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Abstract

Background: Non-cellular blood circulating microRNAs (plasma miRNAs) represent a promising source for the
development of prognostic and diagnostic tools owing to their minimally invasive sampling, high stability, and
simple quantification by standard techniques such as RT-qPCR. So far, the majority of association studies involving
plasma miRNAs were disease-specific case-control analyses. In contrast, in the present study, plasma miRNAs were
analysed in a sample of 372 individuals from a population-based cohort study, the Study of Health in Pomerania
(SHIP).

Methods: Quantification of miRNA levels was performed by RT-qPCR using the Exiqon Serum/Plasma Focus microRNA
PCR Panel V3.M covering 179 different miRNAs. Of these, 155 were included in our analyses after quality-control.
Associations between plasma miRNAs and the phenotypes age, body mass index (BMI), and sex were assessed via a
two-step linear regression approach per miRNA. The first step regressed out the technical parameters and the second
step determined the remaining associations between the respective plasma miRNA and the phenotypes of interest.

Results: After regressing out technical parameters and adjusting for the respective other two phenotypes, 7, 15, and 35
plasma miRNAs were significantly (q < 0.05) associated with age, BMI, and sex, respectively. Additional adjustment for
the blood cell parameters identified 12 and 19 miRNAs to be significantly associated with age and BMI, respectively.
Most of the BMI-associated miRNAs likely originate from liver. Sex-associated differences in miRNA levels were largely
determined by differences in blood cell parameters. Thus, only 7 as compared to originally 35 sex-associated miRNAs
displayed sex-specific differences after adjustment for blood cell parameters.

Conclusions: These findings emphasize that circulating miRNAs are strongly impacted by age, BMI, and sex. Hence,
these parameters should be considered as covariates in association studies based on plasma miRNA levels. The
established experimental and computational workflow can now be used in future screening studies to determine
associations of plasma miRNAs with defined disease phenotypes.
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Background
MicroRNAs (miRNAs) are small ~22 nt long non-
coding RNAs which play important regulatory roles by
targeting mRNAs for degradation or mediating transla-
tional repression. Thus, they affect a wide range of
physiological and pathophysiological processes including
cell differentiation, proliferation, apoptosis, angiogenesis
or inflammation [1, 2]. Besides their common intracellu-
lar localization, miRNAs are present in different body
fluids, particularly in blood. The factors that determine
the levels of extracellular miRNAs, e.g. in plasma, such
as active secretion or passive release due to cell lysis as
well as the functional roles of these plasma miRNAs are
still under investigation. Non-cellular blood circulating
microRNAs (in the remainder of this paper referred to
as plasma miRNAs) are highly ribonuclease-resistant be-
cause they are either enclosed in membranous vesicles
as apoptotic bodies and exosomes or localized in com-
plexes with RNA-binding proteins (Ago2), high-density
lipoproteins or nucleophosmin [3–5]. Recent studies
have proposed a hormone-like role for circulating miR-
NAs in intercellular communication [3, 4]. The putative
value of plasma miRNAs as predictive and diagnostic
biomarkers motivated the recent large-scale profiling of
these molecules in the context of many diseases, such as
cancer, diabetes, multiple sclerosis, coronary artery dis-
ease or myocardial infarction [6–8]. A selection of 19
potentially informative plasma miRNAs was investigated
by Zampetaki et al. [8] in a prospective, population-
based study on cardiovascular disease. The study re-
vealed associations between several miRNAs and the in-
cidence of myocardial infarction and highlighted
platelets as a major source for the plasma miRNA pool
[8]. Few other population based studies were published
on circulating miRNAs derived from blood cells [9] or
serum [10]. Usually, the screening for candidate miRNAs
has so far been performed on pooled or individual sam-
ples of cases and controls. Selected miRNAs have been
measured by RT-qPCR in the entire sample or a sub-
sample of the study cohort. Selection bias and co-
morbidities might have affected the phenotype under in-
vestigation [11]. For instance, studies on miRNA levels
detected in human plasma samples provided evidence
for age-associated miRNA levels in blood [12, 13]. Such
associations are almost certainly relevant in studies on
age-related diseases such as cancer or cardiovascular dis-
orders. Recently, the impact of age and sex on circulat-
ing miRNA was explored in peripheral blood using
microarray technology [14]. This study highlighted the
importance of age matching case-control studies
whereas sex seemed to have a less pronounced effect on
the miRNA levels [14]. The use of matched case-control
cohorts or adjustment for age and sex is therefore war-
ranted [11].

In the present study, we investigated plasma miRNAs
prepared from human plasma using a reverse
transcription-quantitative PCR (RT-qPCR) approach
based on the Serum/Plasma Focus microRNA PCR
Panel V3.M (Exiqon) which provides a higher sensitivity
and specificity compared to array-based techniques [15].
We assessed the association of age, body mass index
(BMI), and sex with miRNA levels in a sample of 372 in-
dividuals from the population based Study of Health in
Pomerania (SHIP-TREND) applying stringent data pre-
processing and taking into account technical as well as
blood cell parameters [16].

Methods
Ethics statement
The study has been conducted according to the recom-
mendations of the Declaration of Helsinki. The study
protocol of SHIP was approved by the medical ethics
committee of the University of Greifswald. Written in-
formed consent was obtained from each of the study
participants.

Study design
Initially, EDTA-plasma samples from 384 participants
were randomly selected from the SHIP-TREND cohort.
Study design and sampling methods for SHIP-TREND
were previously described [16]. Briefly, SHIP-TREND is
a longitudinal population-based cohort study assessing
the prevalence and incidence of common diseases and
their risk factors. Study participants were randomly se-
lected from the population registries in North- and East-
Pomerania.
The laboratory workflow for RT-qPCR based miRNA

analysis using the Serum/Plasma Focus microRNA PCR
Panel V3.M (Exiqon A/S, Vedbaek, Denmark) involved
several quality control steps which resulted in the exclu-
sion of 12 plasma samples. The descriptive statistics of
the remaining study participants are provided in Table 1.
Blood cell parameters were measured on an automated
haematology system (XT 200 or XE 5000, Sysmex,
Europe).

Preparation of plasma miRNAs
Non-cellular blood circulating miRNAs were isolated
from 200 μl plasma using the miRCURY™ RNA Isolation
Kit –Biofluids (Exiqon A/S) according to the

Table 1 Characterization of the SHIP-TREND sample

Sex Age (years) BMI (kg/m2)

number Mean ± SD range Mean ± SD range

male 187 49.3 ± 14.5 22-79 27.6 ± 3.9 17.7-39.0

female 185 50.2 ± 13 22-79 27.4 ± 5.0 18.7-48.1

total 372 49.7 ± 13.8 22-79 27.5 ± 4.4 17.7-48.1
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manufacturer’s instructions. To ensure high and repro-
ducible RNA yield from EDTA-plasma samples, bac-
teriophage MS2 carrier RNA was added to each sample
during the purification procedure. Reverse transcription
reactions were performed using Universal cDNA Synthe-
sis Kit II (Exiqon A/S) according to the manufacturer’s
instructions. Before using RNA samples for miRNA pro-
filing, the yield of typical plasma miRNAs, absence of
PCR inhibitors as well as of haemolysis in the samples
was assessed by use of a microRNA QC PCR Panel (Exi-
qon A/S).

Profiling of plasma miRNAs
Exiqon Serum/Plasma Focus microRNA PCR Panels,
384 well (V3.M) were used in a RT-qPCR approach to
determine the plasma levels of 179 human miRNAs. The
qPCR was performed using a 7900 HT Real-time PCR
system (Applied Biosystems, Carlsbad, CA, USA) with
42 amplification cycles employing the cycling parameters
recommended by Exiqon. Raw data were processed
using SDS 2.4 (Applied Biosystems) to assign the base-
line and threshold for Ct (threshold cycle: the PCR cycle
at which the target is quantified in a given sample, ac-
cording to Real-time PCR Data Markup Language
(RDML) guidelines [17]) determination. To determine
the technical variation between the Exiqon Serum/
Plasma Focus microRNA PCR Panel plates, the inter-
plate calibrator (IPC) (UniSp3) was analysed. Ct values
of the IPC were 20 ± 0.2 (mean ± SD) across all samples,
and thus highly similar.

Computational analyses
All computational analyses were implemented in R
(3.1.2 “Pumpkin Helmet”) [18]. The code is available
upon request. Generally, a miRNA-wise two-step regres-
sion procedure was employed. Through the evaluation
of a first regression model the data were corrected for
technical influences (see Regressing-out of technical pa-
rameters). The second step comprised the assessment of
associations between miRNAs and phenotypes in a sep-
arate regression model (see Analysis of associations be-
tween miRNA levels and phenotypes).

Data pre-processing
We ran the RT-qPCR for 42 cycles and specified the de-
tection cut off according to manufacturer’s recommen-
dation [15]. The Ct value threshold established in [15]
for the very sensitive Exiqon platform has already been
successfully employed in other studies on low-abundant
miRNAs [19, 20]. Thus, also in our study Ct values
below 37 were considered for quantification and Ct
values above 37 were treated as missing because they
were considered to be too close to the detection limit of
the assay. Remaining Ct values were normalized to the

lower quartile per sample. That is, per sample the lower
quartile across all Ct values, excluding spike-ins, was
subtracted from each individual sample Ct value, yield-
ing ΔCt values (small ΔCt values indicate high miRNA
levels). Only miRNAs with at least 100 valid (i.e. non-
missing) ΔCt values and normal ΔCt value distribution
across all samples were kept. Thus, all association analyses
are based on a set of 155 miRNAs that satisfied these
criteria.

Regressing-out of technical parameters
Plasma miRNA data were influenced by a number of
technical parameters. Among these were the storage
time of plasma samples in the biobank ranging from
1035 to 1774 days (dt_biobank) and the Ct values of syn-
thetic spiked-in miRNAs monitoring the efficiency of
miRNA extraction (UniSp2 and the difference between
Ct values of UniSp4 and UniSp2). Before further ana-
lyses, these parameters were regressed out of the data.
To that end, linear regression according to the model
ΔCt ~ dt_biobank + UniSp2 + UniSp4-UniSp2 , which
treats the ΔCt values as dependent variables and the
technical parameters as independent variables was per-
formed for each miRNA. The resulting residuals repre-
sent the variance in miRNA levels that cannot be
explained by the aforementioned technical parameters.
These residuals were used as dependent variables in later
models to detect associations between miRNAs and
phenotypes.

Analysis of associations between miRNA levels and
phenotypes
To identify associations between plasma miRNA levels
and the phenotypes investigated in this study, linear re-
gression models were fitted for each miRNA separately.
These models contained the residuals of the model for
technical adjustment (see Regressing-out of technical pa-
rameters) as dependent variables. That is, the goal of
these models was to explain the variance in miRNA
levels not due to technical parameters. As independent
variables the phenotype(s) examined or adjusted for (i.e.
age, BMI, sex), as well as important blood cell parame-
ters (BCPs) (see Identification of blood cell parameters)
were used. The strength of a miRNA-phenotype associ-
ation was assessed by the Benjamini-Hochberg-corrected
p-value (q-value) of the corresponding model coefficient.

Identification of blood cell parameters
An elastic net regularized regression model [21] was
employed to identify important BCPs that affect miRNA
levels. The motivation to identify BCPs via an elastic net
was two-fold. First, the elastic net selects the smallest sub-
set of independent variables most accurately predicting
the dependant variable. This results in the incorporation
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of as few BCPs into our models as possible, while account-
ing for as much variation in the miRNA data as possible.
Second, the elastic net accounts for correlation between
covariates. This is important here, since many BCPs are
inter-correlated. The elastic-net regularized linear regres-
sion models were evaluated through a leave-one-out
cross-validation as implemented in the R package glmnet
(v 1.9-8) [22]. These models comprised ΔCt values as
dependent variables and technical parameters and BCPs
as independent variables (for a list of all BCPs, see Add-
itional file 1: Table S1). Alpha for these models was set to
0.5 to balance-out the L1 and L2 penalties. BCPs fre-
quently selected by the elastic net across all miRNAs were
incorporated into linear regression models assessing
miRNA – phenotype associations. These BCPs were
haematocrit, platelet count, and mean platelet volume. A
Manhattan plot of these BCPs in the linear model is pro-
vided as Additional file 1: Figure S1.

Results
For the present study, data from 187 men and 185
women were used. Age of the participants varied be-
tween 22 and 79 years and the body mass index varied
between 17.7 and 48.1 (kg/m2) (Table 1).

Association of plasma miRNA levels with age, BMI, and sex
For the present proof-of-principle study, we investigated
associations between plasma miRNA levels and the phe-
notypes BMI, sex, and age (Fig. 1).
The linear regression models incorporated all three

phenotypes. Significant (q < 0.05) associations with age
were detected for seven miRNAs. The strongest were

observed for hsa-miR-126-3p and hsa-miR-21-5p (q
< 0.001) (Fig. 2a, and Additional file 2: Table S2).
Altogether 15 miRNAs were significantly associated with
BMI. Here, the most significant associations were ob-
served for hsa-miR-122-5p, hsa-miR-148a-3p and hsa-
miR-505-3p (q < 0.001) (Fig. 2a and Additional file 3:
Table S3). Regarding sex, 35 miRNAs were found to be
significantly associated (Fig. 2a and Additional file 4:
Table S4). Among these, several miRNAs such as hsa-
miR-145-5p, hsa-miR-451a, hsa-miR-143-3p, hsa-miR-
16-2-3p are known to originate from blood cells and to
be involved in haematopoiesis.
The number of miRNAs associated to multiple pheno-

types was strikingly small (Fig. 3). Only hsa-miR-93-5p
was associated with both age and BMI. Also the overlap
between age and sex was restricted to only one miRNA,
namely hsa-miR-142-3p. The miRNAs hsa-miR-143-3p,
hsa-145-5p, and hsa- miR-148a-3p were associated with
both sex and BMI. There was no miRNA associated with
all three phenotypes.

Modified associations after adjustment for blood cell
parameters
Additional adjustment was performed using appropriate
blood cell parameters (BCPs, see Methods section for
details). The number of significantly (q < 0.05) age-
associated miRNAs rose to 12 after adjustment for sex,
BMI, and BCPs, 7 of which overlapped with the previous
results (Fig. 2b, Additional file 2: Table S2). The stron-
gest associations with age were observed for hsa-miR-
126-3p, hsa-miR-30c-5p, and hsa-miR-142-3p (q < 0.001)
(Fig. 2b, Additional file 2: Table S2). However, the effect

Fig. 1 Association q-values of miRNAs in two-step regression models with adjustment for technical and biological parameters. The -log10(q) values of
the linear regression analysis of miRNA levels and phenotypes age (blue rectangle), BMI (green triangle) and sex (red circle) are depicted. Q-values were
obtained via Benjamini-Hochberg (BH) multiple testing correction of raw p-values. The dotted line marks the significance threshold of q = 0.05. Plasma
miRNAs are lexicographically arranged on the x-axis (though not labelled individually)
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Fig. 2 (See legend on next page.)
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sizes (βΔCt from linear regression) of associations with
age were quite small (0.01 to -0.01). Adjustment for age,
sex, and BCPs resulted in the identification of 19 signifi-
cantly BMI-associated miRNAs, 15 of which overlapped
with the previous results (Fig. 2b, Additional file 3: Table
S3). The most significant associations with BMI were
still observed for hsa-miR-122-5p, hsa-miR-148a-3p and
hsa-miR-505-3p (q < 0.001).
Adjustment for age, BMI, and BCPs reduced the num-

ber of significantly sex-associated miRNAs from 36 to 7
(Fig. 2b, Additional file 4: Table S4). The association
strength of the selected BCPs (haematocrit, platelet
count, and mean platelet volume) is shown in the Man-
hattan plot in Additional file 1: Figure S1. Nevertheless,
remaining associations were still accompanied by pro-
found effect sizes (βΔCt = 0.33 to –0.35). The most signifi-
cant associations with sex were observed for hsa-miR-
145-5p, hsa-miR-150-5p and hsa-miR-142-3p (q < 0.01).
The overlap of association of miRNAs with different

phenotypes after the adjustment for the respective other
two phenotypes and BCPs was also investigated. In the
fully adjusted models, only few miRNAs were significantly
associated with more than one phenotype (Fig. 4): hsa-
miR-93-5p with both BMI and age, hsa-miR-148a-3p and

hsa-miR-145-5p with both BMI and sex, and hsa-miR-
142-3p with both age and sex. Again, none of the miRNAs
was associated with all three phenotypes.

Discussion
In the last few years, the interest in non-cellular blood
circulating miRNAs (plasma miRNAs) as biomarkers
present in easily accessible body fluids increased con-
tinuously. Various studies analysed associations between
plasma miRNAs and specific disease phenotypes, mostly
using a case-control design [11]. However, these studies
were frequently limited by relatively small sample sizes
as well as a number of biases, e.g. the lack of appropriate
adjustment for confounding factors such as age [11]. So
far a limited number of large population-based
phenotype-miRNA association studies have been per-
formed [8–11]. Furthermore, while whole blood is in-
deed easily accessible for sampling, its composition is
complex. Different cell types and tissues in contact with
blood might contribute miRNA species to the plasma
miRNA pool in different proportions. Without appropri-
ate adjustment, plasma miRNA profiles will always par-
tially reflect the individual blood composition at the
sampling time [23, 24]. Thus, in the context of the

Fig. 3 Overlap of associations of miRNAs for different phenotypes.
Venn diagram of miRNAs significantly (q < 0.05) associated with the
three phenotypes age, BMI, and sex, in two-step regression models
incorporating technical and biological parameters

Fig. 4 Overlap of associations of miRNAs for different phenotypes after
adjustment for blood cell parameters. Overlap of miRNAs significantly
(q < 0.05) associated with the three phenotypes age, BMI, and sex in
two-step regression models incorporating technical parameters, all
three phenotypes, and blood cell parameters

(See figure on previous page.)
Fig. 2 Associations of miRNAs and direction of effect. The effect direction is shown for each miRNA significantly associated with age, BMI and sex after
adjustment for a) technical covariates and the respective other two phenotypes and b) after additional adjustment for blood composition. Each row
represents a miRNA and each column shows the association with a specific phenotype. The magnitude of the Benjamini-Hochberg corrected p-values
(q-values) is indicated by the colour tone. Darker colour indicates a lower q-value. Positive correlations of miRNA levels (βΔCt < 0, since smaller ΔCt
values indicate higher miRNA levels) are indicated by red upward triangles while negative correlations (βΔCt > 0, since larger ΔCt values indicate lower
miRNA levels) are indicated by blue downward triangles. Sex has been numerically encoded as the number of X-chromosomes. Hence,
positive correlation here indicates a female-specific miRNA while negative correlation indicates a male-specific miRNA. A grey dot
indicates no significant association
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search for highly informative biomarkers, it appears rea-
sonable to focus on miRNAs that are not or only mar-
ginally affected by the BCPs.
In the present study, we quantified plasma miRNA

levels of 372 individuals from the population-based
SHIP-TREND cohort and analysed the associations of
these miRNA profiles with age, BMI, and sex under con-
sideration of the BCPs. The numbers of age-associated
and BMI-associated miRNAs were similar. A positive
age-correlation was found for hsa-miR-126-3p, thereby
confirming a recently published study [25]. Further miR-
NAs detected to be associated with age in this study
such as hsa-miR-30, hsa-miR-93, hsa-miR-21 and hsa-
miR-142-3p were also previously reported as age-related
[14, 26, 27]. However, hsa-miR-17, hsa-miR-19b, hsa-
miR20a and hsa-miR-106a could not be validated as
age-associated plasma miRNAs in our population based
study [28]. Further miRNAs such as hsa-miR-26a-5p,
hsa-let-7a-5p, hsa-miR-101-3p and hsa-miR-23b-3p
were found to be age associated but have not yet been
described. However, in all cases, the effect sizes of the
age-miRNA-associations were rather small, indicating a
less pronounced relationship between age and plasma
miRNA levels, as compared to, e.g., BMI-miRNA-
associations.
Several plasma miRNAs were significantly associated

with BMI in the present study. One of the most promin-
ent was hsa-miR-122-5p which is highly abundant in the
adult liver [29] where it acts as a key regulator of choles-
terol and fatty-acid metabolism [30]. This miRNA was
recently described as a serum biomarker for liver injury
in chronic hepatitis B and C, non-alcoholic fatty liver
disease (NAFLD), and drug-induced liver disease [31–34].
Consistently, the comparison of miRNAs known to be
synthesized in large amounts in adult human liver [35]
with the significantly BMI-associated plasma miRNAs de-
tected in this study revealed an overlap of 12 miRNAs
(hsa-miR-99a, hsa-miR-194, hsa-miR-143, hsa-miR-93,
hsa-miR-185, hsa-miR-885, hsa-miR-193b, hsa-miR-145,
hsa-miR-19b, hsa-miR-18a, hsa-miR-486, and hsa-miR-
148a). The prominent BMI-associated miRNAs belong to
different families organized in clusters such as miR-106b
~ 25 (hsa-miR-93), miR-106a ~ 363 (hsa-miR-106a) and
miR-17 ~ 92 (hsa-miR-18a, hsa-miR-20a and hsa-miR-
19b-1). The obvious high portion of liver-specific miRNAs
whose blood levels were found to be positively correlated
with BMI points towards release of these miRNAs from
lysing hepatocytes into the circulation as a consequence of
subclinical or/ and manifest NAFLD which is in turn
strongly positively associated with an increased BMI.
A recently published microarray-based study on the

associations between peripheral blood circulating miR-
NAs with age as well as sex revealed only a limited
association between sex and miRNA patterns [14]. In

the present study, we also investigated the association
between sex and plasma miRNA profile. Before ad-
justment for BCPs there were more miRNAs signifi-
cantly associated with sex than with age or BMI.
However, a high proportion of these sex-associated
miRNAs most probably originates from blood cells.
Monocytes, thrombocytes, granulocytes, lymphocytes,
reticulocytes and erythrocytes all contain several cell
type specific as well as ubiquitously expressed miR-
NAs in varying amounts [24, 36]. The total blood cell
mass in the circulation of women is generally smaller
compared to men. This was confirmed for multi-
ethnic populations [37] and is reflected in a 12 %
lower mean haemoglobin level in female venous blood
compared to men [38] as well as in lower haematocrit
values. Consistently, in the present study, besides sig-
nificantly elevated erythrocyte counts in men com-
pared with women (Additional file 1: Table S1),
erythrocyte-specific miRNAs such as hsa-miR-451a or
hsa-miR-16-2-3p exhibited higher levels in men,
which is also in line with the previously published ob-
servation that plasma miRNAs correlate to blood cell
counts [24]. As expected, the sex-associated signals
for blood-cell-specific miRNAs largely vanished after
adjustment for BCPs in the present study.
Regulatory roles in haematopoiesis were described for

hsa-miR-451 and hsa-miR-16. These are involved in the
differentiation of erythroid progenitor cells into red
blood cells. Similarly, hsa-miR-150 activates the differen-
tiation of common lymphoid progenitors into T cells, B
cells and natural killer cells [39]. As potential sources of
such miRNAs, lymphoid cells such as T cells, B cells
(hsa-miR-150, hsa-miR-142), platelets (hsa-miR-142)
and monocytes (hsa-miR-145) have been mentioned [24,
40]. In our study this is reflected by, e.g. significantly in-
creased platelet levels in women compared to men
(Additional file 1: Table S1). Recently, it was hypothe-
sized that differential expression of miRNAs in male and
female immune cells contributes to sex differences in
immune capabilities and susceptibilities to autoimmune
diseases [41].
Hence, in studies associating plasma miRNA levels

with specific clinical phenotypes, special attention
should be paid to sex differences and BCPs.
It is clear that further increasing the sample size

might reveal additional associations that until now
did not pass the significance threshold. Furthermore,
while the RT-qPCR approach based on Exiqon´s
Serum/Plasma Focus Panels V3 offers a high specifi-
city and sensitivity on measured miRNAs in a high
throughput manner, it is limited with respect to the
number of detectable miRNAs [15]. Nevertheless, our
results corroborate the general feasibility of associ-
ation studies with plasma miRNAs.
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Conclusions
In the present association study we demonstrate that
plasma miRNA profiles based on a population-based study
cohort reflect individual sex, age, and BMI. Therefore, our
findings underline the importance of considering these
phenotypes as potential covariates in such studies. The
established experimental and computational workflow pre-
sented here will be used in future screening studies for as-
sociations with disease-specific phenotype parameters.
Beyond that, replication of our primary association findings
in further independent cohorts is intended.
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