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Abstract. Consider a smooth log Fano variety over the function field of
a curve. Suppose that the boundary has positive normal bundle. Choose an
integral model over the curve. Then integral points are Zariski dense, after
removing an explicit finite set of points on the base curve.

1. Introduction

Let k be an algebraically closed field of characteristic zero and B a smooth
projective curve over k with function field F = k(B).

Our point of departure is the following theorem, combining work of
Graber–Harris–Starr and Kollár–Miyaoka–Mori [6,14]: Let X be a smooth
projective rationally connected variety over F. Then X(F) is Zariski dense
in X. One central example is Fano varieties, i.e., varieties with ample
anticanonical class, which are known to be rationally connected (see [13,
V.2.13]). In this context, it is not necessary to pass to a field extension to
get rational points.

When F is a number field, it may be necessary to pass to a finite
extension to get rational points; there exist Fano varieties over Q without
rational points. Moreover, even for Fano threefolds potential Zariski density,
i.e., density after a finite extension of F, is unknown in general. For some
positive results in this direction see [8,4,9].

In this paper we study Zariski density of integral points. Consider pairs
(X, D) consisting of a variety X and a divisor D ⊂ X, and fix integral
models π : (X,D) → B (see Sect. 2 for the definition). An F-rational
point s ∈ X \ D gives rise to a section s : B → X of π, meeting D in
finitely many points. As we vary s,

s−1(D) = π(s(B) ∩ D) ⊂ B
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may vary as well. Fixing a finite set S ⊂ B, an S-integral point of (X,D)
is an F-rational point of X such that s−1(D) ⊂ S (as sets).

Theorem 1. Let F be the function field of a smooth projective curve B/k.
Let (X, D) be a pair over F consisting of a smooth projective variety X and
a smooth divisor D ⊂ X. Assume that

• D is rationally connected;
• the divisor class of the normal bundle c1(ND/X) is numerically equiva-

lent to a nontrivial effective divisor.

Given a model π : (X,D) → B, let S be a nonempty finite set of points
in B containing the images of the singularities of X and D . Then S-integral
points of (X,D) are Zariski dense.

Note however that we allow points of bad reduction outside S. For ex-
ample, let X = P2

[x,y,z] × P1
[s,t] and

D = {s(x2 + yz) + t(y2 + xz) = 0}.
While X and D are nonsingular the fiber D[s,t] is singular when s3 + t3 = 0.

Let KX denote the canonical class of X and KX + D the log canonical
class of (X, D). The pair (X, D) is log Fano if −(KX + D) is ample. By
adjunction

(KX + D)|D = KD

so −KD is ample. Thus D is Fano hence rationally connected [14], [13,
V.2.13].

Corollary 2. Let (X, D) be a log Fano variety over F with X and D
smooth. Assume that the divisor class c1(ND/X) is numerically equivalent
to a nontrivial effective divisor. For each integral model and collection of
places as specified in Theorem 1, integral points are Zariski dense.

We expect that the hypothesis on ND/X is not needed. For example, our
argument does not apply to the case X = P1 and D = ∞, where density of
integral points is immediate. And there are log Fano varieties (X, D) with
ND/X negative, e.g., (X, D) = (Fn,Σ0) where Fn is the Hirzebruch surface
admitting a section Σ0 with self-intersection −n < 0.

Furthermore, the condition that (X, D) be log Fano can be weakened.
There are numerous examples of varieties X with trivial canonical class and
Zariski-dense set of rational points over number and function fields. How-
ever, the deformation-theoretic approach here is not directly applicable. It is
an open problem to characterize pairs with potentially dense integral points;
Campana [5] has a conjectural description of these, at least when D = ∅.

Our result is a partial converse to the function-field version of Vojta’s
conjectures: If (X, D) is defined over a number field F and KX + D is ample
then integral points are not Zariski dense (see [16] for the number field case,
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with connections to value-distribution theory). Very few density results for
integral points over number fields are available, most of them in dimension
two (see [15,3,10]).
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2. Integral models and reduction to the smooth case

Definition 3. A pair (X, D) consists of a smooth projective variety and
a reduced effective divisor with normal crossings.

Let B be a smooth projective curve defined over an algebraically closed
field k of characteristic zero and F = k(B) its function field.

Definition 4. Let (X, D) be a pair defined over F. An integral model

π : (X,D) → B

consists of a flat proper morphism from a normal variety πX : X → B with
generic fiber X, and a closed subscheme D ⊂ X such that πD := πX|D :
D → B is flat and has generic fiber D. A point b ∈ B is of good reduction
if the fibers Xb = π−1

X (b) and Db = π−1
D (b) are smooth.

We emphasize that D has no irreducible components contained in fibers
of πX.

While in applications the model is often specified a priori, for each
projective embedding of (X, D) we can construct a natural model: The
properness of the Hilbert scheme yields extensions of X and D to schemes
flat and projective over B. Locally on B, these are obtained by ‘clearing de-
nominators’ in the defining equations of X and D. Normalizing if necessary,
we obtain a model of (X, D).

Definition 5. Let S be a finite subset of B. An S-integral point of (X,D)
is a section s : B → X such that s−1(D) ⊂ S as sets.

Thus if D = ∅ then integral points are just sections of X → B, which
are F-rational points of X.

The following proposition is straightforward:

Proposition 6. Let (X1,D1) and (X2,D2) be integral models of (X, D).
Let T ⊂ B denote the set over which the birational map

(X1,D1) ��� (X2,D2)



10 B. Hassett, Y. Tschinkel

fails to be an isomorphism. Then S-integral points of (X1,D1) are mapped
to (S ∪ T )-integral points of (X2,D2). If S-integral points of (X1,D1) are
Zariski dense then (S ∪ T )-integral points of (X2,D2) are Zariski dense.

In particular, if we allow ourselves to enlarge the set S then Zariski-
density of integral points is independent of the model.

We discuss how Theorem 1 can be reduced to the case of nonsingular
integral models:

Definition 7. A good resolution of an integral model is a birational proper
morphism from a pair

ρ : (X̃, D̃) → (X,D)

such that

• X̃ is smooth and D̃ is normal crossings;
• ρ−1(D) = D̃;
• ρ is an isomorphism over the open subset of (X,D) where X is smooth

and D is normal crossings.

Remark 8. (1) D̃ may very well have components contained in fibers
over B, so (X̃, D̃) is not necessarily an integral model.

(2) The normality condition in Definition 4 of an integral model guarantees
that for each b ∈ B and each irreducible component of Xb, the total
space X is smooth at the generic point of that component. In particular,
ρ is an isomorphism over a dense open subset of each fiber of X.

Let (X̃, D̃) → (X,D) be a good resolution, S ⊂ B a finite set con-
taining the images of the singularities of X and D , and D̃◦ the union of the
components of D̃ dominating B. We have:

• D̃◦ is normal crossings;
• images of S-integral points of (X̃, D̃◦) under ρ are S-integral points

of (X,D).

We have a bijection

ρ : X̃ \ D̃ → X \ D,

so S-integral points of (X,D) correspond to sections

{s̃ : B → X̃ : s̃−1(D̃) ⊂ S}.
Since the fibral components of D̃ lie over S, S-integral points of (X,D)

are equal to S-integral points of (X̃, D̃◦).
This analysis and resolution of singularities in characteristic zero reduces

Theorem 1 to the following special case:

Theorem 9 (Smooth case). Retain the assumptions of Theorem 1 and as-
sume in addition that X and D are nonsingular. Then for any nonempty
S ⊂ B the S-integral points in (X,D) are Zariski dense.
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Here is a roadmap for the rest of the paper. Our main strategy is to pro-
duce ‘good’ sections in the boundary s : B → D that deform to a Zariski-
dense collection of S-integral points. The ‘deformation of combs’ technique
of [6, §2] yields a section s1 : B → D such that the normal bundle Ns1(B)/D

is globally generated with no higher cohomology. Since c1(ND/X) is effect-
ive and nonzero, we may assume that the teeth of our combs have positive
intersection numbers with D . Thus we can construct a section s2 : B → D
such that Ns2(B)/X is globally generated with no higher cohomology. Finally,
for any prescribed point p ∈ B, we produce a section s3 : B → D such that
s∗

3OX(D) 
 OB(Np) for some N � 0. This entails controlling the divisor
class of the points over which we attach our teeth.

To obtain density of S-integral points, we control how deformations of
s3(B) meet D . The first step is to restrict to deformations st : D → X such
that s∗

t OX(D) 
 OB(Np). The key technical tool is the ‘Atiyah extension’
classifying first-order deformations of varieties with a line bundle. Taking
this into account, we introduce new notions of free and very free curves
in Sect. 3. Section 4 deduces smoothing results for morphisms of curves
respecting line bundles; these generalize the results for free and very free
curves in [13, II.7]. Section 5 is devoted to the proof of Theorem 9.

3. Atiyah classes and free curves

Assume that k is algebraically closed. Let B be a smooth projective variety,
ψ : Y → B a smooth surjective morphism from a quasi-projective variety,
and L a line bundle on Y.

Consider the dual Atiyah extension [2, p. 196], [11, p. 243]

0 → Ω1
Y → FY,L → OY → 0.

Up to sign, it is classified by the first Chern class

±c1(L) ∈ H1
(
Y,Ω1

Y

) = Ext1
(
OY ,Ω1

Y

)
.

There is an induced relative Atiyah extension

0 → Ω1
Y/B → FY,L/B → OY → 0.

These are all locally free as ψ is smooth. Writing EY,L/B for the dual to
FY,L/B, we obtain

0 → OY → EY,L/B → TY/B → 0.

Definition 10. Let C be a nodal projective curve. A nonconstant morphism
g : C → Y is L-free over B if for each q ∈ C

H1
(
C, g∗EY,L/B ⊗ �q

) = 0.

It is L-very free over B if for each subscheme Σ ⊂ C of length two

H1
(
C, g∗EY,L/B ⊗ �Σ

) = 0.
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Proposition 11. Assume that k is of characteristic zero. Let b ∈ B and
y ∈ Yb = ψ−1(b). Suppose Yb is a proper rationally connected variety.
Then there exists a morphism g : P1 → Yb that is L-free over B, with image
containing y. If L|Yb is numerically equivalent to a nontrivial effective
divisor then we can choose g to be L-very free over B.

Proof. There exists a very free morphism g : P1 → Yb [13, IV.3.9.4], with
g∗TY/B ample. Moreover, given any finite collection of points y1, . . ., ym
∈ Y, we may assume the image of g contains these points.

We have the extension

0 → OP1 → g∗EY,L/B → g∗TY/B → 0.

It follows that each summand of g∗EY,L/B is nonnegative, which implies
L-freeness.

We prove L-very freeness. Assume H is an effective nonzero divisor
corresponding to L . Choose g such that its image contains y, some point y′
in the support of H , and some point y′′ not in the support of H . In particular,
the image is not contained in any component of H . It follows that g∗L has
positive degree.

If OP1 were a summand of g∗EY,L/B then we would have

g∗EY,L/B 
 OP1 ⊕ g∗TY/B,

i.e., the Atiyah extension would split after pull-back. The inclusion TP1 ↪→
g∗TY/B induces the Atiyah extension on P1 associated with g∗L:

0 → OP1 → EP1,g∗L → TP1 → 0

which splits as well. However, this is classified by

±c1(g
∗L) ∈ H1(P1,Ω1

P1

) = Ext1(TP1,OP1),

which is nontrivial because L is effective and nonzero. (Here we are using
the assumption that the base field is of characteristic zero.) ��

4. Spaces of morphisms and comb constructions

We retain the notation introduced in Sect. 3.
Let C0 be a nodal projective connected curve. Fix a morphism f0 :

C0 → Y and write

g0 = ψ ◦ f0 : C0 → B.

Let (S, 0) be a smooth scheme with distinguished closed point. Consider
a flat projective morphism � : C → S such that �−1(0) 
 C0 and an
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S-morphism

C

��
� ��

��
��

�
��

g
B × S

��
π′

S
yy
yy
yy
yy
y

S

such that g|C0 = g0. (Here π ′
S is the projection to S.) Fix a line bundle M

on C such that M|C0 
 f ∗
0 L .

Let MorB×S(C,Y × S) denote the morphisms

C

��
g EE

EE
EE

EE
E

��h
Y × S

zz
(ψ,IdS)

uu
uu
uu
uu
u

B × S

over B × S; each connected component is a quasi-projective scheme over S.
Let PicC/S denote the relative Picard scheme [1, Theorem 7.3], which is
locally of finite type over S. We have a morphism

MorB×S(C,Y × S) → PicC/S

h �→ (πY ◦ h)∗L ⊗ M−1,

where πY : Y × S → Y is the projection. The fiber over the zero-section is
a closed subscheme

Mor•B×S(C,Y × S) ⊂ MorB×S(C,Y × S).

Finally, we have

MorB×S
(
(C,M),

(
Y × S, π∗

YL
)) = {

(h, ι) : h ∈ Mor•B×S(C,Y × S),

ι : (πY ◦ h)∗L ∼→ M
}

which is a Gm-torsor over Mor•B×S(C,Y × S). This keeps track of a choice
of identification between M and the pull-back of L .

Proposition 12. The relative tangent space of

MorB×S
(
(C,M),

(
Y × S, π∗

YL
))

(resp. MorB×S(C,Y × S))

over S at [ f0] is isomorphic to

Γ
(
C0, f ∗

0 EY,L/B
) (

resp. Γ
(
C0, f ∗

0 TY/B
))

.

The obstruction space is contained in

H1(C0, f ∗
0 EY,L/B

) (
resp. H1(C0, f ∗

0 TY/B
))

.

In particular, the morphism space is smooth over S at f0 provided the
corresponding first cohomology group vanishes.



14 B. Hassett, Y. Tschinkel

Proof. The description of the tangent and obstruction spaces is an ap-
plication of the technique of [11, §2.3]. Using the smoothness criterion
of [7, 17.5.1–2], it suffices to show that the schemes are flat over S with
regular geometric fibers. The morphism spaces are flat over S at f0 provided
their fibers over 0 have the expected dimension there [13, I.2.17]. When the
first cohomology group vanishes, the dimension of the fiber equals the
dimension of its tangent space. ��
Remark 13. Instead of working with pairs consisting of varieties and line
bundles relative to B, we could work with varieties relative to B × BGm.
Here BGm is the classifying stack of the multiplicative group; morphisms
Y → BGm correspond to line bundles on Y. The Atiyah extension of Y/B
determined by L coincides with the relative tangent bundle of the morphism
Y → B × BGm. (We are grateful to one of the referees for suggesting this
point of view.)

Definition 14. A comb is a nodal projective curve

C0 = B′ ∪ T1 ∪ . . . ∪ Tr

where B′ is smooth and connected and each Ti is a smooth rational curve
meeting B′ in one point b′

i . The Ti are pairwise disjoint.

Proposition 15. Let B′ ⊂ Y be a smooth projective curve satisfying
H1(B′,EY,L/B|B′) = 0; assume that B′ meets a proper separably ratio-
nally connected fiber of ψ. Suppose we are given

• a comb C0 with handle B′ and teeth Ti;
• a morphism f0 : C0 → Y, such that

(1) f0|B′ extends the inclusion B′ ⊂ Y;
(2) each restriction Fi := f0|Ti is L-free and contained in a proper

fiber of ψ.

Then for any

• smooth scheme with distinguished closed point (A, 0);
• flat proper morphism � : C → A with distinguished fiber C0;
• morphism g : C → B × A over A such that g|C0 = ψ ◦ f0;
• line bundle M on C such that M|C0 
 f ∗

0 L;

there exists an étale neighborhood (S, 0) of (A, 0) and a morphism f :
C → Y × S over B × S such that f ∗(π∗

YL) 
 M and f |C0 = f0.

Proof. Since the teeth are L-free, EY,L/B pulls back to a semi-positive
vector bundle on each Ti . An inductive argument [13, II.7.5] reduces the
cohomology over the comb to the cohomology of the restriction to the
handle

H1(C0,EY,L/B|C0) 
 H1
(
B′,EY,L/B|B′) = 0.
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We then apply Proposition 12 to construct f . By construction,

f0 ∈ MorB×A
(
(C,M),

(
Y × A, π∗

YL
))

which is smooth over A because of the vanishing of the higher cohomology
of EY,L/B|C0. Thus for a suitable étale neighborhood (S, 0) of the origin
in A we have a section

[ f ] : S → MorB×S
(
(C,M),

(
Y × S, π∗

YL
))

with [ f ]0 = f0. (We use the same notation for C and M and their restrictions
over S.) The universal property of our morphism space gives f : C → Y×S
over B × S and an identification ι : (πY ◦ f )∗L ∼→ M|S. ��
Remark 16. Alternatively, we could have analyzed the deformations of f0 :
C0 → Y using the normal sheaf N f0 . This works best when f0 is an
embedding, which can be achieved when the fibers of ψ have dimension
≥ 3. Then we can regard f0(C0) as a point in the Hilbert scheme Hilb
of nodal curves in Y. Suppose in addition that B′ ⊂ Y is a section of
ψ : Y → B. Then there exists a morphism

α : Hilb → Pic(B)

Cs �→ det
(
R•ψ∗(L ⊗ OCs)

)
,

where det is the determinant of cohomology, which is defined for perfect
complexes (see [12, Theorem 2]). A deformation argument similar to ours
can be used to produce smooth curves in suitable fibers of α corresponding
to sections σ : B → Y with σ∗L = L|B′. (We are grateful to one of the
referees for pointing out this approach.)

Proposition 17. Let B′ ⊂ Y be a smooth projective curve. There exists an
integer n > 0 with the following property:

Suppose we are given

• a comb C0 with handle B′ and teeth T1, . . ., Tq attached at b′
1, . . ., b′

q;
• a morphism f0 : C0 → Y, such that

(1) f0 is an embedding along B′ and extends the inclusion B′ ⊂ Y;
(2) each Fi := f0|Ti is L-free and contained in a proper fiber of ψ;

Then there exists a subset {i1, . . ., ir} ⊂ {1, . . ., q} with r ≥ q − n such that

f ′
0 := f0|C ′

0 : C ′
0 → Y, C ′

0 := B′ ∪ Ti1 ∪ . . . ∪ Tir ⊂ C0

deforms to a morphism f ′
t : B′ → Y with

(
f ′
t

)∗
L 
 L|B′ ⊗ OB′

(
ei1 b′

i1
+ . . . + eir b′

ir

)
, ei = deg F∗

i L

and ψ ◦ f ′
t = ψ|B′. Furthermore, if the Fi are assumed to be L-very free

then for suitable n > 0 we can take f ′
t to be L-free over B.
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Proof. We first construct a family � : C → Ar deforming C0 to B′ (see [13,
p. 156]). Consider the smooth codimension-two subvariety

Z =
r⋃

i=1

({
b′

i

} × {ti = 0}) ⊂ B′ × Ar

and the blow-up

C := BlZ(B′ × Ar)
σ→ B′ × Ar

with exceptional divisors E1, . . ., Er . The composed morphism

� : C → B′ × Ar → Ar

is still flat with �−1(0) 
 C0; every fiber of � is a comb with handle B′.
We introduce a line bundle on this family: Consider

L ′ = L|B′ ⊗ OB′
(
e1b′

1 + . . . + erb′
r

)

and write

M = (πB′ ◦ σ)∗L ′ ⊗ OC(−e1 E1 − . . . − er Er).

Note that Cs 
 B′ and M|Cs 
 L|B′, i.e., our modification leaves the fibers
away from the coordinate axes of Ar unchanged.

We apply the smoothing technique of [13, II.7.9] to the morphism space

MorB×Ar

(
(C,M),

(
Y × Ar, π∗

YL
))

.

This gives a curve containing the origin 0 ∈ T ⊂ Ar , whose generic point
is contained in at most c ≤ n of the coordinate hyperplanes, such that the
restricted family CT := C ×Ar T → T admits a morphism

CT

��D
DD

DD
DD

D
��

f
Y × T

zzvv
vv
vv
vv
v

B × T

restricting to f0 at 0 ∈ T . Let C ′
T denote the irreducible component of CT

containing B′ ⊂ C0; its distinguished fiber is a subcomb

C ′
0 := B′ ∪ Ti1 ∪ . . . ∪ Tiq ⊂ C0, q = r − c.

The restriction f ′ = f |C ′ is our desired morphism.
When the teeth are L-very free, the argument of [13, II.7.10] yields

a smoothing that is L-free over B. ��
Corollary 18. Retain the assumptions of Proposition 17 and assume k is
of characteristic zero. Suppose in addition that B′ meets a proper ratio-
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nally connected fiber of ψ. Then there exists a free f ′
s : B′ → Y with

ψ ◦ f ′
s = ψ|B′.

Proof. We just need to construct the comb C0 and the morphism f0. Using
Proposition 11, we choose

• points b1, . . ., br ∈ B with Ybi proper;
• distinct points b′

1, . . ., b′
r ∈ B′ with ψ(b′

i) = bi ; and
• L-very free curves Fi : Ti → Ybi containing b′

i as a smooth point.

Let C0 = B′∪T1∪. . .∪Tr denote the corresponding comb and f0 : C0 ↪→ Y
the morphism obtained by gluing the inclusion B′ ⊂ Y with the Fi . ��
Remark 19. Again, we could also work over the Hilbert scheme and apply
the smoothing techniques of [6, §2] to establish this result.

Our main application is to sections of rationally connected fibrations.

Theorem 20. Let B be a smooth projective curve, ψ : Y → B a proper
morphism from a smooth variety with rationally connected generic fiber,
Y ⊂ Y the open subset where ψ is smooth, and L an invertible sheaf on Y
restricting to a nontrivial effective divisor on the generic fiber of ψ. Fix an
integer N � 0.

For each invertible sheaf M ∈ PicN(B), there exists a section s : B → Y
such that s∗L = M and s is L-free over B. In particular, the sheaves

s∗EY,L/B and s∗TY/B = Ns(B)/Y

are both globally generated with no higher cohomology.

Proof of 20. The Graber–Harris–Starr theorem [6] gives a section s1 :
B → Y. The exact sequence

0 → TY/B → TY → ψ∗TB → 0

induces

0 → s∗
1TY/B → s∗

1TY → TB → 0

which is split by the differential ds1 : TB → s∗
1TY. Thus we have

s∗
1TY = s∗

1TY/B ⊕ TB

and the first term coincides with the normal bundle Ns1(B)/Y.
Proposition 17 gives a section s2 : B → Y that is L-free over B. We

assume this in what follows, so in particular

H1
(
B, s∗

2EY,L/B
) = 0.

To complete the proof, we produce smoothings ft : B → Y of suitable
combs

f0 : C0 = B ∪b1 T1 . . . ∪br Tr → Y
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where f0|B = s2 Fi = f0|Ti : Ti → Ybi is L-very free. These are given
by Proposition 15, but it is necessary to specify the points of attachment
carefully to achieve the desired value of f ∗

t L .
Choose e sufficiently large so that for each smooth fiber Yb and every

point y ∈ Yb, there exists an L-very free curve T → Yb passing through y
with L · T = e. We therefore may assume

e = T1 · L = T2 · L = . . . = Tr · L > 0.

Let C → Ar and M denote the families constructed in the proof of Propo-
sition 17. Thus for generic s ∈ Ar we have Cs 
 B and

M|Cs 
 s∗
2 L(eb1 + . . . + ebr).

Let U ⊂ B denote the locus over which Yb is smooth and contains
a L-very free curve T of degree e. To complete the proof of Theorem 20,
we require the following moving lemma, which governs the precise value
of N:

Lemma 21. Let B be a smooth projective curve, U ⊂ B a dense open
subset, and e ∈ N. Fix a line bundle Λ on B of degree 	, r ≥ 2g(B)+1, and
N = er +	. For any M ∈ PicN(B) there exist distinct points b1, . . ., br ∈ U
so that

M 
 Λ(e(b1 + . . . + br)).

This is an elementary application of Riemann–Roch. Choose an eth root
of M ⊗ Λ−1, i.e., a line bundle A with A⊗e ⊗ Λ = M. Any line bundle of
degree r on B is very ample so consider the embedding

φA : B ↪→ Pr−g(B).

The divisors with any support along B\U form a finite union of hyperplanes
in the linear system |A|. The divisors admitting points of multiplicity > 1
form a proper subvariety of ∆ ⊂ |A| by the Bertini theorem. Any divisor
in the complement of the hyperplanes and ∆ can be expressed in the form
b1 + . . . + br with the bi distinct in U . ��

5. Proof of the smooth case

In this section, we prove Theorem 9; take S = {p} for some p ∈ B.
Apply Theorem 20 to Y = D , L = OD(D) = ND/X, and M = OB(Np)

for some suitable N � 0. We obtain a section s : B → D with the following
properties:

• s∗D = ND/X|s(B) 
 OB(Np);
• ED,O(D)/B|s(B) is globally generated with no higher cohomology.
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Consider the following diagram:

0

��

0

��

0 �� OB
�� ED,O(D)/B|s(B)

��

�� Ns(B)/D

��

�� 0

0 �� OB
�� EX,O(D)/B|s(B)

��

�� Ns(B)/X

��

�� 0 .

ND/X|s(B)

��

ND/X|s(B)

��

0 0

The top two horizontal exact sequences are the Atiyah extensions defining
ED,O(D)/B and EX,O(D)/B restricted to s(B). We identify the relative tangent
bundles of D and X over B restricted to s(B) with the normal bundles
Ns(B)/D and Ns(B)/X. The right vertical exact sequence is the standard normal
bundle sequence for s(B) ⊂ D ⊂ X.

The terms in the bottom row are isomorphic to OB(Np), which has no
higher cohomology. Since the middle term in the upper row has vanishing
higher cohomology, we deduce that H1(EX,O(D)/B|s(B)) = 0. Furthermore,
the middle vertical exact sequence yields an exact sequence on global sec-
tions.

The inclusion D ⊂ X induces an inclusion of morphism spaces

MorB((B, M), (D,OD(D))) ↪→ MorB((B, M), (X,OX(D))).(5.1)

These are smooth by Proposition 12. The image is precisely the indetermi-
nacy of the rational map

G : MorB((B, M), (X,OX(D))) ��� P(Γ(B,OB(Np)))

st �−→ s−1
t D.

We may interpret S-integral points as sections st mapping to elements of
Γ(B,OB(D)) vanishing at p to maximal order N. Thus we are interested in
elements of G−1[Γ(B,OB)], where Γ(B,OB) ⊂ Γ(B,OB(Np)) corresponds
to the constant functions, i.e., the image of the map on global sections
induced by the inclusion of sheaves OB ↪→ OB(Np).

The indeterminacy of G is resolved by blowing up the subscheme (5.1).
The stalk of its normal bundle at s(B) is canonically isomorphic to
Γ(OX(D)|s(B)). In particular, the proper transform of G−1[Γ(B,OB)]
meets the exceptional fiber over s(B) at the point

[Γ(B,OB)] ∈ P(Γ(OX(D)|s(B))) 
 P(Γ(B,OB(Np))).
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Thus s(B) deforms to st(B) ∈ G−1[Γ(B,OB)], corresponding to an S-inte-
gral point.

The sections thus produced are Zariski dense in X. Indeed, our construc-
tion produces sections passing through the generic point of D that deform
out of D to the generic point of X.

Remark 22. Here is an alternate approach suggested by one of the referees.
Fix a section r ∈ Γ(X,OX(D)) inducing the canonical inclusion OX ↪→
OX(D). Since M = OB(Np), we have a morphism

G̃ : MorB((B, M), (X,OX(D))) → Γ(B,OB(Np))(
st, ι : s∗

t OX(D) ∼→ M
) �→ ι

(
s∗

t r
)

which yields G on composition by

Γ(B,OB(Np)) ��� P(Γ(B,OB(Np))).

One can show that G̃ is smooth via deformation theory. The preimage of
the curve Γ(B,OB) ⊂ Γ(B,OB(Np)) gives the desired sections of X.

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.

References

1. Artin, M.: Algebraization of formal moduli. I. In: Global Analysis (Papers in Honor of
K. Kodaira), pp. 21–71. Univ. Tokyo Press, Tokyo (1969)

2. Atiyah, M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc.
85, 181–207 (1957)

3. Beukers, F.: Integral points on cubic surfaces. In: Number Theory (Ottawa, ON, 1996).
CRM Proc. Lect. Notes, vol. 19, pp. 25–33. Am. Math. Soc., Providence, RI (1999)

4. Bogomolov, F., Tschinkel, Y.: On the density of rational points on elliptic fibrations.
J. Reine Angew. Math. 511, 87–93 (1999)

5. Campana, F.: Orbifolds, special varieties and classification theory. Ann. Inst. Fourier
(Grenoble) 54(3), 499–630 (2004)

6. Graber, T., Harris, J., Starr, J.: Families of rationally connected varieties. J. Am. Math.
Soc. 16(1), 57–67 (2003) (electronic)

7. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et
des morphismes de schémas IV. Publ. Math., Inst. Hautes Étud. Sci. 32, 5–361 (1967)

8. Harris, J., Tschinkel, Y.: Rational points on quartics. Duke Math. J. 104(3), 477–500
(2000)

9. Hassett, B.: Potential density of rational points on algebraic varieties. In: Higher Di-
mensional Varieties and Rational Points (Budapest, 2001). Bolyai Soc. Math. Stud.,
vol. 12, pp. 223–282. Springer, Berlin (2003)

10. Hassett, B., Tschinkel, Y.: Density of integral points on algebraic varieties. In: Rational
Points on Algebraic Varieties. Progr. Math., vol. 199, pp. 169–197. Birkhäuser, Basel
(2001)

11. Illusie, L.: Complexe cotangent et déformations. I. Lect. Notes Math., vol. 239. Springer,
Berlin (1971)



Log Fano varieties over function fields 21

12. Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves.
I. Preliminaries on “det” and “Div”. Math. Scand. 39(1), 19–55 (1976)

13. Kollár, J.: Rational Curves on Algebraic Varieties. Ergeb. Math. Grenzgeb., 3. Folge,
vol. 32. Springer, Berlin (1996)

14. Kollár, J., Miyaoka, Y., Mori, S.: Rationally connected varieties. J. Algebraic Geom.
1(3), 429–448 (1992)

15. Silverman, J.H.: Integral points on curves and surfaces. In: Number Theory (Ulm,
1987). Lect. Notes Math., vol. 1380, pp. 202–241. Springer, New York (1989)

16. Vojta, P.: Diophantine Approximations and Value Distribution Theory. Lect. Notes
Math., vol. 1239. Springer, Berlin (1987)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


