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Abstract Saccadic reaction time (SRT) is a widely used
dependent variable in eye-tracking studies of human cognition
and its disorders. SRTs are also frequently measured in studies
with special populations, such as infants and young children,
who are limited in their ability to follow verbal instructions
and remain in a stable position over time. In this article, we
describe a library of MATLAB routines (Mathworks, Natick,
MA) that are designed to (1) enable completely automated
implementation of SRT analysis for multiple data sets and (2)
cope with the unique challenges of analyzing SRTs from eye-
tracking data collected from poorly cooperating participants.
The library includes preprocessing and SRT analysis routines.
The preprocessing routines (i.e., moving median filter and
interpolation) are designed to remove technical artifacts and
missing samples from raw eye-tracking data. The SRTs are
detected by a simple algorithm that identifies the last point of
gaze in the area of interest, but, critically, the extracted SRTs
are further subjected to a number of postanalysis verification
checks to exclude values contaminated by artifacts. Example
analyses of data from 5- to 11-month-old infants demonstrated
that SRTs extracted with the proposed routines were in high
agreement with SRTs obtained manually from video records,
robust against potential sources of artifact, and exhibited
moderate to high test-retest stability. We propose that the
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present library has wide utility in standardizing and automat-
ing SRT-based cognitive testing in various populations. The
MATLAB routines are open source and can be downloaded
from http://www.uta.fi/med/icl/methods.html.
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A number of studies in nonhuman primates and humans have
measured visuospatial orienting (i.e., rapid orientation of gaze
and attention to a new stimulus appearing in a new spatial
location) as a dependent variable to examine a variety of
cognitive processes (Hutton, 2008; Johnston & Everling,
2008; Luna, Velanova, & Geier, 2008; McDowell,
Dyckman, Austin, & Clementz, 2008). These include studies
examining the development and neurocognitive bases of fun-
damental components of attention (Hunnius, 2007; Luna
et al., 2008), the interactions between attentional and emo-
tional processes (Fox, Russo, Bowles, & Dutton, 2001;
Georgiou et al., 2005; Leppénen et al., 2011; Nakagawa &
Sukigara, 2012), and the associations of core attention pro-
cesses with higher-level cognitive (Franceschini, Gori,
Ruffino, Pedrolli, & Facoetti, 2012; Rose, Feldman, &
Jankowski, 2012) and emotion regulatory (Bar-Haim, 2010;
Compton, 2000; Hakamata et al., 2010) processes. There is
also emerging evidence from studies with special populations
suggesting that deficits in visuospatial orienting may provide
valuable markers for certain neurodevelopmental risk condi-
tions, such as preterm birth (Hunnius, Geuze, Zweens, & Bos,
2008), autism spectrum disorders (Chawarska, Volkmar, &
Klin, 2010; Elison et al., 2013; Elsabbagh et al., 2009), and
neurocognitive deficits associated with fetal alcohol exposure
(Green et al., 2009).
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One of the most common ways to examine visuospatial
orienting is to measure the latency of saccadic eye movements
from the stimulus at fixation toward the location of the new
stimulus in a new spatial location (i.e., saccadic reaction times,
or SRTs). Various techniques have been used to analyze sac-
cadic eye movements. Most often, manual coding of video
recordings is performed to analyze participants’ eye move-
ments (e.g., Haith, Hazan, & Goodman, 1988; Leppanen
et al., 2011; Rose, Feldman, & Jankowski, 2004). Temporal
resolutions of up to 50 Hz are available using these techniques
(Elsabbagh et al., 2009); spatial resolution is low, but this is
nonessential for tasks such as the present task, in which the aim
is only to estimate the point at which the eyeball first deviates
from the midline following a successful fixation. However,
manual coding of video records is highly labor intensive,
particularly with larger data sets, and prone to human error or
biases. Another technique is to use electrooculography (EOG)
to measure electrical potential changes resulting from the rota-
tion of the eyes (e.g., Csibra, Tucker, & Johnson, 1998;
Kemner, Verbaten, Cuperus, Camfferman, & van Engeland,
1998). The temporal resolution of these techniques is high.
Again, spatial resolution is low, but this is nonessential for
present purposes. However, these techniques involve the ad-
ministration of electrodes, which can be distressing for some
participants, perturbing data and causing data loss.

In the last decade, there has been a rapid increase in the use
of new corneal reflection eye-tracking techniques to measure
eye movements, particularly in studies involving special pop-
ulations such as infants and young children. In essence, eye
tracking is a noninvasive technology that has the advantage
over other techniques in that it offers the possibility for auto-
mated acquisition and analysis of eye movements at a high
spatial and temporal resolution, is less labor intensive, and
minimizes the possibility of human error or biases (Aslin,
2012; Elison et al., 2013; Gredeback, Johnson, & von
Hofsten, 2009; Morgante, Zolfaghari, & Johnson, 2012;
Oakes, 2012). A particular advantage of eye-tracking technol-
ogies for researchers measuring SRTs as the dependent vari-
able is that the metrics of interest can be extracted from the
gaze data by using a simple, automated routine (e.g., an
algorithm that identifies the time point at which the gaze
leaves or enters an area of interest). Recent studies have,
however, demonstrated that the practice of such analyses is
complicated by several limitations in the temporal and spatial
accuracy of current eye-tracking technologies, especially
when used with poorly cooperating participants (Frank, Vul,
& Saxe, 2012; Morgante et al., 2012; Shic, Chawarska, &
Scassellati, 2008a, 2008b; Wass, Smith, & Johnson, 2014).
Similar discussions are ongoing in the adult literature
(Blignaut & Wium, 2014; Holmqvist et al., 2011; Nystrom,
Andersson, Holmqvist, & Weijer, 2013).

Recently we have investigated two aspects of eyetracker
data accuracy and quality that appear to be particularly variable

in studies with poorly cooperating participants—namely, pre-
cision, the consistency in the reported position of gaze between
samples, and robustness, how broken or fragmented contact
with the tracker is during recording (Wass, Forssman, &
Leppénen, 2014). Our study showed that, if widely used ana-
lytical techniques are followed, a number of key dependent
variables in eye-tracking experiments can be disrupted by
between- and within-subjects variations in these aspects of data
quality. For example, we found that less precise data can appear
to suggest a reduced likelihood to look at a narrowly defined
area of interest (such as the eyes in a face, relative to the
mouth). We also found that less robust data can appear to
manifest as shorter fixation durations and shorter first
look/visit duration. Finally, we found that less robust tracking
may manifest as longer SRTs (e.g., time to first fixation).
Together, these results suggest the importance of taking steps
to control for data quality before performing final analyses.

Given the obvious potential of the eye-tracking technology
for SRT analysis (and the widespread use of SRTs in behav-
ioral studies), we set out a project to examine whether auto-
mated analyses of SRTs from eye-tracking data can be imple-
mented in a way that is robust against variations in data quality
and potential sources of artifacts. A further goal of the project
was to develop techniques that could be used as a standardized
method in a number of SRT paradigms and studies, including
studies with poorly cooperating participants. The project re-
sulted in a library of MATLAB (Mathworks, Natick, MA)
routines for preprocessing and analysis of SRTs from eye-
tracking data (http://www.uta.fi/med/icl/methods.html). The
preprocessing routines consist of data interpolation and
median filtering function that are applied to raw eye tracking
to cope with problems in data quality. The SRT analyses
routines include algorithms for detecting saccadic eye
movements and several postanalysis “check” functions that
enable the user to automatically identify (and reject) SRTs that
have a high likelihood of being inaccurate or contaminated by
artifacts. To test the proposed routines, we used data from
human infants to compare the SRTs obtained by the automated
scripts with SRTs obtained manually from video records,
examined the robustness of the analyses against indicators of
data quality (precision and robustness) and accuracy of
calibration, and analyzed the test—retest stability of the SRTs
over repeated testing of the same infants from 5 to 7 months of
age and from 9 to 11 months of age.

Method
Typical SRT paradigms
A widely-used paradigm for measuring SRTs includes the

presentation of two stimuli with a slight (e.g., 1,000 ms) onset
asynchrony (Aslin & Salapatek, 1975; Csibra et al., 1998;
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Elison et al., 2013; Elsabbagh et al., 2009; Hood, 1995;
Hunnius, 2007; Hunnius, Geuze, & van Geert, 2006;
Johnson, Posner, & Rothbart, 1991; Scerif et al., 2005). Typ-
ically, the first stimulus is presented at the center of the
stimulus display, and the second laterally to the left or right
periphery. There are several variations of the paradigm that
place varying demands for attention (see Fig. 1 for examples
of the typical variations), but the SRTs are invariably mea-
sured as the latency at which the point of gaze moves from the
location of the first stimulus to the location of the second
stimulus (i.e., leaves the area of the first stimulus area or,
alternatively, enters the area of the second stimulus).

The SRT paradigms used with infants are similar to those
used in older (verbal) children and adults, with the exception
that infant paradigms rely on infants’ spontaneous tendency to
orient to new stimuli, whereas older children and adults are
typically given verbal instructions to orient to the lateral
stimuli (Green et al., 2009; Luna et al., 2008; McDowell
et al., 2008; Miiri & Nyfteler, 2008). This specific aspect of
infant paradigms is important, since infants’ spontaneous sac-
cadic eye movements appear to depend significantly on the
properties of the attention-grabbing stimulus. For example,
studies using static geometric shapes as lateral stimuli have
shown a steady reduction in visuospatial orienting to the
lateral stimulus after repeated trials (Leppénen et al., 2011),
possibly reflecting simple habituation of orienting to the pe-
ripheral stimulus or, alternatively, infants’ voluntary inhibition
of repeated attention shifts to the peripheral stimulus
(Holmboe, Fearon, Csibra, Tucker, & Johnson, 2008). Our
unpublished data (shown in Supplementary Fig. 1) suggest
that the attention shift rate remains reasonably steady when the
peripheral stimulus is changed from a static picture to a
dynamic animation, and the onset of the animation is

Baseline Gap

programmed to be contingent upon eye gaze entering the
target area (i.e., the animation starts to play when the infant’s
point of gaze reaches the area of the animation). Such gaze-
contingent features can be programmed in most software
integrated with eyetrackers (for example, in E-Prime software
or Psychtoolbox and Talk2Tobii toolbox or the Tobii Analyt-
ics SDK for interfacing with Tobii eye-tracking systems, Tobii
Technology, Stockholm, Sweden).

Analysis of SRTs from eye-tracking data
Raw data

Most eye-tracking software provide raw gaze data, with the
following variables that are critical for the present analyses:
(1) x- and y-coordinates for the point of gaze on the screen
(separately for each eye), sampled at the specified temporal
resolution (60-300 Hz in most eyetrackers used with infants),
(2) time stamps for each data sample (e.g., Tobii Eye Tracking
or “TETTime” provides the time stamps at microsecond ac-
curacy), (3) information about the “validity” indicating the
reliability of tracking at each time point (e.g., Tobii TX300
uses codes 0—4, with codes 0 or 1 typically considered to
indicate technically reliable gaze tracking), and (4) additional
time stamps to provide exact synchronization between eye
tracking and stimulus presentation (e.g., a column specifying
the stimulus that is currently on screen). The x-coordinates of
the gaze location for one overlap SRT trial of a 7-month-old
participant are shown in Fig. 2 (the y-coordinates were omitted
from the visualization because these tend to remain relatively
stable across time in paradigms in which the first and the
second stimuli are aligned on the vertical axis). The visuali-
zation illustrates two common characteristics of eye-tracking

Overlap

e
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Fig.1 An illustration of the paradigm used to measure saccadic reaction
times and visuospatial orienting. In the “Baseline” condition, the first
(central) stimulus is extinguished upon the onset of the second (lateral)
stimulus. In the “Gap” condition, the first stimulus is extinguished before
the onset of the second stimulus. In the “Overlap” condition, the first
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stimulus remains visible throughout the trial. The overlap condition
differs from the first two in requiring an active process of attention
disengagement from the stimulus at fixation prior to the movement of
the point of gaze to the new stimulus and, therefore, saccadic reaction
times in this condition are typically longer
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Fig.2 X-coordinates of gaze location as a function of time for one trial of
a 7-month-old infant. The data were recorded in a paradigm involving a
central stimulus (a picture of a face or a facelike pattern) and a lateral
stimulus (a geometric shape). The lateral stimulus was presented at
1,000 ms. Raw values for the point of gaze are shown by the narrow

data collected from infants (Wass et al., 2013, 2014). First, the
raw data includes occasional periods of missing or unreliable
data (shows as gaps in the thick red line at the y = 0). Second,
the point of gaze undergoes constant fluctuation at periods of
fixation (a problem known as low precision of eye tracking).
The visualization further shows that the x-coordinates show an
abrupt change at the time of the saccade.

Preprocessing: interpolation and filtering

The attrition rate in infant eye-tracking studies can be relative-
ly high due to fragmented or low-quality data caused by, for
example, poor calibration, excessive movements, or lapses in
attention. Analyses presented in the Supplementary Results
show that in eyetracker data obtained from typical 12-month-
olds under optimum laboratory testing conditions, 17.9 % of
all available data samples were missing and 62 % of all usable
data segments obtained were of under 1 s in duration (see
Supplementary Fig. S2). To address this problem, we imple-
mented an interpolation routine that identifies the last record-
ed x- and y-coordinates for one or both of the eyes and
continues these values forward until the data come back online
(Wass et al., 2013). In our approach, the interpolation routine
is applied to all periods of missing data regardless of their
duration, but importantly, the user should specify a
postanalysis check function to identify trials that were con-
taminated by extensive interpolations (i.e., unreliable trials),
as described below.

Another common problem with eye-tracking data is abrupt
changes in the point of gaze that are attributable to technical
artifacts. For example, in the data shown in Fig. 2, the x-
coordinate changes abruptly from~.5 to 0 (equaling a 23°
change in visual angle) for the duration of a few milliseconds
at around 1,550 ms poststimulus. Removing such spikes from
the data is critical to avoid false SRTs occurring when a spike
crosses the AOI border during the window of interest (Fig. 2).

green line, and interpolated and median-filtered values by the thick blue
line. Saccade is indicated by an abrupt change in the x-coordinates
~1,700 ms from the start and is measured as the last sample before the
point of gaze leaves the area of the first stimulus (indicated by an open
circle)

To remove this artifact, we implemented a moving median

filter. The length of the median filter can be specified by the

user, and both ends of the analysis period are truncated with
the first or last available sample to enable the filter to be
applied for the whole analysis period.

Analysis of SRTs

The SRTs are determined as the last data point in the first
stimulus area, preceding the transition of the gaze to the
direction of the second stimulus area. The areas of interest
for the first and second stimulus can be adjusted by the user.
The SRT for the example data in Fig. 2 is shown as a small
open circle superimposed on the raw and preprocessed gaze
data. If no gaze shift is recorded within the specified analysis
period (e.g., the point of gaze does not move from the first
stimulus to the second stimulus within the specified time
window), the value of the SRT is determined as the last data
point of the analysis window (e.g., 1,000 ms for an analysis
window ranging from 150 to 1,000 ms poststimulus). As we
explain below, condition and subject-specific mean SRTs can
be calculated on the basis of trials with gaze-shifts only or by
using an index that combines data from all trials (i.e., trials
with and without gaze shifts).

Postanalysis verification checks

Postanalysis verification checks were implemented to elimi-
nate unreliable SRTs from the data. First, the user can set a
minimum and a maximum for the duration of the first and
second stimuli to eliminate trials where the actual duration of
gaze data for a trial deviates from the set duration of the trial
(i.e., the eyetracker fails to record for the entire duration of the
trial, or the software used for stimulus presentation fails to
present the stimulus for the required duration). In our experi-
ence, such deviations exist but are fortunately very rare in the
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software interfacing with Tobii eyetrackers. Second, the user
can set an upper limit for the interpolated segments (e.g.,
200 ms) to eliminate the possibility that real SRTs (e.g.,
central-lateral-central gaze transitions as illustrated in
Fig. 2) are missed due to interpolation, and erroneously deter-
mined as maintenance of the gaze within the area of interest.
Third, a border violation check is included to detect transi-
tions between areas of interest that were missed during inter-
polated data segments. The rationale behind this function is
that interpolating segments of missing data is acceptable if the
gaze remained within the area of interest throughout the
interpolated period (assuming that the longest accepted inter-
polated segment was too short to enable quick gaze shifts
between areas of interest during the period of interpolation).
However, if the area changes during the missing data segment,
then a gaze shift has taken place during the missing data
segment, and the disengagement time from the original area
to the new area cannot be reliably determined. In these cases,
border violation is noted, and the SRT is excluded from the
final data. Finally, a user-defined criterion is used to detect
trials without minimum required fixation time for the first area
of interest prior to saccade. This function ensures that trials
during which the gaze was not sufficiently long in the area of
interest for the first stimulus prior to the saccade (e.g., because
the participant did not pay attention or looked away from the
first stimulus) are eliminated from further analyses.

SRT indexes

The results of the SRT analyses are saved into two separate csv
(comma separated values) files. The first of these reports key
results of the analyses on a trial-by-trial basis, including
information about participant number, trial number, user-
specified codes for stimulus conditions, key data used in the
SRT analysis, and the result of the SRT analysis (i.e., SRT, or
information that the SRT was rejected). The second csv file
provides aggregated data summarizing the number of valid
trials, average SRTs, and number of trials without SRTs (miss-
ing saccades) as a function of stimulus condition. If the
analyses are applied for data from multiple participants, the
data for separate participants are provided on a row-by-row
basis in a format that can be directly read by most statistical
analyses packages.

The average SRT is calculated as the mean of valid gaze
shift latencies, excluding trials without gaze shifts (i.e., trials
on which the gaze remains in the location of the first stimulus
for the entire duration of the analysis window) and
nonscorable trials that failed the postanalysis verification
checks. It is noteworthy, however, that in studies with special
populations, this approach can result in a number of trials
being excluded from the analysis in some experimental con-
ditions (e.g., the probability of trials without gaze shifts can be
relatively high in cognitively demanding tasks or tasks
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involving disengagement from complex stimuli such as faces
and facial expressions; Hutton, 2008; Leppédnen et al., 2011).
For this reason, we also added an index that includes all valid
trials in the SRT analysis (i.e., trials with a gaze shift and trials
without a gaze shift, excluding nonscorable trials that failed
the postanalysis checks) and describes the proportion of at-
tentional dwell-time on the first stimulus of the time window
available for the saccade (i.e., the time interval from the
shortest to the longest acceptable SRT). For example, in a
typical paradigm with a 150- to 1,000-ms window for atten-
tion disengagement, the index would be calculated as

3 1000,
=l 850

SRT index = )

where x; is the time point of saccadic eye movement on a
given trial 7 (i.e., last gaze point in the area of the first stimulus
preceding a saccade toward the peripheral stimulus) and # is
the number of scorable trials in a given experimental condi-
tion. In this index, the shortest acceptable SRT (150 ms)
results in 0, and the longest possible SRT (or lack of saccade,
which is equal to the last measured data point at the first
stimulus at 1,000 ms) results in 1.

Results and discussion

To test the performance of the proposed approach to infant
SRTs, we used data from two ongoing longitudinal studies.
We used the example data for the purposes of (1) optimizing
user-defined setting for a typical infant SRT paradigm, (2)
comparing automatically extracted SRTs with those obtained
manually from video records, (3) examining the robustness of
the automated analyses against variations in calibration, num-
ber of trials, and data quality, and (4) testing the test-retest
reliability of the analyses.

Example data

The first example data consisted of infants from an ongoing
longitudinal study (study 1) that began in April 2012 and
consisted of laboratory assessments at 5, 7, 12, 24, and
48 months of age (Forssman et al., 2013; Kaatiala, Yrttiaho,
Forssman, & Leppénen, 2013; Peltola, Hietanen, Forssman, &
Leppénen, 2013). A total of 126 (55 females) infants were
enrolled in the study, and all available data from the 5-month
(M = 152.43 days, SD = 3.64 days) and 7-month (M =
213.85 days, SD = 4.39 days) visits were used in the present
analyses, with the exception of data from one infant who was
born preterm (<37 weeks). The second data set (study 2)
consisted of 21 infants serving as a control group in a
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randomized-controlled study examining the training of atten-
tional control in infants (Forssman, Wass, & Leppénen, 2014).
Study 2 included assessments at 9 months of age (M =
283.63 days, SD = 3. 80 days) and two post-assessments at
9.5 and 11 months, respectively. All available data from study
2 were used in the present analyses. Ethical permissions for
the studies were obtained from the Ethical Committee of
Tampere University Hospital or Committee of Research
Ethics at the University of Tampere. In both studies, an
informed consent was given by the parents of the participants
before the start of the study.

In the example studies, the infants sat on their parents lap at
a ~60-cm viewing distance in front of a corneal-reflection
eyetracker (Tobii TX300, Tobii Technology, Stockholm, Swe-
den), integrated with a 23-in. monitor. The monitor subtended
~46° in the x dimension and ~27° in the y dimension. Before
testing, the eyetracker was calibrated by using the infant
calibration procedure within the Tobii Studio software (study
1) or a custom-written MATLAB script (study 2). The cali-
bration proceeded by showing the infant an audiovisual ani-
mation sequentially in five locations on the screen. The out-
come of the calibration procedure was read from an illustra-
tion showing the offset between measured gaze points and the
center of the given calibration location. If the first calibration
was not successful (i.e., one or more calibrations were missing
or were not propetly calibrated), the calibration was repeated
at least two times to attain satisfactory calibration for all five
locations. If one or more calibration points were missing after
>2 attempts at recalibration, the final calibration outcome was
accepted, and the experiment was started. Because our study
did not rely on a precise spatial tracking accuracy (see below),
we found it most practical to accept all infants for the data
analyses (i.e., infants with fewer than five satisfactory calibra-
tion points) but examined the potential impact of the calibra-
tion outcome on the measures of interest below. For the
younger participants (i.e., 5- to 7-month-olds; study 1),
attaining any successful calibration point even after several
recalibration attempts was not always possible; the experiment
was then run without eye tracking, and infants’ eye move-
ments were analyzed from the video recording.

SRTs were measured by using a paradigm in which an
attention-grabbing stimulus (a red circle or an animation)
attracted the infant’s attention to the center of the screen. After
the infant fixated the attention getter, as determined on the
basis of video monitoring (study 1) or eye tracking (study 2),
the trial was initiated manually by the experimenter (study 1)
or automatically by a gaze-contingent script (study 2). Two
stimuli were presented on each trial. The first stimulus was a
picture of a face or a facelike pattern (Forssman et al., 2013)
that measured ~14° of horizontal visual angle and was pre-
sented at the center of the screen for 4,000 ms. The second (a
geometric shape or an animation) was presented 1,000 ms
after the onset of the first stimulus on the left or right side of

the screen (~14° from the center) and remained on the screen
for 3,000 ms. In study 1, the second (lateral) stimulus was a
geometric shape (a black-and-white checkerboard pattern or
vertically aligned circles). In study 2, the lateral stimulus was
an animated movie that started to play upon the infant’s first
fixation (point of gaze) to the target areca. The analyses of
study 1 data included the first 24 trials out of a total of 48 trials
(as described in Forssman et al., 2013), unless stated other-
wise. The analyses of study 2 data included all 48 trials. In
study 1, the test was written on E-Prime software and E-Prime
extensions for Tobii (Psychology Software Tools, Inc.) inter-
facing with a Tobii TX-300 eyetracker. In study 2, the cali-
bration and the disengagement script were run on custom-
written MATLAB scripts, Psychtoolbox, and the Talk2Tobii
toolbox,' interfacing with a Tobii TX-300 eyetracker.

User-defined parameters for SRT analyses

On the basis of the iterative analysis of a subsample of
participants from study 1 (n = 15), the user-defined parameters
were set as follows. (1) The minimum duration for the first
stimulus prior to the presentation of the second stimulus was
900 ms, the maximum duration 1,100 ms, and the minimum
duration for the second stimulus 1,000 ms.? (2) A 37-sample
median filter was used to filter the data, equaling 123 ms for
data sample at 300 Hz; this median filter was considered
sufficient to remove technical artifacts without losing impor-
tant data such as saccades that typically take 100—130 ms to
program (Inhoff & Radach, 1998; Radach, Heller, & Inhoff,
1999). (3) Data with validity codes 0 and 1 were accepted as
valid points of gaze (cf. Tobii TX-300 user manual); all data
with validity codes 2 or higher were interpolated. (4) The
threshold for saccade (i.e., x-coordinate value that was used
to detect eye movements away from the location of the first
stimulus) was set at 30 % from the edges; this threshold,
including a ~2.7° margin on both sides of the face image,
was capable of detecting 75 out of 76 target-directed saccades
in the test subsample without resulting in false positives or
underestimation of saccade latencies. (5) The threshold for the
longest interpolated (nonvalid) segment was set to 200 ms;
this criterion helped to retain data in the analysis while also not
resulting in an unacceptable risk of false negatives (i.e., if the
period of interpolation is sufficiently long, the likelihood that
gaze transitions from the first stimulus to the second stimulus
and back [i.e., Ist-2nd—1st] take place during the interpolation
period, resulting in false negative for saccades). (6) The min-
imum fixation for the first stimulus prior to fixation was set at
.70 of the total possible gaze samples available during the

! http://psy.ck.sissa.it/t2t/About_T2T.html

2 This criterion was used to detect rare cases in which the software and
hardware failed to present the stimuli (or collect gaze data) for the
required duration.
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presentation window (including interpolated data). (7) The
minimum and maximum accepted disengagement times were
set at 150 and 1,000 ms, respectively (Forssman et al., 2013;
Leppénen et al., 2011).

Percentage of valid SRTs

Of the initial data from study 1, the analyses of SRTs at
5 months of age were performed for 95 infants who had data
available. For the remaining infants in the sample, data were
missing for various reasons, including delayed enrollment to
the study (n = 7) and technical difficulties/fussiness (n = 23).
The analyses of SRTs at 7 months were conducted for 118
participants. Data for the remaining participants were missing
because of dropouts (n = 2) or technical difficulties/fussiness
(n=15). For the analysis of the 5-month data, valid SRTs were
obtained for 68.3 % of trials. For the analysis of 7-month data,
valid SRTs were obtained for 79.4 % of the trials. For study 2,
the percentage of valid trials was 73.2 % for the 9-month
assessment, 74.0 %, for the 9.5-month assessment, and
71.8 % for the 11-month assessment.

Comparisons of automatically versus manually extracted
SRTs

To validate the proposed eye-tracking approach for the anal-
ysis of SRTs, we compared the automatically extracted SRTs
with those obtained manually from video records of partici-
pants’ eye movements, using data from study 1. A coder who
was blind to the stimulus condition coded saccadic eye move-
ments from the videos by using a frame-by-frame (30 frames
per second) playback. The comparisons of eye-tracking and
video data were conducted on a trial-by-trial basis using data
from trials with a valid SRT (or a value of 1,000 ms indicating
amissing gaze shift) in both data sets (Fig. 3). For the 5-month
assessments, a total of 1,097 trials with overlapping eye-
tracking and video data were available. The temporal discrep-
ancy between the automatically and manually obtained SRTs
was < 100 ms for 1,046 out of 1,097 trials (95.4 %; mean
difference, 24.1 ms; median, 13.2; 95 % CI, 18.2-28.9). For
the 7-month assessments, 1,690 trials with overlapping eye-
tracking and video data were available. The temporal discrep-
ancy between the automatically and manually obtained SRTs
was <100 ms for 1,648 out of 1,690 trials (97.5 %; mean
difference, 20.3 ms; median, 10.0; 95 % CI, 14.5-25.4). These
results are in accordance with the results of a previous study
examining the correspondence of automatic and manually
coded saccades in a different paradigm (Shukla, Wen,
White, & Aslin, 2011).

The relatively rare cases of large (>100-ms) discrepancy
values between automated and manual SRT analyses (2.5 %—
4.6 % of trials) consist mostly of trials on which the infant’s
saccade to the lateral distractor was completed in two phases

@ Springer

(i.e., the first movement close to the edge of the area of the first
stimulus was followed by a second eye movement toward the
target), and the eye-tracking and video-based analyses detect-
ed the onset of the saccade at different points in time. Other
reasons for larger discrepancies included apparent false posi-
tives in manual coding, as well as other technical or unknown
reasons. Examples of the typical trials resulting in larger
discrepancy are shown in Supplementary Fig. 2.

Sensitivity to calibration outcome and number of valid trials

In studies with poorly cooperating participants, the outcome
of the calibration procedure and the number of trials available
for analyses can vary substantially between participants. To
examine whether the proposed method of SRT analysis is
robust against problems in calibration, we used data from
the 5-month visit (study 1) as variations in calibration tended
to be highest in this data set. We examined whether the trial-
by-trial error associated with automated SRT calculation, as
assessed by the difference in automatically and manually
detected SRTs, was higher in infants with one or more missing
calibration points (33.5 % of participants). This analysis
showed, as compared with the whole-sample analyses report-
ed above, that the proportion of >100-ms errors was only
slightly higher in the subsample with poor calibration (i.e.,
4.6 % in the whole sample vs. 5.6 % in the subsample with
incomplete calibration). To examine whether there is any
systematic association of the SRTs with the number of valid
trials available for analysis, we used data from all 48 trials in
studies 1 and 2 to calculate correlations between the stimulus
condition-specific average SRTs and the number of valid trials
available for analysis (range: 3.5—12 and 3.6—16 per condition
in the example studies 1 and 2, respectively).’ The correlations
(Pearson’s r) were low and not significant for all comparisons
[5 months, (74) = —.21-.15, ps > .05; 7 months, 7(103) =
—.18-.03, ps > .05; and 9 months, 7(19) =—.37-.02, ps > .05].
These results suggest that there is no direct relationship be-
tween the SRTs as indexed here and the number of accepted
trials.

Sensitivity to variations in data quality

We also examined whether the accuracy of the SRT analysis
was associated with two indices of data quality: (1) precision
(i.e., the degree to which reporting of the position of gaze is
consistent between samples) and (2) robustness (i.e., how
broken or fragmented contact is with the eyetracker during
recording). The analyses were performed using data from the
5-month visit in study 1.

3 Consistent with the criteria used in previous studies (e.g., Forssman
etal., 2013), participants with three or more valid trials per condition were
included in the analysis.
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Fig. 3 Histograms showing the distribution of difference values between automatically and manually coded saccadic reaction times (i.e., SRTeyc racking

— SRTige0) for all trials in the 5- (a) and 7-month (b) assessments

In order to examine data quality, eye-tracking data seg-
ments were excerpted either for the period between the start of
each trial and the time of first saccadic eye movement (as
coded using the proposed algorithms) or for instances in
which no disengagement was recorded, the first 2,000 ms of
the trial. Precision was calculated using the algorithms de-
scribed in Wass et al. (2014). Robustness was previously
calculated as the mean duration of usable data fragments
(Wass et al., 2014). However, this was not considered optimal
in the present instance, since the duration of data segments
entered into the analysis was variable; instead, we estimated
robustness by calculating the proportion of unavailable data
within each trial (following, e.g., Holmqvist et al., 2011).

To examine whether the accuracy of the SRT analysis (i.e.,
the difference in the eye-tracking and video-based coding)
differed between trials with high- versus Low-quality data,
we used median splits to divide the trial-by-trial data into trials
with high versus low precision and trials with high versus low
robustness. We then examined whether the number of trials

30
B High precision
251 W Low precision
20 -
p<.001
15 A

n.s.

% of >100 ms SRT errors

Without Preprocessing &
Post-Analysis Che cks

With Preprocessing & Post-
Analysis Checks

Fig. 4 Percentage of trials with large (>100-ms) saccadic reaction time
errors in analyses with the proposed preprocessing routines, 2.7° margins
on the sides of the first image, and postanalysis checks versus analyses
without the preprocessing routines, widened margins, and postanalysis

with large SRT errors (>100-ms difference in automatic vs.
manual coding) differed significantly between the trial groups
by using Pearson’s chi-square test. We chose to examine the
number of large SRT errors, instead of mean SRT error values,
because of the limited temporal resolution of the video coding.
The results showed that the number of large SRT errors was
generally low (3.3 %—4.9 %) in the analyses conducted with
the new routines and user-defined settings and that these
numbers did not differ between trials with high versus low
precision (p = .19) or between trials with high versus low
robustness (p = 26; Fig. 4).

We next recalculated the SRTs in our example data by
using a “typical” approach without the modifications we have
incorporated in this article and examined whether the accuracy
of these analyses was associated with data quality (as has
previously been reported by Wass, Forssman, et al., 2014).
This analysis was also aimed at establishing the importance of
the proposed pre- and postanalysis routines and criteria in the
SRT analysis. The typical analysis was performed without

30
m High robustness
25 7 M Low robustness
20 -
p<.001
15

10 -
n.s.

% of >100 ms SRT errors

With Preprocessing & Post- Without Preprocessing &
Analysis Checks Post-Analysis Checks

checks. The percentages are presented separately for trials with low
versus high data quality based on median splits of data precision and
robustness indices
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Fig. 5 Longitudinal association of saccadic reaction times (SRTs) measured from the same infants at 5 and 7 months and at 9, 9.5, and 11 months

applying the proposed preprocessing and postanalysis verifi-
cation routines and with narrower margins on the sides of the
first image (i.e., 1° instead of 2.7°). The trial-by-trial error in
the SRT calculation (i.e., eye tracking — video) and the pa-
rameters reflecting data quality were calculated as described
above. Results suggested that there was a significant relation-
ship between the number of >100-ms SRT errors and data
precision, x> = 28.5, p <.001, R? = .03, and between the
number of >100-ms SRT errors and data robustness, x> = 15.8,
p<.001, R*=.01. As is shown in Fig. 4, the number of large
SRT errors was notably higher when the typical approach
without the pre- and postanalysis routines was used to analyze
trials with less precise or robust data. Together, these results
indicate that the proposed preprocessing and postanalysis
check routines are particularly important in analyzing SRTs
from low-quality data.

Test—retest reliability

Previous longitudinal research (Hunnius et al., 2006) has
shown that disengagement undergoes a relatively rapid devel-
opmental course (i.e., age-related increase in frequency and
decrease in latency) during the first months of life and that this
development appears to stabilize at 5—6 months of age. Given
these findings, we expected stability in the SRTs over time in
the age range studied in the example data set. When all 48
trials in both studies were included in the analyses (and after
excluding participants with < 3 trials per experimental condi-
tion), longitudinal data were available for 68 infants at 5 and
7 months (study 1) and 19 infants from 9, 9.5, and 11 months
of age (study 2). The test-retest correlations of overall mean
SRT indices are shown in Fig. 5. The SRT index was only
moderately correlated between 5 and 7 months, #(68) = .48, p
<.001, R* = .23, but appeared to become more stable between
9, 9.5, and 11 months of age, rs(19) = .74 and .80, ps <.001,
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R*= .54 and .58. These analyses with the present routines and
metrics compare favorably with results from Wass and Smith
(2014), who reported test—retest reliability of #(20) = .37, p =
.09 on SRTs obtained from typical 11-month-olds during
presentation of a noncompetition disengagement task.

Conclusion

In this report, we have demonstrated that when applied with
proper preprocessing and data quality checks, standardized and
automated computer routines can be applied for the analysis of
SRTs from eye-tracking data collected from poorly cooperating
participants. Our analyses also demonstrated that the SRT index
introduced in this study has moderate stability in infancy,
supporting the utility of this metric in quantifying individual
infant performance. It is important to note, however, the overall
success of the eye-tracking analysis continues to be a challenge
(i.e., percentage of data retained for final analysis), especially
with younger infants. Also, an important limitation of the
present approach was that the temporal accuracy of the SRT
analysis was evaluated against low-resolution video data (30
fps). These limitations notwithstanding, the present data pro-
vide support for the use of SRTs as an accessible, objective, and
widely applicable marker to examine neurocognitive function
in a variety of populations (Bar-Haim, 2010; Bar-Haim, Morag,
& Glickman, 2011; Chawarska et al., 2010; Elison et al., 2013;
Elsabbagh et al., 2009; Forssman et al., 2013; Hunnius et al.,
2008; Scerif et al., 2005).
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