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Abstract

Identification and validation of interaction networks and network biomarkers have become more critical and important
in the development of disease-specific biomarkers, which are functionally changed during disease development,
progression or treatment. The present review headlined the definition, significance, research and potential application
for network biomarkers, interaction networks and dynamical network biomarkers (DNB). Disease-specific interaction
networks, network biomarkers, or DNB have great significance in the understanding of molecular pathogenesis, risk
assessment, disease classification and monitoring, or evaluations of therapeutic responses and toxicities. Protein-based
DNB will provide more information to define the differences between the normal and pre-disease stages, which might
point to early diagnosis for patients. Clinical bioinformatics should be a key approach to the identification and validation
of disease-specific biomarkers.
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Introduction
The respiratory disease is a complex process from self-
limiting to life-threatening entities such as from the chronic
obstructive pulmonary disease (COPD) to respiratory fail-
ure, pulmonary embolism and lung cancer. For example,
COPD will be one of the top five chronic diseases in terms
of global mortality and morbidity by 2030 [1-3]. One of the
major challenges in the respiratory medicine is the lack of
disease-specific biomarkers for disease diagnosis, illness
monitoring, therapy evaluation, and prognosis prediction.
The biomarker should be a measurable indicator of normal
biologic processes, pathogenic processes, or therapeutic re-
sponses, for the risk assessment, early diagnosis, and pre-
dicting and monitoring responses to therapies and toxicities
[4,5]. Disease-specific biomarkers are also expected to dem-
onstrate the disease-associated specificity, sensitivity, trace-
ability, stability, repeatability and reliability [6]. For example,
somatic mutations in the tyrosine kinase domain of the epi-
dermal growth factor receptor was shown to be a predictive
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marker for a greater efficacy of gefitinib in patients with
non small cell lung cancer [7,8]. However, only a few have
been found to be useful clinically, although numbers of dis-
covered and identified biomarkers are generated from pre-
clinical research.
The development and progression of the disease may be

caused from the interplay of a group of correlated mole-
cules or a network, rather than from the malfunction of the
individual gene, protein, or cell [9]. It is believed that dy-
namic alternations of complex interaction networks and
molecular sub-networks can represent and influence re-
sponses of cells or organs to real-time changed microen-
vironment [10-12]. Thus, identification and validation of
interaction networks and network biomarkers, especially at
the protein level, become critical to develop disease-specific
biomarkers for monitoring disease occurrence, progression
or treatment efficacy [13-15]. The present review headlights
network biomarkers, interaction networks, dynamical net-
work biomarkers, with special focus on respiratory diseases,
with an emphasis to integrate bioinformatics-based screen-
ing of biomarkers, network biomarker, dynamic network
biomarkers with clinical informatics and phenotypes and
establish a systems biomedicine-evidenced disease-specific
dynamic network biomarkers
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Network biomarkers
Gene or protein expression data and other high-
dimensional profile data with over thousands of mea-
surements in each sample can be generated from
transcriptome, proteome and metabolome studies. The
mining and analysis of such high-throughput data have
led the current omics-based research from studying in-
dividual components to understanding functional mod-
ules or networks for biomolecular systems [16,17]. It
requires multi-dimensional views and the integration of
molecular interaction networks in the analysis of high-
throughput data to define the variation of disease sever-
ity and progression, drug sensitivity and resistance, cell
growth and differentiation, and pathogenesis elabor-
ation. A new concept of Systems Clinical Medicine was
introduced to integrate systems biology, clinical science,
omics-based technology, bioinformatics and computa-
tional science to improve diagnosis, therapies and prog-
nosis of diseases [18]. Proteomics-based bioinformatics
is a critical part of the systems clinical medicine and the
core approach to carry out the investigation for patho-
genesis, to explore the potential of clinical applications
and to improve the outcomes of patients with certain
diseases.
The concept of network biomarkers was proposed as a

new type of biomarkers, including a set of biomarkers and
their interactions [19]. A set of high-confident biomarkers
from cardiovascular-related network were identified as
candidate network biomarkers and used to classify two
groups of patients more accurately than current single
ones without consideration of biological molecular inter-
action [19]. Some molecular interactions in such network
could be activated under specific conditions, indicating
the dysfunctional process underlying the corresponding
disease phenotypes and making the detection of net-
work biomarkers possible. Microarray analysis and human
protein-protein interaction (PPI) network were combined
to identify more reproducible sub-network markers than
individual markers in breast cancer and achieved higher
accuracy in interpretation of molecular mechanisms
and classification of metastatic versus non-metastatic
tumors [20].
Network biomarkers have been widely studied for early

diagnosis, prognosis prediction and efficacy prediction for
cancer. For example, gene expression profiling was com-
bined with functional genomic and proteomic data from
various species to generate a network containing 118
genes linked by 866 potential functional associations for
breast cancer [21]. One component within the network,
HMMR gene, which encodes a centrosome subunit, was
discovered to be associated with the breast cancer-
associated gene BRCA1 and with a higher risk of breast
cancer. This network-based strategy may be used to dis-
cover additional network biomarkers for early diagnosis.
Interaction networks
Interaction networks include gene regulatory network
(GRN), PPI network, RNA network, signaling pathway
network, and metabolic network. Interaction networks
can provide models of cellular networks based on the inte-
gration of a large and heterogeneous dataset, e.g., from
proteomics and high-throughput functional genomics
studies [22]. For example, GRNs could be drawn from
microarray data consisting of 62 primary tumors and 41
normal prostate tissues to explore the significant GRNs
correlated with disease, severity and stage in the prostate
cancer [23]. Notch1 signaling pathway was found to dir-
ectly activate a feed-forward-loop transcriptional network
and induce c-MYC gene expression to promot the growth
of human T cell lymphoblastic leukemia cells, using an in-
tegrative systems biology approach which integrated gene
expression array and ChIP-on-chip data [24]. A strategy of
metabonomics based on rapid resolution liquid chroma-
tography/tandem mass spectrometry, multivariate statis-
tics and metabolic correlation networks was implemented
to find biologically significant metabolite biomarkers in
breast cancer [25]. A total of 12 metabolites were iden-
tified as potential biomarkers including amino acids, or-
ganic acids, and nucleosides. Statistical epistasis networks
were inferred to characterize the global space of pairwise
interactions among approximately 1500 Single Nucleotide
Polymorphisms (SNPs) spanning nearly 500 cancer sus-
ceptibility genes in a large population-based study of blad-
der cancer [26]. The network was found to have a largest
connected component of 39 SNPs that was absent in
any other permuted-data networks. The observations sug-
gested that the particular statistical epistasis network cap-
tured important features of the genetic architecture of
bladder cancer that have not been described previously.

Dynamic network biomarkers
Dynamical network biomarkers (DNB) show time-
dependent alterations of network biomarkers monitored
and evaluated at different stages and time points during
the development of diseases [12]. It is more than new no-
menclature, although every molecular biomarker is embed-
ded in a molecular network and this network will show
dynamic properties over time. The common objective of
developing biomarkers, network biomarkers and DNB is
to discover disease-specific biomarker or a panel of bio-
markers for monitoring disease occurrence, progression or
treatment. The study on network biomarkers emphasizes
the interaction among molecules, while DNB stresses dy-
namical alterations of biomarkers to provide more precise
and intact view for biomarkers mining. The expression
levels of biomarkers can provide one dimensional informa-
tion, network biomarkers provide two dimensional infor-
mation by adding interactions of biomarkers, and DNB
provide a three dimensional image of biomarker-biomarker
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interactions by demonstrating the location and time of al-
tered biomarkers, and time-dependent stronger or weaker
interactions among biomarkers in the network [12]. The
integration of bioinformatics-based dynamic network bio-
markers with clinical informatics and phenotypes is ex-
pected to provide a four-dimensional image of systems
biomedicine-evidenced disease-specific dynamic network
biomarkers. The differences among molecular biomarkers,
network biomarker and DNB are shown in Figure 1.
We have emphasized to detect early-warning signals of

the “pre-disease state” to prevent the critical transition
from normal to disease state and achieve the early diagno-
sis and intervention for a complex disease. Biomarkers,
network biomarkers, and DNB have respective functions
in distinguishing normal, pre-disease, and disease stages
during disease progression, as illustrated in Figure 2. Bio-
markers or network biomarkers are mainly applied to dis-
tinguish the normal and disease situation, while DNB
were proposed to be able to identify a pre-disease state
even with small amounts of samples, provided that high
throughput data were available for each sample [27,28].
Tissue-specific early warning signals were identified using
DNB theory during type 2 diabetes mellitus (T2DM) de-
velopment and progression [29]. Other than two different
critical states characterized as responses to insulin resist-
ance and serious inflammation, a new T2DM-associated
function, i.e. steroid hormone biosynthesis, was also dis-
covered. DNB could signal the emergence of the critical
transitions for early diagnosis of diseases, and provide the
causal network of the transitions for revealing molecular
mechanisms of disease initiation and progression at a
network level.
DNB have advantages over network biomarkers [16], e.g.

make early diagnosis possible, develop biomarkers from a
small number of samples based on a model-free method, or
Figure 1 Biomarkers, network biomarkers and dynamical network bio
network biomarkers provide two dimensional information by adding interacti
interactions by showing time-dependent stronger or weaker interactions amo
be relatively easy for clinical application. In addition, the
concept of DNB will be generally applicable for detecting
early-warning signals of critical transitions in any other bio-
logical process, e.g. cell differentiation processes, aging pro-
cesses, and phase changes of cell cycle. Dynamic networks
controlling the differentiation processes were monitored
with a high throughput reverse phase protein microarray at
33 time points for 14 days to characterize adult adipose-
derived stem cell differentiation [30]. Dynamic networks
demonstrated key phosphoregulatory events in signal trans-
duction pathways correlated with adipogenic differentiation.
This is a novel way to understand the signaling architecture
of mesenchymal stem cell differentiation and might be
useful in developing network-targeted therapies for
clinical applications. The dynamic protein phosphoryl-
ation networks, e.g. the insulin signaling network in adi-
pocytes, were investigated by high-resolution mass
spectrometry-based proteomics [31]. The integration of
large-scale phosphoproteomics data predicted physio-
logical substrates of several diverse insulin-regulated
kinases, within which an Akt substrate, SIN1, a core
component of the mTORC2 complex, was identified to
regulate mTORC2 activity in response to growth fac-
tors, revealing topological insights into the Akt/mTOR
signaling network. This particular study provides an ex-
cellent example to understand complex and dynamic
signaling networks in tissues which contain numerous
phosphorylation sites on proteins involved in diverse
molecular functions.

Focus on respiratory diseases
Network biomarkers and interaction networks were most
studied in lung cancer among all kinds of respiratory dis-
eases. Transcription factor profiling of lung adenocarcin-
omas in c-myc-transgenic mice suggested a model of a
markers. Biomarkers provide one dimensional information, while
ons. DNBs provide a three dimensional image of biomarker-biomarker
ng biomarkers in the network. DNB: Dynamical network biomarkers.



Figure 2 Disease states and biomarkers. There are three stages during disease progression, i.e., a normal state, a pre-disease state and a
disease state. A normal state is a relatively healthy stage including the chronic inflammation period or the stable period during which the disease
is under control, whereas a pre-disease state is the limit of the normal state just before the critical transition into the disease state. And there are
three types of biomarkers, i.e., traditional molecular biomarkers, network biomarkers, and newly developed dynamical network biomarkers (DNB).
Both molecular and network biomarkers are static measurements on the disease and indicators on the disease state, whereas DNB are dynamical
measurements on the pre-disease, thus providing the early-warning signals for the pre-disease state.
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transcriptional regulatory network where different tran-
scription factors acted in concert upon c-Myc overexpres-
sion [32]. Molecular networks for transcriptional regulation
could explain partly the carcinogenic effect seen in mice
with over-expression of the c-Myc oncogene. Similarly, the
GATA2 transcriptional network was discovered to be
requisite for RAS oncogene-driven non-small cell lung can-
cer [33]. Novel functional view of the crocidolite asbestos-
treated A549 human lung epithelial transcriptome revealed
an intricate network of pathways with opposing functions
including cell death, cancer, cell cycle, cellular growth, pro-
liferation, and gene expression [34]. Network Component
Analysis and Pathway Crosstalk Analysis was performed to
construct a regulatory network in human lung cancer
(A549) cells which were treated with motexafin gadolinium
(MGd), a metal cation-containing chemotherapeutic drug
for 4, 12, and 24 hours [35]. This dynamic network of tran-
scription and pathway crosstalk clearly demonstrated mo-
lecular mechanism of MGd-treated human lung cancer
cells. After downloading the preprocessed microarray ex-
pression dataset from Gene Expression Omnibus database,
our group [36] applied a new computational strategy for
the identification and biological interpretation of new can-
didate genes in lung cancer and smoking by coupling a
network-based approach with gene set enrichment analysis.
Panels of top ranked gene candidates, major gene hubs and
commonly involved pathways in both the smoking and
cancer related network were identified. This new approach
of bioinformatics for biomarker identification can probe
into deep genetic relationships between cigarette smoking
and lung cancer, although further validation in clinical set-
tings is needed.
For diagnosis of lung cancer, a systems biology ap-

proach integrating microarray gene expression profiles
and protein-protein interaction information was proposed
to develop a network-based biomarker [37]. In addition,
the network-based biomarker, acting as the screening test.
About 40 significant proteins in lung carcinogenesis were
identified on the basis of the network-based biomarker
principle. In addition, the network-based biomarker acting
as a screening test was shown to be effective to diagnose
cancer in smokers with signs of lung cancer. Artificial
neural network model built with the six serum tumor
markers was shown to be able to distinguish lung cancer,
from lung benign disease and normal people as well as
from three common gastrointestinal cancers [38]. A tran-
scriptome network analysis method was used to construct
gene regulation networks on published microarray data
and select candidate genes for squamous lung cancer [39].
The genes of SPI1, FLI1, FOS, ETS2, EGR1 and PPARG
were defined as candidate biomarkers, although further
validation is needed for clinical screening or diagnosis. A
transcriptional network classifier containing 25-gene net-
work signature for distinguishing adenocarcinoma from
squamous cell carcinoma was inferred from the molecular
profiles of 111 human lung carcinomas to characterize
different subtypes of lung cancer [40]. Network-based ap-
proach was also used to predict the prognosis for lung
cancer. The combination of physical and biological factors
with a graphical Bayesian network framework was found
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to improve the overall prediction for local failure following
radiotherapy in lung cancer [41]. A systems biology-based
network approach using lung tissues for analysis was used
to identify a cell cycle gene module and three hub genes
as predictor of overall survival in lung adenocarcinoma
patients [42].
A number of studies on the role of interaction networks

and network biomarkers have been performed to explore
molecular mechanisms and identify potential biomarkers
associated with other respiratory diseases, though the speci-
ficity and repeatability remain unclear and further validation
is needed. Network inference algorithms elucidated nuclear
factor erythroid 2-related factor regulation of mouse lung
oxidative stress and showed the promise for operating on
high-throughput gene expression data to identify transcrip-
tional regulatory and other signaling relationships [43].
Response network analysis of differential gene expression
in human epithelial lung cells was used to compare the re-
sponse to H5N1 infection with a more benign infection
with Respiratory Syncytial Virus [44]. Characteristics of
H5N1 infection compared to respiratory syncytial virus in-
fection showed several immune response factors specific for
each of these infections. Metabolic network in Pseudo-
monas aeruginosa-infected chronic cystic fibrosis lung dem-
onstrated how the bacterial metabolism adapted over time
and how the tradeoffs between growth and other important
cellular processes shifted during disease progression [45]. A
successful application of DNB on respiratory diseases was
on a murine acute lung injury model driven by carbonyl
chloride inhalation [46]. By applying DNB theory on the
time-course microarray data from lung tissue RNA, a group
of observable molecules were screened out at 8 hour, which
formed a strong correlated subnetwork just before the oc-
currences of lung injury and thus provided a reliable early-
warning signal [27]. Although this was an animal study with
limited samples, it validated the effectiveness of DNB for
the identification of toxicity mechanisms and the early diag-
nosis of carbonyl chloride induced acute lung injury.

DNB with clinical bioinformatics
Clinical bioinformatics is an emerging science combining
clinical informatics, bioinformatics, medical informatics,
information technology, mathematics and omics science
together [47]. There is an increasing need to emphasize
clinical phenotypes and medical informatics in developing
disease-specific DNB. Clinical bioinformatics has been
suggested as a new way to integrate clinical symptoms,
signs and measurements with human sample-generated
bioinformatics for the development of disease-specific
DNB [47]. It is challenging to adjust DNB to clinical symp-
toms and signs, disease development and progression, and
therapeutic strategy. Clinical bioinformatics should be
emphasized for DNB identification and validation to han-
dle data preprocessing and consolidation, the data-driven
search, verification, prioritization and biological interpret-
ation of putative metabolic candidate biomarkers, as sug-
gested by Baumgartner et al. [48]. It is also challenging to
select proper data mining tools for analyzing clinical prote-
omic data, to design clinical studies like case–control or
prospective cohort studies, or to translate new findings of
disease-specific DNB to clinical application.
The importance of the integration of proteomic profiles

and data with clinical bioinformatics was emphasized to
bridge the gap between proteomics and diseases, e.g. acute
and chronic organ injury, inflammation, and multiple organ
dysfunction [49]. It is easy to understand that proteomics
as a powerful tool help investigate the relationship between
biological molecules and disease mechanisms, while diffi-
cult to integrate proteomics-based DNB with physio-
logical and pathophysiological situations, with organ-,
tissue-, type-, function-, disease-specific patterns, or with
disease diagnosis, therapies and prognosis. A new protocol
of disease-specific DNB identification and evaluation was
developed by integrating proteomic profiles of inflamma-
tory mediators with clinical informatics in patients with
acute exacerbation of chronic obstructive pulmonary dis-
ease (AECOPD) [50,51]. Serum protein profiles from pa-
tients with AECOPD were assessed by different strategies
of proteomics on days 1 and 3 of the admission day and
the discharging day and correlated with clinical informat-
ics by a Digital Evaluation Score System for assessing se-
verity of patients. A panel of inflammatory mediators with
dynamical changes during disease progression was dem-
onstrated to be COPD specific or AECOPD specific bio-
markers and correlated well with clinical bioinformatics.
Such protocol can integrate proteomics with clinical in-
formatics to explore a new way to validate and optimize
disease-special DNB, which might be used clinically after
further validation with a larger sample size.

Conclusions
Disease-specific interaction networks, network biomarkers
or DNB have the great impact in the understanding of
mechanism interpretation, risk assessment, early diagnosis,
illness monitoring, disease classification, stage and grade,
effectiveness and toxicities prediction, as well as combin-
ational therapies optimization. Protein-based DNB will pro-
vide more information to define the differences between
the normal and pre-disease stages and point to early diag-
nosis. Network biomarkers, interaction networks and DNB
have been applied in respiratory diseases and will face a
number of opportunities and challenges. Clinical bioinfor-
matics should be considered as a key approach to the iden-
tification and validation of disease-specific biomarkers.

Review
The last few years have seen a fast development of net-
work medicine, especially in cancer research. A number of
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interaction networks or network biomarkers have been
proposed to be related to disease development, progres-
sion and therapeutic effects. Thus, they are of great poten-
tial for early diagnosis, prognosis prediction and efficacy
prediction. However, there are also several challenges to
translate the research of network based approach into
clinical application. Firstly, since many findings were from
in vitro cell line studies or current database, further valid-
ation studies in clinical settings will be of great import-
ance. Secondly, network biomarkers, interaction networks
or DNB are more complex than single biomarker and
more difficult to develop, optional computational methods
or algorithms are needed. Thirdly, the generation of net-
work biomarkers or DNB usually need a three dimen-
sional image of biomarker-biomarker interactions showing
time-dependent stronger or weaker interactions among
biomarkers in the network, which needs rich and integral
data collection. All these make sense in respiratory dis-
eases, in which area network based approach will also pro-
gress and have a bright future.
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