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Abstract

We establish the inverse spectral transform for the conservative Camassa–Holm
flow with decaying initial data. In particular, it is employed to prove the existence
of weak solutions for the corresponding Cauchy problem.

1. Introduction

The inverse scattering transform [1,2,39] is a powerful tool for solving ini-
tial value problems for certain nonlinear partial differential equations. Originally
developed for the Korteweg–de Vries equation by Gardner, Greene, Kruskal
andMiura [42], this method has since been successfully extended to various other
completely integrable equations. It is the aim of the present article to establish the
corresponding transform for the Camassa–Holm equation

ut − uxxt = 2ux uxx − 3uux + uuxxx (1.1)

with decaying initial data. Due to the vast amount of literature on this equation,
we only refer to a selection of articles [5,14,15,19,20,26,27,43,50,59,62,63,70]
containing further information. The relevance of theCamassa–Holmequation stems
from the fact that it constitutes a model for unidirectional wave propagation on
shallow water [16,24,52,53]. Unlike the Korteweg–de Vries equation, it allows for
smooth solutions to blow up in finite time in a way that resembles wave-breaking.
This process has been described in detail [20,22,62,63] and is known to only
happen when the quantity ω = u − uxx changes sign. Compared to the rather tame
sign-definite case (which shares a lot of similarities with the Korteweg–de Vries
equation [4,58,64]), indefiniteness of ω causes serious complications (for example
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noticeable from the discussions in [25,54,57]). Many of these problems are already
apparent for the prototypical example of a peakon-antipeakon collision [6,20,68],
which is a special case of so-called multi-peakon solutions [5].

On the other side, the Camassa–Holm equation is known to be formally com-
pletely integrable in the sense that there is an associated isospectral problem

− f ′′ + 1

4
f = z ω f, (1.2)

where z is a complex spectral parameter. Solving the corresponding inverse problem
is essentially equivalent to solving the initial value problem for the Camassa–Holm
equation. For this reason, it is not surprising that the complications encountered due
to wave-breaking for indefinite ω reoccur when dealing with this inverse problem.
In fact, despite a large amount of articles, very little is known about the inverse
problem for (1.2) in the indefinite case and almost the entire literature on this
subject is restricted to strictly positive and smooth ω (in which case the spectral
problem can be transformed into a standard form that is known from the Korteweg–
de Vries equation [4,58,64]). Apart from the explicitly solvable finite dimensional
case [5,33], only insufficient partial uniqueness results [7,9–11,32,34,37] have
been obtained so far for the inverse problem in the indefinite case.

Making use of recent progress on the inverse spectral problem for indefinite
strings in [35], we will be able to overcome these difficulties and establish the
inverse spectral transform for the more general two-component Camassa–Holm
system

ut + uux + Px = 0,

μt + (uμ)x = (u3 − 2Pu)x ,
(1.3)

where the auxiliary function P satisfies

P − Pxx = u2 + μ

2
, (1.4)

for a class E of decaying initial data to be defined below; this should be compared to
the definition of the setD in [15, Section 6], [50,Definition 3.1], [45,Definition 4.1].
Note that the two-component Camassa–Holm system (1.3) is equivalent to its more
commonly used incarnation in [18,23,40,45,51] (cf. [50, Equation (4.2)]), which
is known to contain the Camassa–Holm equation as a special case.

Definition 1.1. The set D consists of all pairs (u, μ) such that u is a real-valued
function in H1(R) and μ is a non-negative finite Borel measure on R with

μ(B) �
∫

B
u(x)2 + u′(x)2 dx (1.5)

for every Borel set B ⊆ R.
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Associated with each pair (u, μ) ∈ D is a distribution ω in H−1(R) defined by

ω(h) =
∫
R

u(x)h(x) dx +
∫
R

u′(x)h′(x) dx, h ∈ H1(R), (1.6)

so that ω = u − u′′ in a distributional sense, as well as a non-negative finite Borel
measure υ on R defined such that

μ(B) =
∫

B
u(x)2 + u′(x)2 dx + υ(B) (1.7)

for every Borel set B ⊆ R. Let us point out that it is always possible to uniquely
recover the pair (u, μ) from the distribution ω and the Borel measure υ. In fact, the
function u at any point x ∈ R can be written as

u(x) = ω(δx ), δx (s) = 1

2
e−|x−s|, s ∈ R, (1.8)

which then allows us to determine the Borel measure μ as well from (1.7). Now
the class E is defined by imposing an additional growth restriction on pairs in D.

Definition 1.2. The set E± consists of all pairs (u, μ) ∈ D such that

∫
R

e±x (
u′(x) ∓ u(x)

)2 dx +
∫
R

e±x dυ(x) < ∞. (1.9)

Furthermore, the set E is defined as the intersection of E+ and E−.

Justified by the Lax pair formulation of the two-component Camassa–Holm
system in [18,23,51] and the results in [33], we will consider the spectral problem

− f ′′ + 1

4
f = z ω f + z2υ f. (1.10)

Due to the low regularity of the coefficients, it is not clear how this differential equa-
tion has to be interpreted, which is why we clarify this matter in Appendix A. Basic
properties of the spectral problem (like realness and discreteness of the spectrum σ

for example) will be discussed in Section 2 along with some further necessary con-
ditions. In the following section, we will solve the corresponding inverse problem
for the class of coefficients corresponding to E , giving a complete characteriza-
tion of all possible spectral data. More precisely, we will establish a one-to-one
correspondence between E and a class of spectral data explicitly described by The-
orem 3.1, which will be shown to be a homeomorphism with respect to suitable
topologies. Finally, in Section 4 wewill introduce the conservative Camassa–Holm
flow as a certain isospectral flow on E and show that its integral curves define weak
solutions of the two-component Camassa–Holm system.
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As an immediate consequence of the solution of the inverse spectral problem
in Theorem 3.1, we will see that the phase space E decomposes into a foliation of
invariant isospectral sets Iso(σ ), each of which can be parametrized by the set1

{
κ ∈ R

σ

∣∣∣∣∣
∑
λ∈σ

1

λ2

e|κλ|

|λẆ (λ)| < ∞
}

, (1.11)

where W is the entire function defined by the infinite product in (1.16) and the dot
denotes differentiation. In terms of these coordinates, the conservative Camassa–
Holm flow on each set Iso(σ ) becomes the simple linear flow given by

κ ′
λ = 1

2λ
, λ ∈ σ. (1.12)

These facts are reminiscent of the fact that the conservative Camassa–Holm flow
can be viewed as a completely integrable infinite dimensional Hamiltonian system.

Notation. For integrals of a function f which is locally integrable with respect to
a Borel measure ν on an interval I , we will employ the convenient notation

∫ y

x
f dν =

⎧⎪⎨
⎪⎩

∫
[x,y)

f dν, y > x,

0, y = x,

− ∫
[y,x)

f dν, y < x,

x, y ∈ I, (1.13)

rendering the integral left-continuous as a function of y. If the function f is locally
absolutely continuous on I and g denotes a left-continuous distribution function of
the Borel measure ν, then we have the integration by parts formula

∫ y

x
f dν = g f |y

x −
∫ y

x
g(s) f ′(s) ds, x, y ∈ I, (1.14)

which will be used frequently throughout this article.
Given a discrete set σ of nonzero reals, we denote with nσ (r) the number of all

λ ∈ σ with modulus not greater than r . Furthermore, we introduce the notation

↔∑
λ∈σ

1

λ
= lim

r→∞
∑
λ∈σ

|λ|�r

1

λ
, (1.15)

provided that the limit exists. Similarly, subject to existence, we shall write

↔∏
λ∈σ

(
1 − z

λ

)
= lim

r→∞
∏
λ∈σ

|λ|�r

(
1 − z

λ

)
, z ∈ C, (1.16)

where the limit is meant to be taken in the topology of locally uniform convergence.
The limit in (1.16) exists if and only if the limit in (1.15) exists and the sum

1 We denote with Rσ the set of all real-valued sequences κ = {κλ}λ∈σ indexed by σ .
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∑
λ∈σ

1

λ2
(1.17)

is finite. In this case, upon denoting the entire function in (1.16) with W , we have

↔∑
λ∈σ

1

λ
= −Ẇ (0),

∑
λ∈σ

1

λ2
= Ẇ (0)2 − Ẅ (0). (1.18)

2. The Direct Spectral Problem

In the present section, we are going to introduce the spectral quantities that
will linearize the conservative Camassa–Holm flow on E and derive their basic
properties. To this end, we fix an arbitrary pair (u, μ) ∈ E and first recall the
definition of the distribution ω in (1.6) as well as the one of the Borel measure υ

in (1.7). We introduce the spectrum σ associated with the pair (u, μ) as the set of
all those numbers z ∈ C for which there is a nontrivial solution f of the differential
equation

− f ′′ + 1

4
f = z ω f + z2υ f (2.1)

that belongs to H1(R). Regarding the precise meaning and some basic properties
of this differential equation we refer to the discussion in Appendix A.

Afirst consequence of the growth restriction on (u, μ) in (1.9) is the existence of
particular solutions of the differential equation (2.1) with prescribed asymptotics.

Theorem 2.1. For every z ∈ C there is a unique solution φ±(z, · ) of the differential
equation (2.1) with the asymptotics

φ±(z, x) ∼ e∓ x
2 , x → ±∞. (2.2)

The derivative of φ±(z, · ) is integrable and square integrable near ±∞.

Proof. To begin with, let us introduce the diffeomorphism η± : R∓ → R by

η±(ξ) = ∓ ln(∓ ξ), ξ ∈ R∓,

where R∓ denotes the open negative/positive semi-axis. Furthermore, let a± be a
measurable function on R∓ such that (we set α± = −u′ ± u as in Appendix A)

a±(ξ) = α±(η±(ξ))

∓ξ
= −u′(η±(ξ)) ± u(η±(ξ))

∓ξ
(2.3)

for almost all ξ ∈ R∓ (note that the right-hand side is well-defined almost every-
where) and define the non-negative Borel measure β± on R∓ via setting

β±(B) =
∫

B

1

∓ξ
dυ ◦ η±(ξ) =

∫
η±(B)

e±x dυ(x) (2.4)
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for every Borel set B ⊆ R∓. The growth restriction on (u, μ) in (1.9) implies that
the function a± is square integrable and that themeasure β± is finite (thus β± can be
extended to a Borel measure on the closure of R∓ by setting β±({0}) = 0). Conse-
quently (see, for example, [3, Section 11.8], [8, Theorem 1.1], [38, Theorem A.2]),
there is a unique matrix solution Y±(z, · ) on R∓ of the integral equation

Y±(z, ξ) =
(
1 0
0 1

)
+ z

∫ ξ

0

(−a±(s) −1
a±(s)2 a±(s)

)
Y±(z, s) ds

+ z
∫ ξ

0

(
0 0
1 0

)
Y±(z, s) dβ±(s), ξ ∈ R∓,

(2.5)

for each z ∈ C. It follows from a version of Gronwall’s inequality (see, for example,
[8, Lemma 1.3], [38, Lemma A.1]) that the function Y±(z, · ) satisfies the estimate

‖Y±(z, ξ)‖ � e�±(ξ)|z|, ξ ∈ R∓, (2.6)

where ‖ · ‖ denotes the max norm and the non-negative function �± is given by

∓�±(ξ) = 2
∫ ξ

0
max

(
1, a±(s)2

)
ds +

∫ ξ

0
dβ±, ξ ∈ R∓.

Plugging this estimate back into the integral equation (2.5), we furthermore get
∥∥∥∥Y±(z, ξ) −

(
1 0
0 1

)∥∥∥∥ � |z|�±(ξ)e�±(ξ)|z|, ξ ∈ R∓. (2.7)

For the top-right entry of Y±(z, · ), we are actually able to sharpen the estimate to

∣∣Y±,12(z, ξ)
∣∣ � |z|e�±(ξ)|z|

(
∓

∫ ξ

0
|a±(s)| ds ∓ ξ

)
, ξ ∈ R∓.

Upon plugging this back into the integral equation (2.5) one more time, we obtain
∣∣Y±,12(z, ξ) + z ξ

∣∣ � 2|z|2|ξ |�±(ξ)e�±(ξ)|z|, ξ ∈ R∓. (2.8)

Next, we introduce the matrix function U±(z, · ) on R by

U±(z, x) =
(
e± x

2 0
0 e∓ x

2

)
Y±(z, η−1± (x)), x ∈ R.

From the integral equation (2.5), a substitution (use, for example, [13, Theo-
rem 3.6.1 and Corollary 3.7.2]) as well as the definitions of a± and β±, one sees
that

Y±(z, η−1± ( · ))
∣∣∣y

x
= z

∫ y

x

( −α±(s) −e∓s

α±(s)2e±s α±(s)

)
Y±(z, η−1± (s)) ds

+ z
∫ y

x

(
0 0
e±s 0

)
Y±(z, η−1± (s)) dυ(s)

for all x, y ∈ R. Upon employing the integration by parts formula (1.14), one sees
that U±(z, · ) is a solution of the integral equation (A.5) and thus the system (A.4).
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Nowunder the additional assumption that z is non-zero, let θ±(z, · ) andφ±(z, · )
be the solutions of the differential equation (2.1) such that

U±(z, x) = ±
( −θ±(z, x) zφ±(z, x)

1
z θ

[±]
± (z, x) −φ

[±]
± (z, x)

)
, x ∈ R,

guaranteed to exist by Lemma A.2. For future purposes, let us note the bounds
∣∣θ±(z, x)e∓ x

2
∣∣, ∣∣θ [1]

± (z, x)e∓ x
2
∣∣, ∣∣φ±(z, x)e± x

2
∣∣, ∣∣φ[1]

± (z, x)e± x
2
∣∣

� 2e4�±(∓e∓x)|z|, x ∈ R,
(2.9)

that follow from the estimates (2.6) and (2.8) for Y±(z, · ), also using that

|u(x)| =
∣∣∣∣
∫ ±∞

x
e−|x−s|α±(s) ds

∣∣∣∣ � 1

2
�±

(∓e∓x) , x ∈ R.

Furthermore, the inequalities in (2.7) and (2.8) turn into
∣∣θ±(z, x)e∓ x

2 ± 1
∣∣, ∣∣ 1

z θ
[±]
± (z, x)e± x

2
∣∣, ∣∣φ±(z, x)e± x

2 − 1
∣∣, ∣∣φ[±]

± (z, x)e± x
2 ± 1

∣∣
� 2|z|�±

(∓e∓x) e�±(∓e∓x)|z|, x ∈ R. (2.10)

In particular, we see that φ±(z, · ) has the required asymptotics (2.2) as well as

θ±(z, x) ∼ ∓e± x
2 , x → ±∞,

which implies that φ±(z, · ) is indeed uniquely determined by the asymptotics
in (2.2). Finally, the fact that the derivative of φ±(z, · ) is integrable and square
integrable near ±∞ follows from the last bound in (2.9). It remains to set

φ±(0, x) = e∓ x
2 , θ±(0, x) = ∓e± x

2 ,

for all x ∈ R and note that the claim is obvious in the case when z is zero. �
For every z ∈ C we introduce the complex number W (z) as the Wronskian of

the two solutions φ+(z, · ) and φ−(z, · ), that is, in such a way that

W (z) = φ+(z, x)φ′−(z, x) − φ′+(z, x)φ−(z, x) (2.11)

for almost all x ∈ R; see Corollary A.4. It follows readily that the set of zeros of
W coincides with the spectrum σ . Thus, the next result implies that σ is a discrete
set of nonzero reals with a convergence exponent of at most one.

Corollary 2.2. The functions φ±( · , x) and W are real entire of Cartwright class
with only nonzero and real roots for each fixed x ∈ R. Moreover, the function

zφ−(z, x)φ+(z, x)

W (z)
, z ∈ C\R, (2.12)

is a meromorphic Herglotz–Nevanlinna function.
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Proof. Since the entries of Y±( · , ξ) are real entire of Cartwright class with only
real roots (cf. [55, Section 1]), the same holds for φ±( · , x) upon noting that

lim
z→0

φ±(z, x) = ±e± x
2 lim

z→0

Y±,12
(
z,∓e∓x

)
z

= e∓ x
2 = φ±(0, x).

Because the function φ
[1]
± ( · , x) is real entire of Cartwright class as well, so is W

as

W (z) = φ+(z, x)φ
[1]
− (z, x) − φ

[1]
+ (z, x)φ−(z, x), z ∈ C.

Next, we observe that the meromorphic function

± φ
[1]
± (z, x)

zφ±(z, x)
, z ∈ C\R,

is a Herglotz–Nevanlinna function. In fact, to this end one just needs to evaluate its
imaginary part and use (A.12) as well as the vanishing asymptotics of the solution
φ±(z, · ) near ±∞. Since we may write

− W (z)

zφ−(z, x)φ+(z, x)
= φ

[1]
+ (z, x)

zφ+(z, x)
− φ

[1]
− (z, x)

zφ−(z, x)
, z ∈ C\R,

this shows that the function in (2.12) is a Herglotz–Nevanlinna function as well. In
particular, this guarantees that W has only nonzero and real roots indeed. �
Remark 2.3. Although we will not prove this here, let us mention that it is possible
to show that the exponential type of the entire function W is simply given by∫

R

ρ(x) dx, (2.13)

where ρ is the square root of the Radon–Nikodým derivative of the absolutely
continuous part of the Borel measure υ (with respect to the Lebesgue measure).

As the spectrum alone will not be enough, we need to introduce further spectral
quantities. Since the solutions φ+(λ, · ) and φ−(λ, · ) are linearly dependent for
each fixed λ ∈ σ in view of Corollary A.4, there is a unique nonzero cλ ∈ R such
that

φ−(λ, x) = cλφ+(λ, x), x ∈ R, (2.14)

which will be referred to as the coupling constant associated with λ. It will often
be more convenient to work with the logarithmic coupling constant κλ, defined by

κλ = ln |cλ| (2.15)

instead. We will see below that one can always recover (the sign of) the coupling
constant cλ from the quantity κλ, provided the spectrum σ is known as well. Fur-
thermore, we introduce the right/left (modified) norming constant γ 2

λ,± ∈ R via

γ 2
λ,± = ω

(
φ±(λ, · )2) + 2λ

∫
R

φ±(λ, x)2 dυ(x). (2.16)
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Upon employing (A.12) and the asymptotics from Theorem 2.1, one sees that

λγ 2
λ,± =

∫
R

φ′±(λ, x)2 dx + 1

4

∫
R

φ±(λ, x)2 dx + λ2
∫
R

φ±(λ, x)2 dυ(x) > 0.

(2.17)

The following result gives a relation between all our spectral quantities.

Lemma 2.4. For each λ ∈ σ we have the relation

−Ẇ (λ) = c±1
λ γ 2

λ,±. (2.18)

Proof. Let us fix an arbitrary z ∈ C and introduce the function

W±(z, x) = φ̇±(z, x)φ
[1]
∓ (z, x) − φ̇

[1]
± (z, x)φ∓(z, x), x ∈ R,

where the dot denotes differentiation with respect to the spectral parameter. From
the bounds in (2.10) and Cauchy’s integral formula, we obtain the estimates

∣∣φ̇±(z, x)e± x
2
∣∣, ∣∣φ̇[±]

± (z, x)e± x
2
∣∣

� 2(|z| + 1)�±
(∓e∓x) e�±(∓e∓x)(|z|+1), x ∈ R.

Upon writing φ∓(z, · ) as a linear combination of φ±(z, · ) and θ±(z, · ), we see
from the bounds in (2.9) that the function W±(z, x) tends to zero as x → ±∞.
Next, we note that from (A.6) and (A.8) one gets

φ±(z, · )∣∣y
x =

∫ y

x
zu′(s)φ±(z, s) + φ

[1]
± (z, s) ds,

φ
[1]
± (z, · )∣∣y

x =
∫ y

x

(
1

4
− zu(s) − z2u′(s)2

)
φ±(z, s) − zu′(s)φ[1]

± (z, s) ds

− z2
∫ y

x
φ±(z, s) dυ(s),

for all x , y ∈ R, and after differentiating with respect to z also

φ̇±(z, · )∣∣y
x =

∫ y

x
zu′(s)φ̇±(z, s) + φ̇

[1]
± (z, s) + u′(s)φ±(z, s) ds,

φ̇
[1]
± (z, · )∣∣y

x =
∫ y

x

(
1

4
− zu(s) − z2u′(s)2

)
φ̇±(z, s) − zu′(s)φ̇[1]

± (z, s) ds

−
∫ y

x

(
u(s) + 2zu′(s)2

)
φ±(z, s) + u′(s)φ[1]

± (z, s) ds

− 2z
∫ y

x
φ±(z, s) dυ(s) − z2

∫ y

x
φ̇±(z, s) dυ(s).

In conjunction with the integration by parts formula (1.14), this gives

W±(z, · )|y
x =

∫ y

x
u(s)φ+(z, s)φ−(z, s) + u′(s) (φ+(z, · )φ−(z, · ))′ (s) ds

+ 2z
∫ y

x
φ+(z, s)φ−(z, s) dυ(s).
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Upon letting y → ±∞ in this equation, we obtain

−Ẇ (z) = W−(z, x) − W+(z, x)

=
∫
R

u(s)φ+(z, s)φ−(z, s) + u′(s) (φ+(z, · )φ−(z, · ))′ (s) ds (2.19)

+ 2z
∫
R

φ+(z, s)φ−(z, s) dυ(s),

which readily yields the claimed identity (one should also note that the functions
u and u′ are integrable due to the growth restriction in (1.9) and thus the bounds
in (2.9) guarantee that all integrals exist indeed). �

In particular, the previous result shows that all zeros of the entire function W
are simple. As a Cartwright class function, the Wronskian W thus admits a product
representation (see, for example, [60, Section 17.2]) of the form

W (z) =
↔∏

λ∈σ

(
1 − z

λ

)
, z ∈ C. (2.20)

Upon invoking the identities in (1.18), this fact allows us to read off trace formulas
for the spectrum σ from the derivatives of the function W at zero.

Proposition 2.5. The first two trace formulas are:

↔∑
λ∈σ

1

λ
=

∫
R

u(x) dx,
1

2

∑
λ∈σ

1

λ2
=

∫
R

dμ. (2.21)

Proof. In view of (1.18), we immediately obtain the first identity from (2.19) and
we are left to compute the second derivative of W at zero. For this purpose, we first
introduce the entire function V± by

V±(z) = θ±(z, x)φ
[1]
∓ (z, x) − θ

[1]
± (z, x)φ∓(z, x), x ∈ R, z ∈ C,

so that we may write

φ±(z, x) = ±W (z)θ∓(z, x) + V∓(z)φ∓(z, x), x ∈ R, z ∈ C. (2.22)

In conjunction with (2.9) and (2.10), this allows us to estimate

∣∣φ±(z, x)e± x
2 − W (z)

∣∣, ∣∣φ[±]
± (z, x)e± x

2 ± W (z)
∣∣

� 4e5�∓(±e±x)|z| (|zW (z)|�∓
(±e±x) (|z|e±x + 1

) + |V∓(z)|e±x) (2.23)

for all x ∈ R and z ∈ C. From this we see that each of the three products

φ+(z, x)φ−(z, x), φ+(z, x)φ
[1]
− (z, x), φ

[1]
+ (z, x)φ−(z, x),
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is bounded uniformly in x ∈ R and locally uniformly in z ∈ C. Thus, we may
differentiate (2.19) under the integral and in order to evaluate the derivative at zero,
we first note that

Ẏ±(0, ξ) =
∫ ξ

0

(−a±(s) −1
a±(s)2 a±(s)

)
ds +

∫ ξ

0

(
0 0
1 0

)
dβ±(s), ξ ∈ R∓, (2.24)

which follows from (2.5). Moreover, for the top-right entry we even have

Ÿ±,12(0, ξ) = 2ξ
∫ ξ

0
a±(s) ds − 4

∫ ξ

0

∫ s

0
a±(r) dr ds, ξ ∈ R∓.

After performing substitutions, this turns into the identities

φ̇±(0, x) = e∓ x
2

∫ ±∞

x
α∓(s) ds, φ̇

[1]
± (0, x) = ±1

2
e∓ x

2

∫ ±∞

x
α±(s) ds,

for all x ∈ R. Plugging them into the differentiated integral in (2.19), we arrive at

−Ẅ (0) = 2
∫
R

u(x)2 + u′(x)2 dx + 2
∫
R

dυ −
(∫

R

u(x) dx

)2

,

which proves the remaining claim in view of (1.18). �
Before we are able to solve the inverse spectral problem, we need to derive one

more necessary condition. More precisely, we will show that the growth restriction
on the pair (u, μ) in (1.9) implies certain asymptotic behavior of the spectral data.

Proposition 2.6. We have the identity
∫
R

e±x (
u′(x) ∓ u(x)

)2 dx +
∫
R

e±x dυ(x) =
∑
λ∈σ

1

λ2

1

λγ 2
λ,±

. (2.25)

Proof. To begin with, we introduce the function m± by

m±(z) = V±(z)

zW (z)
, z ∈ C\R.

From the estimates in (2.23), we see that

φ±(z, x)e± x
2 → W (z), φ

[±]
± (z, x)e± x

2 → ∓W (z), x → ∓∞,

where the convergence is locally uniform in z ∈ C. In much the same manner as
above (upon writing θ± as in (2.22) and using (2.9) as well as (2.10) to estimate),
one obtains inequalities similar to (2.23) for θ± and concludes that

θ±(z, x)e± x
2 → ±V±(z), θ

[±]
± (z, x)e± x

2 → −V±(z), x → ∓∞,

where the convergence is again locally uniform in z ∈ C. Thus, we may write

m±(z) = ± lim
x→∓∞

θ±(z, x)

zφ±(z, x)
= ∓ lim

ξ→∓∞
Y±,11(z, ξ)

Y±,12(z, ξ)
, z ∈ C\R, (2.26)
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that is, the function m± is the Weyl–Titchmarsh function for (2.5); cf. [35, Equa-
tion (6.2)]. In particular, it is a meromorphic Herglotz–Nevanlinna function [35,
Lemma 5.1] with simple poles at all points λ ∈ σ (note that zero is not a pole since
V± vanishes at zero) with residues given by

resλ m± = V±(λ)

λẆ (λ)
= − 1

λγ 2
λ,±

, λ ∈ σ,

in view of Lemma 2.4. After a substitution, we obtain from (2.24) that

θ̇±(0, x) = ∓e± x
2

∫ ±∞

x
α±(s) ds, θ̇

[1]
± (0, x) = 1

2
e± x

2

∫ ±∞

x
α∓(s) ds,

for every x ∈ R, which implies that V̇±(0) = 0. Upon recalling the integral
representation formula for Herglotz–Nevanlinna functions (see, for example, [66,
Section 5.3]), this guarantees that the function m± admits the representation (use
also [35, Lemma 7.1] to conclude that there is no linear term present)

m±(z) =
∑
λ∈σ

z

λ(λ − z)

1

λγ 2
λ,±

, z ∈ C\R. (2.27)

Clearly, we may just as well write the function m± as the limit

m±(z) = ± lim
x→∓∞

θ
[±]
± (z, x)

zφ[±]
± (z, x)

= ∓ lim
ξ→∓∞

Y±,21(z, ξ)

Y±,22(z, ξ)
, z ∈ C\R. (2.28)

Now we observe that (2.24) gives for every ξ ∈ R∓ the expansion

Y±,21(z, ξ)

Y±,22(z, ξ)
= z

∫ ξ

0
a±(s)2 ds + z

∫ ξ

0
dβ± + O(z2), z → 0.

Since the convergence in (2.28) is uniform for all z ∈ C\R that lie in a small
neighborhood of zero, we infer, after a substitution, that m± has the expansion

m±(z) = z
∫
R

e±x (
u′(x) ∓ u(x)

)2 dx + z
∫
R

e±x dυ(x) + O(z2), z → 0.

Upon differentiating (2.27) and letting z → 0, we obtain the identity in (2.25). �
In this context, let us also mention the following result which characterizes the

subclass of E that gives rise to purely positive/negative spectrum.

Proposition 2.7. The spectrum σ is positive/negative if and only if the Borel mea-
sure υ vanishes identically and the distribution ω is non-negative/non-positive. In
this case, the distribution ω can be represented by a non-negative/non-positive finite
Borel measure on R (for simplicity denoted with ω as well) and

∑
λ∈σ

1

λ
=

∫
R

dω. (2.29)
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Proof. If υ vanishes identically and ω is non-negative/non-positive, then (2.16)
and (2.17) show that the spectrum is positive/negative. Conversely, if the spectrum
is positive/negative, then [35, Lemma 7.2] shows that the measures β+ and β−
vanish identically as well as that the functions a+ and a− have non-decreasing/non-
increasing representatives. Clearly, the measures β+ and β− vanish identically if
and only if so does υ. Given some h ∈ H1(R) with compact support, we set

h±(ξ) = ∓ξh(η±(ξ)), ξ ∈ R∓, (2.30)

and note that

ω(h) = −1

2

∫
R−

h′+(ξ)a+(ξ) dξ − 1

2

∫
R+

h′−(ξ)a−(ξ) dξ.

This shows that ω is a non-negative/non-positive distribution and therefore can be
represented by a non-negative/non-positive Borel measure on R. Now for every
k ∈ N let hk ∈ H1(R) be the piecewise linear function such that hk is equal to one
on [−k, k], equal to zero outside of [−k − 1, k + 1] and linear in between. Then
from ∫

R

hk dω =
∫
R

u(x)hk(x) dx +
∫
R

u′(x)h′
k(x) dx

we see that ω is a finite measure as well as (2.29) upon letting k → ∞. �
An identity similar to (2.29) also holds under the sole assumption that the

distribution ω can be represented by a real-valued Borel measure on R (again
denoted with ω as well) with finite total variation. More precisely, one has the
equality

↔∑
λ∈σ

1

λ
=

∫
R

dω (2.31)

in this case, which follows readily from the first trace formula in Proposition 2.5.

3. The Inverse Spectral Problem

We are now going to solve the corresponding inverse spectral problem for the
class E . Let us point out that the given sufficient conditions on the spectral data are
also necessary in view of Corollary 2.2 (in conjunction with well-known properties
of entire functions of Cartwright class; for example, see [12, Chapter 8] or [60,
Theorem 17.2.1]) as well as Proposition 2.6 and Lemma 2.4. Thus, we indeed
obtain a complete characterization of all possible spectral data for the class E .
Theorem 3.1. Let σ be a discrete set of nonzero reals such that the limit2

lim
r→∞

nσ (r)

r
(3.1)

2 Recall that nσ (r) denotes the number of all λ ∈ σ with modulus not greater than r .
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exists in [0,∞) and such that the entire function W is well-defined by3

W (z) =
↔∏

λ∈σ

(
1 − z

λ

)
, z ∈ C. (3.2)

Moreover, for each λ ∈ σ let κλ ∈ R such that the sum

∑
λ∈σ

1

λ2

e|κλ|

|λẆ (λ)| (3.3)

is finite. Then there is a unique pair (u, μ) ∈ E such that the associated spectrum
coincides with σ and the logarithmic coupling constants are κλ for each λ ∈ σ .

Proof. Uniqueness. Since the given spectral data uniquely determines the Weyl–
Titchmarsh function m− in view of (2.27) and Lemma 2.4, the uniqueness part
in [35, Theorem 6.1] shows that the function a− and the Borel measure β− are
uniquely determined as well. It follows readily from the definition of β− in (2.4)
that this also uniquely determines the Borel measure υ. Furthermore, because of

u(η±(ξ)) = −1

ξ

∫ ξ

0
a±(s)s ds, ξ ∈ R∓, (3.4)

we conclude that the function u is uniquely determined too and thus so is μ.
Existence. Let us introduce the meromorphic Herglotz–Nevanlinna function

m(z) =
∑
λ∈σ

z

λ(λ − z)

e−κλ

|λẆ (λ)| , z ∈ C\R.

From the existence part of [35, Theorem 6.1], we obtain a real-valued and locally
square integrable function a on [0,∞) and a non-negative Borel measure β on
[0,∞) with β({0}) = 0 such that the function m is the Weyl–Titchmarsh function
for

Y (z, ξ) =
(
1 0
0 1

)
+ z

∫ ξ

0

(−a(s) −1
a(s)2 a(s)

)
Y (z, s) ds

+ z
∫ ξ

0

(
0 0
1 0

)
Y (z, s) dβ(s), ξ ∈ [0,∞),

(3.5)

that is, if Y (z, · ) denotes the unique solution of the integral equation (3.5) for each
z ∈ C, then the function m is given by

m(z) = lim
ξ→∞

Y11(z, ξ)

Y12(z, ξ)
, z ∈ C\R.

In order to state a required fact from [35] in a concise way, we introduce the set
� ⊆ (0,∞) that consists of all ξ ∈ (0,∞) such that the function a is not equal

3 If the limit in (3.1) exists in [0, ∞), then this is the case if and only if the sum
∑↔

λ∈σ
1
λ

exists.
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to a constant almost everywhere near ξ or such that ξ belongs to the topological
support of β. Let f1, f2 ∈ L2(0,∞) be orthogonal to all h ∈ L2(0,∞) that satisfy

∫ ξ

0
h(s) ds = 0, ξ ∈ �, (3.6)

and functions g1, g2 on [0,∞) be square integrable with respect to β. Upon setting

Fi (λ) =
∫ ∞

0

Y ′
12(λ, ξ)

λ
fi (ξ) dξ +

∫ ∞

0
Y12(λ, ξ)gi (ξ) dβ(ξ), λ ∈ σ, i = 1, 2,

we have the identity

∑
λ∈σ

F1(λ)F2(λ)∗ e−κλ

|λẆ (λ)| =
∫ ∞

0
f1(ξ) f2(ξ)∗ dξ +

∫ ∞

0
g1(ξ)g2(ξ)∗ dβ(ξ)

(3.7)

since the spectral transform introduced in [35, Section 5] is a partial isometry.
Motivated by the relation (3.4), we define the real-valued function u on R via

u(ln(ξ)) = −1

ξ

∫ ξ

0
a(s)s ds, ξ ∈ (0,∞), (3.8)

so that u belongs to H1
loc(R) and satisfies

a(ξ) = −u′(ln(ξ)) − u(ln(ξ))

ξ

for almost all ξ ∈ (0,∞). Furthermore, we define the Borel measure μ on R

by (1.7), where υ is the Borel measure on R such that that we have

β(B) =
∫
ln(B)

e−x dυ(x)

for every Borel set B ⊆ (0,∞). Since the function a is square integrable near zero
and the Borel measure β is finite near zero, it follows readily that

∫ c

−∞
e−x (

u′(x) + u(x)
)2 dx +

∫ c

−∞
e−x dυ(x) < ∞

for every c ∈ R. In particular, this guarantees that the function u lies in H1(R) near
−∞ (more precisely, one sees from (3.8) that u decays exponentially near−∞ and
since u′ + u is clearly square integrable near −∞, we conclude that u′ is as well)
and that the measure μ is finite near −∞. We are now left to verify that the pair
(u, μ) actually belongs to E . In fact, in this case it is readily seen that a coincides
with the function a− as introduced by (2.3) and that β coincides with the Borel
measure β− as introduced by (2.4). From (2.26), we then see that the function m
coincides with the Weyl–Titchmarsh function m− for this pair as introduced in the
proof of Proposition 2.6. Upon taking (2.27) and Lemma 2.4 into account, one then
may conclude that the pair (u, μ) indeed gives rise to the desired spectral data.
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In order to show that the pair (u, μ) belongs to the set E , let us first consider
the special case when a is equal to some constant a0 ∈ R almost everywhere near
∞ and β vanishes near ∞. From this we readily infer that

Y (z, ξ) =
(
1 − za0(ξ − ξ0) −z(ξ − ξ0)

za20(ξ − ξ0) 1 + za0(ξ − ξ0)

)
Y (z, ξ0)

as long as ξ and ξ0 are close enough to ∞. Thus, the function m is given by

m(z) = a0Y11(z, ξ0) + Y21(z, ξ0)

a0Y21(z, ξ0) + Y22(z, ξ0)
, z ∈ C\R,

and evaluating the limit as z → 0 in this equation shows that a0 has to be zero,
which immediately implies that the pair (u, μ) belongs to E . In particular, this
proves the claim in the case when the set σ is finite (since then the set � is finite as
well). Thus, back in the general case, for every k ∈ N we may find a (uk, μk) ∈ E
such that the corresponding Weyl–Titchmarsh function mk,− is given by

mk,−(z) =
∑
λ∈σ

|λ|�k

z

λ(λ − z)

e−κλ

|λẆ (λ)| , z ∈ C\R.

With the functions ak,− defined as in (2.3), we infer from [35, Proposition 6.2] that

lim
k→∞

∫ ξ

0
ak,−(s) ds =

∫ ξ

0
a(s) ds,

locally uniformly for all ξ ∈ [0,∞). In view of (3.4) and (3.8), this shows that
the functions uk converge pointwise to u and since they are uniformly bounded in
H1(R) by Proposition 2.5, a compactness argument shows that u lies in H1(R).

To verify also the remaining growth restrictions on (u, μ) in the general case, we
now may assume that there is an increasing sequence xn → ∞ such that ξn = exn

belongs to � for every n ∈ N0. We fix some n ∈ N0 and define the function Jn by

Jn(ζ, z) = Z1(z, ξn)Z2(ζ, ξn)∗ − Z2(z, ξn)Z1(ζ, ξn)∗

z − ζ ∗ , ζ, z ∈ C\R,

where Z(z, · ) is the Weyl solution given by

Z(z, ξ) = Y (z, ξ)

(
zW (z)
−V (z)

)
, ξ ∈ [0,∞),

for every z ∈ C, and V is the entire function defined in such a way that

V (z) = zW (z)m(z), z ∈ C\R.

Because the function Z(z, · ) is a Weyl solution for every z ∈ C\R, we note that
Jn can be rewritten as (see the proof of [35, Lemma 5.1])

Jn(ζ, z) =
∫ ∞

ξn

Z ′
1(z, s)

z

Z ′
1(ζ, s)∗

ζ ∗ ds +
∫ ∞

ξn

Z1(z, s)Z1(ζ, s)∗ dβ(s)
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for all ζ , z ∈ C\R. In particular, this implies that the entire function En defined by

En(z) = zψ(z, xn) − iψ [+](z, xn), z ∈ C,

is a de Branges function, where ψ(z, · ) is the solution of the differential equa-
tion (2.1) so that (compare the proof of Theorem 2.1)

(
zψ(z, x)

−ψ [−](z, x)

)
=

(
e− x

2 0
0 e

x
2

)
Z(z, ex ), x ∈ R,

for each z ∈ C, with the quantities ω and υ defined as in (A.1) and (1.7). The
reproducing kernel Kn in the corresponding de Branges space Bn is given by

Kn(ζ, z) = Jn(ζ, z) + ψ(z, xn)ψ(ζ, xn)∗, ζ, z ∈ C\R.

An integration by parts and the integral equation (3.5) show that for every z ∈
C\R the function Z ′

1(z, · ) restricted to (ξn,∞) is orthogonal to all functions h ∈
L2(0,∞) that satisfy (3.6). Thus, the identity (3.7) for the particular functions

fi (s) = 1

zi

{
Z1(zi , ξn)e−xn , s ∈ [0, ξn),

Z ′
1(zi , s), s ∈ [ξn,∞),

gi (s) =
{
0, s ∈ [0, ξn),

Z1(z1, s), s ∈ [ξn,∞),

with z1 = z∗ and z2 = ζ ∗ gives (note that Z1(λ, · ) = −V (λ)Y12(λ, · ) for all
λ ∈ σ )

∑
λ∈σ

Kn(z, λ)

V (λ)

Kn(ζ, λ)∗

V (λ)∗
e−κλ

|λẆ (λ)| = Kn(z, ζ )

= 〈Kn(z, · ), Kn(ζ, · )〉Bn , ζ, z ∈ C\R.

The values of V on the set σ are readily evaluated and we obtain

∑
λ∈σ

|F(λ)|2 eκλ

|λẆ (λ)| = ‖F‖2Bn
, F ∈ Bn, (3.9)

after employing simple linearity, continuity and density arguments.
Now let H be a locally integrable, trace normed, real, symmetric and non-

negative definite 2 × 2 matrix function on [0,∞) such that if M(z, · ) denotes the
unique solution of the integral equation

M(z, t) =
(
1 0
0 1

)
+ z

∫ t

0

(
0 −1
1 0

)
H(s)M(z, s) ds, t ∈ [0,∞),

for every z ∈ C, then we have

lim
t→∞

M11(z, t)

M12(z, t)
=

∑
λ∈σ

z

λ(λ − z)

eκλ

|λẆ (λ)| , z ∈ C\R.

Such a function H is guaranteed to exist by the solution of the inverse problem for
canonical systems due to de Branges; see [30, Theorem XII], [69, Theorem 2.4].
Finiteness of the sum in (3.3) implies (see [56, Lemma 5.5], [66, Theorem 6.17] and
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note that existence of (3.1) and (3.2) together establish [56, Condition (C2)]; cf.
[12, §8.3.6]) that the entire function W belongs to the Cartwright class. Moreover,
since m is a Herglotz–Nevanlinna function, so does the function V and thus also
En for every n ∈ N0. In view of [31, Theorem VII] in conjunction with (3.9) and
upon employing [29, Theorem I], we obtain a tn ∈ (0,∞) so that(

zψ(z, xn)

−ψ [+](z, xn)

)
= �n

(
M12(z, tn)

M22(z, tn)

)
, z ∈ C,

for a real 2 × 2 matrix �n with det �n = −1. Evaluating at zero shows that

�n =
(

−e
xn
2 0

εn e− xn
2

)

for some εn ∈ R. We note that the sequence tn may be chosen in such a way that it
is non-increasing because the sequence of de Branges spaces Bn is non-increasing
with respect to inclusion. Thus, for every n ∈ N0 we have on the one side(

zψ(z, x0)
−ψ [+](z, x0)

)
= �0M(z, t0)M(z, tn)

−1�−1
n

(
zψ(z, xn)

−ψ [+](z, xn)

)
, z ∈ C,

and on the other side (due to Lemma A.2) also(
zψ(z, x0)

−ψ [+](z, x0)

)
= �+(z, x0, xn)

(
zψ(z, xn)

−ψ [+](z, xn)

)
, z ∈ C,

where �±(z, · , xn) denotes the matrix valued solution of the system (A.4) such
that �±(z, xn, xn) is the identity matrix. In view of [28, Problem 100], this gives

M(z, t0)M(z, tn)
−1 = �−1

0 �+(z, x0, xn)�n, z ∈ C.

Differentiating with respect to z and evaluating at zero, we obtain
∫ t0

tn
H(s) ds =

∫ xn

x0
e−s ds

(
ε0e

x0
2 εne

xn
2 ε0e

x0
2

εne
xn
2 1

)

+
∫ xn

x0
u′(s) − u(s) ds

(
ε0e

x0
2 + εne

xn
2 1

1 0

)

+
∫ xn

x0
es (

u′(s) − u(s)
)2 ds

(
1 0
0 0

)
+

∫ xn

x0
es dυ(s)

(
1 0
0 0

)
.

Since H is integrable near zero, the top-right entry shows that the integrals∫ xn

x0
u′(s) − u(s) ds

are uniformly bounded for all n ∈ N0. Moreover, from the bottom-left entry we
now infer that the quantities εne

xn
2 are uniformly bounded for all n ∈ N0 as well.

Finally, the top-left entry implies that the sum∫ xn

x0
es (

u′(s) − u(s)
)2 ds +

∫ xn

x0
es dυ(s)
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is uniformly bounded for all n ∈ N0, which concludes the proof since
xn → ∞. �

For a discrete set σ of nonzero reals such that the limit (3.1) exists in [0,∞) and
such that the entire function W is well-defined by (3.2), we define the isospectral
set Iso(σ ) as the set of all those pairs (u, μ) ∈ E whose associated spectra coincide
with the set σ . It is an immediate consequence of Theorem 3.1 that the isospectral
set Iso(σ ) is in one-to-one correspondence with the set4

�σ =
{

κ ∈ R
σ

∣∣∣∣∣
∑
λ∈σ

1

λ2

e|κλ|

|λẆ (λ)| < ∞
}

, (3.10)

by means of the bijection given by

(u, μ) �→ {κλ}λ∈σ . (3.11)

Of course, the solution of the inverse spectral problem can easily be formulated
in terms of the right/left norming constants as well. However, the picture (that is, the
condition corresponding to (3.3) on the asymptotic behavior) looks less symmetric.

Corollary 3.2. Let σ be a discrete set of nonzero reals such that the limit (3.1) exists
in [0,∞) and such that the entire function W is well-defined by (3.2). Moreover,
for each λ ∈ σ let γ 2

λ,± ∈ R such that λγ 2
λ,± > 0 and the sums

∑
λ∈σ

1

λ2

1

λγ 2
λ,±

,
∑
λ∈σ

1

λ2

γ 2
λ,±

λẆ (λ)2
, (3.12)

are finite. Then there is a unique pair (u, μ) ∈ E such that the associated spectrum
coincides with σ and the right/left norming constants are γ 2

λ,± for each λ ∈ σ .

In order to avoid misunderstandings, let us point out that this corollary has to
be read as two separate statements according to the plus-minus alternative, that is,
we are only able to prescribe either the right or the left norming constants.

Remark 3.3. If the set σ is finite, then all conditions in Theorem 3.1 and Corol-
lary 3.2 are trivially satisfied. The solution of the inverse spectral problem in this
case has a particular simple form and can be written down explicitly in terms of the
spectral data; see [33, Section 4]. We will see next that these kinds of solutions can
be used to approximate solutions in the general case in a certain way.

We conclude this section by establishing a continuity property for the inverse
spectral transform. In order to state it, let (uk, μk) belong to E for every k ∈ N and
denote all corresponding quantities in an obvious way with an additional subscript.

4 To be precise, this has to be interpreted appropriately in the trivial case when σ is empty.
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Proposition 3.4. We have5

∑
λ∈σk

1

λ(1 + λ2)

1

λγ 2
k,λ,±

→
∑
λ∈σ

1

λ(1 + λ2)

1

λγ 2
λ,±

, (3.13)

∑
λ∈σk

χ(λ)

1 + λ2

1

λγ 2
k,λ,±

→
∑
λ∈σ

χ(λ)

1 + λ2

1

λγ 2
λ,±

, (3.14)

as k → ∞ for all functions χ ∈ C(R) such that the limit of χ(λ) as |λ| → ∞
exists and is finite if and only if the functions uk converge to u pointwise and∫ x

±∞
e∓s

(∫ s

±∞
e±r (

u′
k(r) ∓ uk(r)

)2 dr +
∫ s

±∞
e±r dυk(r)

)
ds

→
∫ x

±∞
e∓s

(∫ s

±∞
e±r (

u′(r) ∓ u(r)
)2 dr +

∫ s

±∞
e±r dυ(r)

)
ds

(3.15)

as k → ∞ for all x ∈ R. In this case, the functions uk converge to u even locally
uniformly and the Borel measures μk converge to μ in the sense of distributions.

Proof. It follows from [35, Proposition 6.2] that the first condition on convergence
of (3.13) and (3.14) is equivalent to

∫ ξ

0
ak,±(s) ds →

∫ ξ

0
a±(s) ds, (3.16)

∫ ξ

0

(∫ s

0
ak,±(r)2 dr +

∫ s

0
dβk,±

)
ds →

∫ ξ

0

(∫ s

0
a±(r)2 dr +

∫ s

0
dβ±

)
ds,

(3.17)

as k → ∞ for all ξ ∈ R∓, in which case the convergence is uniform as long as ξ

stays bounded. In conjunctionwith (3.4), one sees that this implies that the sequence
uk(x) converges to u(x) for all x ∈ R. Moreover, upon employing a substitution
in (3.17), we readily infer that (3.15) holds as k → ∞ for all x ∈ R as well. Both of
these convergences are uniform as long as x stays away from ∓∞. In addition, for
every smooth function h onR that vanishes near ∓∞ and such that h′ has compact
support we have the identity∫

R

h dμk =
∫
R

h(x)αk,±(x)2 dx ± 2
∫
R

h(x)uk(x)u′
k(x) dx +

∫
R

h dυk

=
∫
R∓

h±(ξ)ak,±(ξ)2 dξ ∓
∫
R

h′(x)uk(x)2 dx +
∫
R∓

h± dβk,±

=
∫
R∓

h′′±(ξ)

∫ ξ

0

(∫ s

0
ak,±(r)2 dr +

∫ s

0
dβk,±

)
ds dξ

∓
∫
R

h′(x)uk(x)2 dx,

5 Let us mention that the following condition is equivalent to locally uniform convergence
mk,± → m± of the corresponding Weyl–Titchmarsh functions given as in (2.27).
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with h± given by (2.30). Taking the limit k → ∞ on the right-hand side gives∫
R

h dμk →
∫
R

h dμ, k → ∞, (3.18)

which shows that the Borel measuresμk converge toμ in the sense of distributions.
For the converse direction, we now assume that the functions uk converge to u

pointwise and that (3.15) holds as k → ∞ for every x ∈ R. As observed above, the
latter condition is equivalent to the fact that (3.17) holds as k → ∞ for all ξ ∈ R∓.
Upon expressing the integrals in (3.16) in terms of uk and u by using (2.3) as well as
a substitution, we infer (use Lebesgue’s dominated convergence theorem and note
that convergence of (3.17) implies a uniform bound on the monotone integrands
which yields a sufficient estimate for the functions uk) that (3.16) holds as k → ∞
for all ξ ∈ R∓, which establishes the equivalence in the claim. �

We endow E with the unique first countable topology6 such that the sequence
(uk, μk) converges to (u, μ) if and only if the functions uk converge to u pointwise
and both of the plus-minus alternatives in (3.15) hold as k → ∞ for all x ∈ R.

Corollary 3.5. If the sequence (uk, μk) converges to (u, μ) in E , then the functions
uk converge to u uniformly as well as weakly in H1(R), the Borel measures μk

converge to μ in the weak∗ topology7 and the sequence μk(R) converges to μ(R).

Proof. We have seen in the first part of the proof of Proposition 3.4 that the given
assumption implies that the functions uk converge to u uniformly. After choosing a
suitable partition of unity (two functions are sufficient) we infer from (3.18) that the
sequence μk(R) converges to μ(R). In particular, the sequence μk(R) is bounded
which allows to deduce the remaining claims in a straightforward manner. �

4. The Conservative Camassa–Holm Flow

Let us define the conservative Camassa–Holm flow � on E as a mapping

� : E × R → E (4.1)

in the following way: given a pair (u, μ) ∈ E with associated spectrum σ and
logarithmic coupling constants κλ for every λ ∈ σ , as well as a t ∈ R, the corre-
sponding image �t (u, μ) under � is defined as the unique pair in E (guaranteed to
exist by Theorem 3.1) for which the associated spectrum coincides with σ and the
logarithmic coupling constants are

κλ + t

2λ
, λ ∈ σ. (4.2)

6 For example, take the topology inherited from the injection (u, μ) → (m+, m−) when
the space of Herglotz–Nevanlinna functions is equippedwith the topology of locally uniform
convergence.
7 We regard the space of finite Borel measures onR as the dual space of the Banach space

C0(R).
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Of course, this definition is motivated by the well-known simple time evolution of
spectral data for classical solutions of the Camassa–Holm equation, which consti-
tutes the essence of our method of solution and is due to the underlying completely
integrable structure; see [4, Section 6].

It is clear that the isospectral sets Iso(σ ) are invariant under the conserva-
tive Camassa–Holm flow. Moreover, the bijection in (3.11) takes the conservative
Camassa–Holm flow on Iso(σ ) to a simple linear flow on �σ whose solutions
are explicitly given by (4.2). In conjunction with these facts, the trace formulas in
Proposition 2.5 give rise to conserved quantities for the flow; cf. [41,57].

Proposition 4.1. The two functionals

(u, μ) �→
∫
R

u(x) dx, (u, μ) �→
∫
R

dμ, (4.3)

on E are invariant under the conservative Camassa–Holm flow.

Since theWronskian W is uniquely determined by the spectrum σ , it is invariant
under the conservative Camassa–Holm flow. Therefore, we see that the functional

(u, μ) �→
∫
R

ρ(x) dx (4.4)

on E is invariant as well (recall the notation from Remark 2.3). In particular, this
shows that the property of the function ρ vanishing almost everywhere (or equiva-
lent, the Borel measure υ being singular with respect to the Lebesgue measure) is
preserved. This case corresponds to the subclass of global conservative solutions
of the Camassa–Holm equation in [15,50], whereas the function ρ is present for
the general class of global conservative solutions of the two-component Camassa–
Holm system in [45].

Proposition 4.2. The conservative Camassa–Holm flow � is continuous.

Proof. Let t , tk ∈ R for every k ∈ N such that tk → t as k → ∞ and suppose
that the sequence (uk, μk) converges to (u, μ) in E so that (3.14) holds as k → ∞
for all functions χ ∈ C(R) such that the limit of χ(λ) as |λ| → ∞ exists and is
finite. In conjunction with Proposition 2.5, we infer from Corollary 3.5 that there
is an ε > 0 such that the intersections (−ε, ε) ∩ σ and (−ε, ε) ∩ σk are empty for
every k ∈ N. Given any continuous function τ on R\{0} such that the limit of τ(λ)

as |λ| → ∞ exists and is finite, we choose a function χ± ∈ C(R) such that

χ±(λ) = τ(λ)e± t
2λ , |λ| � ε,

as well as constants K , T ∈ R such that |τ(λ)| � K for all λ ∈ R with |λ| � ε and
such that |tk | � T for all k ∈ N. We then may estimate
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∣∣∣∣∣∣
∑
λ∈σk

τ(λ)

1 + λ2

1

λγ 2
k,λ,±e

∓ tk
2λ

−
∑
λ∈σ

τ (λ)

1 + λ2

1

λγ 2
λ,±e∓ t

2λ

∣∣∣∣∣∣
� K

ε
e

T
ε |tk − t |

∑
λ∈σk

1

1 + λ2

1

λγ 2
k,λ,±

+
∣∣∣∣∣∣
∑
λ∈σk

χ±(λ)

1 + λ2

1

λγ 2
k,λ,±

−
∑
λ∈σ

χ±(λ)

1 + λ2

1

λγ 2
λ,±

∣∣∣∣∣∣
for every k ∈ N. Since it follows readily from our assumptions that the right-hand
side always converges to zero as k → ∞, we infer that

∑
λ∈σk

1

λ(1 + λ2)

1

λγ 2
k,λ,±e

∓ tk
2λ

→
∑
λ∈σ

1

λ(1 + λ2)

1

λγ 2
λ,±e∓ t

2λ
,

∑
λ∈σk

χ(λ)

1 + λ2

1

λγ 2
k,λ,±e

∓ tk
2λ

→
∑
λ∈σ

χ(λ)

1 + λ2

1

λγ 2
λ,±e∓ t

2λ
,

as k → ∞ for all functions χ ∈ C(R) such that the limit of χ(λ) as |λ| → ∞
exists and is finite. In view of Proposition 3.4 and the definition of the flow �, this
implies that the corresponding images �tk (uk, μk) converge to �t (u, μ). �

For the global conservative solutions of the two-component Camassa–Holm
system in [45], continuity results similar to Proposition 4.2 were obtained in [45,
Theorem 5.2] and [46, Theorem 6.7]. However, the topologies used in [45,46] are
defined in a much more intricate and less explicit way; cf. [45, Lemma 6.4 and
Lemma 6.5].

As the main result of this section, we are now going to show that the integral
curve t �→ �t (u0, μ0) for any fixed initial data (u0, μ0) ∈ E defines a weak
solution of the two-component Camassa–Holm system (1.3). To this end, let us
denote the pair �t (u0, μ0) with (u( · , t), μ( · , t)) for every t ∈ R, so that u can
be regarded as a function on R × R. Note that the integral curve t �→ �t (u0, μ0)

is continuous by Proposition 4.2, which guarantees that the function u is at least
continuous.

Theorem 4.3. The pair (u, μ) is a weak solution of the two-component Camassa–
Holm system (1.3) in the sense that for every test function ϕ ∈ C∞

c (R2) we have

∫
R

∫
R

u(x, t)ϕt (x, t) +
(

u(x, t)2

2
+ P(x, t)

)
ϕx (x, t) dx dt = 0, (4.5)

∫
R

∫
R

ϕt (x, t) + u(x, t)ϕx (x, t) dμ(x, t) dt

(4.6)

= 2
∫
R

∫
R

u(x, t)

(
u(x, t)2

2
− P(x, t)

)
ϕx (x, t) x dt,
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where the function P is given by

P(x, t) = 1

4

∫
R

e−|x−s|u(s, t)2 ds + 1

4

∫
R

e−|x−s| dμ(s, t), x, t ∈ R. (4.7)

Proof. Let us denote all the quantities corresponding to (u0, μ0) in an obvious
way with an additional subscript. If the spectrum σ0 is a finite set, then it follows
from [33, Section 5] that the pair (u, μ) is a weak solution of the two-component
Camassa–Holm system (1.3). Otherwise, we define a pair (uk,0, μk,0) ∈ E for every
k ∈ N in such a way that the associated spectrum coincides with σ0 ∩ [−k, k] and
the right/left norming constants are γ 2

0,λ,± for every λ ∈ σ0 ∩ [−k, k]. Since the
intersection σ0 ∩ [−k, k] is a finite set, the corresponding pairs (uk, μk) obtained
from the integral curves t �→ �t (uk,0, μk,0) satisfy

∫
R

∫
R

uk(x, t)ϕt (x, t) +
(

uk(x, t)2

2
+ Pk(x, t)

)
ϕx (x, t) dx dt = 0, (4.8)

∫
R

∫
R

ϕt (x, t) + uk(x, t)ϕx (x, t) dμk(x, t) dt

(4.9)

= 2
∫
R

∫
R

uk(x, t)

(
uk(x, t)2

2
− Pk(x, t)

)
ϕx (x, t) dx dt,

for every test function ϕ ∈ C∞
c (R2), where the function Pk is given by

Pk(x, t) = 1

4

∫
R

e−|x−s|uk(s, t)2 ds + 1

4

∫
R

e−|x−s| dμk(s, t), x, t ∈ R.

Moreover, our definitions and Proposition 2.5 guarantee the bounds

uk(x, t)2 � μk(R, t) � 1

2

∑
λ∈σ0

1

λ2
, x, t ∈ R, k ∈ N,

and from Proposition 3.4 we infer that the functions uk( · , t) converge to u( · , t)
locally uniformly and that the Borel measures μk( · , t) converge to μ( · , t) in
the weak∗ topology (to conclude this, we also used that the sequence μk(R, t)
is bounded) for every fixed t ∈ R. In particular, this shows that the sequence of
functions Pk is bounded as well and converges to P at least pointwise. Finally,
upon passing to the limit k → ∞ in (4.8) and (4.9), we infer that the pair (u, μ) is
a weak solution of the two-component Camassa–Holm system (1.3). �

When the Borel measure υ0 corresponding to the pair (u0, μ0) vanishes iden-
tically and the distribution ω0 is non-negative/non-positive, then this property is
preserved by the conservative Camassa–Holm flow in view of Proposition 2.7; cf.
[20, Corollary 3.3]. In this case, the function u is a weak solution of the Camassa–
Holm equation (1.1) in the sense that for every test function ϕ ∈ C∞

c (R2) we
have

∫
R

∫
R

u(x, t)ϕt (x, t) +
(

u(x, t)2

2
+ P(x, t)

)
ϕx (x, t) dx dt = 0, (4.10)
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where the function P is given by

P(x, t) = 1

2

∫
R

e−|x−s|u(s, t)2 ds + 1

4

∫
R

e−|x−s|ux (s, t)2 ds, x, t ∈ R.

(4.11)

Under these assumptions, global weak solutions in this sense have been obtained
before in [21,26]. In the more challenging general case, existence of global weak
solutions as in Theorem 4.3 has been established in [15,45,50] by means of an
elaborate transformation to Lagrangian coordinates.

Remark 4.4. If the spectrum σ0 associated with the pair (u0, μ0) is a finite set, then
we recover the special class of conservative multi-peakon solutions [49], which can
be written down explicitly in terms of the spectral data [33]. We have seen in the
proof of Theorem 4.3 that in the general case, our weak solution (u, μ) of the
two-component Camassa–Holm system (1.3) can be approximated by a sequence
of conservative multi-peakon solutions in a certain way; cf. [47,48].

We conclude this section with a comment on the long-time behavior of the
conservative Camassa–Holm flow. Upon employing the method introduced in [36],
it is possible to show that our weak solution (u, μ) of the two-component Camassa–
Holm system (1.3) asymptotically splits into a (in general infinite) train of single
peakons, each corresponding to an eigenvalue λ ∈ σ0 of the underlying spectral
problem. For classical solutions of the Camassa–Holm equation (1.1), this behavior
was anticipated by McKean [63] (in accordance with numerical observations in
[17]) and first proved in [37] (see also [5,33] for the multi-peakon case and [61]
for a particular class of low-regularity solutions).

Appendix A. The Basic Differential Equation

Throughout this appendix, let u be a real-valued function in H1
loc(R) and υ be

a non-negative Borel measure on R. We define the distribution ω in H−1
loc (R) by8

ω(h) =
∫
R

u(x)h(x) dx +
∫
R

u′(x)h′(x) dx, h ∈ H1
c (R), (A.1)

so that ω = u − u′′ formally, and consider the ordinary differential equation

− f ′′ + 1

4
f = z ω f + z2υ f, (A.2)

where z is a complex spectral parameter. Of course, this differential equation has
to be understood in a distributional sense in general; cf. [35,44,67].

8 The space H1
c (R) consists of all those functions in H1(R)which have compact support.
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Definition A.1. A solution of (A.2) is a function f ∈ H1
loc(R) such that

∫
R

f ′(x)h′(x) dx + 1

4

∫
R

f (x)h(x) dx = z ω( f h) + z2
∫
R

f h dυ (A.3)

for every function h ∈ H1
c (R).

In order to make this notion of solution more accessible, we will first show that
the differential equation (A.2) is equivalent to the first order system

(
0 1

−1 0

)
F ′± = ∓1

2

(
0 1
1 0

)
F± + z

(
α2± α±
α± 1

)
F± + z

(
υ 0
0 0

)
F±, (A.4)

where we introduced α± = −u′ ± u. Since υ is allowed to be a genuine Borel
measure, this system has to be understood as a measure differential equation [3,8,
38,65] in general. Solutions of such an equation are not necessarily continuous but
only of locally bounded variation and, in order to guarantee the unique solvability
of initial value problems, one has to impose a suitable normalization. Here we
will require solutions to be left-continuous, which is implicitly contained in the
following definition: a solution of the system (A.4) is a function F± : R → C

2

with locally bounded variation such that

F±|y
x = ∓1

2

∫ y

x

(−1 0
0 1

)
F±(s) ds + z

∫ y

x

(−α±(s) −1
α±(s)2 α±(s)

)
F±(s) ds

+ z
∫ y

x

(
0 0
1 0

)
F± dυ (A.5)

for all x , y ∈ R. In this case, the first component of F± is clearly locally absolutely
continuous and the second component is left-continuous; cf. (1.13). With this no-
tion of solutions, initial value problems for the system (A.4) are always uniquely
solvable; see, for example, [3, Section 11.8], [8, Theorem 1.1], [38, Theorem A.2].

Lemma A.2. If the function f is a solution of the differential equation (A.2), then
there is a unique left-continuous function f [1] such that

f [1](x) = f ′(x) − zu′(x) f (x) (A.6)

for almost all x ∈ R and the function
(

z f
− f [1] ± ( 1

2 − zu
)

f

)
(A.7)

is a solution of the system (A.4). Conversely, if the function F± is a solution of the
system (A.4), then its first component is a solution of the differential equation (A.2).

Proof. First one notes that for every c ∈ R, Equation (A.3) takes the form
∫
R

h′(x)

(
f ′(x) − zu′(x) f (x) − 1

4

∫ x

c
f (s) ds + z

∫ x

c
u(s) f (s) + u′(s) f ′(s) ds

+ z2
∫ x

c
f dυ

)
dx = 0
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upon integrating by parts. Now from this we infer that a function f ∈ H1
loc(R) is a

solution of (A.2) if and only if there is a c ∈ R and a constant d ∈ C such that

f ′(x) − zu′(x) f (x) = d + 1

4

∫ x

c
f (s) ds − z

∫ x

c
u(s) f (s) + u′(s) f ′(s) ds

− z2
∫ x

c
f dυ (A.8)

for almost all x ∈ R. So if f is a solution of (A.2), then this guarantees that there is
a unique left-continuous function f [1] such that (A.6) holds for almost all x ∈ R.
Let us denote the second component in (A.7) with − f [±] so that

f [±](x) = f ′(x) ∓ 1

2
f (x) + zα±(x) f (x)

for almost all x ∈ R. Then it is straightforward to show that

± 1

2

∫ y

x
f [±](s) ds + z

∫ y

x
α±(s)2z f (s) − α±(s) f [±](s) ds

= ±
(
1

2
− zu

)
f

∣∣∣∣
y

x
− 1

4

∫ y

x
f (s) ds + z

∫ y

x
u(s) f (s) + u′(s) f ′(s) ds

for all x , y ∈ R. In combination with (A.8), we end up with

− f [±]
∣∣∣y

x
= ±1

2

∫ y

x
f [±](s) ds + z

∫ y

x
α±(s)2z f (s) − α±(s) f [±](s) ds

+ z
∫ y

x
z f dυ

for all x , y ∈ R, which shows that (A.7) is a solution of the system (A.4).
Now suppose that F± is a solution of the system (A.4) and denote the respective

components with subscripts. The first component of (A.5) shows that F±,1 belongs
to H1

loc(R) with

zF±,2(x) = −F ′±,1(x) ± 1

2
F±,1(x) − zα±(x)F±,1(x) (A.9)

for almost all x ∈ R. In combination with the second component of (A.5) this gives

F ′±,1(x) = ±1

2
F±,1(x) − zα±(x)F±,1(x) − zF±,2(c) ± 1

2

∫ x

c
zF±,2(s) ds

− z2
∫ x

c
α±(s)2F±,1(s) ds−z

∫ x

c
α±(s) zF±,2(s) ds−z2

∫ x

c
F±,1 dυ

for some c ∈ R and almost all x ∈ R. Plugging (A.9) twice into this equation, we
see that (A.8) holds with f replaced by F±,1 for some constant d. As noted before,
this guarantees that F±,1 is a solution of the differential equation (A.2). �

The auxiliary function f [1] introduced in Lemma A.2 allows us to state the
following basic existence and uniqueness result for the differential equation (A.2).
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Corollary A.3. For every c ∈ R and d1, d2 ∈ C there is a unique solution f of the
differential equation (A.2) with the initial conditions

f (c) = d1 and f [1](c) = d2. (A.10)

If d1, d2 and z are real, then the solution f is real-valued as well.

Proof. If z is zero, then the solutions of the differential equation (A.2) are given
explicitly and the claim is obvious. Otherwise, it follows from unique solvability
of initial value problems for the system (A.4) in conjunction with Lemma A.2. �

We are now left to introduce the Wronskian W ( f, g) of two solutions f , g
of the differential equation (A.2). Although the following result is essentially a
consequence of Lemma A.2 and the fact that the traces of the matrices in (A.5)
vanish, we provide an independent direct proof.

Corollary A.4. For any two solutions f , g of the differential equation (A.2) there
is a unique complex number W ( f, g) such that

W ( f, g) = f (x)g′(x) − f ′(x)g(x) (A.11)

for almost all x ∈ R. This number is zero if and only if the functions f and g are
linearly dependent.

Proof. First of all, note that if f is a solution of the differential equation (A.2) and
h ∈ H1

loc(R), then (A.8) and the integration by parts formula (1.14) show that

f [1]h
∣∣∣y

x
=

∫ y

x
f ′(s)h′(s) ds + 1

4

∫ y

x
f (s)h(s) ds

− z
∫ y

x
u(s) f (s)h(s) + u′(s)( f h)′(s) ds − z2

∫ y

x
f h dυ

(A.12)

for all x , y ∈ R. If g is another solution of the differential equation (A.2), then

f (x)g′(x) − f ′(x)g(x) = f (x)g[1](x) − f [1](x)g(x) (A.13)

for almost all x ∈ R. Employing (A.12), one sees that the right-hand side of (A.13)
is constant, which proves existence of the number W ( f, g). The remaining claim
follows in a standard way upon utilizing the uniqueness part in Corollary A.3. �

Let us mention that one can easily get rid of the constant potential term in the
first order system (A.4) by scaling solutions with the matrix function(

e∓ x
2 0

0 e± x
2

)
, x ∈ R, (A.14)

at the cost of rescaling the remaining matrix coefficients in (A.4) as well. It is even
possible to further transform (A.4) into a canonical system in standard form(

0 1
−1 0

)
G ′± = zH±G±, (A.15)

with a locally integrable, non-negative and trace normedmatrix function H±. Since
this is of no need for our purposes, we will not do this here but refer to [35,
Proof of Theorem 6.1], where such a transformation has been employed.
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