methylation variations in human peripheral blood. Hum 
Mol Genet 21(2):371–383

Uetani E, Tabara Y, Kawamoto R, Onuma H, Kohara K, Osawa H, 
Miki T (2014) CDH13 genotype-dependent association of 

high-molecular weight adiponectin with all-cause mortality: the 
J-SHIPP study. Diabetes Care 37(2):396–401

Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, 
Ahmadi K, Dobson RJ, Marçano AC, Hajat C et  al (2008) 
Genome-wide association study identifies genes for biomarkers 
of cardiovascular disease: serum urate and dyslipidemia. Am J 
Hum Genet 82(1):139–149

Wan JP, Zhao H, Li T, Li CZ, Wang XT, Chen ZJ (2013) The common 
variant rs11646213 is associated with preeclampsia in Han Chi-
nese women. PLoS One 8(8):e71202

Wellcome Trust Case Control Consortium (2007) Genome-wide 
association study of 14,000 cases of seven common diseases and 
3,000 shared controls. Nature 447(7145):661–678

Wu Y, Li Y, Lange EM, Croteau-Chonka DC, Kuzawa CW, McDade 
TW, Qin L, Curocichin G, Borja JB, Lange LA et  al (2010) 
Genome-wide association study for adiponectin levels in Filipino 
women identifies CDH13 and a novel uncommon haplotype at 
KNG1-ADIPOQ. Hum Mol Genet 19(24):4955–4964

Zhi D, Aslibekyan S, Irvin MR, Claas SA, Borecki IB, Ordovas JM, 
Absher DM, Arnett DK (2013) SNPs located at CpG sites modu-
late genome-epigenome interaction. Epigenetics. 8(8):802–806


	CDH13 promoter SNPs with pleiotropic effect on cardiometabolic parameters represent methylation QTLs
	Abstract 
	Introduction
	Materials and methods
	HYPEST and CADCZ subjects for CDH13 DNA methylation analysis and resequencing
	EGCUT sample subjected to genome-wide DNA methylation profiling and genotyping
	EpiTYPER™ analysis of DNA methylation in the CDH13 promoter in HYPEST and CADCZ samples
	Resequencing of CDH13 promoter region in HYPEST and CADCZ samples
	Extraction of CpG methylation data for the CDH13 promoter region from EGCUT genome-wide DNA methylation dataset
	Extraction of CDH13 genotyping data from EGCUT genome-wide dataset
	Genetic association testing with CpG methylation levels: meQTL analysis
	Genetic association testing with cardiometabolic parameters
	Analysis of association between DNA methylation levels and cardiometabolic traits

	Results
	CDH13 promoter meQTLs
	Associations between CDH13 promoter meQTLs and cardiometabolic parameters
	No significant effect of CDH13 promoter CpG methylation level on cardiometabolic traits

	Discussion
	Acknowledgments 
	References


