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1 Introduction

With the observation of a 125GeV Higgs boson at the LHC [1, 2], the final piece of the

Standard Model (SM) is in place. However, the presence of a fundamental scalar combined

with the lack of evidence for any new particles at the TeV scale presents a conundrum.

The Standard Model must eventually incorporate gravity, hence it is at best an effective

theory with a high cutoff scale. However, quantum corrections to the Higgs quadratic

coupling are large, and scale quadratically with the cutoff, indicating a need for a fine-tuned

cancellation between these corrections and the bare Higgs quadratic arising from a more

fundamental theory. This is the hierarchy problem, which has motivated both theoretical

and experimental study of beyond-the-Standard-Model (BSM) physics at or just above the

electroweak symmetry breaking (EWSB) scale. While there is strong indirect evidence for

BSM physics from cosmological considerations, such as the need for inflation, dark matter

and successful baryogenesis, this physics is not yet associated to any particular energy

scale, and need not involve new colored particles, making it easy to hide at the LHC.

Therefore, there is as yet no evidence against a “desert” above the electroweak scale, with

no new particles appearing at the LHC and a fine-tuned Higgs potential. The long-held

assumption of electroweak naturalness is thus in question.

Two central ideas that have long played a role in solutions to the hierarchy problem are

those of supersymmetry (SUSY) and compositeness. Supersymmetry solves the problem by

cancelling the quadratic divergences between bosonic and fermionic loops, at the expense

of requiring a superpartner of opposite statistics and like gauge quantum numbers for every

particle in the Standard Model. By contrast, composite models postulate that the Higgs is

a bound state of some new strongly-interacting dynamics, e.g. a pseudo-Goldstone boson

of a QCD-like theory.

These two approaches share some common problems as well as unique problems of

their own. In their simplest forms, both predict large flavor-changing neutral currents

(FCNCs) and rapid proton decay. Supersymmetry — which predicts many new light

particles — struggles to accommodate ever more stringent LHC constraints. Moreover, the

minimal supersymmetric model predicts a Higgs boson mass well below what is observed,

unless loop corrections are employed to raise it at the expense of some fine tuning and a

“little hierarchy.” By contrast, composite models are constrained by electroweak precision

measurements, requiring a relatively high composite scale and fine tuning to achieve a light

Higgs mass.

The prototypical example of a supersymmetric solution to the hierarchy problem is

the Minimal Supersymmetric Standard Model (MSSM), which pairs every particle in the

Standard Model with a superpartner and includes two Higgs doublets. The renormalizable

interactions include both lepton- and baryon-number violating operators, so R-parity (un-

der which all superpartners are odd) is usually imposed on the theory. The SUSY-breaking

mass terms and interactions generically induce large FCNCs, requiring some special flavor

structure to be compatible with light superpartners, such as minimal flavor violation [3]. A

similar organizing principle can also solve the proton decay problem without the imposition

of R-parity [4, 5].
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The tree-level Higgs mass in the MSSM cannot exceed the Z boson mass, and radiative

corrections are needed, requiring a heavy stop and moderate tuning. An alternative is

to introduce an additional singlet S with a tree-level superpotential SHuHd, the next-to-

minimal supersymmetric standard model (NMSSM) [6, 7]. This increases the Higgs quartic

coupling, allowing a heavier tree-level mass while also solving the µ problem. However, the

required superpotential coupling is rather large, and may have a Landau pole if the cutoff

of the theory is high.

Recent searches for supersymmetry at the LHC place strong constraints on the stop

mass [8, 9], suggesting some degree of tuning [10, 11]. R-parity violation in the form of

baryon number violation (BNV) can erase these constraints at the expense of removing

a natural dark matter candidate (the lightest superpartner) from the theory, but equally

stringent constraints on the gluino mass are virtually unaffected [12, 13], and the tuning

problem persists.

Composite models come in many forms, but we focus on Randall-Sundrum (RS) mod-

els [14] in this work. RS models are based on a warped extra dimension bounded by branes

at either end. By the AdS/CFT correspondence [15–19], RS models are dual to (approxi-

mate) conformal field theories (CFTs), where the fifth dimension (in particular, the warp

factor) is dual to the renormalization scale and the boundary branes are correspondingly

labeled the infrared (IR) and ultraviolet (UV) branes. The appearance of an IR brane is

dual to confinement in the four-dimensional theory, spontaneously breaking the approxi-

mate conformal invariance. By contrast, the UV brane is dual to an ultraviolet cutoff near

the four-dimensional Planck scale.1 The AdS/CFT correspondence improves computabil-

ity in both the four- and five-dimensional pictures, and we make repeated reference to it

throughout our paper.

The RS solution to the hierarchy problem is to localize the Higgs field on the IR

brane, corresponding to a composite Higgs in the CFT dual. Due to warping, the effective

Planck scale on the IR brane is exponentially suppressed, cutting off five-dimensional loop

corrections to the Higgs potential at a low scale. This scale, which we refer to as the

(effective) compactification scale, is dual to the confinement scale in four dimensions, where

loop corrections to the Higgs are cut off due to its composite nature.

The original RS model localizes all SM fields on the IR brane. However, this leads to

severe flavor violation and proton decay problems due to dimension-six four-Fermi operators

suppressed by the confinement scale. A simple solution to the flavor problem is to place the

SM fermions and gauge bosons in the bulk [20–24]. With appropriate boundary conditions,

there is a chiral zero mode whose wavefunction profile depends exponentially on the mass

term in the bulk. Localizing the Higgs on the IR brane with anarchic order-one couplings

to the bulk fermions, the profiles of the fermion zero modes can be adjusted to reproduce

the observed Yukawa couplings in the low energy theory. Since the first- and second-

generation fermions are localized towards the UV brane, they inherit substantial flavor

protection from the “RS-GIM mechanism.” A mild flavor problem remains which can be

1Due to the presence of the UV brane the four-dimensional theory is gravitational, unlike in the usual

AdS/CFT correspondence.
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addressed in various ways [25–28]. An added benefit of this approach is that it explains

the hierarchical Yukawa couplings in terms of order-one differences in the bulk masses.

In CFT language, the fundamental quarks couple to irrelevant CFT operators, so that

their couplings to the CFT in the deep infrared are small and depend exponentially on the

anomalous dimensions of these operators.

The proton decay problem is improved but not solved by the use of bulk fermions,

but can be fixed by imposing a discrete symmetry and/or using horizontal symmetries.

However, the Higgs boson generically acquires a mass at the TeV scale, in tension with

its observed 125GeV mass. Moreover, the sign of the Higgs quadratic term is not con-

trolled and the RS model does not provide a dynamical explanation for electroweak sym-

metry breaking.2

While some leeway still exists, it seems likely that neither supersymmetry nor com-

positeness can completely solve the hierarchy problem in their most minimal form. We are

left with two alternatives. On the one hand, we could accept some yet-to-be-determined

degree of fine tuning, abandoning or revising the naturalness paradigm. The problem with

this approach is that — without naturalness — there is no good reason to expect BSM

physics to be visible at the LHC. Even if new physics exists at the TeV scale, without a

connection to naturalness too many possibilities exist for a targeted study, and there is no

guarantee that it will be detected by the LHC. Anthropic arguments are not yet sufficiently

refined to replace naturalness as a predictive framework, and the end result may be strong

cosmological evidence for BSM physics without any indication of its type or energy scale.

The alternative is to pursue new approaches to the hierarchy problem, including less

minimal realizations of supersymmetry and/or compositeness. Understanding this larger

class of models is necessary to definitively establish whether the Higgs potential is fine-

tuned, regardless of any theoretical prejudice for simpler models.3

In this work, we consider a supersymmetric composite model. The combination of

these two paradigms provides several benefits. By introducing a composite Higgs, we can

eliminate fine tuning above the confinement scale, whereas effective supersymmetry [33–

35] — consisting of light Higgsinos, stops, and gauginos — controls fine tuning below the

confinement scale. The remaining squarks and sleptons can be heavy or even decoupled,

relaxing LHC constraints on supersymmetry. The Higgs is naturally light due to effective

supersymmetry, but the low cutoff allows us to introduce large tree-level couplings with-

out fear of a Landau pole, raising the Higgs mass to its observed value. Due to effective

supersymmetry, the confinement scale can be relatively large, evading electroweak preci-

sion measurements, flavor constraints, and direct searches for Kaluza-Klein (KK) modes.

Finally, the underlying supersymmetry facilitates detailed computations of corrections to

the Higgs potential,4 allowing us to quantify naturalness.

2A possible non-supersymmetric solution to these Higgs-sector problems is to realize the Higgs field

as the fifth component of a bulk gauge field, dual to a pseudo Nambu-Goldstone-boson Higgs in CFT

language [29, 30]. (See [31, 32] for an attempt at a supersymmetric UV completion.) We do not consider

this mechanism further in the present work.
3Indeed, string theory seems to exhibit a preference for non-minimal models.
4However, decoupling the first two generations of squarks leads to hard SUSY breaking and greater
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A generic problem with non-minimal SM extensions is the need to introduce an addi-

tional energy scale besides the weak scale [36], leading to a coincidence problem. Composite

SUSY models are no exception. In this case, the required coincidence is between the con-

finement scale and the soft SUSY-breaking scale (in particular, the scale of the gaugino

masses). Heuristically, this suggests that SUSY breaking should trigger confinement in the

strongly-coupled ultraviolet theory, but the details may not be so simple. While we recog-

nize this to be an important problem, we will not address it explicitly in the present work.

To make progress, we consider the supersymmetric Randall-Sundrum model [22, 37–45]

(cf. [46, 47]). While other choices are possible, we focus on a straightforward supersym-

metrization of the ordinary RS model with the addition of a SUSY-breaking sector on

the UV brane. The first two generations of squarks are localized towards the UV brane

as required by the RS GIM mechanism, and couple directly to the SUSY breaking sec-

tor. Gauginos have a flat profile in the bulk, and also couple directly to SUSY breaking.

However, the resulting gaugino masses are suppressed relative to the first two generations

of squarks. In many cases, the suppression factor is large, and the first two generations

of squarks decouple, with small gaugino masses receiving competitive contributions from

anomaly and radion mediation. The Higgs and the stops are composite, with no direct

coupling to the SUSY-breaking sector and soft masses generated by gaugino mediation

and/or anomaly and radion mediation.

Models of this type have been considered previously in e.g. [43, 44]. The purpose of

the present work is to pursue these ideas in an explicit model which is as realistic and

concrete as possible. We encounter a number of issues which will affect earlier models as

well, such as two-loop quadratic divergences due to decoupling the first two generations of

squarks and light exotic gauge bosons necessitated by a previously recognized U(1) D-term

problem [43, 48]. These issues are related to the use of the RS GIM mechanism to solve the

flavor problem, and may have analogues in other composite SUSY models. Nonetheless,

we obtain a model that is viable with only minimal tuning.

Despite the protection offered by compositeness, the large masses of the decoupled

squarks can still be problematic in one way. Generically, they generate a large hypercharge

D-term, which induces a relevant deformation of the superconformal field theory (SCFT),

spoiling the IR dynamics and introducing large fine tuning. To avoid this situation, the SM

gauge group must be extended [43]. We analyze the possible extensions in detail, and find

that the only viable possibility is a left-right symmetric extension, e.g. the minimal left-right

model, where other extensions lead to light charged and/or colored exotics excluded by the

Large Electron-Positron Collider (LEP) and the LHC. Even the left-right extension leads

to surprisingly light exotic gauge bosons, analogous to Higgsless models [49–51]. These W ′

and Z ′ gauge bosons are already strongly constrained by LHC results, requiring a relatively

high confinement scale and mild fine tuning.

The SUSY RS model has a proton decay problem independent of whether R-parity is

imposed or not [22].5 To solve this problem, we impose a discrete lepton number symmetry,

computational difficulties.
5R-parity violation was originally discussed in [52–57]. See e.g. [58] for a review. Recent attempts at

model building include [4, 5, 59, 60].
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which stabilizes the proton regardless of whether R-parity is imposed. In particular, baryon

number violation is allowed, and can lead to interesting phenomenology. The RS GIM

mechanism is effective at suppressing BNV operators on the IR brane,6 whereas BNV

operators on the UV brane are harmless once the first two generations of squarks are

decoupled. We will show that introducing order-one anarchic couplings leads to a promptly

decaying LSP, relaxing LHC constraints on missing energy while also satisfying low-energy

constraints from n− n̄ oscillations and dinucleon decay. This removes LHC constraints on

the stop mass (see e.g. [61]), reducing the tension between LHC results and naturalness.

Nonetheless, our model is also viable with R-parity conservation.

The rest of the paper is organized as follows. In section 2, we review the SUSY RS

model, placing the standard model fields in the bulk of the warped extra dimension and

explaining the Yukawa hierarchies via their wavefunction profiles. In section 3, we discuss

SUSY breaking in our scenario, explaining possible sources of the gaugino and scalar soft

masses. The degree of fine tuning is then estimated. In section 4, we comment on the Higgs

sector in our model, introducing a singlet field to obtain a viable mass spectrum in the

Higgs sector as in the NMSSM. The cosmological domain wall problem and the strong CP

problem are also addressed. In section 5, we introduce R-parity violating (RPV) couplings

into the model and discuss experimental constraints from low-energy measurements and

collider experiments. In section 6, we extend the standard model gauge group to prevent

a large hypercharge D-term and consequent fine tuning. We show that only one extension

is viable, and discuss its low-energy signatures, some of which appear well below the IR

scale. In section 7, we comment on the constraints from flavor physics and a possible flavor

protection mechanism with U(1) horizontal symmetries. In section 8, we conclude and

discuss possible future directions.

2 The SUSY RS model

In this section, we review the supersymmetric Randall-Sundrum (RS) model. We sum-

marize the description of bulk vector and hypermultiplets coupled to IR-brane localized

Higgs multiplets, and show that the Yukawa hierarchies are explained by the wavefunction

profiles of the bulk matter fields. These profiles will be important for estimating the size

of RPV couplings, as discussed in section 5.

2.1 Supersymmetric fields in the bulk

We consider a 5D warped space with the extra dimension compactified on an S1/Z2 orbifold:

0 ≤ |y| ≤ πR. The spacetime metric is given by [14]

ds2 = e−2k|y|ηµνdx
µdxν + dy2, (2.1)

where ηµν = diag(−1, 1, 1, 1) and k is the AdS curvature, which is somewhat smaller than

the 5D cutoff scale Λ5. The 4D Planck scale M4 is related to the 5D Planck scale M5

by M2
4 ≃ M3

5 /k. Here, we consider a scenario where the (effective) compactification scale

6This is similar to MFV SUSY [4, 5], though the model is not strictly MFV.
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k′ ≡ ke−kπR is near the TeV scale,7 which corresponds to kR ∼ 10. The UV (IR) brane is

located at the orbifold fixed point, y∗ = 0 (y∗ = πR).

We assume that the standard model gauge fields and fermions propagate in the bulk.

Minimal supersymmetry in five dimensions requires eight supercharges, hence a 5D gauge

multiplet consists of a 4D N = 1 vector multiplet V and a chiral multiplet Σ in the adjoint

representation. To obtain a massless gauge boson, we take V to be even under the Z2

parity y → −y and Σ to be odd. The massless modes, a gauge boson Aµ and a gaugino λ,

have the following y dependence [22],

Aµ(x, y) =
1√
2πR

A(0)
µ (x) + · · · , λ(x, y) =

e3k|y|/2√
2πR

λ(0)(x) + · · · . (2.2)

Thus, the wavefunction profile of the gauge boson zero-mode is flat, whereas one can show

that the corresponding KK modes are all localized toward the IR brane. In the 4D effective

theory, the gauge coupling of the zero mode is given by

1

g24
=

2πR

g25
, (2.3)

where g5 is the 5D gauge coupling (with mass dimension −1/2).

A bulk hypermultiplet consists of a vector-like pair of 4D N = 1 chiral multiplets, Ψ

and Ψc. The bulk action is given by [41]

SΨ =

∫

d5x

{

e−2k|y|
∫

d4θ
(

Ψ†Ψ+ΨcΨc†
)

+ e−3k|y|
∫

d2θΨc

[

∂y −
(

3

2
− cΨ

)

k ǫ(y)

]

Ψ+ h.c.

}

,

(2.4)

where we omit the gauge interactions for simplicity and ǫ(y) is 1 (−1) for positive (neg-

ative) y. We assume that Ψ is even under Z2 parity while Ψc is odd, which leads to the

usual supersymmetric standard model matter sector below the compactification scale. The

wavefunction profile of the zero mode is controlled by the bulk mass parameter cΨ. For

cΨ > 1/2 (cΨ < 1/2), the zero mode field is localized toward the UV (IR) brane. From the

above action, the massless modes have the following y dependence,

Ψ(x, y) =
e−(cΨ− 3

2
)k|y|

√

1

(cΨ− 1
2)k

(

1− e−2πkR(cΨ− 1
2
)
)

Ψ(0)(x) + · · · .
(2.5)

The 4D effective theory below the compactification scale can be obtained by substituting

this expression into the action and integrating over y. As in the case of the gauge fields,

the wavefunctions of the KK modes are all localized toward the IR brane, regardless of the

bulk mass parameter of the hypermultiplet.

7The mass of the lightest KK mode is of order πk′.
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2.2 The Yukawa hierarchies

We assume that the Higgs fields live on the IR brane. The quark and lepton fields propagate

in the bulk and couple to the Higgs via brane-localized Yukawa couplings:8

SYukawa =

∫

d5x δ(y − πR) e−3πkR

×
{∫

d2θ
(

ỹiju HuQiūj + ỹijd HdQid̄j + ỹijν HuLiν̄j + ỹije HdLiēj

)

+ h.c.

}

,

(2.6)

where i = 1, 2, 3 labels the generation and the Yukawa couplings ỹ have mass dimension

−1. We assume that these couplings are O(1) in units of k−1 with anarchic flavor structure.

Using the wavefunction profile (2.5), integrating over y to remove the delta function and

canonically normalizing the Higgs fields as Hu,d → eπkRHu,d, we find the 4D effective

superpotential arising from the brane-localized interactions,

W 4D
Yukawa = yiju HuQiūj + yijd HdQid̄j + yijν HuLiν̄j + yije HdLiēj , (2.7)

where

yiju = ỹiju k ζQi
ζūj , yijd = ỹijd k ζQi

ζd̄j , yijν = ỹijν k ζLi
ζν̄j , yije = ỹije k ζLi

ζēj . (2.8)

The 4D Yukawa couplings y are dimensionless. The factor ζΨ is given by

ζΨ =

√

cΨ − 1
2

e2πkR(cΨ− 1
2
) − 1

, (2.9)

so that

ζΨ ≃







































√

cΨ − 1

2
e−(cΨ− 1

2
)πkR (cΨ ≫ 1/2)

1√
2πkR

(cΨ ∼ 1/2)

√

1

2
− cΨ (cΨ ≪ 1/2)

(2.10)

with an exponential suppression for cΨ ≫ 1/2. To explain the Yukawa hierarchies of quarks,

the 1st and 2nd generations of quark multiplets are localized toward the UV brane and

they have bulk mass parameters cΨ1,2 > 1/2. The right-handed bottom quark multiplet

also lives near the UV brane and has c d̄3 > 1/2. On the other hand, the 3rd generation

left-handed quark multiplet and the right-handed top quark multiplet are localized toward

the IR brane and have cQ3 , c ū3 < 1/2. For leptons, all generations are localized toward the

UV brane with bulk mass parameters larger than 1/2.

8We introduce right-handed neutrinos for later convenience.
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In the following discussion, we concentrate on the Yukawa couplings of quarks. The

similar discussion can be applied to the lepton case. We define diagonalization matrices of

the quark Yukawa matrices (2.7) as

u = Vu u0, ū = Vū ū0,

d = Vd d0, d̄ = Vd̄ d̄0,
(2.11)

where (u0, ū0, d0, d̄0) are mass eigenstates of quarks and the V ’s are unitary matrices.

The Cabibbo-Kobayashi-Maskawa (CKM) matrix is then given by VCKM = V †
uVd. From

the forms of the Yukawa couplings (2.7) and (2.8), the quark masses are approximately

given by

mui ≃ ζQi
ζūiv sinβ, mdi ≃ ζQi

ζd̄iv cosβ, (2.12)

where we define tanβ = 〈Hu〉/〈Hd〉 and the Higgs expectation value v ≃ 174GeV. The

elements of the diagonalization matrices of the Yukawa matrices, Vu, Vd, Vū and Vd̄, are

approximately given by [24]

| (Vu)ij | ≃ | (Vd)ij | ≃ | (VCKM)ij | ≃
ζQj

ζQi

for j ≤ i,

| (Vū)ij | ≃
ζūj
ζūi

, | (Vd̄)ij | ≃
ζd̄j
ζd̄i

for j ≤ i,

(2.13)

where the i and j indices are interchanged for j > i. The CKM elements can be fitted by

| (VCKM)21 | ≃ λ, | (VCKM)32 | ≃ λ2, | (VCKM)31 | ≃ λ3, (2.14)

where λ ∼ 0.2 with a reasonable accuracy. From the equations (2.12) and (2.13), we now

have only two free parameters such as ζQ3 and tanβ. Explicitly, the wavefunction factors

of quarks are written in terms of these two parameters as

ζQ1 ≃ λ3ζQ3 , ζQ2 ≃ λ2ζQ3 ,

ζū1 ≃ mu

λ3ζQ3v sinβ
, ζū2 ≃ mc

λ2ζQ3v sinβ
, ζū3 ≃ mt

ζQ3v sinβ
,

ζd̄1 ≃ md

λ3ζQ3v cosβ
, ζd̄2 ≃ ms

λ2ζQ3v cosβ
, ζd̄3 ≃ mb

ζQ3v cosβ
.

(2.15)

To estimate numerical values, we use the renormalized quark masses at the ∼ 10 −
30TeV scale [62]9

mu ∼ 1MeV, mc ∼ 500MeV, mt ∼ 150GeV,

md ∼ 2MeV, ms ∼ 40MeV, mb ∼ 2GeV.
(2.16)

9These values depend on the spectrum of superpartners and the specific choice of renormalization scale,

but not enough to affect our subsequent analysis. The renormalized top mass given here is valid for tanβ & 3.

It increases substantially at very low tanβ due to the RG effect of the larger top Yukawa coupling.
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For low tanβ and ζQ3 ∼ 1, we have ζū3 ∼ 1 and ζΨ . 1√
2πkR

for all other quark multi-

plets. Thus, by (2.10), Q3 and ū3 are localized toward the IR brane with cQ3, ū3 < 1/2,

whereas the other quark multiplets are localized toward the UV brane, with cΨ > 1/2. In

section 5, we use these expressions to estimate the size of RPV couplings in the 4D effective

superpotential.

3 SUSY breaking

In this section, we consider SUSY breaking in the supersymmetric RS model. We assume

that a SUSY breaking sector is localized on the UV brane. This is a natural geometric way

to make stops light [45] (and hence avoid tuning of the Higgs potential), since stops are

localized near the IR brane, away from the source of SUSY breaking. By contrast, UV-

brane localized squarks and sleptons can get soft masses via a direct (higher-dimensional)

coupling to the SUSY breaking sector. Gauginos can also couple directly to the SUSY

breaking sector, but the resulting gaugino mass is often strongly suppressed relative to the

scalar mass, as we explain below. In this case, the UV-brane localized scalars must be very

heavy to reproduce reasonable, weak-scale gaugino masses, leading to a “natural SUSY”

spectrum [33–35, 63].

We refer to this class of models, with an IR-brane-localized Higgs, hierarchical

Yukawa couplings generated by the wavefunction profiles of bulk fermions as in sec-

tion 2, and UV-brane-localized SUSY breaking leading to decoupled first and second gen-

eration squarks, as “warped natural SUSY.” Models of this type have been considered

previously in [42–44, 64].10

3.1 Couplings to the SUSY breaking sector

Gaugino, squark, and slepton masses can be generated by higher-dimensional operators on

the UV brane. The leading contributions are:

SUV ⊃
∫

d5x δ(y)

[

cij

∫

d4θ
X†X
kM2

Ψ†
iΨ

j + bab
∫

d2θ
X

kM
TrWα

aWα b + h.c.

]

, (3.1)

whereX ≡ θ2F is a SUSY breaking spurion with nonzero F -term,M is the mediation scale,

and in general the coefficients cij and bab are constrained only by gauge invariance, with

O(1) values and an otherwise anarchic structure. This gives the gaugino and scalar masses:

mab
λ =

F

πkRM
bab , (m2)ij =

F 2

M2
ηiηjc

i
j , (3.2)

where

ηΨ =

√

cΨ − 1
2

1− e−2πkR(cΨ− 1
2
)
, (3.3)

10In [42] the gauginos are decoupled as well as the first and second generation squarks.
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so that

ηΨ ≃







































√

cΨ − 1

2
≃
√

1

πkR
log ζ−1

Ψ (cΨ ≫ 1/2)

1√
2πkR

≃ ζΨ (cΨ ∼ 1/2)

√

1

2
− cΨ e−( 1

2
−cΨ)πkR ≃ ζΨe

−πkR ζ2Ψ (cΨ ≪ 1/2)

(3.4)

with ζΨ given by (2.10). Thus, the soft masses for Q3, ū3 are exponentially suppressed,

and other sources of SUSY breaking such as loop corrections induced by the other soft

masses will dominate. For the other squarks (at low tanβ and ζQ3 ∼ 1) we have

2 . log ζ−1
Ψ . 7, hence

m2
q̃ &

2F 2

πkRM2
. (3.5)

Comparing with the gaugino masses, we conclude that the UV brane localized scalars are

an order of magnitude or more heavier than the gauginos in general. Compatibility with

the experimental lower bound on the gluino mass suggests that these scalars are above

10TeV, hence they are absent from the low energy effective theory.11

The mass hierarchy between the UV-brane-localized scalars and the gauginos can be

much larger when the SUSY breaking sector contains no singlets with large F -terms, i.e.

when the SUSY breaking spurion X is charged under some symmetry of the SUSY breaking

sector. In this case, the leading contribution to gaugino masses is:

SUV ⊃
∫

d5x δ(y)

[

bab
∫

d4θ
X†X
kM3

TrWα
aWα b + h.c.

]

, (3.6)

giving

mab
λ =

F 2

πkRM3
bab . (3.7)

For a high messenger scale, F/M2 ≪ 1, and therefore mλ ≪ mq̃, and the UV-brane-

localized scalars decouple.12

At first sight, this situation appears to be dangerous for naturalness. In the MSSM,

decoupling the scalars leads to quadratic divergences in the Higgs soft masses. However, in

our model the Higgs fields are localized on the IR brane, and hence the one-loop radiative

corrections to the Higgs soft masses are cut off at the IR scale ΛIR ∼ πk′:13

∆m2
H ≃ − 3

8π2
y2Ψ Λ2

IR . (3.8)

11By adjusting ζQ3
and tanβ, we can make some scalars lighter at the expense of making others heavier.

12The corresponding KK modes do not decouple, however.
13See section 3.4 for a discussion of two-loop quadratic divergences induced by the gauge interactions.
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Because of the small Yukawa couplings for the other quarks and leptons, only the stop

needs to be in the effective theory [43, 44], and the mass scale of the UV brane localized

squarks and sleptons has little effect on tuning (see, however, section 6).

In fact, if the UV-brane couplings cij are flavor anarchic, then to avoid excessive flavor

and CP violation we require mq̃ & 5× 104TeV,14 or

F

M
& 2× 105 TeV (3.9)

which is compatible with TeV scale gauginos if F/M2 . 2× 10−4.

3.2 Anomaly and radion mediation

Since gaugino masses can be strongly suppressed relative to the squark masses, it is im-

portant to consider other ways in which SUSY breaking can be mediated to the fields in

the low energy effective theory. In this subsection, we consider the effects of anomaly and

radion mediation. An F -term for the radion superfield T leads to gaugino masses at tree

level [67] (see also [68, 69]). The kinetic term for the gauge zero mode in the 4D effective

Lagrangian is given by

∆L4 =
1

2g25

∫

d2θ T TrWαWα + h.c., (3.10)

where T is normalized so that 〈T 〉 = πR + θ2FT . The radion F -term generates a gaug-

ino mass,

mλ =
FT
2T

. (3.11)

Notably, if tree-level radion mediation dominates, then the gaugino masses are degenerate

at leading order.

However, radion mediation also occurs at one-loop level, along with anomaly media-

tion [70, 71]. The calculation of these contributions is somewhat complicated due to the

warped extra dimension and the hard SUSY breaking implied by the decoupling of the

heavy scalars.

We make a rough estimate as follows. We first consider the case of pure anomaly

mediation, where FT = 0. We work in the dual four-dimensional description, where the

standard model is a weakly-gauged flavor symmetry of a strongly interacting SCFT. Before

decoupling the fundamental scalars (dual to the UV brane localized scalars), SUSY is

softly broken and the usual anomaly-mediation formulas for the gaugino masses apply.

The gaugino masses will differ from their values in the minimal supersymmetric standard

model (MSSM) due to contributions to the beta functions from CFT states, but these

contributions are removed when these states are integrated out supersymmetrically due to

threshold corrections to the gaugino masses, and the result is UV-insensitive.

Upon integrating out the heavy scalars while retaining their massless superpartners

there is no analogous threshold correction, since the gaugino masses are protected by an

14Flavor violation is communicated to the light quarks via αs suppressed squark-gluino loops, leading to

a weaker bound than that for generic new physics [65, 66].
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R-symmetry. Thus, just below this scale the gaugino masses mimic the standard anomaly-

mediated formula, counting the incomplete fermion multiplets as whole multiplets for this

purpose. However, the physics is no longer UV-insensitive: the one-loop beta functions

for the gaugino masses will depend only on the spectrum of complete multiplets, whereas

the one-loop beta functions for the gauge couplings will incorporate all multiplets, and

the anomaly mediation formula will break down under RG flow. The resulting physics

is somewhat complicated, but we expect that these RG effects will not drastically affect

the gaugino spectrum. Hence, we assume that the usual anomaly mediation formula with

incomplete fermion multiplets counted as whole multiplets is approximately valid at the

confinement scale. Improving and/or validating this approximation is left to a future work.

Next, we consider the case of pure radion mediation, where Fφ = 0 for the supercon-

formal compensator φ [72–75]. The warp factor superfield ω ≡ φe−kT is the effective su-

perconformal compensator on the IR brane [76], hence there is a one-loop radion-mediated

contribution to the gaugino masses given by replacing Fφ with Fω/ω in the usual anomaly

mediated formula. This replacement affects only the IR-brane localized fields, whose scalar

partners are not decoupled, hence there is no subtlety with hard SUSY breaking in this case.

Combining these two results, we estimate

m
(1)
g̃ ∼ −9

2

g23
16π2

Fφ +
3

2

g23
16π2

Fω
ω
,

m
(1)

W̃
∼ −3

2

g22
16π2

Fφ +
5

2

g22
16π2

Fω
ω
,

m
(1)

B̃
∼ 51

10

g21
16π2

Fφ +
3

2

g21
16π2

Fω
ω
,

(3.12)

where the different running of the gaugino masses and gauge couplings below the heavy

scalar threshold is neglected as explained above. This and other effects from radion stabi-

lization may lead to a substantial model dependence in the gaugino masses, but we use the

heuristic estimates (3.12) for the remainder of the paper for want of a better calculation,

which we leave to a future work. Fine tuning will depend primarily on a quadratic diver-

gence which we discuss later, so our conclusions will not depend on the detailed coefficients

in (3.12).

Since

Fω
ω

= Fφ − (πkR)
FT
T

(3.13)

receives a volume-factor (πkR) enhancement, the one-loop radion-mediated contribution

to the gluino mass is similar in size to the tree-level contribution (3.11). The gaugino

masses are the sum of these two contributions. Typically, in models where SUSY is broken

dynamically in a hidden sector, |Fφ| ≃ m3/2,
15 implying an upper bound on the gravitino

mass m3/2 . 100TeV for TeV scale gauginos.

15See [77–79] for some examples where this relationship fails.
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Anomaly and radion mediation also contribute to the scalar masses. There is a tree-

level radion mediated contribution [41]:

mΨ =

∣

∣

∣

∣

(1/2− cΨ)kπR

2 sinh [(1/2− cΨ)kπR]

∣

∣

∣

∣

FT
T
. (3.14)

However, this is exponentially suppressed unless cΨ ≃ 1/2, and is therefore negligible

in most cases. Anomaly mediation and radion mediation do contribute to scalar masses

at one-loop. Nonetheless, this is only relevant for the stop mass and the Higgs mass

(discussed in section 3.4), since the UV brane localized scalars acquire a much larger mass,

as argued above.

3.3 A coincidence problem

A generic problem with models which extend the MSSM with additional new physics at the

TeV scale is that this typically requires a nontrivial coincidence between the supersymmetry

breaking scale and the scale associated to the MSSM extension [36], such as a mass scale or

a confinement scale associated to the new physics. In the present context, this coincidence

manifests itself as the confluence between the gaugino masses and the compactification

scale. If the gaugino masses are set by (3.7), then this confluence seems to be hard to

explain, as the suppression factor F/M2 bears no obvious relation to the compactification

scale.

On the other hand, if the gaugino masses are generated by radion mediation (poten-

tially with an anomaly-mediated contribution as well), then the gaugino masses are set by

the same physics which stabilizes the radion (see e.g. [80–84]) and sets the compactification

scale. In this case, it is conceivable that a well-designed mechanism of radion stabilization

could explain the coincidence between these two scales. Motivated by this, we assume

henceforward that the radion and anomaly mediated contributions, (3.11), (3.12), domi-

nate over direct couplings to the SUSY breaking sector. However, we know of no concrete

model which fully explains this coincidence, and we leave the problem for a future work.

The coincidence problem further motivates our choice of heavy first and second gen-

eration squarks. If by some mechanism the large squark masses (3.2) were forbidden, we

could build a model with first and second generation squarks in the low-energy effective

theory. However, in this case the principle contributions to the squark masses would come

from gaugino mediation and/or anomaly and radion mediation, as detailed in the next

subsection. These contributions are the same for the stop and other squarks, hence their

masses would be similar, requiring light first and second generation squarks in conflict

with LHC searches.16 The only way to introduce a substantial splitting is by coupling the

first two generations directly to the SUSY breaking sector, as above. However, this re-

quires a further coincidence to ensure a TeV-scale splitting; a larger splitting would remove

the squarks from the effective theory, as before, whereas a smaller splitting would have

little effect.

16See however [85].
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3.4 Light scalars and fine tuning

Since the up-type Higgs soft mass m2
Hu

is radiatively generated by the stop masses, in

general light stops are needed for natural electroweak symmetry breaking. At present, LHC

searches place a strong constraint on the stop mass in R-parity conserving models [8, 9]. In

a significant fraction of parameter space, the bound is mt̃ & 650GeV. While baryonic RPV

can significantly reduce this limit, Higgs coupling measurements still constrain the light

stop masses [86]. In a typical NMSSM-like model, for the h → gg and h → γγ couplings

to agree with their presently measured values, one stop mass has to be at least 300GeV,

which is still consistent with naturalness.

There are three important contributions to the stop mass, two of which are positive

and one of which is negative. Firstly, anomaly and radion mediation generate non-zero

stop masses at the compactification scale [76],

m2
t̃(0)

=
1

(16π2)2

∣

∣

∣

∣

Fω
ω

∣

∣

∣

∣

2
(

8g43 + · · ·
)

. (3.15)

where the warp factor superfield ω ≡ φe−kT replaces the superconformal compensator

φ because the stops are localized toward the IR brane and their effective cutoff scale is

set by ω.

Secondly, positive squark masses are radiatively generated by the gluino below the

cutoff ΛIR ∼ πk′,

δm2
t̃
|gluino ≃

8α3

3π
|mg̃|2

[

log
ΛIR

mg̃
+

1

2

]

, (3.16)

where the second term is a threshold correction [87] evaluated in the limit mt̃ ≪ mg̃,

which we include for completeness due to the small log inherent in a low cutoff. The

scenario where (3.16) is the dominant contribution to the stop mass is known as “gaugino

mediation” [88, 89].

The gluino mass is stringently constrained by the LHC experiments. Without RPV,

gluino pair production leads to copious top quarks, high-pT (b-)jets and missing transverse

energy (MET) from stable lightest supersymmetric particles (LSPs). This gives a stringent

lower bound on the gluino mass, approaching the kinematic limit at Run I of the LHC

(∼ 20 fb−1 at 8TeV) which corresponds to mg̃ ∼ 1.2 − 1.4TeV. With RPV, there is a

sharp reduction of missing energy, which can relax the limit from MET-based searches.

However, in this case, the extra jets replace missing energy, which gives rise to the limit on

the gluino mass from searches that do not require MET. The lower bound on the gluino

mass is then at least 1TeV [12, 13].

In either case, the gluino mediated contribution to the stop mass is sizable. How-

ever, if the gluino mass is generated by anomaly/radion mediation, then (3.15) is typically

dominant over the gaugino-mediated contribution, unless |Fω/ω| ≪ |Fφ|, which requires

FT /T ∼ 1
πkRFφ. This occurs naturally in the Luty-Sundrum mechanism of radion stabi-

lization [83, 84], where the gaugino-mediated contribution dominates.

In addition to these positive contributions, there is an important negative contribution

to the stop masses as well. This comes from a two-loop quadratic divergence induced by
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Figure 1. Two-loop diagrams contributing to a quadratic divergence in the stop mass induced by

the absence of the UV-brane localized squarks from the effective theory.

the light quarks, shown in figure 1. Such a divergence is possible because the low-energy

effective theory contains incomplete quark multiplets with missing squarks, due to the

decoupling of the UV-brane localized squarks.

While quadratic divergences do not occur in a mass-independent scheme such as DR,

large threshold corrections can appear in these schemes, and they play a similar role.

For instance, if the UV theory is supersymmetric, then the threshold correction upon

integrating out a heavy scalar can be interpreted as roughly equivalent to the quadratic

divergence which would appear in the low energy effective theory in another scheme.

Consider a gauge theory with two charged chiral multiplets in representations r and

R. Suppose that the fermionic components of these multiplets are massless and that scalar

masses are m and M , respectively, where m ≪ M . The threshold correction to m upon

integrating out the heavy scalar at a scale µ takes the form [90, 91]:

∆m2(µ) = −4

(

g2

16π2

)2

C(r)S(R)M2

(

π2

3
− 2− log

M2

µ2

)

(3.17)

in the DR
′
scheme,17 where C(r) denotes the quadratic Casimir of r (normalized to N2−1

2N

for SU(N)) and S(R) denotes the Dynkin index of R (normalized to 1
2 for SU(N)). The

coefficient of the log is fixed to agree with the two-loop beta functions in this scheme [93].

Taking ∆m2(M) as an estimate of the quadratic divergence, we find for the stop:

δm2
t̃
|2−loop ≃ − 3

2π2

(

π2

3
− 2

)

α2
3 Λ

2
IR . (3.18)

Because of this negative contribution, there is an upper limit on the cutoff ΛIR relative to

the gluino mass mg̃ to ensure a non-tachyonic stop. For instance, in the case Fω/ω ≪ Fφ,

as in the Luty-Sundrum model, we find mg̃ & ΛIR/12. This limit is relaxed when Fω/ω

is substantial. In either case, there is some degree of cancellation between the quadratic

divergence and anomaly and radion-mediated effects. So long as the stop is not tachyonic,

this cancellation is only important insofar as it leads to tuning in the Higgs potential, which

we quantify below.

17There is some disagreement about this result in the literature. For instance [92] finds an extra term

log 4π − γ within the parentheses. While [90–92] all claim to use DR
′

, this may be due to some subtle

residual scheme dependence.
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We now discuss contributions to the up-type Higgs mass. As with the stop, there is a

direct contribution from anomaly/radion mediation:

m2
Hu(0)

=
1

(16π2)2

∣

∣

∣

∣

Fω
ω

∣

∣

∣

∣

2
(

−16y2t g
2
3 + 18y4t + · · ·

)

. (3.19)

The up-type Higgs mass also receives one-loop corrections from the stop and wino masses,

as well as a quadratically divergent correction of the form (3.17). We separate these

corrections into two pieces. Firstly, we obtain corrections proportional to Λ2
IR from the

quadratic divergences in the stop and up-type Higgs masses:

δm2
Hu

|quad ≃
[

9y2tα
2
3

8π4
log

ΛIR

mt̃

− 27α2
2

32π2

](

π2

3
− 2

)

Λ2
IR , (3.20)

where we neglect g1, g2 ≪ g3 in the first term and g1 ≪ g2 in the second term. The

remaining contributions to m2
Hu

are all proportional to |Fφ|2 or |Fω/ω|2:

δm2
Hu

|A/R ≃ m2
Hu(0)

− 3y2t
4π2

m2
t̃(0)

log
ΛIR

mt̃

+
3α2

2π
|mW̃ |2 log ΛIR

mW̃

− 2α3y
2
t

π3
|mg̃|2

(

1

2
log2

ΛIR

mg̃
+ log

ΛIR

mg̃
log

mg̃

mt̃

)

,

(3.21)

where we include (3.19), m2
t̃(0)

is given by (3.15), and we neglect threshold corrections. The

α3-dependent corrections in (3.20) and (3.21) arise from radiative corrections to the stop

mass which are communicated to the Higgs mass through the one-loop renormalization

group equations.

Unless the cutoff ΛIR is naturally related to |Fφ| and/or |Fω/ω| in a particular way, the

quadratic divergence (3.20) will be an irreducible source of fine tuning. For a sufficiently

high cutoff, the dominant constraint on mg̃ is that of a non-tachyonic stop, rather than the

direct LHC constraint. In this case, (3.20) is typically the dominant source of tuning. We

estimate the fine tuning in this case using the fine-tuning measure [94]:

∆ ≡
2 δm2

Hu

m2
h

, (3.22)

for tanβ & 2, where mh = 125GeV is the observed Higgs boson mass. The result depends

strongly on the cutoff. For example, with ΛIR = 15TeV we find ∆ ∼ 5, corresponding

to 20% fine tuning. To obtain this result, we substitute the running gauge couplings

evaluated at the cutoff into (3.20), where we assume the spectrum mg̃ = mW̃ = 1.5TeV,

mt̃ = 500GeV, and mh̃ = 200GeV, giving α3(15 TeV) ≃ 0.076 and α2(15 TeV) ≃ 0.032.

The degree of fine tuning depends only weakly on the superpartner spectrum, but increases

rapidly as the cutoff is raised; for ΛIR = 30TeV, we obtain ∆ ≃ 25, corresponding to

4% tuning.

When the cutoff is low, the quadratic divergences are subdominant, and the degree

of tuning is more difficult to characterize in general. The LHC constraints on the gluino

mass are likely to be the dominant source of tuning, but estimating this tuning requires
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a precise estimation of the anomaly and radion mediated contributions to the gaugino,

stop, and Higgs masses. As one example, we consider the case |Fω/ω| ≪ |Fφ|, so that

m2
Hu(0)

and m2
t̃(0)

are negligible. Assuming the validity of (3.11) and (3.12), we find that

|mg̃| ∼ |mW̃ |.18 The gaugino-mediated terms in (3.21) scale with |Fφ|2, and provide a

measure of fine tuning. For instance, for mg̃ = mW̃ = 1.5TeV and ΛIR = 10TeV, we

obtain mt̃ ≃ 500GeV with ∆ ∼ 2.5, corresponding to 40% (almost negligible) tuning.19

In this regime, fine tuning increases rapidly as the gluino mass is raised, but depends only

weakly on the cutoff.

Thus, a natural model is possible if we can achieve a low cutoff with light gauginos.

Improved limits on the gluino mass and/or direct or indirect constraints on the compacti-

fication scale will inevitably increase the tuning.

4 Higgs physics

We comment briefly on the Higgs sector in our scenario. We employ an RS realization

of the NMSSM. To generate the µ term and explain the observed Higgs boson mass of

125GeV, we introduce a bulk singlet field S localized toward the IR brane together with a

superpotential on the IR brane:

SHiggs =

∫

d5x δ(y − πR) e−3kπR

[∫

d2θ

(

λ̃SHuHd +
κ̃

3
S3

)

+ h.c.

]

, (4.1)

where λ̃ and κ̃ are coupling constants with mass dimension −1/2 and −3/2 respectively.

We impose a Z3 symmetry explicitly broken on the UV brane, under which Φ → e2πi/3Φ

for every chiral multiplet in the theory. This corresponds to an accidental Z3 symmetry in

the CFT description.

Using the wavefunction profile (2.5) and integrating over y, we obtain the 4D effective

superpotential

W eff
Higgs = λeffSHuHd +

κeff
3
S3, (4.2)

where λeff ≡ λ̃ k1/2 ζS and κeff ≡ κ̃ k3/2 ζ3S are dimensionless coupling constants, with ζS
given by (2.10). The coupling λeff contributes to the Higgs quartic coupling at tree-level.

The tree-level upper bound on the mass of the lightest neutral CP-even Higgs boson is

then [6, 7]

m2
h ≤ m2

Z

(

cos2 2β +
2λeff
g21 + g22

sin2 2β

)

. (4.3)

To obtain the observed Higgs mass, small tanβ and order-one λeff are required. Since the

running of the 4D effective coupling λeff is cut-off at the IR scale, this coupling can be large

18This is a numerical accident, since the wino mass comes mainly from tree-level radion mediation, (3.11),

whereas the gluino mass comes mainly from the one-loop contribution, (3.12). Model-dependence in (3.12)

may alter this conclusion.
19The degree of tuning is decreased by a fortuitous partial cancellation between the gluino- and wino-

mediated terms.
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at the electroweak scale without encountering a Landau pole [95]. Therefore, a 125GeV

Higgs boson is easily obtained.

An explicit µ term is forbidden by the Z3 symmetry. Instead, to generate a Higgsino

mass S must obtain a nonzero vev, µeff = λeff〈S〉 ∼ 200GeV, spontaneously breaking the Z3

symmetry. As a result, domain walls will appear during the electroweak phase transition

in the early universe. To avoid upsetting the balance of light elements in the universe,

these domain walls must disappear before nucleosynthesis, which requires a sufficiently

large splitting between the vacuum energies of the three vacua [96, 97],

∆V & (1MeV)4 . (4.4)

This can be generated by coupling S to the SUSY breaking sector on the UV brane, where

the Z3 symmetry is explicitly broken. For example, a tadpole can be generated:

V 6Z3 = aSS + a∗SS
∗ + . . . , (4.5)

where aS has mass dimension 3. The mass scale of this potential can be controlled by

adjusting ηS ≃ e−(
1
2
−cS)πkR, with little effect on ζS (hence λeff). The domain wall problem

is solved without fine tuning for a wide range of ηS values corresponding to (20 KeV)3 .

aS . (200 GeV)3.

Finally, we briefly comment on a possible solution to the strong CP problem based

on an invisible axion model, which introduces a SM singlet with a U(1) Peccei-Quinn

(PQ) charge and a large vev (for a review, see e.g. [98]). The phase of the singlet is

the axion, whereas the vev sets the axion decay constant, and must be much larger than

the electroweak scale to avoid experimental constraints. Popular invisible axion models

include the KSVZ model [99, 100], with additional heavy PQ-charged vector-like quarks

and vanishing PQ charge for the light fields, and the DFSZ model [101, 102], with no

additional heavy particles, two Higgs doublets, and PQ-charged standard model fields.

Since the DFSZ model only requires an additional singlet (the second Higgs doublet

already being required by supersymmetry), this model is more minimal, and we focus on

it here. In this model, quarks, leptons, and the Higgs doublet transform nontrivially under

the PQ symmetry, but only the Higgs field couples to the axion singlet at the renormalizable

level. A supersymmetric extension of the model is possible [103], with a superpotential

Waxion = ξAHuHd , (4.6)

where A is the axion chiral superfield and ξ is a dimensionless coupling constant. The axion

is the phase of the scalar component of A, which gets a large vev 〈A〉 ∼ 1012GeV. Since this

vev generates an effective µ term, we require ξ . 10−10 to preserve naturalness. Although

technically natural, there is no reason for such a small coupling in the 4D model given

in [103]. By contrast, the SUSY RS model provides a natural explanation if A comes from

a bulk multiplet localized toward the UV brane, so that the 4D effective superpotential (4.6)

includes a wavefunction suppression factor. In this scenario, cosmological dark matter could

consist of the axion and/or its superpartner, the axino.
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Figure 2. A proton decay diagram induced by the operator 1

Λ
Q3L and involving only sparticles

which must be light to preserve naturalness. A low cutoff Λ ∼ 10TeV is ruled out.

5 R-parity violation

Randall-Sundrum models generically have a proton decay problem due to their low cutoff

(see e.g. [22]). For instance, in the supersymmetric RS model the extremely dangerous

operator 1
ΛIR

QQQL can be generated on the IR brane with ΛIR near the TeV scale. The

flavor-dependent wavefunction suppression implicit in the model is not enough to suppress

proton decay.20 Increasing the masses of the first and second generation squarks does

not save the situation because we can draw a diagram including only the light sparticles

required to preserve naturalness, as in figure 2.

A simple solution is to impose either lepton- or baryon-number conservation on the

theory. While U(1)B and U(1)L are anomalous, whereas U(1)B−L does not forbid QQQL

(nor does R-parity), anomaly-free discrete subgroups Z
(B)
3 ∈ U(1)B and Z

(L)
3 ∈ U(1)L exist,

due to the existence of three generations of matter in the standard model.21 We focus on

the leptonic Z
(L)
3 ,

L→ e2πi/3 L, ν̄ → e−2πi/3 ν̄, ē→ e−2πi/3 ē , (5.1)

which forbidsQQQL as well as many other dangerous operators. Majorana neutrino masses

are forbidden by the Z
(L)
3 symmetry, so we are forced to introduce Dirac masses for the

neutrinos.22 The tiny neutrino Yukawa coupling can be explained if ν̄ is strongly localized

toward the UV brane [20].

The discrete lepton-number symmetry imposed above still allows some lepton-number

violating couplings, such as the superpotential coupling ν̄ν̄ν̄ on both of the branes and
1

Λ3
IR
(LHu)

3 on the IR brane, which could lead to proton decay in the presence of baryon

20This operator is dangerous even in the MSSM with the cutoff near the Planck scale, though in this case

a reasonable “Yukawa-like” flavor structure can eliminate the issue. The problem is then to explain why

Planck-suppressed operators should have such a flavor structure.
21Discrete anomalies were first discussed in [104]. However, of the “anomalies” discussed in that work, only

the G2
Zn and (grav)2Zn anomalies (for G nonabelian) are required to vanish for a conserved symmetry [105],

relating to gauge and gravitational instantons, respectively.
22Alternatively, we can explicitly break the lepton number symmetry by the Majorana neutrino masses

of the see-saw mechanism. This case requires a careful study of the possible contributions to proton decay,

as in e.g. [4, 5].
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sb bd ds

u 8× 10−6 2× 10−6 1× 10−6

c 7× 10−4 2× 10−4 1× 10−4

t 3× 10−3 1× 10−3 6× 10−4

Table 1. Estimate of the effective RPV couplings originating on the IR brane for tanβ = 3 and

ζQ3
= 1 using (5.5). These are suppressed by the wavefunction profiles (2.15).

number violation. However, every proton decay diagram involving the coupling ν̄ν̄ν̄ is sup-

pressed by the neutrino Yukawa coupling and hence the decay width is strongly suppressed.

The contribution from the operator (LHu)
3 to proton decay is also small enough to be ig-

nored because all lepton multiplets are localized toward the UV brane and dimension of

the operator (LHu)
3 is rather high. In addition, proton decay to gravitinos is forbidden

when the gravitino mass is larger than the nucleon mass. Thus, there is no proton decay

problem once Z
(L)
3 is imposed, and neither R-parity nor baryon number conservation need

to be imposed.

5.1 Baryon number violation

While we imposed Z
(L)
3 to suppress proton decay, baryon number violation is allowed, which

will lead to baryonic R-parity violation (RPV). We will show that baryon number violation

is suppressed by the wavefunction profiles of the quark multiplets as well as by the heavy

squark masses, easily satisfying constraints from ∆B = 2 processes such as n−n̄ oscillations

and dinucleon decay. Conversely, the presence of R-parity violating couplings allows the

lightest supersymmetric particle (LSP) to decay, relaxing experimental constraints on the

stop mass and hence reducing tuning.

The baryonic R-parity violating couplings on the IR brane, consistent with all the

symmetries in the theory, are given by

SRPV, IR =

∫

d5x δ(y − πR) e−3kπR

(∫

d2θ
1

2
λ̃′′ ijkIR ūid̄j d̄k + h.c.

)

, (5.2)

where the coupling λ̃′′IR has mass dimension −3/2. (A factor of 1/2 is included due to the

antisymmetry of the operator on exchange of the two down-type quark multiplets.) Using

the wavefunction profile (2.5) and integrating over y, we find the 4D effective superpotential,

W 4D
RPV, IR =

1

2
λ′′ ijkIR ūid̄j d̄k, (5.3)

where λ′′ ijkIR = λ̃′′ ijkIR k3/2ζūiζd̄jζd̄k is dimensionless and ζΨ is given by (2.10). Using (2.15)
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sb bd ds

u 0.04 0.05 0.05

c 0.02 0.03 0.03

t 5× 10−16 6× 10−16 6× 10−16

Table 2. Estimate of the effective RPV couplings originating on the UV brane for tanβ = 3 and

ζQ3
= 1.

and assuming that k3/2λ̃′′ ijkIR is O(1) with anarchic flavor structure, we estimate

λ′′usbIR ≃ mumsmb

λ5ζ3Q3
v3sβc

2
β

, λ′′ubdIR ≃ mumbmd

λ6ζ3Q3
v3sβc

2
β

, λ′′udsIR ≃ mumdms

λ8ζ3Q3
v3sβc

2
β

,

λ′′ csbIR ≃ mcmsmb

λ4ζ3Q3
v3sβc

2
β

, λ′′ cbdIR ≃ mcmbmd

λ5ζ3Q3
v3sβc

2
β

, λ′′ cdsIR ≃ mcmdms

λ7ζ3Q3
v3sβc

2
β

,

λ′′ tsbIR ≃ mtmsmb

λ2ζ3Q3
v3sβc

2
β

, λ′′ tbdIR ≃ mtmbmd

λ3ζ3Q3
v3sβc

2
β

, λ′′ tdsIR ≃ mtmdms

λ5ζ3Q3
v3sβc

2
β

,

(5.4)

up to order-one factors. Note that, apart from the entries λ′′ubdIR , λ′′udsIR , λ′′ cdsIR and the overall

normalization, the structure of these couplings is identical to that of MFV SUSY [4, 5].

However, due to the presence of UV brane localized couplings and the decoupling of most

of the squarks, this will not play a large role in our analysis.

We can numerically estimate the RPV couplings (5.4) using (2.16). However, for the

purpose of estimating the rates of baryon-number violating processes we must account

for the RG enhancement of the six-quark ∆B = 2 effective operators generated after

integrating out the superpartners. As a crude approximation, we account for these effects

by using the following low-energy quark masses in place of (2.16):

mu ∼ 3MeV, mc ∼ 1.3GeV, mt ∼ 173GeV,

md ∼ 6MeV, ms ∼ 100MeV, mb ∼ 4GeV,
(5.5)

as in [4, 5]. The numerical values of the resulting couplings are shown in table 1 for

tanβ = 3 and ζQ3 = 1.

If no additional symmetries are imposed, then RPV couplings can also appear on the

UV brane.23 The baryonic R-parity violating couplings on the UV brane, consistent with

all the symmetries in the theory, are given by

SRPV,UV =

∫

d5x δ(y)

(∫

d2θ
1

2
λ̃′′ ijkUV ūid̄j d̄k + h.c.

)

. (5.6)

As above, we find the effective superpotential

W 4D
RPV,UV =

1

2
λ′′ ijkUV ūid̄j d̄k, (5.7)

23RPV couplings cannot appear in the bulk due to the presence of extended supersymmetry.
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(a) (b)

Figure 3. The leading contribution to n− n̄ oscillations involving only light superpartners such as

stops and gauginos (a), and incorporating heavy scalar superpartners but sizable RPV couplings (b).

where λ′′ ijkUV = λ̃′′ ijkUV k3/2ηūiηd̄jηd̄k is dimensionless and ηΨ, given by (3.4), is exponentially

suppressed for the top multiplet. Numerical estimates of these couplings are shown in

table 2 for tanβ = 3 and ζQ3 = 1. While the couplings involving the top/stop are negligible,

the remaining couplings are large. Nonetheless, these couplings are not dangerous due to

the large squark masses for the other flavors. A squark mass of 5 × 104TeV leads to an

additional suppression of 10−10 versus a squark mass of e.g. 500GeV, which makes these

couplings comparable to the smallest couplings encountered in the MFV SUSY scenario,

c.f. [4, 5].

5.2 n − n̄ oscillations

The RPV couplings (5.3) and (5.7) lead to baryon number violating processes which are

constrained by low-energy measurements. While some aspects of our model are similar to

MFV SUSY, the RPV couplings involving the top quark multiplet are somewhat larger in

our case, whereas most of the squarks are decoupled, necessitating a reanalysis of possible

contributions to ∆B = 2 processes.

The experimental lower bound on the n− n̄ oscillation time is [106]

τn−n̄ ≥ 2.44× 108 s. (5.8)

We first consider diagrams involving only the light fields with masses less than ΛIR. The

leading contribution to n − n̄ oscillations in this case is the two-loop diagram shown in

figure 3(a). Tree level and one loop diagrams are not possible due to the absence of tree-

level FCNCs once the other squarks are decoupled. We roughly estimate the amplitude of

the diagram as

Mn−n̄ ∼ 4πα3

(

λ′′ tdsIR

)2 (α2

4π

)2
Λ̃

(

msΛ̃
2

mtm2
t̃

)2(

Λ̃

mg̃

)

, (5.9)
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Figure 4. Constraints on tanβ and the heavy squark masses from n − n̄ oscillations (a) and

dinucleon decay (b). The colored region is excluded. We assume mg̃ = 1.2TeV with the three

colored regions corresponding to ζQ3
= 0.5, 1, 1.5.

where α3 ≃ 0.1 and α2 ≃ 0.03 are the SU(3)C and SU(2)W gauge couplings, respectively,

and λ′′ tdsIR is given by (5.4). The factor Λ̃6 comes from the hadronic matrix element,

Λ̃ ∼ ΛQCD ∼ 250MeV. The n− n̄ oscillation time is then τn−n̄ ∼ M−1
n−n̄. With reasonable

values of tanβ, the stop mass and the gluino mass, the oscillation time is much longer than

the bound (5.8):

τn−n̄ ∼
(

3× 1010 s
)

ζ6Q3

(

3

tanβ

)4( mg̃

1.2TeV

)(

mt̃

300GeV

)4

. (5.10)

Therefore, n− n̄ oscillations coming from the diagram which involves only light superpart-

ners do not give a strict constraint on our model.

Although the scalar superpartners of the light quark multiplets are very heavy, these

multiplets feel sizable baryon number violation on the UV brane, and can in principle induce

dangerous baryon number violation in the low-energy effective theory. In figure 3(b), we

show the leading tree-level contribution to n− n̄ oscillations due to the exchange of heavy

squarks. We roughly estimate the amplitude of the diagram as

Mn−n̄ ∼ 4πα3

(

λ′′udsUV

)2
Λ̃

(

Λ̃

mg̃

)(

Λ̃2

m2
q̃

)2

, (5.11)

where mq̃ denotes the heavy squark mass, assumed to be of the same order for all the UV-

brane-localized fields, and the RPV coupling λ′′udsUV is given in table 2. Using this estimate

and the experimental bound (5.8), we place constraints on tanβ and the heavy squark

mass, mq̃, as shown in figure 4(a). These constraints are automatically satisfied when the

much stronger FCNC constraint mq̃ & 5× 104TeV is imposed.

There are also potential contributions to the oscillation amplitude from the KK modes,

but these are strongly suppressed due to the small wavefunction overlap between the UV-

brane localized light quarks and the IR-brane localized KK modes.
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(a) (b)

Figure 5. (a) The leading diagram contributing dinucleon decay, similar to [108]. The blob

represents the box diagram (b).

5.3 Dinucleon decay

We next consider dinucleon decay. The strongest limit typically comes from the lower

bound on the partial lifetime for pp→ K+K+ dinucleon decay [107]

τpp→K+K+ ≥ 1.7× 1032 yrs. (5.12)

As above, we first consider diagrams involving only the light fields, in which case the leading

contribution to dinucleon decay is the one-loop diagram shown in figure 5.

Following [108], we estimate the width for this diagram

Γpp→K+K+ ∼ ρN
128π α4

2

(

λ′′ tdsIR

)4
Λ̃10

m2
N m

2
W̃
m8
t̃

(

λ6m2
b

4πm2
b̃

)2

, (5.13)

where mN ≃ mp is the nucleon mass, ρN ∼ 0.25 fm−3 is the nucleon density, m
W̃

is the

Wino mass, and Λ̃ ∼ 250MeV is the scale associated to the hadronic matrix element. The

factor in parenthesis accounts for the flavor suppression which arises in the loop due to the

GIM mechanism. We estimate the lifetime as

τpp→K+K+ ∼
(

4× 1039 yrs
)

ζ12Q3

(

3

tanβ

)8( mW̃

600GeV

)2( mt̃, b̃

300GeV

)12

, (5.14)

The experimental constraint is easily satisfied.

Another possible contribution to dinucleon decay comes from diagrams which involve

heavy squarks but sizable RPV couplings. Figure 6(a) shows the leading diagram in this

case. As above, we estimate the pp→ K+K+ width given by this diagram,

Γpp→K+K+ ∼ ρN
128π α2

3

(

λ′′udsUV

)4
Λ̃10

m2
N m

2
g̃m

8
q̃

, (5.15)

where the RPV coupling λ′′udsUV is the UV brane localized coupling. Using this estimate and

the experimental bound (5.12), we place constraints on tanβ and the heavy squark mass,

mq̃, as shown in figure 4(b). The constraints are weaker than those of n − n̄ oscillations.

Therefore, the constraint from dinucleon decay is also satisfied in our scenario.
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(a) (b)

Figure 6. (a) The leading diagram contributing to dinucleon decay incorporating heavy squarks

with sizable RPV couplings. (b) The decay of a Higgsino-like LSP to standard model particles.

5.4 LSP decay

The lightest standard-model superpartner will be unstable due to the R-parity violating

coupling (5.3). As discussed in section 3, the most likely LSP is the Higgsino with some

chance of a stop LSP due to an accidental cancellation between positive and negative

contributions to the stop mass. In either case, the LSP will decay promptly and without

significant missing energy due to the relatively large R-parity violating couplings.

For instance, the leading decay channel for a neutral Higgsino LSP with mH̃ > mt is

shown in figure 6(b). The width is approximately

Γ
H̃

∼ m
H̃

128π3
|λtsb|2, (5.16)

where m
H̃

is the Higgsino mass. Using (5.4) and the quark masses (2.16), we estimate a

decay length of less than a micrometer, well beyond the capabilities of the LHC to detect.

If the neutralino is lighter than the top quark, it will decay via an off-shell top quark

to a four or more body final state, and the width will incorporate additional phase-space

suppression. However, the decay length is still too short to be observable. For a charged

Higgsino LSP, a similar decay is possible, but with a bottom quark instead of a top quark

in the final-state and hence no extra phase-space suppression. A stop LSP will decay via

two jets. In either case, the decay is prompt.

6 D-terms and unification

As explained in section 2 and section 3, in models of warped natural SUSY most of the

squarks and sleptons are localized towards the UV brane, and obtain large masses well

above the compactification scale via direct couplings to the SUSY breaking sector. In

this case, the hypercharge D-term can generate a dangerous correction to the Higgs soft

masses [43, 48]. After integrating out the heavy scalars, a large Fayet-Iliopoulos (FI) term
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can be generated in the effective theory

LFI ∼
∫

d4θ
m2
q̃, l̃

16π2
gY VY , (6.1)

where mq̃, l̃ denotes the mass scale of the heavy scalars and gY is the hypercharge gauge

coupling. In the five-dimensional picture, the loop correction (6.1) is generated near the

UV brane, and hence — unlike loop corrections on the IR brane — it is not cut off at

ΛIR. The resulting FI term propagates semi-classically through the bulk by inducing a

vev for the adjoint chiral field Σ in the N = 2 hypercharge vector multiplet [44], and the

IR-brane-localized scalars are not insulated from its effects.

This point is a little surprising, so we review it in the CFT picture as well [43]. The five-

dimensional bulk of the SUSY RS model corresponds to an approximate superconformal

field theory (SCFT) which eventually confines at the compactification scale, corresponding

to the appearance of the infrared brane. This SCFT talks to a SUSY breaking sector in

the UV, as well a number of elementary multiplets with large SUSY breaking splittings

(the UV-brane-localized matter fields). So long as the SUSY breaking deformations of the

SCFT are irrelevant, or marginal (∆ ∼ 4) with small coefficients, the composite states

(including the stop and the Higgs) will have small splittings, yielding the expected natural

SUSY spectrum.

The hypercharge vector multiplet VY corresponds to an abelian conserved current JµY
in the SCFT. Since it is conserved, JµY has scaling dimension ∆ = 3 exactly. However,

supersymmetry mandates a scalar partner DY for JµY , whose scaling dimension is then

∆ = 2. Thus, the SCFT admits a relevant (supersymmetric) deformation:

∆L =M2
DDY + · · · . (6.2)

If this deformation is present in the UV theory, then the conformal phase will break down

at the scale MD. What happens at this scale will depend on the theory. In the pres-

ence of charged matter without a superpotential, the scalar component of the matter field

will acquire a vev, Higgsing U(1)Y . If this vev is prevented by a superpotential, then

supersymmetry will be broken.

In either case, we must have MD . O(MZ) to have a chance of reproducing the

standard model with minimal tuning. However, if supersymmetry is broken in the UV

theory then (6.2) is induced by loop effects as in (6.1), unless prevented by a symmetry.

Cancelling the tree- and loop-level contributions requires substantial tuning in the UV

theory, destroying naturalness.

6.1 Traceless groups and exotics

This problem arises because the U(1) D-term is a gauge singlet. For a semi-simple gauge

group G, no such relevant deformation exists, and even with U(1) factors in G the defor-

mation can sometimes be forbidden by gauging an outer automorphism of G under which

DU(1) transforms nontrivially. The solution, then, is to embed the standard model in a semi-

simple gauge group, or in a gauge group which admits an appropriate outer automorphism.
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Groups with U(1) factors but no singlet D-terms due to a gauged outer automorphism

share some features in common with semi-simple groups. In particular, their representa-

tions must satisfy Tr TU(1) = 0, since the U(1) generator TU(1) transforms in the same way

as the U(1) D-term, hence Tr TU(1) is not a singlet and must vanish for a complete repre-

sentation.24 We refer to groups without singlet D-terms (hence with traceless generators)

as “traceless” groups for ease of discussion.

To ensure that the large soft masses on the UV brane do not generate dangerous

U(1) FI terms in the low energy effective theory, either the unbroken gauge group on the

UV brane must be traceless, or else any U(1) factors with singlet D-terms must neither

couple to the light scalars nor mix with U(1)’s which do. Thus, the traceless component,

Ĝ, contains the standard model gauge group. Moreover, Ĝ — or a subgroup satisfying

the same conditions — must be unbroken in the bulk. Otherwise the bulk profiles of

the standard model components of Ĝ irreps will be split, allowing an effective FI term to

be generated.25

Thus, we consider a traceless gauge group Ĝ which contains the standard model and

is broken on the IR brane but preserved elsewhere. This configuration is reminiscent of

Higgsless models of electroweak symmetry breaking [49, 50]. As in these models, we find

that the gauge bosons corresponding to the broken generators of Ĝ are generally about an

order of magnitude lighter than the KK modes. Thus, these gauge bosons are a generic

prediction of warped natural SUSY, and LHC constraints on them will provide an indirect

constraint on the compactification scale, as discussed in section 6.6.

To embed hypercharge in a traceless group Ĝ, it is necessary for the irreps to satisfy

Tr TY = 0. This implies that the standard model fermions must be embedded into larger

representations. The Ĝ partners of each standard model fermion will consist of some

combination of (i) other standard model fermions and (ii) “exotics,” i.e. new fermions not

present in the standard model.

At first, exotics appear to be necessary; while several traceless models — such as

SO(10) and its traceless subgroups — unify the standard model fermions without exotics,

the unified multiplets force the different standard model fermions to have the same bulk

profiles, inconsistent with the observed Yukawa couplings and CKM matrix. Moreover,

in some cases, such as for SO(10) and SU(5) ⊂ SO(10) models, unifying the standard

model fermions into larger multiplets will induce proton decay mediated by the broken

generators of the extended gauge group. Since the corresponding gauge bosons are light,

this is disastrous.

The fermionic exotics may have the same standard model quantum numbers as the

observed particles (as in orbifold GUTs [109, 110], where the usual GUT multiplets are

split by Ĝ-breaking boundary conditions), or they may be different. In either case, unless

they are sterile (neutral under the standard model gauge group), they must be sufficiently

heavy to escape collider bounds, i.e. at least O(100 GeV) to avoid LEP constraints, with

some model dependence.

24By contrast, an ordinary U(1) gauge theory need only satisfy the anomaly cancellation condition

Tr TU(1) = 0 for the fermion representations taken as a whole.
25A Ĝ-breaking bulk vev is permissible so long as the profile is sufficiently IR-brane localized.
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To achieve the requisite splitting between the standard model fields and the exotics,

we could add Ĝ-violating operators or boundary conditions on the IR brane. However,

the exotic partners of the first two generations of quarks and leptons are localized towards

the UV brane, and the splitting which can be achieved by IR-brane-localized effects is

consequently limited to ∆m . O(ζΨk
′) or less, where ζΨ is given by (2.15). Thus, for

k′ ∼ 10TeV, at least some of the exotic partners of the first generation fermions will have

masses O(10 GeV) or less, inconsistent with LEP results.

This is a generic problem with warped natural SUSY models which (to our knowledge)

has not previously been recognized. To solve it, we pursue a different approach: instead

of splitting the multiplets, we find a way to split the effective Yukawa couplings of their

components consistent with order-one couplings on the IR brane. To do so, we introduce

multiple Ĝ multiplets in the bulk with a single zero mode between them due to the Ĝ-

invariant UV brane boundary conditions. A U(1) symmetry imposed in the bulk and on

the IR brane forces different bulk multiplets to couple to different Ĝ-violating operators on

the IR brane, so that the effective couplings for different components of the zero-mode will

depend on different bulk mass parameters, allowing hierarchical couplings. This mechanism

is explained in detail in section 6.3 and applied to a left-right model in section 6.5.

6.2 The SU(5) model

We first discuss a simple SU(5) model to illustrate the above points. We find that it is not

viable due to the presence of light exotic fermions, an issue which will be addressed in the

following subsections.

In the above discussion, we did not specify how the extended gauge group, Ĝ, should

be broken on the IR brane. Possibilities include Ĝ-violating boundary conditions and

spontaneous breaking via IR-brane-localized Higgs fields. In fact, these options are related,

see e.g. [51]. For concreteness, we consider SU(5) breaking by orbifold boundary conditions

in the following discussion. We expect that other methods of SU(5) breaking on the IR

brane will have similar consequences.

To obtain different boundary conditions on the IR and UV branes, we start with a

circle y ∼= y + 4πR of twice the usual radius, and construct a Z2 × Z
′
2 orbifold with the

identifications y → −y and y → 2πR−y under Z2 and Z
′
2, respectively. The orbifold action

on the gauge fields take the form:
(

V

Σ

)

→
(

PV P †

−PΣP †

)

,

(

V

Σ

)

→
(

P ′V P ′†

−P ′ΣP ′†

)

, (6.3)

where V and Σ denote the vector and chiral components of theN = 2 bulk vector multiplet,

and P and P ′ are SU(5) matrices which encode the action of Z2 and Z
′
2, respectively,

satisfying P 2 = (P ′)2 = 1. We take P = diag(1, 1, 1, 1, 1) and P ′ = diag(1, 1, 1,−1,−1),

so that SU(5) is unbroken on the UV brane (the Z2 fixed point y = 0) and is broken to

SU(3) × SU(2) × U(1) on the IR brane (the Z
′
2 fixed point y = πR). In the dual CFT

picture, the SU(5) symmetry is a weakly gauged flavor symmetry of the bulk CFT which

is spontaneously broken at the confinement scale, much like chiral symmetry breaking

in QCD.
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To reproduce the correct gauge couplings in the low energy effective theory, we intro-

duce IR-brane-localized kinetic terms for the standard model gauge fields:

SIR =

∫

d5x δ(y − πR)

{

∑

i

1

4g̃2i

∫

d2θTrWi
αWiα + h.c.

}

, (6.4)

where i = 1, 2, 3 labels the standard model gauge groups. By choosing the coefficients

1/g̃2i appropriately, the difference between the observed gauge couplings α1, α2, α3 can be

accommodated.

As implied above, the gauge sector has an interesting mass spectrum, given by the

solutions of the equations [111]

J0(m/k)

Y0(m/k)
=
J0(m/k

′)
Y0(m/k′)

for the NN gauge bosons,

J0(m/k)

Y0(m/k)
=
J1(m/k

′)
Y1(m/k′)

for the ND gauge bosons,

(6.5)

where Jα, Yα are Bessel functions of order α and NN, ND, DN, or DD denotes (in sequence)

the UV and IR brane boundary conditions, which are either Neumann (N) or Dirichlet

(D). The massive NN gauge bosons are standard model KK modes, whereas the ND gauge

bosons correspond to the SU(5) generators which are broken by Dirichlet boundary condi-

tions on the IR brane. These equations can be solved approximately in the large-volume

limit, πkR ≫ 1, where −J0(m/k)
Y0(m/k)

≈ 1
2kR ≪ 1. In this limit the mass spectrum of NN (ND)

gauge bosons is approximately mn ≈ u0,nk
′ (mn ≈ u1,nk

′) where uα,n denotes the nth zero

of the order-α Bessel function Jα. To a reasonable approximation, uα,n ≈
(

n+ 2α−1
4

)

π,

so that mn ≈
(

n− 1
4

)

πk′ for the standard model KK gauge bosons and mn ≈
(

n+ 1
4

)

πk′

for the KK modes of the broken generators.

However, in the latter case an additional solution exists in the regime m ≪ k′, where
−J1(m/k′)
Y1(m/k′)

≈ π(m/k′)2

4 . The mass is suppressed by the square root of the volume:

m0 ≃
√

2

πkR
k′. (6.6)

Unlike the KK modes, these modes have approximately flat profiles away from the IR

brane, and are more closely analogous to the zero modes of the unbroken generators. They

correspond to the X,Y gauge bosons in an ordinary SU(5) GUT, and can mediate rapid

proton decay, depending on the details of the matter sector (to be discussed below).

The masses of the X,Y gauge bosons are suppressed relative to those of the SM KK

modes by 4
3π

√

2
πkR ≃ 1

10 . Thus, with a low compactification scale required by naturalness,

these exotic gauge bosons are within reach of the LHC experiments, and searches for them

can indirectly constrain the compactification scale.

The appearance of these light modes can be understood in the dual CFT picture as

follows. The masses of the X,Y gauge bosons are generated by radiative corrections from

the CFT particle states, as in figure 7(a). The same diagram also induces logarithmic

divergences in the SU(5) theory, so we obtain the renormalized Lagrangian (c.f. [112])

LSU(5) ∼ −1

4

{

1

g2UV

+
NCFT

16π2
log

(

Mpl

ΛIR

)}

∑

a

(F aµν)
2 +

1

2

NCFT

16π2
Λ2
IR

∑

α

(Aαµ)
2 , (6.7)
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(a) (b)

Figure 7. (a) A diagram contributing to the X,Y gauge boson masses as well as renormalizing

the SU(5) gauge coupling. The blob denotes loops of CFT particles. (b) A schematic picture of the

quasi-zero-mode Ψ and Ψc profiles with ND (DN) boundary conditions for Ψ (Ψc) with cΨ ≫ 1/2.

where gUV is the bare SU(5) coupling at the Planck scale and α (a) indexes broken (all)

generators of SU(5). Neglecting gUV (which is dual to a UV-brane-localized kinetic term

for the gauge field), we canonically normalize to obtain the X,Y gauge boson mass

m2
0 ∼

Λ2
IR

log (Mpl/ΛIR)
, (6.8)

in qualitative agreement with (6.6), as log (Mpl/ΛIR) ≃ πkR.

We now introduce bulk hypermultiplets into the model. The orbifold action on the

hypermultiplets is specified by the same matrices P , P ′ as in (6.3), up to an overall choice

of sign for each Z2 factor. We choose
(

Ψ

Ψc

)

→
(

P †Ψ
−P †Ψc

)

,

(

Ψ

Ψc

)

→
(

±P ′†Ψ

∓P ′†Ψc

)

,

(

Φ

Φc

)

→
(

PΦP

−PΦcP

)

,

(

Φ

Φc

)

→
(

±P ′ΦP ′

∓P ′ΦcP ′

)

,

(6.9)

for Ψ and Φ in the 5̄ and 10 representations of SU(5), respectively, in order to obtain zero

modes in standard model representations. We label the resulting multiplets as 10Q, 10ū, ē,

5̄d̄, and 5̄L, according to which zero modes they contain. By adding a bulk singlet ν̄ with

NN boundary conditions, we recover a single generation of the standard model from five

bulk multiplets. Although we are restricted to ζū = ζē by this embedding, we can still

reproduce the correct lepton masses by adjusting ζL and ζν̄ appropriately.

In addition to the zero modes Q, ū, d̄, L, ē, ν̄, we have massive exotics, Q′, ū′, d̄′, L′, ē′

and their vector-like partners, which fill out the SU(5) multiplets. These exotics appear

at or below the compactification scale, and interact with the standard model fermions via

lepton- and baryon-number violating vertices with the X,Y gauge bosons. Nonetheless,

rapid proton decay can be avoided if there is no mixing between the exotics and the standard

model fermions. In particular, we can assign Z
(L)
3 charges to the multiplets as follows:

10Q → ω310Q, 10ū, ē → ω−1
3 10ū, ē, 5̄L → ω35̄L, 5̄d̄ → ω−1

3 5̄d̄ (6.10)
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where ω3 ≡ e2πi/3. This agrees with the usual Z
(L)
3 charges for the zero modes (5.1)

combined with Q → ω3Q, ū → ω−1
3 ū, d̄ → ω−1

3 d̄, which is the action of the Z3 center

of SU(3)C ; hence the two charge assignments are gauge-equivalent for the zero modes.

However, Q′ now carries a different charge than Q, and likewise for the other exotics, so

that mixing is forbidden. This is sufficient to stabilize the proton since the SU(5) gauge

interactions preserve B −L, and hence X,Y -mediated ∆B = 1 processes are forbidden by

Z
(L)
3 , which requires ∆L = 0 mod 3.

Unfortunately, as anticipated above this model has a fatal flaw due to the spectrum

of exotics. As a warmup, we consider a single bulk hypermultiplet with chiral components

Ψ,Ψc. Recall that the Ψ zero mode (if it exists) is IR-brane localized for cΨ ≪ 1/2 and

UV-brane localized for cΨ ≫ 1/2. Likewise, the zero mode for Ψc (if it exists) is IR-

brane localized for cΨ ≫ −1/2 and UV-brane localized for cΨ ≪ −1/2, since Ψ → Ψc,

Ψc → −Ψ, cΨ → −cΨ is a symmetry of the theory. Suppose that Ψ (Ψc) has NN (DD)

boundary conditions, with cΨ ≫ 1/2. In this case, there is a UV-brane localized Ψ zero

mode, whose support at the IR brane is exponentially suppressed. If we change the Ψ

boundary conditions to ND, the zero mode is lifted, but only a slight change to the profile

is needed to satisfy the new boundary conditions. A similar argument shows that Ψc, whose

boundary conditions are now DN, likewise has a zero-mode-like profile localized towards

the IR brane, since a true IR-brane-localized Ψc zero mode would exist after switching the

UV-brane boundary condition to give DD (NN) for Ψ (Ψc).

This suggests that for cΨ ≫ 1/2 with ND (DN) boundary conditions for Ψ (Ψc), both

Ψ and Ψc have quasi-zero-modes with zero-mode-like profiles, which are respectively UV-

and IR-brane localized. These modes cannot be massless, so it is natural to suppose that

they pair up to get a mass. In this case, since their overlap is exponentially suppressed,

their mass must also be exponentially suppressed, and these modes are much lighter than

the compactification scale. This situation is depicted in figure 7(b).

The above argument is heuristic, but can be verified by explicit computations. The

mass spectrum for these boundary conditions is given by the solutions of (c.f. [111])

Jc−1/2(m/k)

Yc−1/2(m/k)
=
Jc+1/2(m/k

′)

Yc+1/2(m/k′)
. (6.11)

For c≫ 1/2 andm≪ k′, we can approximate−Jα(u)/Yα(u) ≈ π
Γ(α)Γ(α+1)

(

u
2

)2α
+O(u2α+2)

for α > 0 on both sides of the equation. We obtain the solution

m ≃ 2

√

c+
1

2
ζ k′ (6.12)

where ζ is given by (2.9). In fact, this is an excellent approximation for all c & 1/2,

including the special case c = 1/2 which matches (6.6). Likewise, it is straightforward to

verify that the corresponding Ψ and Ψc profiles closely approximate the zero mode with

the same c. For c≪ 1/2, no light mode exists with these boundary conditions.

The appearance of a light mode for c ≫ 1/2 (c ≪ −1/2) with ND (DN) boundary

conditions has been previously discussed in [113], where a CFT interpretation was given.

This is a disaster for the model outlined above, since e.g. the exotic Q′
1 will have a mass

MQ′

1
∼ 2ζū1k

′ ≪MZ , which is clearly ruled out.
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6.3 Split couplings without light exotics

We now show how the problem of light exotic fermions can be avoided. We begin with a toy

model, consisting of two fermion multiplets A and B, which unify into a single multiplet

Ψ = (A,B) in the bulk and on the UV brane. We couple A and B to operators on the

IR brane:

LIR = AOA +BOB + . . . , (6.13)

which leads to the low-energy effective theory

Leff = yAÂOA + yBB̂OB + . . . , (6.14)

where Â and B̂ are canonically normalized massless fields. Our objective is to engineer

hierarchical couplings in the effective theory yA ≪ yB ≪ 1 by controlling the profiles of

the bulk fields with order-one changes in their bulk masses.

Motivated by orbifold-GUTs, we could introduce two bulk multiplets, ΨA = (A,B′)
and ΨB = (A′, B), with NN boundary conditions for the indicated zero mode and ND

boundary conditions for the exotics A′ and B′. We then obtain yA ∼ ζA and yB ∼ ζB,

which can be adjusted independently using the bulk mass parameters cA and cB. However,

as argued above, the exotics A′ and B′ obtain exponentially suppressed masses O(ζBk
′)

and O(ζAk
′), respectively. We must somehow lift these exotics to the compactification

scale or above.

We instead consider NN boundary conditions for A′ and B′, which will introduce

additional zero modes. To compensate, we add a conjugate multiplet on the UV brane

Ψ̄UV = (ĀUV, B̄UV) and allow arbitrary O(k) mass terms MUVΨ̄UV(sθΨA − cθΨB), where

θ is an order-one mixing angle and cθ ≡ cos θ, sθ ≡ sin θ. As a result, only one linear

combination Ψ̂ = (Â, B̂) = cθΨA + sθΨB will be massless. Accounting for the bulk pro-

files, (6.13) gives the effective couplings yA ∼ cθζA and yB ∼ sθζB, so we have removed the

extra light states without sacrificing the splitting between yA and yB.

However, due to the change in boundary conditions, additional couplings can now

appear on the IR brane:

LIR = A′OA +B′OB + . . . . (6.15)

In this case, we obtain yA ∼ yB ∼ cθζA + sθζB, which spoils the splitting. To avoid this,

we introduce an abelian gauge symmetry (discrete or continuous) under which ΨA and ΨB

carry different charges. We break the symmetry on the UV brane, allowing an arbitrary

mixing angle θ, but enforce it in the bulk and on the IR brane, aligning the bulk masses

and forbidding (6.15).

This corresponds to an accidental flavor symmetry of the CFT. Even if we introduce

a U(1) symmetry, there is no D-term problem because the D-term obtains a large mass

on the UV brane, precluding a D-term vev. In CFT language, the U(1) flavor symmetry

is not present in the UV theory, hence there is no conserved current Jµ and corresponding

dimension-two D-term. This current and the corresponding relevant deformation only
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appear well into the CFT phase, hence the deformation is not excited by the large masses

of fundamental fields in the UV theory.

A similar mechanism can generate yA ≪ yB ∼ 1 (relevant for the third generation) by

taking cB ≃ −1/2 and cA > −1/2 such that ηB/ηA ∼ yA, where η is given by (3.3). In this

case, the coupling of Ψ̄UV to ΨA and ΨB is suppressed by ηA and ηB, respectively, and the

massless combination is Ψ̂ ∼ ΨB + (ηB/ηA)ΨA, since ηB ≪ ηA. With ζA, ζB ∼ O(1), this

reproduces the desired yA, yB. So long as cA ≥ −1/2, we have ηAk & k′, and the massive

linear combination of the ΨA and ΨB zero modes obtains a mass above the compactification

scale, avoiding light exotics.

To avoid confusion between ζA,B (which is a function of cA,B only) and the profile of

the true zero mode (which depends on the mixing angle induced by the UV brane boundary

conditions) we denote the latter as ζ̂A,B. In particular,

ζ̂A ≡ cψζA , ζ̂B ≡ sψζB , (6.16)

where ψ is the effective mixing angle, determined by tanψ = ηA
ηB

tan θ. The difference is

pronounced for the third generation, where we can have ζ̂A ≪ ζ̂B while ζA ∼ ζB ∼ 1.

A few comments are in order. Firstly, adding Ψ̄UV on the UV brane with a large mass

MUVΨ̄UV(sθΨA − cθΨB) is similar to imposing off-diagonal boundary conditions on ΨA

and ΨB on the UV brane:26

(sθΨA − cθΨB)y=0 = 0 , (cθΨ
c
A + sθΨ

c
B)y=0 = 0 . (6.17)

In particular, the two are exactly equivalent in the MUV → ∞ limit, and qualitatively

similar for MUV ∼ k. Our discussion will not depend on MUV & k, hence we treat these

two possibilities as interchangeable.

Secondly, we can split a multiplet into more than two pieces using the same procedure.

If Ψ = (A1, . . . , An) is a unified bulk multiplet with n standard model components whose

couplings we wish to control individually, then we add n copies Ψi = (Ai1, . . . A
i
n), i =

1, . . . , n and n− 1 UV-brane localized Ψ̄ multiplets. Allowing arbitrary mass terms on the

UV brane, we obtain one light combination Ψ̂ ∼ 1√
n

∑

iΨi. Imposing an abelian symmetry

which forbids couplings to the “off-diagonal” components Aij , i 6= j, on the IR brane, we

obtain independent couplings yi ∼ ζi/
√
n to the fields Âi on the IR brane. However, as

before the mechanism relies on the existence of an appropriate symmetry to forbid the

unwanted couplings.

6.4 A classification of traceless models

The mechanism of section 6.3 circumvents the problem of light exotics in traceless exten-

sions of the standard model broken at the compactification scale, as required to forbid the

relevant D-term deformation (6.2) of the SCFT dual to the five-dimensional bulk. How-

ever, this mechanism does not involve a true splitting of the multiplets; the profiles of the

26These boundary conditions can be diagonalized by a unitary rotation between ΨA and ΨB , but this

creates off-diagonal bulk mass terms for cA 6= cB . We choose to work in the basis where the bulk masses

are diagonal, leading to off-diagonal boundary conditions.
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different components remain identical unless mass terms or brane-localized kinetic terms

are added on the IR brane, which in any case has little effect on the UV-brane localized

fields. Instead, hierarchical couplings are generated by controlling which bulk fields can

couple to which IR brane operators, where the degenerate zero modes are mix into several

bulk multiplets.

As a consequence, UV-brane-localized fields will always appear in complete Ĝ mul-

tiplets in the effective theory. This precludes the use of models such as trinification

(SU(3)C × SU(3)L × SU(3)R) and the E6 GUT, which rely on the introduction of ad-

ditional charged and/or colored states at the unification scale. Inevitably, these states will

appear as light exotics in the UV-brane-localized multiplets, ruling out these models.

Thus, Ĝ multiplets must consist of combinations of the standard model fermions with

standard model singlets. Each multiplet must satisfy Tr TY = 0, hence the possibilities

are easily classified. Since Tr TY = 1 for Q, d̄, and ē, whereas Tr TY = −1 for L and

Tr TY = −2 for ū, we can form two traceless multiplets by combining L with one of

{Q, d̄, ē} and ū with the remaining two, or we can combine all charged fermions into a

single traceless multiplet.

The combinations (L, d̄) and (ū, Q, ē) occur in the SU(5) model. There is a well known

proton-decay problem due to the fact that the gauge interactions violate both baryon and

lepton number (conserving B − L). This can be cured by splitting the multiplets, but the

mechanism of section 6.3 reintroduces the problem (since the multiplets are not really split).

The combinations (L,Q) and (ū, d̄, ē) occur in the Pati-Salam model, with gauge group

SU(4)× SU(2)L× SU(2)R. For a low SU(4) breaking scale, the broken generators of SU(4)

(which are leptoquarks) can mediate rare meson decays, such as KL → µ±e∓ [114]. Al-

though this violates both lepton and quark flavor, the diagonal flavor symmetries respected

by the Pati-Salam gauge interactions are preserved, and there is no flavor suppression. Since

the branching fraction is observed to be less than 4.7×10−12 [115] (the most common decays

are KL → π±ℓ∓ν), the SU(4) breaking scale must be well above the weak scale, leading

to excessive fine tuning. As before, this can be cured by splitting the multiplets, at the

expense of light exotics which cannot be removed without reintroducing the problem.

The combinations (L, ē) and (ū, d̄, Q) occur in the minimal left-right model, discussed

in the next section. In this case, neither proton decay nor rare meson decays are induced,

and the model is viable with a relatively low compactification scale.

Finally, we can combine (L,Q, ū, d̄, ē) into a single multiplet, as in the SO(10) model

and the left-right symmetric Pati-Salam model. However, these models have no advantages

over their subgroups considered above, and both have problems with rare meson decays

and/or proton decay.

Other traceless gauge groups with multiplets of the above types exist, but we know

of no examples which avoid the proton decay and rare meson decay problems without

introducing charged and/or colored exotics, apart from models with the minimal left-right

model as a subgroup.
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6.5 The left-right model

The minimal left-right model [116, 117] is based on the “3-2-2-1” model, with an

SU(3)C × SU(2)L × SU(2)R × U(1)B−L gauge group and matter in the Q ≡ (3,2,1)1/3,

U ≡ (3̄,1,2)−1/3, L ≡ (1,2,1)−1, and E ≡ (1,1,2)1 representations. Turning on a Higgs

vev in the (1,1,2)1 representation, 3-2-2-1 breaks to SU(3)C ×SU(2)L×U(1)Y , where hy-

percharge is generated by TY = 1
2TB−L + diagSU(2)R

(

1
2 ,−1

2

)

. The right-handed multiplets

decompose U → (ū, d̄) and E → (ē, ν̄), reproducing the standard model without exotics.

The 3-2-2-1 gauge interactions conserve Z3 ∈ U(1)B and Z3 ∈ U(1)L — as in the standard

model — hence proton decay is not induced.

The matter content of the 3-2-2-1 model is symmetric under a left-right symmetry, a

Z2 outer automorphism which combines charge conjugation of SU(3)C and U(1)B−L with

the exchange SU(2)L ↔ SU(2)R, so that Q ↔ U and L ↔ E. Upon gauging the left-

right symmetry, the multiplets further unify into irreps Q ≡ (Q,U) and L ≡ (L,E). The

U(1)B−L D-term is odd under the left-right symmetry, hence the relevant deformation (6.2)

is forbidden if the left-right symmetry is unbroken on the UV brane and in the bulk, which

we assume henceforward. We refer to the 3-2-2-1 model with a gauged left-right symmetry

as the (minimal) left-right model.

The left-right model cannot be broken to the standard model by orbifold boundary

conditions, since the latter cannot reduce the rank of the gauge group [51]. Instead, we

consider more general “interval” boundary conditions, which are either Neumann (N) or

Dirichlet (D) for each field at each boundary, with opposite choices for the two N = 1

components of the N = 2 bulk vector- and hyper-multiplets. One can argue that, without

access to a more fundamental description of the bulk theory such as an embedding into

string theory, orbifold boundary conditions are not inherently more “natural” than interval

boundary conditions [51]. Thus, we will not attempt to construct an orbifold model.27

We choose NN boundary conditions for the standard model gauge bosons and ND

boundary conditions for the additional gauge bosons, breaking SU(2)R×U(1)B−L → U(1)Y
on the IR brane. As above, there will be light modes corresponding to the broken genera-

tors, leading to LHC constraints on the compactification scale, as discussed in section 6.6.

We now show that the correct Yukawa couplings can be reproduced with an unbroken

left-right symmetry in the bulk and on the UV brane, using the techniques of section 6.3.

We focus on the quark sector and construct a 3-2-2-1 model, later incorporating the left-

right symmetry. The simplest model which can accommodate the observed Yukawa cou-

plings and CKM matrix consists of three bulk multiplets, Q, Uū = (ū, d̄′) and Ud̄ = (ū′, d̄)
with NN boundary conditions, coupled to a UV brane multiplet Ū to remove the extra

right-handed zero modes. We introduce a U(1)X gauge symmetry broken by boundary

conditions on the UV brane, under which Q carries charge q, Uū (Ud̄) carries charge 1− q

(−1− q) and Hd (Hu) carries charge +1 (−1). The allowed Yukawa couplings are

WYukawa = QūHu +Qd̄Hd , (6.18)

27This can be done at the expense of introducing significantly more complicated physics on the IR brane.
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for any q. We can adjust ζ̂Q, ζ̂ū, and ζ̂d̄ independently to reproduce the quark Yukawas

and CKM matrix as usual, where ζ̂x is defined in (6.16).

In order to incorporate the left-right symmetry, the bulk theory must contain complete

left-right multiplets with equal bulk masses for the components. Since the profiles ζQi
,

ζūi and ζd̄i differ for the three 3-2-2-1 multiplets, the most straightforward solution is to

introduce left-right partners for each existing 3-2-2-1 multiplet to form QQ = (Q,U ′′),
Qū = (Q′, Uū) and Qd̄ = (Q′′, Ud̄). We now require two UV brane multiplets Q̄1,2 to

remove the excess zero modes. We assign U(1)X charges p− q to U ′′ and q + r (q + s) to

Q′ (Q′′), with p /∈ {±1,±1− r,±1− s}, r, s /∈ {0,±2} to ensure that no additional Yukawa

couplings are generated. Since the U(1)X charge assignments are not left-right invariant,

we introduce an additional bulk gauge symmetry U(1)′X which is the left-right image of

U(1)X , where U(1)′X is broken by boundary conditions on the IR brane.

As discussed in the previous section, the third generation is a little different than the

first two generations. In particular, the small bottom Yukawa coupling is explained by

a hierarchy ηd̄3/ηū3 ∼ 100, with ζū3 , ζd̄3 ∼ 1. Since ζQ3 ∼ 1 as well, all bulk multiplets

are localized towards the IR brane, and generically (unlike in section 3) all third genera-

tion squarks are light, with masses generated by gaugino mediation and/or anomaly and

radion mediation.

The lepton sector can be constructed analogously to the quark sector, where the ζLi
are

all of the same order to generate an anarchic PMNS matrix, with exponentially suppressed

ζν̄i to realize light neutrino masses.

One issue with the above model is that the standard model Higgs fields are charged

under U(1)X , and spontaneously break it. Since U(1)X is also broken on the UV brane,

this will lead to a problematic pseudo-Goldstone boson. (In CFT language, we have spon-

taneously broken an approximate flavor symmetry.) To avoid this issue, we replace U(1)X
(and its left-right image U(1)′X) with a discrete subgroup thereof, which is sufficient to for-

bid the problematic Yukawa couplings. In fact, for a different choice of charges, this discrete

gauge symmetry could also explain the form of the NMSSM superpotential (4.2). This has

few physical consequences, however, so we do not comment on this possibility further.

We have so far ignored the possibility of intergenerational mixing in the UV brane mass

terms/boundary conditions, (6.17), which could induce dangerous FCNCs. We will justify

this assumption in section 7, where we consider the inclusion of horizontal symmetries.

6.6 Constraints from light exotics

While we have avoided the possibility (discussed in section 6.1–6.2) of weak-scale charged

and/or colored exotics, the broken generators of SU(2)R ×U(1)B−L will give rise to exotic

gauge bosons with masses (6.6) somewhat below the compactification scale. These exotic

gauge bosons are observable at the LHC, and present LHC results already constrain the

compactification scale.

The broken SU(2)R × U(1)B−L generators lead to light exotic gauge bosons Z ′ and
W ′

±, with standard model quantum numbers (1,1)0 and (1,1)±1. TheW
′ couples to right-

handed fermions analogously to the way in which the standard model W boson couples

to left-handed fermions, whereas the Z ′ couples to both left and right-handed fermions
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with couplings which depend on a possible IR-brane-localized kinetic mixing with the

hypercharge generator. Kinetic mixing between the W and W ′ is also possible, but enters

through higher dimensional operators suppressed by (v/ΛIR)
2 . 10−4, and is therefore

negligible. Despite the left-right symmetry, the gauge couplings for the W ′ and Z ′ may

differ somewhat from their left-handed counterparts due to IR-brane localized kinetic terms.

There are a number of existing searches for W ′ and Z ′ gauge bosons at the LHC. The

strongest limits on the W ′ [118, 119] and Z ′ [120, 121] gauge boson masses — coming

from leptonic decays W ′ → ℓν and Z ′ → ℓ+ℓ− — are above 3TeV, but these apply to

the “Sequential Standard Model” [122]. Constraints on the left-right model are typically

somewhat weaker (see e.g. [123], figure 6), and will depend on the IR-brane-localized kinetic

terms as above. Moreover, the presence of superpartners such as the third generation

squarks may dilute the branching fraction of theW ′ and Z ′ to leptons, whereas the presence
of gauginos W̃ ′ and Z̃ ′ may further complicate the situation. A detailed phenomenological

study would be required to establish the correct mass limits for our scenario, but we

anticipate that masses below 2.5–3TeV will be ruled out, implying that the standard

model KK modes lie in the 25–30TeV range, or higher. This implies a high cutoff and

some degree of tuning from the quadratic divergence discussed in section 3.

Electroweak precision measurements also constrain the model. However, a Z ′ gauge
boson mass of 2.5–3TeV is heavy enough to satisfy the bounds [124, 125], hence these

measurements give no new constraints.

7 Flavor and horizontal symmetries

So far we have relied on anarchic IR-brane Yukawa couplings and order-one bulk mass

parameters to generate the observed Yukawa couplings and CKM matrix. However, this

scenario can lead to dangerous flavor-changing neutral currents (FCNCs), e.g. via the ex-

change of KK gluons. In the mass basis, the off-diagonal KK gluon couplings are suppressed

by ζiζj (see e.g. [126]), leading a suppression of FCNCs known as the “RS-GIM mecha-

nism.” Nonetheless, applying the model-independent constraints of [65, 66], the authors

of [126] find a constraint mKK & 21TeV in the usual non-supersymmetric RS model. We

can apply the same constraints to the SUSY RS model with two caveats. Firstly, the ex-

perimental constraints on CP violation in the neutral kaon system have improved [65, 66],

which we estimate to give a factor of two improvement, mKK & 40TeV, under the same

assumptions as [126]. Secondly, the wavefunction profiles in the SUSY RS model are

related to their ordinary RS counterparts via [ζQζū]SUSY RS = (sinβ)−1 [ζQζū]RS and

[ζQζd̄]SUSY RS = (cosβ)−1 [ζQζd̄]RS. Thus, the constraint is further enhanced by (cosβ)−1,

giving mKK & 60TeV for tanβ = 1 and mKK & 140TeV for tanβ = 3.

Thus, KK gluon-mediated FCNCs provide a strong constraint on the compactification

scale, leading to increased fine tuning. Moreover, the inclusion of additional bulk multiplets

and an extended bulk gauge group studied in section 6 introduces additional potential

sources of FCNCs, including those mediated by the light exotic gauge bosons. In lieu

of fully characterizing these effects, we instead look for a way to suppress the KK gluon

FCNCs, in the hope that other sources of FCNCs will also be suppressed.
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Qu Qd Uū Ud̄ Hu Hd

U(1)0 ℓi ℓi ri ri · ·
U(1)1 pi qi −1− p̃i 1− q̃i 1 −1

Table 3. Horizontal symmetries for flavor alignment, where pi, qi, p̃i, q̃i, ℓi, ri are generation-

dependent charges and U(1)0 (U(1)1) is broken on the IR (UV) brane. Choosing ℓi 6= ℓj and ri 6= rj
for i 6= j ensures that intergenerational mixing cannot occur in the bulk or on the UV brane.

7.1 Flavor alignment

We consider mechanisms of partial flavor alignment, such as those explored in [25–28] in the

non-supersymmetric context. In particular, we focus on the mechanism described in [28],

which admits a simple embedding in the left-right model considered above.

The basic idea is to align the down-type Yukawa couplings using a horizontal symmetry.

A second horizontal symmetry can be used to align the bulk mass parameters, so that the

primary sources of intergenerational mixing are the up-type Yukawa couplings. Since the

dominant constraints on FCNCs come from the down-type sector, the constraint on mKK

is substantially relaxed.

In order to align the down-type sector without also aligning the up-type sector (which

would eliminate CKM mixing) it is necessary to introduce two quark doublets, Qu and Qd,

which couple to ū and d̄ respectively, where Qu is neutral under the horizontal symmetry

and Qd carries a generation-dependent charge. To reproduce the standard model at low

energies, the two quark doublets mix under off-diagonal UV-brane boundary conditions of

the form (6.17), which break the horizontal symmetry. To align the UV brane boundary

conditions and the up-type bulk masses, a second horizontal symmetry — broken on the

IR brane — is imposed in the bulk and on the UV brane.

We now construct a model of this type using the techniques of section 6.3, section 6.5.

As before, we start with a 3-2-2-1 model and later incorporate the left-right symmetry. We

introduce two left-handed multipletsQu andQd as well as two right-handed multiplets Uū =

(ū, d̄′) and Ud̄ = (ū′, d̄), with the extra zero modes removed by mixed UV brane boundary

conditions as in (6.17). We impose two horizontal symmetries with the charge assignments

shown in table 3, where U(1)1 assumes the role that U(1)X played in section 6.5. We

choose p̃i = pi and q̃i = qi to ensure that the Yukawa couplings

WYukawa ⊂ (Q1
uū1 +Q2

uū2 +Q3
uū3)Hu + (Q1

dd̄1 +Q2
dd̄2 +Q3

dd̄3)Hd , (7.1)

can be generated. Choosing pi and qi such that qi 6= qj for i 6= j and pi /∈ {pj−2, qj , qj−2}
for all i, j ensures that no additional Yukawa couplings can appear in the down-type sector.

The most general (quark-sector) Yukawa couplings allowed by the horizontal symmetries

are then

WYukawa = (Ŷu)
j
iQ

i
uūjHu + (Ŷ ′

u)
j
iQ

i
dū

′
jHu + (Ŷd)

j
iQ

i
dd̄jHd , (7.2)

where Ŷd is diagonal.
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Since the bulk masses and UV brane boundary conditions are aligned as a consequence

of U(1)0, off-diagonal Yukawa couplings are needed in the up-type sector to generate a non-

trivial CKM matrix. We first proceed in direct analogy with [28] by setting pi = p for all

three generations, which allows anarchic Ŷu, where Ŷ
′
u can be forbidden by an appropriate

choice of charges. The CKM matrix is then generated by ζ̂Qi
u
, as in section 2, whereas the

ζ̂Qi
d
are unfixed.

To realize a left-right embedding, we must unify the 3-2-2-1 bulk multiplets into left-

right multiplets. The minimal approach is to combine Qd and Ud̄ into a single multiplet,

which sets ζ̂Qi
d
= ζ̂d̄i ≃

√

yid without affecting the CKM matrix. We then introduce left-

right partners Q′ for Uū and U ′′ = (ū′′, d̄′′) for Qu, choosing their U(1)1 charges to forbid

all Yukawa couplings to their components. For simplicity, we choose ri = −ℓi, so that

U(1)0 is left-right odd, forbidding the D-term deformation (6.2). We add a left-right image

U(1)′1, broken by boundary conditions on the IR brane, and replace both U(1)1 and U(1)′1
with a discrete subgroup to avoid a pseudo-Goldstone boson.

The resulting model is similar to that of [28] with one important difference: in our

case the right-handed up- and down-type quarks are mixed between the multiplets Uū,

Ud̄ and U ′′ as required by 3-2-2-1 invariance of the UV-brane boundary conditions. This

is problematic, however, as anarchic IR-brane-localized kinetic terms for d̄′ ∈ Uū can be

generated, leading to off-diagonal KK gluon couplings gijdR ∝ ζ̂ūi ζ̂ūj in the right-handed

down-type sector. If the coefficient of the IR-brane-localized kinetic term is order-one,

then a very large KK gluon mass is needed to suppress the resulting FCNCs.28

The FCNC constraints come mainly from mixing between the first two generations

(K − K̄ mixing), with the weakest constraints on mixing between the second and third

generations (Bs−B̄s mixing). Thus, we can avoid this problem by choosing p1 6= p2 = p3 ≡
p, which prevents kinetic mixing involving the first generation. However, this sets (Ŷu)

1
2 =

(Ŷu)
2
1 = (Ŷu)

1
3 = (Ŷu)

3
1 = 0, preventing CKM mixing with the first generation as well. We

can compensate by choosing charge assignments such that certain off-diagonal elements

of Ŷ ′
u are nonvanishing, but the effective couplings will then be O(ζ̂Qi

d
ζ̂d̄j ), which fails to

reproduce the correct CKM mixing given the relation ζ̂Qi
d
= ζ̂d̄i ≃

√

yid imposed above.

Instead, we take p1 6= p̃1, which sets (Ŷu)
1
1 = 0 but allows additional Yukawa couplings

W ′
Yukawa =WYukawa +Q1

uū
′
iHu +Qidū1Hu , (7.3)

consistent with the absence of off-diagonal down-type Yukawa couplings and kinetic mixing

involving the first generation.29 For example, we choose p1 = q3 − 2 and p̃1 = q2, so that

Yu ∼







0 0 ζ̂Q1
u
ζ̂d̄3

ζ̂d̄2 ζ̂ū1 ζ̂Q2
u
ζ̂ū2 ζ̂Q2

u
ζ̂ū3

0 ζ̂Q3
u
ζ̂ū2 ζ̂Q3

u
ζ̂ū3






, Yd ∼







ζ̂2
d̄1

0 0

0 ζ̂2
d̄2

0

0 0 ζ̂2
d̄3






, (7.4)

28In [28] the IR-brane localized kinetic terms are assumed to be loop-suppressed, which relaxes the

constraint on mKK somewhat.
29These requirements are satisfied if p /∈ {p1, p1 − 2, p̃1, p̃1 +2}, p1 6= p̃1 +2, qi /∈ {p, p+2, p1, p̃1 +2} and

qi 6= qj for i 6= j. The couplings Ŷ ′

u are forbidden for qi − qj 6= 2 for all i, j.
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up to order-one factors. A simple choice of charges which ensures this structure is e.g.

p = −1, (q1, q2, q3) = (3, 0,−3).

While the up-type Yukawa coupling matrix (7.4) contains several vanishing entries, this

is consistent with the observed Yukawa couplings and CKM matrix in a special basis Yu =

V T
CKMdiag(yu, yc, yt)V

†
ū , Yd = diag(yd, ys, yb), where Vū is chosen to set these entries to zero.

In particular, employing the Wolfenstein parameterization [127] and working to leading

order in λ, mc/(λ
2mt), and mu/(λ

3mt) ≪ 1, we find (up to a choice of unphysical phases)

Yu ≃







0 0 Aλ3(1− ρ− iη)yt
1
λyu − ρ+iη

1−ρ−iηyc −Aλ2yt
0 1

Aλ2(1−ρ−iη)yc yt






∼







0 0 λ3yt
yu/λ yc λ2yt
0 yc/λ

2 yt






, (7.5)

where Vū (which can be computed explicitly) is similar to (2.13). Thus, we can reproduce

the correct Yukawa couplings and CKM matrix for (cf. (2.15))

ζ̂Q1
u
≃
√

v cosβ

mb

λ3mt

v sinβ
, ζ̂Q2

u
≃ λ2ζ̂Q3

u
,

ζ̂ū1 ≃
√

v cosβ

ms

mu

λv sinβ
, ζ̂ū2 ≃ mc

λ2ζ̂Q3
u
v sinβ

, ζ̂ū3 ≃ mt

ζ̂Q3
u
v sinβ

,

ζ̂d̄1 ≃
√

md

v cosβ
, ζ̂d̄2 ≃

√

ms

v cosβ
, ζ̂d̄3 ≃

√

mb

v cosβ
,

(7.6)

where ζ̂Q3
u
is a free parameter.

By construction, kinetic mixing on the IR brane is only allowed between the second

and third generations, and the dominant FCNC constraints will come from the up-type

sector, as in [28]. Foregoing a detailed analysis along the lines of [28, 126], we estimate

a bound mKK & 10TeV by analogy with [28], allowing some leeway for improved experi-

mental bounds [65, 66] and somewhat different bulk profiles in our case. This constraint is

subdominant to the constraints from the non-observation of exotic gauge bosons considered

in section 6.6.

7.2 R-parity violation revisited

We comment briefly on the status of R-parity violation in models of this type. Since

U(1)B−L is gauged on the UV brane, R-parity violation is forbidden there (c.f. section 5.1).

Moreover, many dangerous proton decay operators can potentially be forbidden on either

brane by an appropriate choice of the charges for U(1)0 and U(1)1. This raises the question

(which we defer to a future work) of whether proton decay can be forbidden without

imposing Z
(L)
3 , allowing Majorana neutrino masses.

R-parity violation can still occur on the IR brane, but the form of the R-parity violating

couplings is constrained by U(1)1. In particular, not all of the couplings in table 1 will be

generated, with the available couplings depending on the choice of pi, p̃i and qi. Combined

with the presence of b̃R in the effective theory due to the mechanism of section 6.3, the

R-parity violating phenomenology may be substantially altered relative to the discussion

of section 5, offering at the same time model-building flexibility and the potential for

dangerous operators. We defer a complete consideration to a future work.
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8 Conclusions

In this paper, we have considered the possibility of a natural supersymmetric model where

the Higgs boson is protected from the effects of a relatively heavy gluino by composite-

ness. Only a few superpartners need appear below the confinement scale to solve the little

hierarchy problem, whereas the large hierarchy is explained by compositeness, and the re-

maining superpartners can safely decouple without introducing fine tuning. This approach

therefore provides a simple realization of the “natural SUSY” paradigm — where the Hig-

gsinos, gluino and stops are light and the first and second generation squarks are heavy —

allowing a natural model consistent with present LHC searches.

For definiteness, we considered a supersymmetric Randall-Sundrum model, related to

a four-dimensional composite model by the AdS/CFT correspondence. Motivated by the

RS flavor problem, we placed the standard model fermions and gauge bosons in the bulk,

with the Higgs on the IR brane and the Yukawa couplings explained by the exponential

profiles of the bulk fermions. This gives rise to the RS GIM mechanism and provides a

partial flavor protection. To protect the Higgs sector from large splittings — as demanded

by naturalness — we assumed that supersymmetry is broken dynamically on the UV brane.

(The dual picture is that of a SUSY-breaking sector weakly coupled to a supersymmetric

confining theory, introducing small splittings into the composite states.)

With these assumptions, we have argued that the first and second generation squarks

are generically decoupled due to their proximity to the SUSY breaking sector. This conclu-

sion is somewhat model dependent, but violating it typically requires introducing additional

independent scales into the problem to ensure that the stop is not degenerate with the other

squarks (to evade strong constraints on the first two generations) without simply decou-

pling them. Hence, we are led almost inevitably to a natural SUSY spectrum, a scenario

we refer to as “warped natural SUSY.”

The absence of the first two generations of squarks from the low-energy effective theory

in models of warped natural SUSY leads to a sizable two-loop g43 quadratic divergence in

the stop mass, correcting the Higgs mass at three loops. This correction competes with a

similarly-sized two-loop g42 quadratic divergence in the Higgs mass, and there is a partial

cancellation between the two terms. Nonetheless, fine tuning increases rapidly as the cutoff

is raised above 10 — 15TeV, beyond which the quadratic divergence becomes the dominant

source of tuning.

The large splittings in the elementary fields can induce dangerous radiative corrections

to the hypercharge D-term, which is a gauge-singlet. To avoid this catastrophe, we are

forced either to extend the standard model gauge group to a semi-simple group, or to in-

clude an outer automorphism under which all U(1) factors are charged (which also requires

the connected component of the gauge group to be extended). To ensure cancellation of

the radiative corrections down to the weak scale, we assume that the extended gauge group

is only broken on the IR brane, i.e. by the confining dynamics.

Due to the extended gauge symmetry, the standard model fermions must be embedded

into larger multiplets. This “unification” carries two hazards. It can lead to proton decay

or other rare processes in some instances where two or more standard-model fermions
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occupy the same multiplet. Moreover, the introduction of new charged and/or colored

particles to fill out the multiplets can lead to light exotic fermions, in contradiction with

LEP results. The splitting between different standard model representations in the UV-

brane localized (fundamental) multiplets is exponentially suppressed, and we argue that

only neutral, colorless exotics are permissible. This immediately rules out SU(5)-based

models, which require split multiplets to avoid excessive proton decay, as well as the Pati-

Salam model, which requires split multiplets (or a high Pati-Salam breaking scale) to avoid

excessive rare meson decays.

Based on an informal classification, we conclude that only the minimal left-right model

with a gauged left-right symmetry (and groups containing it) can solve the problem without

introducing light exotics. Even so, the W ′ and Z ′ gauge bosons from left-right breaking

will appear well below the confinement scale, and consequently present LHC searches for

these gauge bosons place an indirect lower bound on the confinement scale of roughly

30TeV. This implies fine tuning of the Higgs potential of the order of 5% from the two-

loop quadratic divergence discussed above.

We have constructed an example left-right model as a proof of principle that the cor-

rect Yukawa couplings can be reproduced in this framework. While the left-right multiplets

remain unified, their Yukawa couplings are split by introducing two bulk multiplets with

different profiles and off-diagonal boundary conditions on the UV brane along with an ad-

ditional U(1) symmetry (broken on the UV brane) which controls which multiplets can cou-

pled to the up- and down-type Higgs on the IR brane. As in the usual non-supersymmetric

RS model, more work is required to adequately suppress FCNCs with a low confinement

scale. As a further proof of principle, we have constructed an explicit model based on

horizontal symmetries which can be naturally incorporated into the above scenario, and

which ensures that FCNCs are sufficiently suppressed.

Another generic problem with composite models is the potential to generate large

dimension-six proton decay operators in the low energy effective theory, suppressed only

by the confinement scale. These operators are R-parity even, and hence some further sym-

metry is needed to prevent their appearance. In this work we have imposed a simple Z
(L)
3

for definiteness, which requires Dirac neutrino masses. In the presence of this symmetry,

R-parity is no longer required to prevent proton decay, and it is natural to consider R-parity

violation. We have shown that the assumption of bulk fermions and anarchic couplings on

the IR brane naturally leads to a model with sufficient R-parity violation to avoid missing

energy or displaced vertices at the LHC, but with small enough baryon number violation

to satisfy bounds on dinucleon decay and n-n̄ oscillations.

The introduction of R-parity violation relaxes LHC constraints on the stop mass,

while removing the WIMP dark matter candidate common to R-parity conserving models.

However, as discussed in section 4, we find that the DFSZ axion model can be naturally

incorporated into the SUSY RS model, solving the strong CP problem and providing dark

matter candidates in the axion and/or the axino. This possibility deserves more study.

We conclude that a supersymmetric composite model of the kind considered in this

work is a viable model of natural supersymmetry. While the necessity of extending the

gauge group combined with the present LHC constraints on exotic gauge bosons leads to
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some tuning, this tuning is relatively mild, and it is possible that violating one of our

assumptions could lead to a completely natural model.

A number of important questions remain to be explored. We have not fully addressed

the coincidence problem between the confinement scale and the gaugino masses, and a nat-

ural mechanism explaining this coincidence would be a boon to supersymmetric confining

theories in general. Moreover, our analysis relies on several assumptions, e.g. about how

the RS flavor problem is solved, and it would be interesting to understand whether differ-

ent assumptions would lead to similar conclusions or not. Our mechanism for suppressing

proton decay requires Dirac neutrino masses, but other options exist. For instance, the

horizontal symmetries we impose to fully solve the flavor problem could play a role in

suppressing proton decay, analogous to [4, 5].

The cosmological implications of models of this type remain to be explored. For

instance, baryonic RPV couplings may wash out any primordial baryon density and require

baryogenesis below the electroweak scale. This kind of low scale baryogenesis was discussed

in [128–130], and it would be interesting to embed this mechanism into the framework of

warped natural SUSY. Furthermore, the confining phase transition may occur too slowly,

leading to an underpopulated universe [131], and requiring very low scale inflation with a

reheating temperature below the phase transition. However, workarounds may exist which

allow high-scale inflation [132].
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