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1 Introduction

One of the ultimate goals of the research on flux compactifications is the construction of

flux vacua that break supersymmetry in a solution with a small positive cosmological con-

stant. Despite many interesting ideas and proposals, it is still debatable whether there exist

fully explicit and controllable solutions to this problem. A possible strategy is to break

up the problem in parts and solve each part separately. In this paper we therefore settle

with studying SUSY AdS vacua and set aside the issue of SUSY breaking and positive

cosmological constant. Despite the fact that SUSY AdS vacua are the best known and

most constructed solutions in string theory, there are still some obvious and interesting

problems as we point out below.

Before the original KKLT proposal [1] (and [2]), none of the AdS vacua in string theory

were truly lower-dimensional in the sense that the AdS scale was not parametrically larger

than the length scale of the extra dimensions. This is the most straightforward constraint

that observations put on flux vacua. The AdS solutions that are used for holography typi-

cally do not have scale separation and it is important to understand how holography works

for AdS vacua with scale separation [3]. The KKLT construction and its descendants are

not entirely explicit from a 10-dimensional point of view, which complicates a possible

holographic understanding. For that reason, and for reasons of elegance and simplicity,

it would be desirable to have solutions of classical supergravity in ten dimensions. This

was first claimed in a series of papers constructing such vacua in massive IIA supergravity

with intersecting O6 planes [4–6] (see also [7, 8] for later work on these solutions). In mas-

sive IIA many solutions without sources are also known [9, 10], but they cannot achieve

scale separation [11]. Only for solutions with O6 planes is this possible, although no no-go

theorem excluding other possibilities has been found.

It is unfortunate that the orientifold and D-brane sources in these compactifications

are not fully understood. Most prominent is the fact that in most cases the supergravity

solutions are constructed in the limit where the sources are smeared over the transverse

space (see for instance the discussion in [12]). The way the solution is supposed to change

for fully localised sources is still an open question, even if some interesting progress was

made in [13]. For compactifications with sources that are parallel (or have an F-theory

interpretation), such as for the no-scale orientifold compactifications of [14, 15] and their

T-duals [16–18], it is known how to treat fully localised sources. For these cases the

backreaction does not invalidate the existence of the solutions, but it is expected to be

very relevant when computing fluctuations around the vacuum (see for instance [19–23]).

However the AdS compactifications in IIA with scale separation involve intersecting O6

planes and, apart from the partial results in [13], not much is known. Another issue that

troubles these vacua is more stringy and concerns the proper definition of string theory with

O6 planes when there is non-zero Romans mass [12, 24]. Since there is no conventional lift

of massive IIA supergravity to 11 dimensions1 it is not clear how the orientifold singularities

can be resolved and whether the background makes sense.2

1See however the intriguing proposal of [25], or the alternative suggestion that a lift is unnecessary since

massive IIA cannot be strongly coupled at weak curvature [26].
2See reference [27] for more radical doubts about the use of orientifold planes.
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For the reasons just named it is relevant to find other classical AdS solutions with scale

separation in a different context. In this paper we consider type IIB supergravity (string

theory). It is commonly claimed that this theory cannot achieve moduli stabilisation at

the classical level, but this statement can readily be violated by considering non-geometric

fluxes or by moving beyond the usual O3/O7 compactifications and instead relying on

O5/O7 orientifolds. A first attempt at finding such vacua has been done in [28], where the

authors considered four dimensional effective theories obtained by consistent truncations on

specific SU(2) structure manifolds (built from coset space coverings) with smeared O5/O7

intersections. While some of the models considered allow for full moduli stabilisation, it is

not clear whether they admit a limit in which the solution is at large volume, weak coupling

and with scale separation.

The aim of this paper is to further study O5/O7 compactifications of IIB supergrav-

ity to four-dimensional, unwarped AdS space, the absence of warping being a necessary

outcome of the approximation of smeared sources. Our results have partial overlap with

an earlier investigation on SUSY AdS vacua in IIA/IIB SUGRA [29]. We construct the

solutions directly in ten dimensions using the pure spinors approach proposed in [16, 30, 31].

For compactifications to four dimensions, this formalism allows to reduce the study of

ten-dimensional supersymmetric backgrounds to the analysis of a set of equations involving

only the components of the fields on the internal manifold. In this case, it is easy to show

that the O-plane projections and supersymmetry require the internal manifold to admit

a rigid SU(2) structure. It is then possible to write down a general solution for the fields

on the compactification manifold. By general solution we mean a set of constraints on the

six-dimensional fields that are applicable to a whole class of manifolds instead of a specific

example. This is typically achieved through writing the solution in terms of the SU(2)

invariant forms on the manifolds. To go from this general form to a concrete example one

only has to compute the canonical forms for a given manifold. This is clearly beneficial

and more insightful than minimizing F and D terms for a given manifold. When the com-

pactification manifolds allow for consistent truncations, which is the case for homogeneous

manifolds with smeared sources, then the minima of the scalar potential must lift consis-

tently to solutions of the equations of motion in ten dimensions, such as derived in this

paper. Reference [32] explicitly analysed how the IIA vacua in 4D lift to 10 IIA SUGRA

solutions with smeared sources.

Our analysis parallels the derivation given in [16] of the conditions for N = 1 AdS4
vacua of [7]. However the IIB case seems to have a much richer spectrum of solutions than

the IIA case. For this reason, in looking for explicit examples, we will restrict to homoge-

neous spaces. We perform a systematic scan of the coset manifolds of [33] and nilmanifolds.

Although we have not been able to find solutions fulfilling the criteria of weak coupling

and scale separation on the cosets, we have found such solutions on nilmanifolds thereby

extending the single solution that was known so far [8], which was obtained by T-dualising

the O6 solution on the six-torus. Although these new solutions are also incomplete in the

sense that the sources are smeared, they constitute an important step since they change

the existing paradigm that tree-level scale separation is only possible in massive IIA. Be-

sides providing more examples of tree-level scale separation, the examples in IIB could be
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relevant for improving our understanding of the subtleties in such backgrounds, such as the

orientifold singularities. The usual criticism of using O6 planes in the presence of Romans

mass is clearly evaded here.

The paper is organised as follows. In section 2 we give the general conditions that the

fields on the internal manifold have to satisfy in order to have N = 1 AdS4 with O5/O7

planes. Since the derivation is quite lengthy we put it in appendix A. In section 3 we

specify the general system to a class of SU(2) structures that are for instance allowed on

homogeneous spaces. The orientifold projections and the restriction to left-invariant forms

make it possible to solve explicitly for most of the constraints. In section 4 we discuss

possible criteria to check whether a given vacuum admit separation of scales. Finally in

section 5 we present an exhaustive list of N = 1 AdS4 with O5/O7 planes that can be found

on cosets and nilmanifolds and we discuss their properties as good 4-dimensional vacua.

Appendix A contains the definitions of SU(3) and SU(2) structures and pure spinors

we need in the rest of the paper, and the derivation of the general conditions for N = 1

AdS4 susy vacua. For completeness in appendix B we give the form of the generic N = 1

AdS4 vacuum in type IIA and discuss an example of separation of scale in this context.

Finally, in appendix C we detail the form of the Ricci scalar for the class of SU(2) solutions

we consider in this paper.

2 Type IIB AdS4 vacua with N = 1 supersymmetry

A standard technique to study supersymmetric vacua is to look for solutions to the super-

symmetry variations plus the Bianchi identities for the fluxes. In presence of non-trivial

backgrounds fluxes, instead of working directly with spinorial equations, it is more con-

venient to rewrite the susy equations as a set of differential conditions on forms. This is

the idea behind the application of G-structures and more generally Generalised Complex

Geometry [34, 35]. We begin this section with a brief overview of the formalism we need

to determine our solutions. Details can be found in appendix A.

In the Generalised Complex Geometry approach the main ingredients are a pair of

polyforms, Φ±, which are constructed as bilinears in the supersymmetry parameters on

the internal manifold Y

Φ± = η1+ ⊗ η2†± , (2.1)

where ηi+ are six-dimensional Weyl spinors, and ηi− = (ηi+)
∗. Then, the ten-dimensional

supersymmetry variations can be rewritten as a set of differential conditions on such forms.

For Type IIB compactifications to AdS4, the susy conditions are [30]

(d−H∧)(e2A−φΦ−) = −2µeA−φReΦ+, (2.2)

(d−H∧)(eA−φReΦ+) = 0 , (2.3)

(d−H∧)(e3A−φImΦ+) = −3e2A−φIm (µ̄Φ−)−
1

8
e4A ∗ λ(F ) , (2.4)

where φ is the dilaton, A the warp factor

ds2 = e2Ads2(4) + ds2(6) , (2.5)

– 4 –
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and F is the sum of the RR field strength on Y , F = F1 + F3 + F5. λ acts on a form as

the transposition of all indices

λ(Fk) = (−)[k/2]Fk . (2.6)

The ten-dimensional fluxes are defined in terms of F by

F(10) = vol4 ∧ λ(∗F ) + F . (2.7)

Finally, the complex number µ determines the size of the AdS4 cosmological constant

Λ = −|µ|2 . (2.8)

The form of the pure spinors Φ± depends on the relation between the internal spinors

η1 and η2. In the most general case we have

Φ− = −ab

8
z ∧ (k⊥e

−ij + ik‖ω) , (2.9)

Φ+ =
ab̄

8
ezz̄/2(k‖e

−ij − ik⊥ω) , (2.10)

where z, j and ω are a one-form, a real two-form and a holomorphic two-form, respectively,

which are globally defined on the internal manifold and define a SU(2) structure.3 The

complex functions a and b are related to the norms of the spinors ηi

‖η1+‖2 = |a|2 , ‖η2+‖2 = |b|2 , (2.11)

and to the norm of the pure spinors

〈Φ±, Φ̄±〉 = −i‖Φ±‖2vol6 = − i

8
|a|2|b|2vol6 , (2.12)

where vol6 is the volume of the internal manifold and the product

〈A,B〉 = (A ∧ λ(B))|top (2.13)

is the Mukai pairing among forms.

When k‖ = 1 and k⊥ = 0 the spinors η1+ and η2+ are parallel and the internal manifold

is said to be of SU(3) structure. The pure spinors reduce to

Φ− = −i
ab

8
Ω , (2.14)

Φ+ =
ab̄

8
e−iJ , (2.15)

where Ω and J are the SU(3) invariant forms defining the SU(3) structure, (A.4). In the

opposite case, k‖ = 0 and k⊥ = 1, the spinors η1+ and η2+ are orthogonal and the structure

is SU(2) with

Φ− = −ab

8
z ∧ e−ij , (2.16)

Φ+ = −i
ab̄

8
ezz̄/2ω . (2.17)

3The definition of SU(2) and SU(3) structures can be found in appendix A.
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The general case, where the relative orientation of η1+ an η2+ can vary on the manifold is

often referred to as dynamical SU(2) structure.

For AdS vacua, supersymmetry constraints the norms of the two six-dimensional

spinors to be equal [16]

|a|2 = |b|2 = eA . (2.18)

Only the relative scale between the spinor being relevant, we can always rescale η+ in such

a way that

b̄ = a ,
b

a
= e−iθ . (2.19)

Equation (2.4) can be seen as a definition of the RR fluxes that are compatible with

N = 1 supersymmetry. In order to have a full solution of the ten-dimensional equations

of motion, one must also check that the RR fluxes determined this way satisfy the Bianchi

identities

dH = 0 , (2.20)

dF −H ∧ F = δ(sources) , (2.21)

where δ(sources) denotes the charge density of the space-filling sources. In this paper we

will mostly consider space-filling O5 and O7-planes intersecting on the internal manifold.

Since we do not know how to find exact solutions that describe generic intersecting branes

or O-planes, we smear them over the internal manifold, and we write the source terms as

invariant smooth forms on the internal manifold4

dF −H ∧ F =
∑

i

ciα
i =

∑

i

Qi(source)voli (2.22)

where ci are constants and Qi is the charge density of the source. The symbol αi denote a

decomposable form dual to the cycle wrapped by the brane, while voli is the volume form

dual to the cycle.

2.1 General constraints

Plugging the expression (2.14) of the pure spinors in the SUSY equations, it is easy to see

that, for SU(3) structure manifolds, (2.2) has no solutions. We recover the known result

that there are no N = 1 AdS4 vacua with SU(3) structure in type IIB supergravity [37].

We are left with the possibility of rigid or dynamical SU(2) structure. By expanding

the supersymmetry equations in forms of definite degree we can package the conditions for

AdS4 vacua with N = 1 supersymmetry as a set of differential constraints on the SU(2)

structure forms, the fluxes and the functions k‖ and k⊥. Let us consider again (2.2). The

zero-form component

µk‖ cos θ = 0 , (2.23)

4We refer to appendix C of [8] for an explanation on smeared source terms and the corresponding

microscopic interpretation in terms of orientifolds and their involutions, whereas appendix D of [36]

contains some first attempts for charge and flux quantisation.
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gives a constraint on the parameters k‖ and θ−, since for AdS vacua µ 6= 0. Choosing

cos θ = 0 , (2.24)

fixes the relative phase of the spinors η1 and η2

θ = θa − θb =
π

2
⇒ a = ib . (2.25)

Such phase is related to the choice of orientifold planes that one can add as sources, see

for instance [16, 38]. On can show that a = ib is compatible with O7-planes only. Since

we want to be free to have also O5-planes, we are forced to choose the first option and set

k‖ = 0 k⊥ = 1 , (2.26)

which means that we will only consider backgrounds of rigid SU(2)-structure. For this case

the supersymmetry conditions reduce to a set of equations for the SU(2) structure forms

(see again appendix A for the derivation)

d(e3A−φz) = 2µe2A−φIm ω̂ , (2.27)

z ∧ (dj − iH + µe−A z̄Re ω̂) = 0 (2.28)

d(e2A−φImω̂) = 0 , (2.29)

d(e2A−φz ∧ z̄ ∧ Reω̂) = 2ie2A−φH ∧ Imω̂ , (2.30)

and the following equations for the RR fluxes

∗F5 = −3e−A−φ Im(µ̄z) , (2.31)

∗F3 = −e−4A d(e4A−φReω̂)− 3e−A−φRe(µ̄z) ∧ j , (2.32)

∗F1 = i d(2A− φ)z ∧ z̄ ∧ Imω̂ + e−φH ∧ Reω̂

−1

2
e−A−φIm(µ̄z) ∧ j ∧ j . (2.33)

To simplify the notation, we defined the form ω̂ = eiθω. As mentioned before, in order to

find solutions, we have to add to this set of constraints the Bianchi identities for the fluxes.

2.2 Supersymmetry and SU(2) torsion classes

To make contact with previous literature, we can express the equations above in terms

of SU(2) torsion classes. The idea here is to decompose all fields in the supersymmetry

variations into irreducible representations of the SU(2) structure group. In general the

forms z, j and ω are not closed. Their deviation from closure can be expressed in terms of

different SU(2) representations, called the torsion classes5 [41]

dz = S1ω + S2j + S3z ∧ z̄ + S4ω̄ + z ∧ (V1 + V̄2) + z̄ ∧ (V3 + V̄4) + T1

dj = S5z̄ ∧ ω + S6z ∧ ω +
1

2
(S7 + S̄8)z ∧ j + j ∧ V5 + z ∧ z̄ ∧ V6 + z ∧ T2 + c.c.

5See [39, 40] for a detailed discussion of intrinsic torsion.
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dω = S7z ∧ ω + S8z̄ ∧ ω − 2S̄5z ∧ j − 2S̄6z̄ ∧ j + iz ∧ z̄ ∧ (V̄6xω) + j ∧ (V7 + V̄8)

+z ∧ T3 + z̄ ∧ T4 . (2.34)

The coefficients Si, Vi and Ti denote the 20 different SU(2) torsion classes: 8 complex

singlet Si, 8 complex doublets6 Vi and 4 complex triplets Ti.

The NS and RR fluxes can also be decomposed according to SU(2) representations

H = h1z ∧ ω̂ + h2z̄ ∧ ω̂ + h3z ∧ j + z ∧ z̄ ∧ h
(2)
1 + h

(2)
2 ∧ j + z ∧ h(3) + c.c. (2.35)

F1 = f1z + f
(2)
1 + c.c. (2.36)

F3 = f2z ∧ ω̂ + f3z̄ ∧ ω̂ + f4z ∧ j + z ∧ z̄ ∧ f
(2)
2 + f

(2)
3 ∧ j + z ∧ f (3) + c.c. (2.37)

F5 = f5z ∧ j ∧ j + z ∧ z̄ ∧ j ∧ f
(2)
4 + c.c. (2.38)

where hi and fi are complex scalars in the singlet representation of SU(2), h
(2)
i and f

(2)
i

are holomorphic vectors in the 2 and h(3) and f (3) are complex two forms in the triplet

representation, which are (1,1) and primitive with respect to j.

Using the above decompositions, the supersymmetry variations can be written as a set

of conditions on the torsions classes and the fluxes. The singlets in the torsions must satisfy

S2 = 0 , S1 = −S4 = −iµe−A ,

S3 =
1

2
∂z̄(3A− φ) , S5 = S̄6 = ih̄1 −

1

2
e−Aµ ,

S7 = S̄8 = −1

2
∂z(2A− φ) ,

(2.39)

while the vectors are

V3 = V4 = V6 = 0 , V7 = i(∂̄4A+ h̄
(2)
1 )xω ,

V5 = ih
(2)
2 , V8 = i[∂̄4(3A− φ) + h̄

(2)
1 ]xω ,

V1 = V2 = ∂4(3A− φ) ,

(2.40)

and the two-forms read

T1 = 0 , T2 = −ih(3) , T3 = T̄4 . (2.41)

For the fluxes, we find for the NS flux singlets

h1 = h̄2 , h3 = − i

2
∂z(2A− φ) , (2.42)

and for the RR fluxes

f1 = e−φ

(

1

2
µ̄e−A − 4ih1

)

, f
(2)
1 = ie−φωx[∂̄4(2A− φ) + h̄

(2)
1 ] ,

f2 = f̄3 = − i

2
e−φ∂zA , f

(2)
2 =

i

2
e−φωx[∂̄4(4A− φ)− h̄

(2)
1 ] ,

f4 =
1

2
e−φ(4h1 + iµ̄e−A) , f

(2)
3 = f

(2)
4 = 0 ,

f5 =
3

4
e−A−φµ̄ , f (3) = ie−φT3 .

(2.43)

On the fluxes given above we still have to impose the Bianchi identities.

6We added two vector representations in dz that were missing in [41].
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3 A simple class of SU(2) structure geometries

A general analysis of the SU(2) structure constraints derived in the previous section is very

involved, due to the large number of torsion classes. In this section we restrict to a subset of

all possible SU(2) structure geometries for which some of the torsion classes are set to zero.

Our motivation is to make contact with explicit examples, which are most easily constructed

on homogeneous manifolds (groups and cosets) by restricting to left-invariant forms. More-

over we expect to have O-planes in our solutions as they are required to achieve a hierarchy

of scales. The possible SU(2) structures one can define out of left-invariant forms, consis-

tent with the orientifold involutions, is restricted. It is this restriction that we consider

in this section. Even if we use homogeneous spaces to justify the specific choice of SU(2)

torsions, the general solutions we derive could be applicable to more general manifolds.

Following [28], we introduce O5 and O7 planes filling the AdS4 directions and mutu-

ally intersecting on the internal manifold. Since they are intersecting, we take the O-planes

to be smeared on the internal manifold. The orientifold directions are fixed by requiring

N = 1 supersymmetry7 and compatibility with the SU(2) structure.

The orientifold action on the pure spinors is given by [16, 42]

σ(Φ+) = ±λ(Φ̄+) σ(Φ−) = ∓λ(Φ−) (3.1)

where σ is the orientifold involution, λ is the transposition operator (2.6) and the upper and

lower signs correspond to O5 and O7 planes, respectively. From this we can deduce how

the orientifold involution acts on the SU(2) structure forms. A dynamical SU(2) structure

is not compatible with both O5 and O7 projections, since, when k‖ 6= 0 the phases of the

spinors have to be different for O5 and O7 planes [42]

O5 : a = ±b O7 : a = ±ib . (3.2)

Therefore, all we need is the orientifold action on the rigid SU(2) structure forms

σ(z) = ∓z ,

σ(j) = −j ,

σ(ω̂) = ± ¯̂ω . (3.3)

From the equations above we see that the one-form z must be orthogonal to the O5-planes

and parallel to the O7’s. It is also useful to remind how the NS and RR fluxes transform

under the orientifold involutions

σ(H) = −H ,

σ(F1) = ∓F1 ,

σ(F3) = ±F3 ,

σ(F5) = ∓F5 , (3.4)

where, as before, upper and lower signs correspond to O5 and O7-planes.

7For two O-planes or D-branes to be mutually supersymmetric the number of mixed Neumann and

Dirichelet direction must be divisible by four.
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plane 1 2 3 4 5 6

O5 x x

O5 x x

O7 x x x x

O7 x x x x

Table 1. O5- and O7-planes.

If we imagine to have a group manifold geometry, we can choose a basis of globally

defined one-forms adapted to the product structure defined by the SU(2) structure (see

appendix A) and we identify the directions e1 an e2 with the real and imaginary part of z.

Then the most general choice of O-planes is

Notice that these orientifold projections can also be regarded as an asymmetric orbifold

of T 6/(Z2×(−1)FLZ2) with one single O-plane. As pointed out in [28], asymmetric orbifolds

of this type can be argued to have a valid supergravity description.

The choice of orientifold also constrains the complex structure on T4M . One can show

that the most general ansatz compatible with the orientifolds of table 1 is

z = z1e
1 + z2e

2 ,

j = j1e
36 + j2e

45 ,

ω̂R =
j1j2
ω1

e34 + ω1e
56 ,

ω̂I = −j1j2
ω2

e35 + ω2e
46 , (3.5)

where z1 and z2 are complex number and j1, j2, ω1 and ω2 are real.

The orientifold projections considerably simplify the SU(2) torsion classes (A.18) and,

consequently, the supersymmetry conditions. It is easy to see that all vector representations

(doublets) in (2.34) are projected out. The triplet j̃i of anti self-dual two-forms have the

same transformation properties as j, ωR and ωI
8

σ(j̃1) = −j̃1 , σ(j̃2) = ±j̃2 σ(j̃3) = ∓j̃3 . (3.7)

As a result the supersymmetry conditions (A.65)–(A.69) reduce to

dz = 2µe−Aω̂I ,

dj = (2ih̄1 − µe−A)z̄ ∧ ω̂R − iz ∧ h(3) + c.c. ,

8The most general choice for the j̃i compatible with the orientifold projection is

j̃1 = j1e
36

− j2e
45

,

j̃2 = −
j1j2

ω1

e
34 + ω1e

56
,

j̃3 = −
j1j2

ω2

e
35

− ω2e
46

.

(3.6)
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dω̂R = (2ih1 + µ̄e−A)z ∧ j + z ∧ T3 + c.c. ,

dω̂I = 0 , (3.8)

while the fluxes become

H = 2h1z ∧ ω̂R + z ∧ h(3) + c.c. ,

F1 = e−φ

(

4ih1 −
1

2
µ̄e−A

)

z + c.c. ,

F3 = −1

2
e−φ(iµ̄e−A + 4h1)z ∧ j +

i

2
e−φz ∧ T3 + c.c. ,

F5 = e−φ f5z ∧ j ∧ j + c.c. . (3.9)

Comparing (3.7) and (3.4) we can see that only one of the three components survive for

each Ti and h(3)

T3 = t3j̃1 , h(3) = h4j̃2 . (3.10)

In all previous equations, since we have smeared O-planes, we assume that all scalars,

including the warp factor and the dilaton, are constant.

What remains to be solved are the Bianchi identities (2.20) and (2.22). To do so we

need the derivatives of T3 and h(3), which can be easily determined from (3.10) and

dj̃1 = t3z ∧ ω̂R − a2z ∧ j̃2 + c.c ,

dj̃2 = −ih4z ∧ j + a2z ∧ j̃1 + c.c , (3.11)

where the equations above can obtained expanding the dj̃i as in (2.34) and imposing the

orientifold projections.

Let us start with the BI identities for NS three-form. Using (3.8), (3.9) and (3.11) we

obtain

|h4|2 − 4|h1|2 + 2 Im(e−Aµh1) = 0 , Im(2h1t̄3 + h4ā2) = 0 . (3.12)

The equation for the five-form flux is trivially satisfied. We are left with the BI involv-

ing sources (by abuse of notation we also denote by a δ the contribution of smeared sources)

dF1 = δ(D7/O7) , (3.13)

dF3 = H ∧ F1 + δ(D5/O5) . (3.14)

Using again (3.8) and (3.9), they give

δ(D7/O7) = −2e−φ(|e−Aµ|2 + 8 Im(e−Aµh1))ω̂I , (3.15)

δ(D5/O5) = −2ie−φ(Re(a2t̄3)− Im(e−Aµh4)− 6Re(h̄1h4))z ∧ z̄ ∧ j̃2

+ie−φ(2|t3|2 + 24|h1|2 − |e−Aµ|2)z ∧ z̄ ∧ ω̂R .

Notice that the parameters in the previous equations have to satisfy further consis-

tency conditions, namely d2j = d2ω̂R = 0 and d2j̃i = 0. More precisely, taking the exterior
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derivative of (3.8) and (3.11) we obtain (the consistency conditions on j̃1 and j̃2 give the

same equations)

Re(h4ā2 + 2h1t̄3)− Im(e−Aµt3) = 0 , (3.16)

Re(e−Aµh4) + Im(2h̄1h4 + a2t̄3) = 0 . (3.17)

In summary, in order to find a generic N = 1 AdS4 vacua with the choice of O-plane

of table 1, one has to solve (3.12), (3.16) and (3.17). The fluxes and the geometry are then

given by (3.5) and (3.9). The general solutions to these equations are easy to obtain but,

since the expressions are not very illuminating, we do not give them in the paper.

4 Scale separation

A question relevant for both compactifications and holography is whether genuine 4-

dimensional vacua exist within 10d supergravity. To this extent some conditions have

to be fulfilled: the string coupling constant eφ needs to be tunable small in order to sup-

press string loop corrections, for α′ corrections to be small the internal volume needs to be

tunable large (in string units) and the AdS scale ΛAdS needs to be tunable small. Moreover

to be able to decouple the massive KK modes and to reduce to a fully 4-dimensional theory,

all of these three conditions must combine in such a way that the AdS length scale, LAdS,

is parametrically larger than the length scale set by the compact dimensions LKK

LKK

LAdS
≪ 1 . (4.1)

Let us first discuss how to define LKK and LAdS. The four dimensional length scale is set

by the inverse of the AdS4 cosmological constant in the four-dimensional Einstein frame.

We follow the notation of [43]. Since all solutions we will consider have constant warp

factor, we will set eA = 1. Then we rewrite the 10-dimensional string frame metric (2.5) as

ds210 = τ20 τ
−2ds24 + ρ ds̃26 , (4.2)

where ds24 is the 4-dimensional Einstein frame metric. We have rescaled the internal metric

ds26 = ρ ds̃26 , (4.3)

in such a way that the modulus ρ = (det g6)
1/6 measures the string frame volume of the

internal manifold and ∫

6

√

g̃6 = O(1) . (4.4)

The variable τ is the 4-dimensional dilaton and is given by

τ2 = e−2φρ3 . (4.5)

With τ0 we denote the VEV of τ , such that in equation (4.2) only the dynamical part of τ

is used to obtain 4d Einstein frame.
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Then direct dimensional reduction of the 10-dimensional string frame action gives the

4d Planck mass in terms of the string mass scale M2
s

m2
p = τ20M

2
s . (4.6)

We define the dimensionally reduced action as

S =

∫ √
g(m2

pR− V ) , (4.7)

such that the scalar potential is a dimension four operator. The AdS cosmological constant

is then defined as

ΛAdS =
V

m2
p

. (4.8)

The number |µ|2 that appears in the supersymmetry equations of the previous section is

related to the cosmological constant in the following way

|µ|2 = −6ΛAdS . (4.9)

We define the AdS length scale as L2
AdS = −Λ−1

AdS, such that it determines the 4d curvature

as follows

2R(4)
µν = L−2

AdSg
(4)
µν . (4.10)

The size of the internal manifold is less straightforward to define. A natural guess for

the KK scale, which we will adopt in this paper, is

L2
KK = ρ . (4.11)

The proper way to check the condition (4.1) would be to compute the Kaluza-Klein

spectrum and see that the masses are indeed much larger than the AdS scale. Since this

is often not easy to perform, one has to rely on some simpler estimates this ratio.

A way to determine under which conditions scale separation can be achieved is to

study the dependence of the effective four-dimensional potential on two moduli, namely

the volume of the compact manifold, ρ, and the dilaton, φ. As an example we briefly recall

how the this can be applied to the model of [6], which is one of the first constructions of a

type IIA vacuum admitting full moduli stabilisation and scale separation. The model of [6]

corresponds to a compactification on an orbifold of T 6 with non-zero F0, F4, H-fluxes and

O6 sources. The scalar potential depends on the moduli τ and ρ schematically as

V (ρ, τ)/m4
p = |H|2ρ−3τ−2 + TO6τ

−3 + |F0|2τ−4ρ3 + |F4|2τ−4ρ−1 , (4.12)

where TO6 is the O6 tension and is the only negative term in the potential. The coefficients

in the potential are a priori functions of the other moduli. In the particular example of [6],

it can be shown that, while the H and F0 flux are constrained by the tadpole condition

to be order one, the F4 flux is an unbounded flux quantum. In what follows we assume

that |H|2, TO6, |F0|2 are all order one in proper units and |F4|2 scales as N2, where N is
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unbounded. From the detailed balance condition (all terms are of the same order in the

potential) we can derive the N -dependence for ρ and τ at a critical point

ρ ∼ N
1

2 , τ ∼ N
3

2

(

eφ ∼ N− 3

4

)

, (4.13)

from which we see that large N implies large volume and weak coupling. Secondly, we

find that the AdS scale becomes tunably small in the same limit. Using the scaling of the

potential and the 4d Planck mass we find

V/m4
p ∼ N− 9

2 m2
p ∼ M2

s e
−2φρ3 ∼ N3 L−2

AdS ∼ N−3/2 . (4.14)

Since ρ = L2
KK we indeed find scale separation

LKK

LAdS
→ 0 . (4.15)

A similar argument can be also given for IIB solutions. On the type IIB side, an ex-

plicit example with the right properties of tunably large volume, small coupling and small

AdS scale was found in [8] by T-dualising the type IIA torus example. A systematic study,

from a 4d point of view, of IIB solutions was initiated in [28]. Typically we have models

with F1, F3, F5 flux, O5, O7 sources on some curved internal manifold. The scalar potential

can be written as

V (ρ, τ)/m4
p = τ−4

(

|F5|2ρ−2+|F3|2+|F1|2ρ2
)

+τ−3
(

TO7ρ
1

2 +TO5ρ
− 1

2

)

+R6τ
−2ρ−1 . (4.16)

where, as in the type IIA case, the coefficients are functions of all other moduli. The

models of [8, 28] are characterised by two unbounded flux quanta: F5 and a component of

F1, whereas another component is determined by the O7 planes and not tunable. So let

us scale both fluxes

|F5|2 ∼ N2 |F1|2 ∼ NC , (4.17)

where C is some positive number. If we then balance F 2
5 against F 2

1 and TO7 we find the

following N -dependence

ρ ∼ N
1

2
−C

4 , eφ ∼ N−C
4 . (4.18)

If 0 < C < 2 the solution is indeed at large volume and weak coupling for large N . The

F5, F1, TO7 contributions, which set the size of the AdS solution, scale as

V/m4
p ∼ N−2−2C , (4.19)

and go to zero at large N . If we compute L2
AdS we again find a separation of scales. This

argument relied on a detailed balance condition for the F5, F1 and TO7 contributions. We

have not discussed the other contributions to the scalar potential. In the explicit solutions

we derive in this paper all terms in the potential will be of the same order of magnitude.

The Ricci scalar of the internal space scales as the inverse metric/ ρ−1. Therefore one

would be tempted to conclude that in the large volume limit the two definitions of scale
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separation

scale separation (1) :
L2
AdS

L2
KK

→ ∞ , (4.20)

scale separation (2) :
R6

R4
→ ∞ , (4.21)

are equivalent. However, these two definitions do not need to coincide if the normalised

curvature R̃

R6 = ρ−1R̃(φI) , (4.22)

is not kept constant when the limit of large ρ is taken. The other moduli φI that appear

inside the normalised curvature could also introduce an extra scaling. Below we find an

explicit examples for which there is scale separation according to the first definition, but

not according to the second definition. Nonetheless notice that, as we will show in the next

sections, the ratio of the Ricci scalars can be very useful in setting general conditions on

the torsion classes of the internal manifold in order to achieve separation of scales.

4.1 Separation of scales without sources?

The most trustworthy solutions are those without any orientifold or D-brane sources since

there is no reason to worry about the smearing approximation or charge quantisation. Even

in the case one knows the localised solutions one could have rightful worries about the use of

supergravity in the presence of singular sources. A priori, sourceless AdS SUSY vacua can

exist both for SU(3) structure manifolds IIA and SU(2) structure ones in IIB. When SUSY

is broken many more solutions can exist, see for instance reference [10] for the IIA case. It

is not clear whether solutions without sources allow for separation of scales [11]. The above

scaling arguments do not obviously use the presence of a source term. We did include it in

the analysis, but we could have equally discarded it. It turns out that it depends on the de-

tails of the manifold whether there exists the specific large flux limits that achieve scale sep-

aration. While no no-go theorem has been found so far, there is no example known of a solu-

tion in 10d SUGRA, whether SUSY or not, that achieves scale separation without sources.

In the following we give a simple argument that seems to suggest that AdS without

sources do not allow for scale separation. The argument below holds under two assump-

tions: 1) there is no warping and 2) the size of the internal manifold cannot be decoupled

from its curvature radius.

Consider a general compactification with RR fluxes Fp, H flux and no sources. The

scalar potential can be written as

V (ρ, τ)/m4
p = −R6τ

−2ρ−1 + |H|2ρ−3τ−2 +
∑

p

|Fp|2ρ3−pτ−4 . (4.23)

The vacua of the theory must be extrema of the scalar potential. One can easily verify

that the equations

∂ρV = 0 , ∂τV = 0 (4.24)

are specific linear combinations of the dilaton equation of motion in 10 dimensions, the

trace over the internal indices of the (trace reversed) Einstein equation, and the external

– 15 –



J
H
E
P
1
1
(
2
0
1
3
)
0
1
0

Einstein equation [44]. Upon eliminating |H|2 in terms of the RR field strength densities,

these are equivalent to

R4 = 2V = −2
∑

p

|Fp|2 < 0 , (4.25)

R6 =
∑

p

9− p

2
|Fp|2 > 0 , (4.26)

where we did not write down the explicit ρ, τ dependence anymore. The first condition is

an alternative derivation of the Maldacena-Nunez no-go theorem [45] in the simple case of

no warping. The second condition was found before [46]. With the above equations we can

compute the ratio

r =

∣

∣

∣

∣

R6

R4

∣

∣

∣

∣

, (4.27)

and define scale separation as the possibility to have r ≫ 1 (4.21). However, our equations

imply that r is bounded from above by a number rmax, since p < 9. We compute rmax by

rewriting the inequality:
∑

p

(

9− p

2
− 2rmax

)

|Fp|2 < 0 . (4.28)

From this one deduces that

rmax =
9− pmax

4
, (4.29)

where pmax is the highest rank field strength that is turned on in the vacuum solution. We

then conclude that, under the assumptions we discussed above, AdS vacua not supported

by sources cannot achieve scale separation. Note that indeed Freund-Rubin vacua [47] have

r of order one. It would be most interesting to see whether the same argument holds when

allowing for warping.

5 Explicit examples

Natural candidates for our search for vacua are manifolds for which we can compute the

SU(2) structure explicitly. These are typically coset and group manifolds, although re-

cently progress has been made for non-homogeneous manifolds [48, 49]. In this paper we

study in details the class of coset manifolds discussed in [28] and nilmanifolds. Our aim is

to compute the 10d solutions when they exist and to demonstrate when solutions cannot

exist. This was an open issue in [28] and with the pure spinor technology this is quite

straightforward to settle.

Group manifolds are particularly simple to analyse because of the existence of left-

invariant forms, which can be used as an expansion basis for the various fields on the

manifold. In particular, one can also take the forms defining the SU(2) structure to be

left-invariant. Let us recall, for simplicity, that the most general ansatz for the SU(2)

structure forms and the anti-self dual triplet j̃1, j̃2 and j̃3 compatible with the orientifold

projections of table 1 is

z = z1e
1 + z2e

2 ,

j = j1e
36 + j2e

45 ,
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ωR =
j1j2
ω1

e34 + ω1e
56 ,

ωI = −j1j2
ω2

e35 + ω2e
46 , (5.1)

with z1 = z1R + iz1I , z2 = z2R + iz2I and

j̃1 = j1e
36 − j2e

45 ,

j̃2 = −j1j2
ω1

e34 + ω1e
56 ,

j̃3 = −j1j2
ω2

e35 − ω2e
46 . (5.2)

The NS and RR fluxes are given by (3.9)

H = 2h1z ∧ ω̂R + h4z ∧ j̃2 + c.c. ,

F1 = e−φ

(

4ih1 −
1

2
µ̄e−A

)

z + c.c. ,

F3 = −1

2
e−φ(iµ̄e−A + 4h1)z ∧ j +

i

2
e−φt3z ∧ j̃1 + c.c. ,

F5 = e−φ f5z ∧ j ∧ j + c.c. (5.3)

For left-invariant forms, all the exterior derivatives are given in terms of the structure

constants and the supersymmetry constraints (3.8) reduce to algebraic equations. The

computation then proceeds by enforcing all the algebraic conditions, those coming from

supersymmetry, the Bianchi identities (3.12) and the consistency conditions (3.16), (3.17).

Finally (3.15) is used to determine the source terms.

We can use (2.12) to derive the volume of the internal manifold

vol6 =
i

4
z ∧ z̄ ∧ j ∧ j|top = j1j2 Im(z1z̄2) , (5.4)

and its metric (see [16])

gij =

























z2r1 + z2i1 zr1zr2 + zi1zi2 0 0 0 0

zr1zr2 + zi1zi2 z2r2 + z2i2 0 0 0 0

0 0 − j2
1
j2

ω1ω2
0 0 0

0 0 0 − j2ω2

ω1
0 0

0 0 0 0 − j2ω1

ω2
0

0 0 0 0 0 −ω1ω2

j2

























. (5.5)

For this class of models, the Ricci scalar takes a very simple form when expressed in

terms of the SU(2) torsion classes

R6 = −4(|S1|2 + 4|S5|2 + Im(S5S̄1) + |T2|2 + |T3|2) . (5.6)
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We are also interested in the total charges associated with the sources. These can be

obtained form (3.15) writing the Bianchi identities (2.22) as9

dF1 =
∑

i

N i
O7/D7η

i
2

dF3 −H ∧ F1 =
∑

i

N i
O5/D5η

i
4 , (5.7)

where ηi2 and ηi4 are decomposable two- and four-forms Poincaré dual to the cycles wrapped

by the sources.

The numbers, N
(i)
O5/D5 and N

(i)
O7/D7 are related to the total charges and these should

typically be of order one on a solution since they are directly related to the number of D-

branes or orientifolds. From the Bianchi identity one can not say whether the sources corre-

spond to orientifolds, D-branes, or a certain mixture. This can be read of from the tension

terms in the Einstein equation, combined with charge quantisation. Determining whether

D-branes are present is clearly relevant for moduli stabilisation, since they introduce extra

open string moduli, but it is beyond the scope of this paper. It is worth mentioning that

in IIA it is possible to have solutions where only O-planes are present: this is is the case,

for instance, of the prime example of [6] where the sources are purely smeared O6 planes.

Deriving (5.3), it is straightforward to check that the O7/D7-plane charges are

N
(1)
O7/D7 = 2e−φ j1j2

ω2
[|µ|2 + 8 Im(µh1)] ,

N
(2)
O7/D7 = −2e−φω2[|µ|2 + 8 Im(µh1)] , (5.8)

while for the O5/D5 we obtain

N
(1)
O5/D5=2e−φ j1j2

ω1
Im(z1z̄2)

[

2|t3|2 − |µ|2 + 24|h1|2 − 2 Im(µh4)− 2Re(6h4h̄1 − a2t̄3)
]

,

N
(2)
O5/D5=2e−φω1 Im(z1z̄2)

[

2|t3|2−|µ|2+24|h1|2+2 Im(µh4)+2Re(6h4h̄1−a2t̄3)
]

. (5.9)

Before moving to the discussion of the explicit examples we summarise in table 2

whether our solutions admit weak coupling, large volume and scale separation. More

precisely we look at possible scalings where, taking the limit of small cosmological constant

|µ|2 → 0 , (5.10)

we can have small coupling and large volume. As can be seen from table 2 we have

also checked whether separation of scales according to the two definitions (4.20), (4.21) is

possible. Only the solutions on Nil 4.1 and 5.1 can be tuned into a trustworthy regime.

The solution on Nil 3.14 cannot be achieved for large volume and furthermore suffers from

having a singular limit (vanishing volume) if scale separation is required. We also notice

that for several examples there is no match between the two criteria for scale separation.

In finding the appropriate limits we have taken a conservative and safe viewpoint where

each source term was taken to have finite prefactors as a consequence of charge quantisation

9A derivation of this expression can be found in appendix C.
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Manifold weak coupling Large volume scale separation (1) scale separation (2)
SU(3)
SU(2)×U(1) × X X ×
SU(2)2

U(1) ×U(1) × X X ×
Nil 3.14 X × X X

Nil 4.1 X X X X

Nil 5.1 X X X ×

Table 2. The scaling regimes for the various manifolds with SUSY AdS vacua.

(see footnote below equation (2.22)). Since not all source terms are represented by forms in

the cohomology of the internal space, it is possible that charge quantisation is less restrictive

on such forms and that certain numbers do not need to take fixed values. In that case it

is possible that certain solutions do allow weak coupling and scale separation although the

above table indicates otherwise. We leave such subtle issues for further investigation.

5.1 Coset manifolds

We refer to [33] for a thorough discussion of coset manifolds and G-structures. Here we

simply recall some simple facts that help making our derivation clearer.

A coset manifold M = G/H where G is a Lie group and H is a closed subgroup of G, is

completely determined by the corresponding algebrae, g and h. We denote by {Ha}, with
a = 1, . . . dimH, a basis of generators of h and by {Ki}, with i = 1, . . . , dimG− dimH a

basis for the complement of h in g. Then the structure constants are given by

[Ha, Hb] = f c
abHc ,

[Ha,Ki] = f j
aiKj + f c

aiHc ,

[Ki,Kj ] = f i
jkKi + fa

jkHa . (5.11)

The coframe ei(y) on G/H is defined by

L−1dL = eiKi + ωaHa , (5.12)

where L(y) is a coset representative and yi are local coordinates on G/H. A p-form

φ = φii...ipe
i1 ∧ . . . ∧ eip (5.13)

is then said to be left-invariant under the action of G if and only if its coefficients φii...ip

are constant and

f j
a[i1

φi2...ip]j = 0 . (5.14)

From the algebra (5.11) we have

dei = −1

2
f i
jke

j ∧ ek − f i
ajω

a ∧ ej . (5.15)

It is then easy to show that (5.14) guarantees that the exterior derivative preserve the

property of left-invariance.
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As mentioned before, we want the SU(2) structure to be also left-invariant. As shown

in [33] this requires that H ∈ SU(2). The list of reductive coset manifold that satisfy this

property is [28]

SU(3)×U(1)

SU(2)

SU(2)2

U(1)
×U(1) SU(2)× SU(2) SU(2)×U(1)

3 . (5.16)

The rest of this section is devoted to the study of N = 1 SUSY AdS4 on such manifolds.

5.1.1 SU(3)×U(1)
SU(2)

Of the 9 generators of SU(3)×U(1) we denote by T2 and T7, T8, T9 the generators of U(1)

and SU(2), respectively. The algebra is given by

f1
46 = −

√
3

2
(and cyclic) , f1

35 =

√
3

2
(and cyclic) ,

f9
78 = 1 (and cyclic) ,

f7
65 = f7

34 = f8
63 = f8

45 = f9
64 = f9

53 =
1

2
(and cyclic) . (5.17)

The left-invariant forms compatible with the O5 and O7 projections are

1 forms e1, e2 ,

2 forms e36 + e45, e34 + e56, e35 − e46 ,

Since the SU(2) structure forms must also be left-invariant, in the ansatz (5.1) and (5.2)

we set

j1 = j2 ω1 = ǫ1j2 ω2 = ǫ2j2 , (5.18)

with ǫ1 = ±1 and ǫ2 = ±1. It is easy to see that none of the forms j̃i is left-invariant, which

implies t3 = h4 = 0. Solving the constraints (3.12), (3.16) and (3.17) gives the solution

h1 =
i

2

Re(µz̄2)

z2
,

z1 = −ǫ1
2

√
3µ|z2|2

Im(µz̄2)2
,

j2 = −ǫ1ǫ2
3

8

|z2|2
Im(µz̄2)2

,

a2 = 0 , (5.19)

where

ρ3 = −ǫ1
9
√
3

128

|z2|6
Im(µz̄2)5

,

R6 = −4

[

|µ|2 − 2
Im(µz̄2)

2

|z2|2
]

, (5.20)
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and the orientifold charges are

N
(1)
O7/D7 = N

(2)
O7/D7 = −3ǫ1

4
e−φ

[

1 + 5
Re(µz̄2)

2

Im(µz̄2)2

]

,

N
(1)
O5/D5 = N

(2)
O5/D5 =

3
√
3

8
ǫ1ǫ2e

−φ |z2|2
[

− 1

Im(µz̄2)
+ 5

Re(µz̄2)
2

Im(µz̄2)3

]

. (5.21)

Note that by consistency the orientifold planes should wrap directions whose dual

source forms should be left-invariant. The source forms that are Poincare dual to the sur-

faces wrapped by the O5 planes are not left-invariant, although we have said O planes have

to be consistent with the left-invariant forms. This problem is however cured since the sum

of the two O5 forms, e1234+e1256 is left-invariant. If we interpret each of these two terms as

a separate orientifold source with its own involution then consistency requires the two O-

planes to have exactly the same charge, such that the source term in the Bianchi identity for

F3 is given by the sum of the two forms, and hence left-invariant. This is anyhow a necessary

requirement from the point of view of charge quantisation. Orientifolds, unlike D-branes,

cannot be stacked. So for each involution we should have a single unit of orientifold charge.

5.1.2 SU(2)2

U(1)
× U(1)

For this coset, out of the 7 generators of SU(2)2 × U(1) we denote by T7 the generator of

the U(1). The algebra is given by:

f1
35 = 1 (and cyclic), f7

46 = 1 (and cyclic)

f1
46 = f5

37 = −f3
57 = −1 . (5.22)

As in the previous case, the SU(2) structure must be left-invariant. This means that

in the ansatz (5.1) and (5.2) we set

j1 = j2 ω1 = ǫ1j2 , (5.23)

with ǫ1 = ±1. As before, the requirement of left-invariant implies h4 = 0 and t3 = 0. The

solution is

z1 = −ǫ1
µ|z2|2

2 Im(µz̄2)2
,

ω2 = −ǫ1
|z2|2

4 Im(µz̄2)2
,

j2 = −ǫ2
|z2|2

4 Im(µz̄2)2
,

h1 =
i

2

Re(µz̄2)

z2
,

h4 = t3 = 0 ,

a2 = i
Im(µz̄2)

z2
, (5.24)
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with ǫ2 = ±1. The volume and curvature are

ρ3 =
ǫ1
32

|z2|6
Im(µz̄2)5

,

R6 = −4

[

|µ|2 − 2
Im(µz̄2)

2

|z2|2
]

, (5.25)

and the orientifold charges are

N
(1)
O7 = N

(2)
O7 = −ǫ1

2
e−φ

[

1 + 5
Re(µz̄2)

Im(µz̄2)

]

,

N
(1)
O5 = N

(2)
O5 =

ǫ2
4
e−φ|z2|2

[

− 1

Im(µz̄2)
+ 5

Re(µz̄2)
2

Im(µz̄2)3

]

, (5.26)

n
(1)
O7 = n

(2)
O7 = −e−φ

4

[

|µ|2 + 4
Re(µz̄2)

2

|z2|2
]

,

n
(1)
O5 = n

(2)
O5 =

e−φ

4

[

|µ|2 − 6
Re(µz̄2)

2

|z2|2
]

. (5.27)

5.1.3 SU(2) × SU(2) and SU(2) × U(1)3

There are no SUSY solutions on these two manifolds. This is most easily seen for SU(2)×
SU(2) since the SUSY equations (see (3.8)) require the one-form Im(µ̄z) to be closed

whereas there are no closed (left-invariant) one-forms on SU(2)× SU(2).

5.2 Nilmanifolds

Nilmanifolds have Lie groups defined by a nilpotent algebra as their covering space. Hav-

ing negative curvature they are natural candidates for flux compactifications [16]. In six

dimensions there are 34 isomorphism classes of simply-connected six-dimensional nilpotent

Lie groups. The full list of algebrae can be found in table 4 of [16] and in [50], together with

the pure spinors and orientifold projections compatible with each algebra. In particular it

is easy to see that very few algebrae are compatible with the orientifold projections we are

imposing. Using the notation of [16]10 they are

Most of the algebrae above are ruled out by the first SUSY condition in (3.8)

dz = 2µω̂I . (5.28)

Indeed using the definition of the SU(2) structure (5.1), it easy to see that only the algebrae

n3.13, n3.14, n4.1 and n5.1 have structure constants suitable to satisfy this condition. In

the rest of this section we give the N = 1 AdS4 solutions for the manifolds n3.14, n4.1

and n5.1 (n3.13 is almost identical to n3.14). Notice, that differently from the solutions

on coset manifolds, these vacua can have non trivial torsion t3 and H-flux h4.

On a nilmanifold all forms are left-invariant. To our purposes this means that the solu-

tions are less constrained then for coset manifolds. In particular we have no constraints on

the moduli in the SU(2) structure. For this reason we expect this vacua to have generically

some unfixed moduli.
10With respect to table 4 of [16] we have relabeled the one-forms in order to match our orientifold

projections.
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n Nilmanifold class b1 b2

3.3 (0, 35, 0, 0, 13, 14) 3 6

3.13 (−35− 46, 0, 0, 0, 23,−24) 3 5

3.14 (−35 + 46, 0, 0, 0, 23,−24) 3 5

4.1 (−35− 46, 0,−25, 0, 0, 0) 4 6

4.2 (−35, 0,−25, 0, 0, 0) 4 7

4.5 (−46, 0, 25, 0, 0, 0) 4 8

4.6 (0, 0, 0, 0, 13, 14) 4 9

5.1 (35 + 46, 0, 0, 0, 0, 0) 5 9

5.2 (35, 0, 0, 0, 0, 0) 5 11

6.1 (0, 0, 0, 0, 0, 0) 6 15

Table 3. Six-dimensional nilmanifolds compatible with the O5/O7 projections.

5.2.1 Model 3.14

The solution is given by

z1 = −2µǫ1
√

j1j2 ,

ω2 = ǫ1
√

j1j2 ,

h1 =
i

4
µ̄

(

2 +
i(j1 + j2)ω1

2 Im(µz̄2)j1j2

)

,

h4 =
µ̄(j1 + j2)ω1

4 Im(µz̄2)j1j2
,

t3 = −a2 =
iµ̄(j1 − j2)ω1

4 Im(µz̄2)j1j2
. (5.29)

where the volume and curvature read

ρ3 = 2ǫ1 Im(µz̄2)(j1j2)
3

2 ,

R6 = −2|µ|2
(

2 +
(j21 + j22)ω

2
1

4 Im(µz̄2)2j21j
2
2

)

. (5.30)

The orientifold charges are:

N
(1)
O7 = N

(2)
O7 = −10ǫ1e

−φ|µ|2
√

j1j2 ,

N
(1)
O5 = −ǫ1

4e−φ|µ|2√
j1j2 Im(µz̄2)ω1

(

5(j1j2 Im(µz̄2))
2 + (j21 + j1j2 + j22)ω

2
1

)

,

N
(2)
O5 = −20e−φǫ1|µ|2

√

j1j2 Im(µz̄2)ω1 . (5.31)

5.2.2 Model 4.1

The solution is

z1 = −2µǫ1
√

−j1j2 ,

ω2 = −ǫ1
√

−j1j2 ,
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h1 =
i

4
µ̄

(

2 +
ij1

2 Im(µz̄2)ω1

)

,

h4 = ia2 = it3 = − µ̄j1
4 Im(µz̄2)ω1

. (5.32)

where

ρ3 = −2ǫ1 Im(µz̄2)(−j1j2)
3

2 ,

R6 = −2|µ|2
(

2 +
j21

4 Im(µz̄2)2ω2
1

)

, (5.33)

and the charges are

N
(1)
O7 = −N

(2)
O7 = −10ǫ1e

−φ|µ|2
√

−j1j2 ,

N
(1)
O5 = 20ǫ1e

−φ|µ|2(−j1j2)
3

2

Im(µz̄2)

ω1
,

N
(2)
O5 = −4ǫ1e

−φ|µ|2
√

−j1j2

(

j21 + 5 Im(µz̄2)
2ω2

1

Im(µz̄2)ω1

)

. (5.34)

5.2.3 Model 5.1

The solution is:

z1 = −2µǫ1
√

−j1j2 ,

ω2 = −ǫ1
√

−j1j2 ,

h1 =
iµ̄

2
,

h4 = a2 = t3 = 0 , (5.35)

where

ρ3 = −2ǫ1 Im(µz̄2)(−j1j2)
3

2 ,

R6 = −4|µ|2 , (5.36)

and the charges are

N
(1)
O7 = −N

(2)
O7 = −10ǫ1e

−φ|µ|2
√

−j1j2 ,

N
(1)
O5 = 20ǫ1e

−φ|µ|2(−j1j2)
3

2

Im(µz̄2)

ω1
,

N
(2)
O5 = −20ǫ1e

−φ|µ|2
√

−j1j2 Im(µz̄2)ω1 . (5.37)

This solution can be obtained from a T-duality of the O6 toroidal orientifold in massive

IIA SUGRA.
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6 Discussion

In this paper we have studied what are the general conditions to have 10-dimensional

N = 1 AdS4 vacua from IIB compactifications on smeared O5/O7 orientifolds. The ori-

entifold projections forces the internal manifold to be of SU(2) structure. We give the

supersymmetry conditions both in terms of the pure spinors defined on the internal man-

ifold [16] and in terms of SU(2) torsion classes. Our analysis is completely 10-dimensional

and parallels the existing results for solutions in type IIA [7].

The main purpose of the paper was to look for possible candidates for scale separation

in purely classical type IIB backgrounds. It is natural to look first for relatively simple

classes of manifolds, whose geometry is under control, namely reductive cosets and nil-

manifolds. We applied our general formalism to such manifolds and we checked whether

the vacua we found admit limits where the cosmological constant and the string coupling

are small, while the internal volume is large. We also checked scale separation, using both

criteria we discussed in section 4. Our results are summarised in table 2. Clearly, in or-

der to have a complete prove that scale separation is indeed possible, one should compute

the Kaluza-Klein spectrum. It is nonetheless promising that some of the vacua survive a

first analysis based on scaling arguments. It would also be interesting to have a better

understanding of when and why the different scaling criteria have to agree or not.

There are various issues that call for further research. Most pressing is the status of

the orientifold sources. Apart from the charge quantisation, which has not been worked

out, it is essential to understand how to localise the orientifold planes. Likely this question

is more tractable using the pure spinor formalism, as was attempted for localised O6

solutions in massive IIA [13]. If an analogy can be made with solutions that feature parallel

orientifolds [16, 17] then one can expect that localisation will change the geometry but

that the very existence of the solution is not invalidated. It should also be possible to find

solutions of our type (IIB SU(2) structures) without any sources, which should be relevant

for holography. We have not been able to do this for the class of manifolds we considered

(reductive cosets and nil manifolds.11), but it would be interesting to look for instance at

Solv manifolds. It is perhaps even more relevant to break supersymmetry and to look for

non-SUSY AdS vacua in this context or even dS vacua. In IIA meta-stable non-SUSY AdS

vacua have been found using Ansatze that are close to that of the SUSY AdS solutions [10].

Interestingly, the same has been done for dS solutions [36, 44, 51, 52],12 although none of

the latter examples turned out meta-stable. Clearly more examples are required and the

results in this paper could offer a first step towards achieving this. Already a (unstable)

de Sitter critical point was numerically found in [28]. It would be worthwhile to verify

whether this numerical solution lifts to a simple 10-dimensional solution. Finally we hope

that some of the SU(2) structure technology we developed in this paper has its applications

to SU(2) structure solutions in other contexts, such as in IIA, see for instance [55].

11This is obvious for nil manifolds as they are negatively curved whereas source less solutions require

positively curved internal spaces [46].
12These de Sitter constructions are in part inspired on the proposals in [53, 54].
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A Conditions for AdS4 vacua with N = 1 SUSY in type IIB SUGRA

In this appendix we derive the general conditions that the fluxes and the internal geometry

must satisfy in order to have four-dimensional AdS vacua with N = 1 supersymmetry in

type IIB supergravity.

We consider ten-dimensional geometries that are (warped) products of four-

dimensional Anti-de Sitter space times a compact six-dimensional internal manifold, Y ,

and we allow for non-trivial fluxes that do not break the maximal symmetry of AdS4.

We also restrict our attention to vacua with N = 1 supersymmetry. Backgrounds of this

kind can be determined simply by imposing the supersymmetry variations and the Bianchi

identities for the fluxes.13 To analyse the supersymmetry variations we will use the for-

malism of Generalised Complex Geometry [34, 35]. The idea is that the ten-dimensional

supersymmetry conditions can be rewritten as a set of differential equations on globally

defined forms on the internal manifold [30].

A.1 SU(3) and SU(2) structures

In this section we present some basic definitions and identities for SU(3) and SU(2)

structures with the purpose of fixing conventions and providing the necessary tools to

follow the derivations in the paper.

In type IIB N = 1 compactifications to a maximally symmetric four-dimensional

manifold the ten-dimensional supersymmetry parameters factorise as

ǫi = ζ+ ⊗ ηi+ + ζ− ⊗ ηi− i = 1, 2 , (A.1)

where ζ+ and ηi+ are Weyl spinors in four and six dimensions respectively, and ηi− = (ηi+)
∗

and ζ− = (ζ+)
∗.

We assume that the spinors η1 and η2 are globally defined. This means that the

structure group of Y is reduced to a subgroup G ∈ SO(6). What G is depends on the

relation between the two spinors, ηi, which generically η1+ and η2+ are neither parallel nor

orthogonal. We can parametrise them as

η1+ = aη+ ,

η2+ = b

(

k‖η+ +
1

2
k⊥zmγmη−

)

, (A.2)

13For a space-time which is a warped product Md × Y10−d it can be shown that the supersymmetry

equations plus flux Bianchi identities imply the full set of equations of motions.
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where z = zmγm is a six-dimensional one-form, η+ is a globally defined Weyl spinor of

norm one and k2‖ + k2⊥ = 1. When k‖ = 1 and k⊥ = 0 the internal manifold is said to be of

SU(3) structure, in the opposite case k‖ = 0 and k⊥ = 1 the structure is SU(2), while the

general case is often referred to as dynamical SU(2) structure. a and b are two complex

functions determining the norm of η1 and η2

η1 †η1 = |a|2 η2 †η2 = |b|2 . (A.3)

An equivalent definition of a G-structure is given in terms of invariant forms on the

manifold, which can be constructed as bilinears in the internal spinors. For SU(3) these

are a real two-form and a holomorphic three-form

Jmn = −iη†+γmnη+ ,

Ωmnp = −iη†−γmnpη+ , (A.4)

satisfying

J ∧ Ω = 0 , J ∧ J ∧ J =
3

4
iΩ ∧ Ω̄ , (A.5)

and

∗Ω = −iΩ , (A.6)

∗J = −1

2
J2 . (A.7)

The volume of the internal manifold is given by J3 = −6 vol6.

For the SU(2) structure, we have a complex one-form, a real and a holomorphic

two-form

zm = −χ†
−γmη+ , (A.8)

jmn = −iη†+γmnη+ + iχ†
+γmnχ+ , (A.9)

ωmn = −iχ†
+γmnη+ , (A.10)

where χ+ = 1
2zη− satisfying

zxz̄ = 2 , zxz = z̄xz̄ = 0 , (A.11)

j ∧ ω = 0 , (A.12)

zxj = zxω = 0 , (A.13)

j ∧ j =
1

2
ω ∧ ω̄ . (A.14)

The one-form z provides an almost product structure on Y , defined locally by

Rn
m = zmz̄n + z̄mzn − δnm , m, n = 1, . . . , 6 , (A.15)

which induces a (global) decomposition of the tangent space in

TM = T2M ⊕ T4M . (A.16)

Notice that the sub-bundle T2M is spanned by the real and imaginary parts of the form z.
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A.1.1 Torsion classes

The forms defining a G-structure are generically not closed. Their differential can be

decomposed into representations of the structure group G, the so called torsion classes, and

we classify the different G-structures depending on which torsion class is non-zero [39, 40].

For SU(3) structure such decomposition is very simple

dJ =
3

2
Im(W̄1Ω) +W4 ∧ J +W3 ,

dΩ = W1 ∧ J ∧ J +W2 ∧ J + W̄5 ∧ Ω , (A.17)

where W1 is a complex scalar which is a singlet of SU(3), W2 is a complex primitive (1,1)-

form transforming in the adjoint, W3 a real primitive (2,1) and (1,2) form in the 6⊕ 6̄, W4

a real vector and W5 a complex (1,0)-form in the 3⊕ 3̄.

The same expansion for SU(2) structures is more involved since the torsion classes are

now 20: 8 complex singlet Si, 8 complex doublets Vi and 4 complex triplets Ti. We have14

dz = S1ω + S2j + S3z ∧ z̄ + S4ω̄ + z ∧ (V1 + V̄2) + z̄ ∧ (V3 + V̄4) + T1 ,

dj = S5z̄ ∧ ω + S6z ∧ ω +
1

2
(S7 + S̄8)z ∧ j + j ∧ V5 + z ∧ z̄ ∧ V6 + z ∧ T2 + c.c. ,

dω = S7z ∧ ω + S8z̄ ∧ ω − 2S̄5z ∧ j − 2S̄6z̄ ∧ j + iz ∧ z̄ ∧ (V̄6xω) + j ∧ (V7 + V̄8)

+z ∧ T3 + z̄ ∧ T4 , (A.18)

where the relations between the representations in dj and dω are implied by the conditions

d(j ∧ ω) = d(j ∧ j) = d(ω ∧ ω) = 0.

Notice that the doublet Vi are holomorphic vectors with respect to the complex

structure defined by j,

ω ∧ Vi = 0 (A.19)

while the Ti are (1,1) and primitive

j ∧ Ti = ω ∧ Ti = 0 , (A.20)

and can be decomposed on the basis of anti-self dual two-forms j̃1, j̃2, j̃3 transforming in

the 3 of SU(2)

Ti =
3

∑

a=1

tiaj̃a . (A.21)

A.2 Conditions for AdS4 vacua

G-structures have been successfully applied to flux compactifications as tools to classify

the internal manifolds allowing for SUSY flux vacua. The idea is to rewrite the supersym-

metry variations as differential equations on the G-invariant forms, then susy solutions are

obtained equating fluxes and torsions in the appropriate representations. In particular,

for four-dimensional flux compactifications, the relevant structures are SU(3) and SU(2).

14A simple way to deduce such classes is to decompose the SU(3) torsion classes according to SU(3) →

SU(2)×U(1). We added two vector representations in dz that were missing in [41].
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Generalised Complex Geometry [34, 35] is a further refinement of this approach which

allows for a unified treatment of all flux vacua with a given amount of supersymmetry,

encompassing in such a way all possible G-structures.

In this paper we focus on N = 1 supersymmetry. As shown in [30], the ten-dimensional

supersymmetry conditions can be rewritten as a set of differential equations on a pair of

globally defined poly-forms on Y . Such polyforms, or pure spinors, are constructed by

tensoring the two supersymmetry parameters on the internal manifold η1 and η2

Φ± = η1+ ⊗ η2†± . (A.22)

The explicit expression for Φ± depends on the relation between η1+ and η2+. In the general

case (A.2), they are defined as

Φ− = −ab

8
z ∧ (k⊥e

−ij + ik‖ω) , (A.23)

Φ+ =
ab̄

8
ezz̄/2(k‖e

−ij − ik⊥ω) , (A.24)

where z, j and ω are the SU(2) structure forms (A.8). For the special cases of SU(3) struc-

ture (k‖ = 1, k⊥ = 0) and rigid SU(2) structure (k‖ = 0, k⊥ = 1) the pure spinors reduce to

Φ− = −i
ab

8
Ω , (A.25)

Φ+ =
ab̄

8
e−iJ , (A.26)

where Ω and J are the SU(3) invariant forms defining the SU(3) structure, (A.4), and

Φ− = −ab

8
z ∧ e−ij , (A.27)

Φ+ = −i
ab̄

8
ezz̄/2ω , (A.28)

respectively.

For type IIB compactifications to AdS4 the ten-dimensional supersymmetry variations

are equivalent to the following set of equations on the pure spinors Φ± [30]

(d−H∧)(e2A−φΦ−) = −2µeA−φReΦ+, (A.29)

(d−H∧)(eA−φReΦ+) = 0 , (A.30)

(d−H∧)(e3A−φImΦ+) = −3e2A−φIm (µ̄Φ−)−
1

8
e4A ∗ λ(F ) , (A.31)

where φ is the dilaton, A the warp factor and F is the sum of the RR field strength on Y ,

F = F1 + F3 + F5. λ is the transposition on a form

λ(Fk) = (−)[k/2]Fk . (A.32)

It can also be shown [30] that for AdS4 vacua supersymmetry also requires the norms of

the two six-dimensional spinors to be equal

‖η1+‖2 = ‖η2+‖2 ⇒ |a|2 = |b|2 = eA . (A.33)
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In the following we set

a = b̄ , b = ae−iθ . (A.34)

Plugging the explicit form of (2.9) and (A.28), into the susy variations (2.2)–(2.4), one

can deduce equations of definite form degree for the forms z, ω and j and the fluxes. These

give a set of general conditions for AdS4 N = 1 susy vacua.

A.3 No AdS4 vacua for SU(3) structure

From equation (2.2) it is immediate to see that it is not possible to have AdS4 vacua with

SU(3) structure. Indeed, in this case the Φ− only contains a three-form term, so that one

has to zero the zero- and two-form terms in ReΦ+, which for k⊥ = 0, give

cos θ = 0 ,

sin θ

(

j +
i

2
z ∧ z̄

)

= 0 . (A.35)

Clearly these two equations cannot be solve at the same time.

A.4 AdS4 vacua for SU(2) structures

Let us consider then the most general pure spinors defined in (A.23) and (A.24), and first

expand (A.29)

(d−H∧)(e2A−φΦ−) = −2µeA−φReΦ+ . (A.36)

The zero-form component gives

µk‖ cos θ = 0 , (A.37)

which implies

k‖ = 0 or cos θ = 0 . (A.38)

The first choice corresponds to a rigid SU(2) structure, while the second fixes the relative

phase of a and b.

A.4.1 Rigid SU(2) structures

Fixing the phase of a and b is equivalent to fixing the orientifold projection. To allow for

both O5 and O7 planes, as we need in this paper, we have to set k‖ = 0 and concentrate

on rigid SU(2) structure

k‖ = 0 k⊥ = 1 . (A.39)

It is convenient to define the new two-form

ω̂ = eiθω . (A.40)

With this redefinition, the two-, four- and six-form components of (A.29) give

d(e3A−φz) = 2µe2A−φIm ω̂ , (A.41)

d(e3A−φz ∧ j) = ie2A−φH ∧ z + e2A−φµ z ∧ z̄ ∧ Reω̂ , (A.42)

d(e3A−φz ∧ j ∧ j) = 2ie3A−φH ∧ ẑ ∧ j . (A.43)
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Plugging (A.41) in (A.42) and recalling that Imω ∧ j = 0 for an SU(2) structure we obtain

z ∧ (dj − iH + µe−A z̄Re ω̂) = 0 . (A.44)

It is also straightforward to show that (A.43) is implied by (A.42). Indeed substitut-

ing (A.42) in (A.43) gives

z ∧ j ∧ (dj − iH) = 0 , (A.45)

which is a consequence of (A.44).

Let us now consider the second equation, (A.30),

(d−H∧)(eA−φReΦ+) = 0 . (A.46)

Expanded in forms it gives a three- and five-form equation

d(e2A−φImω̂) = 0 , (A.47)

d(e2A−φz ∧ z̄ ∧ Reω̂) = 2ie2A−φH ∧ Imω̂ . (A.48)

Finally we have to expand (A.31)

(d−H∧)(e3A−φImΦ+) = −3eA−φIm (µ̄Φ−)−
1

8
e4A ∗ λ(F ) . (A.49)

This gives

∗F5 = 3e−A−φ Im(µ̄z) , (A.50)

∗F3 = −e−4A d(e4A−φReω̂) + 3e−A−φRe(µ̄z) ∧ j , (A.51)

∗F1 = −i d(2A− φ)z ∧ z̄ ∧ Imω̂ − e−φH ∧ Reω̂

+
1

2
e−A−φIm(µ̄z) ∧ j ∧ j , (A.52)

where in the last equation we used (A.47). In summary the non trivial susy conditions are

d(e3A−φz) = 2µe2A−φIm ω̂ , (A.53)

z ∧ (dj − iH + µe−A z ∧ Re ω̂) = 0 , (A.54)

d(e2A−φImω̂) = 0 , (A.55)

d(e2A−φz ∧ z̄ ∧ Reω̂) = 2ie2A−φH ∧ Imω̂ , (A.56)

plus equations (A.50)–(A.52) for the fluxes.

To make contact with previous literature, we can express the equations above using

the SU(2) intrinsic torsions (A.18). The idea is to decompose all the objects in the

equations in representations of SU(2) and then obtain a set of conditions for the fields

in the various representations. To decompose the exterior derivatives we use the torsion

classes defined in (A.18), while for the fluxes we have

H = h1z ∧ ω̂ + h2z̄ ∧ ω̂ + h3z ∧ j + z ∧ z̄ ∧ h
(2)
1 + h

(2)
2 ∧ j + z ∧ h(3) + c.c. , (A.57)

F1 = f1z + f
(2)
1 + c.c. , (A.58)
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F3 = f2z ∧ ω̂ + f3z̄ ∧ ω̂ + f4z ∧ j + z ∧ z̄ ∧ f
(2)
2 + f

(2)
3 ∧ j + z ∧ f (3) + c.c. , (A.59)

F5 = f5z ∧ j ∧ j + z ∧ z̄ ∧ j ∧ f
(2)
4 + c.c. , (A.60)

where hi and fi are complex scalars in the singlet representation of SU(2), h
(2)
i and f

(2)
i

are holomorphic vectors in the 2 and h(3) and f (3) are complex two forms in the triplet

representation, which are (1,1) and primitive with respect to j.

For completeness we also give the decomposition of Hodge dual fluxes

∗H = −ih1z ∧ ω̂ + ih2z̄ ∧ ω̂ − ih3z ∧ j − iz ∧ ∗4h(3) + 2i ∗4 h(2)1

− i

2
z ∧ z̄(h

(2)
2 xj) + c.c. , (A.61)

∗F1 = − i

2
f1z ∧ j ∧ j − i

2
z ∧ z̄ ∧ ∗4f (2)

1 + c.c. , (A.62)

∗F3 = −if2z ∧ ω̂ + if3z̄ ∧ ω̂ − if4z ∧ j − iz ∧ ∗4f (3) + 2i ∗4 f (2)
2

− i

2
z ∧ z̄ ∧ (f

(2)
3 xj) + c.c. , (A.63)

∗F5 = −2if5z + 2if
(2)
4 xj + c.c. , (A.64)

where we used the fact that a product structure allows to split ∗6 = ∗2∗4 and

∗4(v ∧ ξ) = (−1)degξvx∗4ξ.
We can now look at the SUSY variations. Let us first consider (A.53)–(A.56). We find

that the singlets in the torsions must satisfy

S2 = 0 , S1 = −S4 = −iµe−A ,

S3 =
1

2
∂z̄(3A− φ) , S5 = S̄6 = ih̄1 −

1

2
e−Aµ ,

S7 = S̄8 = −1

2
∂z(2A− φ) .

(A.65)

Similarly, there are conditions on the vectors

V3 = V4 = V6 = 0 , V7 = i(∂̄4A+ h̄
(2)
1 )xω ,

V5 = ih
(2)
2 , V8 = i[∂̄4(3A− φ) + h̄

(2)
1 ]xω ,

V1 = V2 = ∂4(3A− φ) ,

(A.66)

and the two-forms

T1 = 0 , T2 = −ih(3) , T3 = T̄4 , (A.67)

and the NS flux singlets

h1 = h̄2 , h3 = − i

2
∂z(2A− φ) . (A.68)
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Finally the equations (A.50)–(A.52) for the RR fluxes give

f1 = −e−φ

(

4ih1 −
1

2
µ̄e−A

)

, f
(2)
1 = ie−φωx[∂̄4(2A− φ) + h̄

(2)
1 ] ,

f2 = f̄3 = − i

2
e−φ∂zA , f

(2)
2 =

i

2
e−φωx[∂̄4(4A− φ)− h̄

(2)
1 ] ,

f4 =
1

2
e−φ(4h1 + iµ̄e−A) f

(2)
3 = f

(2)
4 = 0 ,

f5 =
3

4
e−A−φµ̄ f (3) = ie−φT3 .

(A.69)

The conditions coming from the Bianchi identities are too involved to give for a

generic SU(2) structure. They become more amenable in presence of O-planes, since the

orientifold projections considerably restrict the allowed torsion classes. We discuss the

case of parallelisable manifolds in the main text.

B Type IIA AdS4 solutions and separation of scales

The best known examples of AdS4 compactifications and, among them, AdS4 vacua with

separation of scales are in type IIA. In this appendix we first remind the general conditions

for N = 1 AdS4 vacua in type type IIA [7] and then discuss separation of scales for a

specific example.

B.1 Lust-Tsimpis SU(3)-structures

The general conditions for AdS4 with N = 1 supersymmetry on SU(3) structure manifolds

given in [7] is easily derived using the pure spinor equations [16].

In type IIA the supersymmetry variations take the same form as in (A.29)–(A.31)

with Φ+ and Φ− exchanged

(d−H∧)(e2A−φΦ+) = −2µeA−φReΦ−, (B.1)

(d−H∧)(eA−φReΦ−) = 0 , (B.2)

(d−H∧)(e3A−φImΦ−) = −3e2A−φIm (µ̄Φ+)−
1

8
e4A ∗ λ(F ) . (B.3)

For an SU(3) structure, the pure spinors have the form (2.14)

Φ− = − iab

8
Ω Φ+ =

ab̄

8
e−iJ (B.4)

where we set eA/2 = |a| = |b| = 1. It is convenient to define

ābµ ≡ µ̂ ≡ m+ im̃ , Ω̂ = −iabΩ , (B.5)

where number m is not to be confused with the Romans mass, although it will turn out to

be proportional to it. Then real and imaginary parts of the pure spinors can be written as

8Re(µ̄Φ+) = m− m̃J −m
1

2
J2 + m̃

1

3!
J3 , (B.6)

8 Im(µ̄Φ+) = −m̃−mJ + m̃
1

2
J2 +m

1

3!
J3 , (B.7)
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8Re(Φ−) = Ω̂R , (B.8)

8 Im(Φ−) = Ω̂I . (B.9)

The supersymmetry variations (B.1) and (B.2) imply

H = 2mΩ̂R , dJ = 2m̃Ω̂R . (B.10)

This leads to the following restrictions on the torsions

W1 = −4

3
im̃ , W4 = 0 , W3 = 0 ,

Re(W2) = 0 , Re(W̄5Ω̂) = 0 . (B.11)

The last pure spinor equation, (B.3) defines the RR field strengths

eφF0 = 5m, (B.12)

eφF2 =
m̃

3
J + iW2 , (B.13)

eφF4 =
3

2
mJ ∧ J , (B.14)

eφF6 = 3m̃ vol6 . (B.15)

The Bianchi identity for F4 implies that Ω̂R ∧ ∗Im(W̄5Ω̂) = 0, where we made use of

∗W2 = J ∧ W2. Together with Re(W̄5Ω̂) = 0 we find W5 = 0. The F2 Bianchi identity

dF2 = F0H + j gives an equation for the source form

eφjO6 = idW2 +

(

2

3
m̃2 − 10m2

)

Ω̂R . (B.16)

Source-less solutions require

idW2 = cΩR , c = 10m2 − 2

3
m̃2 . (B.17)

One can easily prove that if idW2 = cΩR we must have that15

c = −1

8
(W I

2 )ab(W
I
2 )

ab . (B.18)

Explicit manifolds for which these conditions can be fulfilled have been constructed [33].

For simplicity we restrict to the class of the solutions that obey idW2 = cΩR. That

class has the nice property that it connects to the source-free case for special value of c given

in (B.17). The source form j that appears in the Bianchi identity is then proportional to ΩR

eφjO6 = QΩR , (B.19)

where Q relates to the O6 or D6 charge. We now follow the argument of [11]. If we use

that R6 =
15
2 |W1|2 − 1

2 |W2|2, we can derive that

r =
6m̃2 + 10m2

m2 + m̃2
+

Q

m2 + m̃2
. (B.20)

The first term is clearly bounded, so scale separation then indeed requires non-zero

orientifold charge and small cosmological constant.

15This is done by considering the identity d(ΩI ∧ W2) = 0 and then using the various SU(3)-structure

identities on this.
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B.2 The rectangular torus solution

A well known example where the conditions for a classical AdS4 vacuum with scale sepa-

ration are satisfied is provided by the model of [6]: a compactification on an orbifold of T 6

with non-zero F0, F4, H-fluxes and O6 sources. While the H and F0 flux are constrained

by the tadpole condition to be of order one, the F4 flux is an unbounded flux quantum. All

moduli are stabilised and, by scaling up the F4 flux quanta, the conditions for scale separa-

tion can be met. Since F4 is unbounded, there is actually an infinite number of solutions.

Since the internal space has no curvature only criterium (4.20), but not (4.21) can be used.

In order to simplify things we describe the solution on the rectangular torus, by which

we mean that only the dependence on the volume modulus is shown since all other moduli

are fixed to their miniumum for which the torus is straight. The solution is given by

J = ρ2[e12 + e34 + e56] , (B.21)

Ω = ρ3(ie1 + e2) ∧ (ie3 + e4) ∧ (ie5 + e6) , (B.22)

vol6 = −ρ6e123456 , (B.23)

where ei = dxi with the xi the local Cartesian coordinates on a torus. All torsion classes

are zero. The 10D solution is given by

eφF0 = 5m, (B.24)

eφF4 =
3

2
mJ ∧ J , (B.25)

H = 2mΩR , (B.26)

e−φjO6 = −10m2ΩR (B.27)

The cosmological constant is given by V = −6m2M2
p .

Now we discuss the scalings and the limit to weak coupling, large volume, small cc,

scale separation and we take into account flux and charge quantisation. We introduce a

parameter λ which is supposed to go to infinity

λ → ∞ . (B.28)

Small cc can be achieved by making m scale as follows

m → λ−1 . (B.29)

The quantisation of Romans mass F0 = n0 and the F2 tadpole condition

n0h = number of O-planes , (B.30)

imply that both Romans mass quantum and the H flux quantum h are bounded to be

order one. We then find, from the expression of F0 that

eφ → λ−1 . (B.31)
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This ensures weak coupling. The boundedness of the h flux quantum together with the

explicit expression for H flux implies that

ρ ∼ λ1/3 , (B.32)

This brings us to large volume. Flux quantisation for F4

F4 = n4(wedges of e’s) , (B.33)

implies that n4 will become a large flux quantum

n4 ∼ λ2/3 . (B.34)

Note that the F4 flux quanta are not bounded by a tadpole. The scalings of the fluxes are

nicely consistent with keeping the number of O6 planes to be order one since

jO6 ∼ e−φm2ρ3(e246 − e136 − e235 + e145) , (B.35)

where

e−φm2ρ3 → λ0 = O(1) . (B.36)

Taking

L2
AdS = m−2 → λ2 , L2

KK = γ2 → λ2/3 , (B.37)

we find scale separation

L2
AdS/L

2
KK → λ4/3 → ∞ . (B.38)

C Computation of the 6D Ricci scalar

In this section we give the explicit computation of the Ricci scalar in terms of SU(2)

torsion classes for the manifolds we consider in the main text. In order to do that, we

use the fact that, given an SU(2) structure, it is always possible to embed it in an SU(3)

structure. In this case we choose

J = j − zR ∧ zI Ω = ω ∧ z . (C.1)

Then we can express the SU(3) torsion classes (A.17) in terms of the SU(2) ones (A.18).

This can be in general be very cumbersome, but it simplyfies a lot for the SU(2) structures

compatible with the O5/O7 projections, since many of the torsion classes are projected

out. Comparing (A.17) and (3.8), one can show that

W1 = −2

3
(S1 + 2iS5) , (C.2)

W2 = −4

3
(S1 − iS5)(j − 2zR ∧ zI) + 2iT̄3 , (C.3)

W3 = −2 Im(h̄1z ∧ ω) + 2 Im(z ∧ h(3)) , (C.4)

W4 = 0 = W5 . (C.5)
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The expression of the Ricci scalar in terms of the SU(3) torsion classes is known [56, 57].

When both W4 and W5 vanish the Ricci scalar is

R6 =
15

2
|W1|2 −

1

2
|W2|2 −

1

2
|W3|2 . (C.6)

Then using (C.2) we obtain

R6 = −4(−3|e−Aµ|2 + 8 Im(e−Aµh1) + |h(3)|2 + |T3|2) ,
= −4(|S1|2 + 4|S5|2 + Im(S5S̄1) + |T2|2 + |T3|2) . (C.7)

Also note that in sourceless solution, one has (using (3.15))

R6 = 10|e−Aµ|2 + 32|h1|2 > 0 . (C.8)

We recover the fact that the manifold must have a positive internal curvature in order to

have sourceless SUSY solution.
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[5] K. Behrndt and M. Cvetič, General N = 1 supersymmetric flux vacua of (massive) type IIA

string theory, Phys. Rev. Lett. 95 (2005) 021601 [hep-th/0403049] [INSPIRE].

[6] O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization,

JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].
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