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1 Introduction and summary

Anomaly induced transport in systems of chiral fermions is currently a subject of active

theoretical and experimental studies. Various new effects related to the axial anomaly in

such quantum field theories were discovered, most notably the Chiral Magnetic Effect, the

Chiral Separation Effect and the Chiral Vortical effect. The Chiral Magnetic Effect [1]

provides a macroscopic manifestation of the quantum anomalies. In short, in presence
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of an external magnetic field ~B, a combination of QCD and QED anomalies result in

generation of an electric current parallel to ~B. There exist various derivations of this

phenomenon, directly in perturbative quantum field theory [2] as well as in relativistic

anomalous hydrodynamics, [3] both resulting in the expression

~J =
e2

2π2
µ~B . (1.1)

Here the coefficient is the well-known QED anomaly coefficient [4, 5] and µ is an effec-

tive chemical potential representing the imbalance in the chiral charge, that is generated

by non-perturbative processes in QCD which violate chiral charge conservation. At finite

temperature in the deconfined phase of QCD, one expects the most dominant such process

to be the sphaleron decay [6–8]. Anomaly related phenomena can also be studied within

relativistic hydrodynamics, when the hydrodynamic approximation applies. For example,

authors of [3] (see also [9]) presented an independent derivation of (1.1) by the physical

requirement of non-negative entropy current. In this derivation anomalous transport was

generalized to include the effects of relatives of the Chiral Magnetic Effect (CME) such as

the Chiral Vortical Effect (CVE), that is, generation of an electric current in the presence

of vorticity due to the gravitational anomaly [10, 11]. Similarly, the chiral and the gravi-

tational anomalies also give rise to anomalous heat transport in the presence of magnetic

field and vorticity respectively. On the experimental side, all of these phenomena can,

in principle, be realized in the Heavy Ion Collision experiments, although experimental

evidence is controversial at present [12–14].

Agreement of the perturbative and the hydrodynamic calculations imply non-

renormalization of the chiral magnetic conductivity coefficient in (1.1). However, as we

explain below this issue is more subtle.1 In this paper we address the question of renor-

malization of chiral magnetic and vortical conductivities in electric and heat currents and

related in the holographic approach in a gravitational setting dual to a non-conformal,

confining QFT at finite temperature.2

Anomalous transport coefficients associated with the electric and heat currents are

non-dissipative and can also be calculated by use of linear response theory (see for example

the review [15].) at vanishing frequency. With no loss of generality one can consider turning

on a gauge and metric fluctuations δAz(ky) and g0z(ky) to introduce magnetic field Bx and

vorticity ωx and measure the response 〈Jx〉 and 〈T 0x〉 obtaining the associated transport

1We thank Karl Landsteiner and Amos Yarom for very useful discussions on the current situation of

(non)renormalization of anomalous conductivities.
2It is worth-mentioning the historical fact that in case of the chiral vortical effect, such anomalous trans-

port was first discovered in the context of holography [10, 11] which then triggered a direct hydrodynamics

investigation.
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coefficients as

σB = lim
ky→0

i

ky
〈JxJz〉 ,

σV = lim
ky→0

i

ky
〈JxT 0z〉 ,

σǫ
B = lim

ky→0

i

ky
〈T 0xJz〉 ,

σǫ
V = lim

ky→0

i

ky
〈T 0xT 0z〉 .

(1.2)

Here σB, σV , σ̃B and σ̃V denote the chiral magnetic and chiral vortical conductivities in

the electric and the heat currents respectively. σV and σ̃V are equal due to symmetry of

the two-point functions at zero frequency. At strong coupling these quantities should be

calculated using non-perturbative techniques such as the holographic correspondence.

As already mentioned, this paper is concerned with quantum corrections of these

transport coefficients at strong coupling. The main question we address is whether the

conductivities (1.2) renormalize or not in presence of strong interactions. There exist

a variety of arguments (proofs in certain cases) in favor of — at least perturbative —

non-renormalization [2, 16–23], mainly due to the fact that the anomaly coefficients are

one-loop exact [4, 5], and one expects to be able to prove this directly in QFT by using

the anomaly equations and relevant Ward identities. However, there also exist calculations

and arguments in favor of renormalization in certain cases [24–26].

The current understanding of the issue of renormalization of anomalous conductivities

is as follows. Let us consider theories with finite static correlation length.3 The chiral

anomaly has the general form4

D · J5 = Nc a1Tr(F · F̃ ) +Nc a2R · R̃+Nf a3Tr(G · G̃) , (1.3)

where F is the electromagnetic field strength, R is the Riemann tensor, G is the gluon field

strength, F̃µν = ǫµνρσFρσ and R · R̃ = ǫµνρσRα
βµνR

β
αρσ, and G̃µν = ǫµνρσGρσ.

5

To discuss the issue of renormalization one should first make a distinction [28] (see

also [29]) between the anomalies of ’t Hooft type, i.e the terms with a1 and a2 in (1.3) and

the anomalies of the mixed gauge-global type, i.e. the term with a3 in (1.3). Let us call

the first and second type of anomalies “type I” and “type II”. In general the former type

of anomalies vanish when the external fields are turned off, whereas the latter does not.

Let us first consider theories with type I anomalies only. In this case, and in the case

of the chiral magnetic conductivity there exist various direct field theory calculations using

the axial and vector Ward identities and some recently proven non-renormalization theo-

rems [30–32], see section 5 of [33] for a clear disposition. Similar arguments also show non-

renormalization of the Chiral Vortical Conductivity as shown in [19]. These arguments are

3This requirement leaves superfluids out of the discussion for example.
4We shall consider only left-handed chiral fermions transforming in the fundamental representation of

flavor group SU(Nf ) and gauge group SU(Nc) in this paper, although our results are trivially generalizable

to other cases.
5Here a1, a2 and a3 are just numerical factors independent of Nc and Nf , whose value depend on the

charge of the fundamental representation and whether J5 denote a “consistent” or “covariant” current.
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completely in line with the hydrodynamics arguments [3] (see also [9]) we mentioned above,

which also applies to theories with type I anomalies exclusively. Finally, in a beautiful pa-

per by Jensen, Loganayagam and Yarom [34] (see also [35]) it was argued that one expects

no renormalization neither in the chiral magnetic nor in the chiral vortical conductivities.

The arguments in [34] are based on placing the theory on a cone, constructing the Euclidean

generating function and requiring continuity of this generating function in the limit where

the deficit angle vanishes. This effective field theory argument also applies to theories with

type I anomalies exclusively. Therefore there exist at least three6 independent arguments

in favor of non-renormalization of anomalous conductivities with type I anomalies.

On the other hand, the situation is very different for theories with type II anomalies,

e.g. QCD. In this case non of the aforementioned arguments are valid. On the contrary,

both field theory calculations [36, 37] and lattice simulations [38] indicate renormalization

effects in the chiral vortical conductivity.

The question of renormalization of anomalous conductivities was considered in the

holographic dual description [39–41] first in the special case of N = 4 super Yang-Mills

conformal plasma in the large Nc limit in a series of papers by Landsteiner et al. [42–45].

By comparison of the holographic and weak coupling results, these authors concluded that

none of the transport coefficients receive quantum corrections hence obtaining a puzzling

result in view of the previous paragraph. The conductivities in (1.2) are found to be:

σB =
µ

4π2
,

σV =

(

µ2

8π2
+

T 2

24

)

,

σǫ
B =

(

µ2

8π2
+

T 2

24

)

,

σǫ
V =

µ3

12π2
+

1

12
µT 2 .

(1.4)

There are a variety of reasons to believe that the aforementioned holographic calculation is

too specific to answer the question in full generality. Firstly it requires infinite ’t Hooft cou-

pling λ and infiniteNc, rendering possible corrections in 1/λ and 1/Nc invisible. Secondly, it

applies to conformal plasmas where the only dimensionful parameters are T and µ. In a the-

ory such as QCD, there exists a dynamically generated scale ΛQCD that arises from dimen-

sional transmutation. Finally, QCD is a confining theory with mass gap and confinement-

deconfinement transition (cross-over) at a temperature Tc both proportional to ΛQCD. One

can easily imagine that dynamics that lead to confinement at low T, placing the theory in a

different universality class than conformal theories, may lead to a different result.7 Indeed

6See [21] for an alternative proof of non-renormalization based on a group theoretic analysis at zero

temperature.
7This question was addressed in the holographic setting of the soft-wall model [46, 47] in [48]. However

we believe the soft-wall model is not appropriate to address the question because the holographic calculation

makes use of fluctuating background fields, whereas the soft-wall model does not even provide a genuine

solution to the Einstein’s equations.
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a lattice calculation of the chiral vortical conductivity shows non-trivial dependence on

temperature in the confining versus deconfined phases of QCD-like theories [38].

In this paper we first address the question in the holographic setting dual to a

non-conformal plasma with a mass gap, sharing many of the salient features of a gravity

background dual to QCD at finite T. We consider a bottom-up approach to holography

and perform our calculations in a black-brane background that is an asymptotically AdS

solution to the Einstein-Maxwell-dilaton system in 5 dimensions. Dynamics of the dilaton

is determined by a non-trivial dilaton potential that makes the dilaton run as a function

of the holographic coordinate generating a mass scale ΛQCD in the dual field theory. For

technical reasons it is very helpful to have analytic solutions at hand and for this reason

we consider a specific dilaton potential constructed first in [49] by Gao and Zhang that

leads to such analytic backgrounds.

We introduce the background of [49] and derive its thermodynamic properties in sec-

tion 2. The dilaton potential depends on an adjustable real parameter α. The particular

choice of α = 0 precisely corresponds to the aforementioned N = 4 case, whereas for

non-vanishing values of α generically corresponds to a non-conformal dual theory. For the

particular value of α = 2 we show that the solution admits a Hawking-Page type transition

that is believed to correspond to the confinement-deconfinement transition in the dual field

theory. Therefore the backgrounds we consider in this paper encompass all cases of confor-

mal, non-conformal and confining theories. Details of this background is presented in the

section 2. We introduce the anomalies of type I in the language of [28] in this holographic

setting through the AFF and ARR Chern-Simons terms in 5D.8

We calculate the conductivities (1.1) in this theory in section 3 as a function of the

“non-conformality parameter” α in section 3. The background, the fluctuation equations,

the temperature T and the chemical potential µ all depend non-trivially on α. Yet, when

the σ’s are expressed in terms of µ and T in this background, we find that the form

given in (1.4) holds independently of the value of α. From a technical point of view this

happens in a very non-trivial manner as a result of delicate cancellations. In this section we

also provide a confirmation of these results in an independent manner using the so-called

“holographic flow equations”, generalizing the calculation of [51] to the non-conformal

case. The calculations presented in section 3 provide a non-trivial check of the general

result of [34] which applies to a generic class of theories with type I anomalies.

In the final section of this paper we consider the more interesting case of theories also

with type II anomalies where the dynamical gluon fields contribute to the anomaly equa-

tion (1.3). We present a modification of the holographic calculation that takes into account

the glue contribution with a3 6= 0 in (1.3) and show that the holographic calculation predicts

quantum corrections to the all of the anomalous conductivities (1.1) in this case. This result

is completely in accord with the calculation of [36, 37] showing that the only possible quan-

tum corrections can arise from contribution of dynamical gluon fields to the loop diagrams.

8The ARR Chern-Simons term corresponds to a mixed gauge-gravitational anomaly in the dual field

theory. We introduced this term following the conjecture of [44] which relates the origin of the T 2 term in

the axial vortical effect to mixed gauge-gravitational anomaly. It is shown in [50] that this conjecture does

not represent the full generality of the situation. We thank Tigran Kalaydzhyan for driving our attention

to this point.
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Therefore, in order to generate radiative corrections in the holographic approach, one

should first consider correcting the axial anomaly equation by adding the a3 term in (1.3).

The question of generating gluon field contribution to the chiral U(1)R anomaly in the

holographic setting was first addressed by Ouyang, Klebanov and Witten in the context

of N = 1 cascading SU(N +M) × SU(N) gauge theory in [52]. The authors showed that

the anomaly arises as a result of non-invariance of the C2 form in the dual background. In

effect, presence of a non-trivial C2 generates a mass term for the gauge field dual to U(1)R
current and provides the anomalous contribution.9 The question was addressed in more

generality in [54] where the gluonic correction in (1.3) is argued to arise from a p-form

field in the background that couples to both the flavor branes and the probe branes. In

the case of interest in this paper, namely in the 5D setting of the bottom-up approach, the

role played by the C2 in [52] is played by the axion field C0.

In section 4 we extend the calculation to include Nf number of flavors through space-

filling D4 branes and include in the calculation the C0 field, among other relevant form-

fields. We show that10 the axion C0 comes with an addition to the action of the form

Sa ∼
∫

d5x
√
gZ0(φ) (dC0 −Nfw2A)

2 , (1.5)

where A is the dual of the chiral current and Z0 is some functions of the dilaton, Nf is the

number of flavors and w2 is a constant. This addition on one hand corrects the anomaly

equation by producing the a3 term in (1.3) , on the other hand it changes the fluctuation

equations of the gauge fields δAx and δAz in the calculation of (1.2) because of the mass

term. Therefore we propose inclusion of the axion field as the holographic mechanism

to generate renormalization of the anomalous conductivities that is expected to arise in

presence of dynamical gauge fields. The effective mass term for the gauge field in (1.5)

turns out to be order Nf/Nc, therefore we expect corrections anomalous conductivities to

be of order Nf/Nc. We conclude that they should be visible only in the Veneziano limit

where Nf/Nc is kept finite. We do not attempt at calculation of such corrections in this

paper, postponing the study in a future work.

We end the paper by discussing the results obtained in various different approaches

to anomalous transport and possible applications and extensions of our work in section 5.

Appendices A to E detail our calculations.

2 The gravitational background

We work in the bottom-up approach to holography in this paper and consider black-hole

solutions to an Einstein-Maxwell-dilaton theory in 5D with the action

S = − 1

16πG

∫

d5x
√−g

(

R− 4

3
(∇Φ)2 − V (Φ)− Z(φ)FµνF

µν

)

+
1

8πG

∫

∂M

d4x
√
hK ,

(2.1)

9The same problem was studied in the context of M-theory in [53].
10See also [55].
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where V (Φ) is a potential term for the dilaton field Φ, and there is a non-minimal coupling

between the dilaton and and the electromagnetic field specified by the function Z(φ). The

second term is the Gibbons-Hawking term on the boundary.11

2.1 An analytic black hole solution

In [49] the authors found the following analytic solution to (2.1) for the following specific

choices of the potentials:

V (Φ) = − 3

(2 + α2)2

{

4α2(α2 − 1)e−
8Φ
3α + 4(4− α2)e

4αΦ
3 + 24α2e−

2(2−α2)Φ
3α

}

, (2.2)

and

Z(φ) = e−
4
3
αΦ . (2.3)

We note that the α = 0 corresponds to the usual Einstein-Maxwell-dilaton theory, with a

constant potential V = −12.

Expanding the dilaton potential (2.2) near φ = 0 one finds that

V (φ) = V0 +
1

2
m2φ2 + · · · (2.4)

where

V0 = −12, m2 = −32

3
. (2.5)

We emphasize that m2 is independent of α. This mass term precisely saturates the

Breitenlohner-Freedman bound [56] and corresponds to a deformation in the boundary

theory by VeV of an operator of scale dimension 2. We thus learn that conformal symme-

try in the dual field theory is spontaneously broken in the UV. Therefore for any value of

α 6= 0 the dual field theory is non-conformal. An analytic black hole solution for arbitrary

α can be found [49] (see also [57]) as,12

ds2 = −N2(r)f2(r)dt2 +
r2dr2

(r2 + b2)f2(r)
+ (r2 + b2)R2(r)dΩ2

n−1 , (2.6)

where the coordinates r assumes the values 0 ≤ r < ∞, and N2(r), f2(r), Φ(r) and R2(r)

are given as

N2(r) = Γ−γ , (2.7)

f2(r) =
r2 + b2

l2
Γ2γ − c2

r2 + b2
Γ1−γ , (2.8)

φ(r) =
3

4

√

γ(2− 2γ) log Γ, (2.9)

R2(r) = Γγ , (2.10)

Γ =
r2

r2 + b2
. (2.11)

11We do not need to add a counterterm action in this section where we consider the thermodynamic

properties of the system by evaluating the difference between the on-shell black-hole and thermal gas

actions. The counter terms cancel in the difference.
12We follow the notation of [57].
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with

γ =
α2

2 + α2
, 0 ≤ γ ≤ 1 . (2.12)

Location of the horizon rh is determined by f(rh) = 0 and related to the integration

constants b and c above as

c = r3γ−1
h (r2h + b2)

3
2
(1−γ) . (2.13)

The field strength and the corresponding electromagnetic potential reads

Frt =
Qr

(r2 + b2)2
, At = µ− Q

2(r2 + b2)
. (2.14)

Regularity at the horizon rh then determines

Q = 2µ(r2h + b2) . (2.15)

The VeV of the dilaton operator dual to φ can be read off from the near boundary asymp-

totics of (2.8) as

〈O〉 = 3

4

√

γ(2− 2γ) b2 . (2.16)

Therefore, one can think of the integration constant b as related to the dynamically gener-

ated mass scale in the dual theory, i.e. ΛQCD ∝ b. The temperature is obtained by requiring

absence of a conical singularity at the horizon as,

T =
b

π
r3γ−1
h (r2h + b2)

1
2
(1−3γ)

(

rh
b

+
3γ − 1

2

b

rh

)

. (2.17)

Entropy density of black-hole is determined from the area of the horizon as,

S =
r3γh (r2h + b2)

3
2
(1−γ)

4G
. (2.18)

One peculiar feature of this solution is that the charge parameter Q is related to the

integration constants b and c as

Q2 = 3(1− γ)b2c2 . (2.19)

This condition is required in [49] to generate the analytic solution above. Comparison

of (2.19) with (2.15) then also determines the chemical potential as a function of rh and b as,

µ =

√

3(1− γ)

2
b r3γ−1

h (r2h + b2)
1
2
(1−3γ) . (2.20)

In passing, we note that the condition (2.19) obscures the physical interpretation in the

dual theory. A generic solution to the Einstein-Maxwell-dilaton theory should correspond

to a dual field theory that is characterized by three parameters in the grand canonical

ensemble: ΛQCD, T and µ. If we insist on keeping ΛQCD — that is related to b as in (2.16)

— and T as the free parameters, then the chemical potential cannot be free. Conversely,

we may keep T and µ free, but then ΛQCD will be determined completely. We shall adopt

– 8 –
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the first option as it is more natural in application to QCD-like theories.13 Therefore in

this specific model the chemical potential and the mass gap ΛQCD will be tied to each

other. This unphysical fact is the price one has to pay to work with an analytic solution,

which is a crucial technical simplification for the calculations in the next sections.

Finally, we note that the integration constant c can be written in terms of the physical

parameters above, using equations (2.13), (2.15), (2.17), (2.18) and (2.20) as

c2 = 4πGTS +Qµ . (2.21)

This relation clarifies the physical meaning of the integration constant c and it will be

useful below when we calculate the energy and the free energy of the solution.

2.2 The thermal gas solution

The TG solution that corresponds to this analytic BH solution is determined by demanding

vanishing of the entropy. Noting (2.12) and using (2.18) we learn that TG solution can be

obtained from the BH by setting rh = 0. This is of course expected as the TG solution

should follow by sending the horizon to the origin, see e.g. [58]. Then from (2.20) we see

that the chemical potential of the TG solution diverges unless γ ≥ 1/3. This of course does

not make sense, thus we further require

1

3
≤ γ ≤ 1 . (2.22)

Then from (2.13) we find that the TG solution can be obtained from (2.6) by setting c = 0.

We present the thermal gas solution here for completeness, although we will not resort to

it in calculations in the next sections:

ds2 = −N2(r)f2(r)dt2 +
r2dr2

(r2 + b2)f2(r)
+ (r2 + b2)R2(r)dΩ2

n−1 , (2.23)

with

N2(r) = Γ−γ , (2.24)

f2(r) =
r2 + b2

l2
Γ2γ , (2.25)

Φ(r) =
3

4

√

γ(2− 2γ) log Γ , (2.26)

R2(r) = Γγ , (2.27)

Γ =
r2

r2 + b2
. (2.28)

Finally, noting (2.19) that is valid also for the TG solution we learn that the TG solution

that corresponds to this BH solution has vanishing charge and vanishing chemical potential:

Q = µ = 0, TG , (2.29)

13We explain below that existence of a confinement-deconfinement transition follows from demanding

that the high T black-hole and the low T thermal gas solutions possess the same ΛQCD.
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therefore the electromagnetic potential vanishes on the thermal gas solution:

At = 0, TG . (2.30)

In passing, let us note a peculiar feature of this solution. The result (2.30) implies that

the BH and the corresponding TG solutions cannot be maintained at the same chemical

potential. This is a result of the peculiar condition (2.19).

2.3 The charge and the energy

The total charge of the black-hole can be calculated from

Qtot =
1

4πG
lim
r→∞

∫

d3x
√
g3N Z F 0νnν , (2.31)

where N is the lapse function in the ADM decomposition, nµ is the normal vector to the

boundary and
√
g3 is the volume element of the 3D spatial section. One finds

Qtot =
V3

4πG
Q . (2.32)

The gravitational contribution to the mass of the BH solution can be obtained by the

Brown-York procedure, that is conveniently reviewed in [58]. In order to obtain a finite

result, it is appropriate to calculate instead the mass difference between the BH and the

TG solutions presented above. Employing the expressions presented in [58] one easily finds

the following gravitational contribution to the mass difference:

∆EG =
3c2 V3

16πG
. (2.33)

Moreover, using (2.21) the gravitational mass difference can be expressed as

∆EG =
3V3

16πG
(4πGTS +Qµ) . (2.34)

There exists also a gauge field contribution to the mass of the black-hole that reads

EBH
A =

V3

4πG

√
g3NAνF

µνnµZ(φ)

∣

∣

∣

∣

z=ǫ

z=zh

. (2.35)

On-shell this evaluates to

EBH
A =

V3 µQ

4πG
= µQtot , (2.36)

Noting the latter contribution is absent in the TG solution, the total mass difference

becomes

∆Etot = EBH − ETG =
V3

16πG

(

3c2 + 4µQ
)

. (2.37)
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2.4 Free energy and the Hawking-Page phase transition

Let us now calculate the Gibbs free energy difference between the BH and the TG solutions.

One can obtain this from the difference between the on-shell actions employing for example

the formula derived in [58] and confirms that the result precisely has the form of the Gibbs

free energy:

∆Gtot = ∆EG − µQtot − TStot . (2.38)

Then using (2.33) one obtains

∆Gtot = − V3

16πG
c2 = −1

4
TStot −

1

4
µQtot , (2.39)

where we used (2.21).

Now we can ask whether there is any phase transition in this system. For this it is useful

to express the free energy difference (2.39) in terms of rh and b using (2.18), (2.17), (2.20)

and (2.15) as

∆Gtot = − V3

16πG
r6γ−2
h (r2h + b2)3−3γ . (2.40)

This expression can only vanish as rh → 0 iff γ ≥ 1
3 . Note that this is precisely in the

allowed range by (2.22). Then we can calculate the phase transition temperature Tc by

sending rh → 0 in (2.17). We find that Tc vanishes for γ > 2/3 and it diverges for γ < 2/3.

Therefore we only consider the case γ = 2/3 where Tc turns out to be finite. The value of

Tc follows from (2.17) as

Tc =
b

2π
as rh → 0, for γ =

2

3
. (2.41)

Recalling that the limit rh → 0 precisely corresponds to the limit where the mass of the

BH vanishes and it becomes the same geometry as the TG background, one is tempted to

conclude that this case should correspond to a second order phase transition. However this

should be checked by expressing ∆Gtot in terms of T − Tc. In order to do this we look at

the subleading terms in T and ∆Gtot in rh as rh → 0. The result is

T − Tc ≈
3r2h
4πb

, ∆Gtot ≈ − V3

16πG
b2r2h rh → 0 . (2.42)

Therefore we find

∆Gtot ≈ −2π3V3

3G
T 3
c (T − Tc), T → Tc , (2.43)

as Tc is approached from above. This means that this case actually corresponds to a first

order phase transition.

We note that this kind of phase transition where the BH horizon marginally traps

the singularity at rh → 0 is of the type considered in [59]. For further discussion on

this we refer to appendix A. The Hawking-Page type transition found corresponds to a

confinement-deconfinement type transition in the dual field theory [60].

One may wonder how the free energy in (2.40) compares to the free energy of the AdS

BH which also solves the Einstein-Maxwell equations. This solution is obtained by setting
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b = 0 in the solution (2.6). By comparing (2.40) for b 6= 0 and b = 0 we clearly see that

the solution with running dilation, i.e. b 6= 0, always have a lower free energy hence wins

over the AdS BH in the thermodynamic ensemble.

However, for any value of α in (2.2), there exists an additional solution with non-

trivial charge. This is the AdS-RN solution with a dilation sitting at the extremum of the

potential Φ = 0. One can easily calculate the free energy of this solution in terms of the

parameters b and rh. If we consider the renormalized ∆Gtot in (2.38) we find after some

work that ∆Gtot(Φ 6= 0)−∆Gtot(Φ = 0) = −V3Tr
3
h((1 + b2/r2h)

−3γ − 1)/4G that is always

positive definite. Therefore the dominant solution is always the AdS-RN black-hole with

Φ = 0. This is no concern to us however, because we only want to consider theories with

running dilation in this paper. In the dual field theory this means that we want to consider

theories where the scale invariance is spontaneously broken with a VeV 〈O〉 6= 0. This VeV

is the way we mimic the dynamically generated scale ΛQCD i.e. 〈O〉 ∝ Λ2
QCD. In the dual

field theory one always compares solutions with the same ΛQCD, T and µ.

3 Anomalous conductivities and fluctuations

Here we calculate the anomalous conductivities for the holographic setup introduced in the

previous section. We follow the methods introduced in [42] and [51] where it was applied

to the case of N = 4 SYM plasma. The conductivities are obtained by finding solutions

to the fluctuation equations. As an extra check we look at a second derivation, also done

in [51]. This derivation uses the fluctuation equations to construct a system of nonlinear

differential equations for the Green’s functions involved in the conductivities. We show

below that the Green’s functions found with the first method above solve these equations.

In what follows we only describe the method of calculation and present the final answer,

referring all the technical details to appendices B to F.

At this point we change notation to make comparison with [42] and [51] easier. The

metric we use is

ds2 =
L2

4u2f(u)
du2 +

ρ2h
L2u

(

− f(u)

R(u)2
dt2 +R(u)2d~x2

)

, (3.1)

where u =
ρ2h
ρ2

and ρ2 = r2 + b2

f(u) = Γ2γ(u)− c2L2u2

ρ4h
Γ1−γ ,

R(u)2 = Γγ(u) ,

φ(u) =
3

4

√

γ(2− 2γ) log Γ(u) ,

Γ(u) =
ρ2 − b2

ρ2
,

At = −
√
3ubc

ρ2h

√

1− γ ,

c =
1

L
(ρ2h − b2)

1
2
(3γ−1)ρ

3
2
(1−γ)

h ,

(3.2)
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where we rescaled the gauge field such that the Maxwell term has a factor 1
4 in front, and

otherwise this is just a rewriting of the previous setup, with u = 0 corresponding to the

boundary and u = 1 corresponding to the horizon.

A comment is in order here. The calculation we present below relies on the Kubo’s

linear response theory and therefore the axial currents should have the consistent form

that is related to the covariant currents by addition of a Chern-Simons current on the

boundary, see for example [15]. In the holographic picture this extra piece complicates the

calculation and it turns out to use a gauge for the bulk field where At = 0 on the boundary

rather than µ as in the previous section. These two methods were coined the “formalism

A” and “formalism B” in [15]. We shall use formalism B in what follows14 in accord with

the original holographic calculation of [42].

The action eq. (2.1) discussed in the previous section does not contain the chiral gauge

and gravitational anomalies. To introduce them we add the following Chern-Simons type

terms [15],

SCS =
1

16πG

∫

M

d5x
√−g

κ

3
ǫMNPQRAMFNPFQR , (3.3)

SGCS =
1

16πG

∫

M

d5x
√−gλǫMNPQRAMRA

BNPR
B
AQR , (3.4)

SCSK = − 1

2πG

∫

∂M

d4x
√
−hλǫMNPQRnMANKPLDQKR

L . (3.5)

Here SCS is the regular Chern-Simons term and SGCS is the gravitational Chern-Simons

term. The boundary action SCSK needs to be added so that if we do a gauge transformation

AM → AM +∇Mξ, the variation of the total action becomes

δξS =
1

16πG

∫

∂M

ǫµνρσ
(κ

3
F̂µνF̂ρσ + λR̂α

βµνR̂
β
αρσ

)

. (3.6)

To fix κ and λ we compare with eq. (1.3) (with a3 = 0), where for the single left-handed

fermion that we consider, the covariant anomaly has numerical coefficients a1 = 1
96π2 and

a2 =
1

768π2 , so if we set15

κ = −GNc

2π
,

λ = −GNc

48π
,

(3.7)

we obtain exactly the anomaly equation. Note that we do not at this point include the

gluonic contribution to the anomaly, that will be discussed in the next section.

We also need to add a counter-term action to cancel the divergences at the boundary,

(see [61])

Sct = − 1

8πG

∫

d4x
√
−h

(

3 +
4

3
φ2

)

. (3.8)

14We thank Karl Landsteiner for clarifications on this issue.
15We included a factor of Nc compared to the definitions in [15] in accord with the generic anomaly

equation (1.3) with a3 = 0.
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With the addition of the Chern-Simons terms, the equations of motion become

0 = RMN − 1

2
gMNR+

1

2
gMN

(

4

3
(∂φ)2 + V

)

) +
1

4
e−

4
3
αφ

(

1

2
gMNF 2 − 2FMPFN

P

)

− 4

3
∂Mφ∂Nφ− 2λǫLPQR(M∇AF

PLRA
N)

QR ,

0 = ∇N (e−
4
3
αφFMN ) + ǫMNPQR(κFNPFQR + λRA

BNPR
B
AQR) ,

0 =
8

3

1√−g
∂µ(

√−g∂µφ)− V (φ)′ +
4α

12
e−

4
3
αφF 2 .

(3.9)

The terms proportional to λ or κ, coming from the new terms in the action, vanish on

the background of the previous section. Hence the background introduced in section 2 still

satisfies the equations of motion (3.9).

To compute the Green’s functions in the Kubo formulas eq. (1.2) we fluctuate the fields

htα(r, y) and aα(r, y), where α takes values x, z. To simplify the equations we raise the

α index on the metric fluctuations. Expanding the equations of motion eq. (3.9) to first

order in these perturbations we obtain the fluctuation equations, shown in appendix B.

3.1 Direct calculation

To calculate the Green’s functions directly we use the formalism of [62], that we review

here. Second order fluctuations in the action can be written in the form

S(2) =

∫

M

d4k du
(

ΦI
−k

′ÃIJΦ
J
k
′ +ΦI

−k
′B̃IJΦ

J +ΦI
−kC̃IJΦJ

k

)

, (3.10)

where a prime denotes a radial derivative, Φk is a vector of all the (Fourier transformed)

fields that we fluctuate and Ã, B̃, C̃ are matrices giving the coefficients of the various terms.

Taking this action on-shell, we can write it completely as a boundary term, of the form

S(2) =

∫

∂M

d4k>0

(

ΦI
−kAIJΦ

J
k
′ +ΦI

−kBIJΦ
J
)

. (3.11)

Here we have restricted our integral to momenta k>0 which are positive in the sense that

ω > 0. A and B are then related to Ã and B̃ by A = 1
2ÃH and B = 1

2 B̃†, where ÃH denotes

the Hermitian part of Ã.

Now we write ΦI
k(u) = FI

J(k, u)φ
J
k , where φ

I is the source of ΦI and we have a similar

relation for ΦI
−k. We normalize F so that FI

J(k,Λ) = δIJ , where Λ is the cutoff of our

theory. This corresponds precisely to requiring our fluctuations to equal the sources at the

boundary. Note that we do not assume the cutoff to be close to the boundary. Using this

definition and normalization of F we can write the on-shell action as

S(2) =

∫

∂M

d4k>0φ
I
−k2

(

AF ′ + B
)

φJ
k |ρhΛ , (3.12)

so that finally,

GIJ(k) = −2 lim
u→Λ

(

A(k)(F(k, r))′ + B(k)
)

. (3.13)

We find F ′ by solving the fluctuation equations. Apart from the normalization of F
at the boundary we need boundary conditions at the horizon. The conditions we need
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to take are the ω → 0 limit of infalling boundary conditions. This means that the gauge

field fluctuations aα have to be regular at the horizon and the metric fluctuations have to

vanish (see [43]).

To solve these one has to split the fluctuations into a zeroth order part in momen-

tum and a first order part, where the first order part can again be split up into a term

proportional to κ and a term proportional to λ,

Bα = B(0)
α + kκB(κ)

α + kλB(λ)
α ,

ht
α = h

(0)α
t + kκh

(κ)α
t + kλh

(λ)α
t .

(3.14)

The zeroth order equation can then be solved by solving the first equation eq. (B.1) for

gα(0)t
′ and substituting the result in the second equation eq. (B.2), resulting in an equation

of the form B
(0)
α

′′′ = χ(u)B
(0)
α

′′. The solution involves a double integral over the function

χ(u) which cannot be done analytically, but it is divergent at the horizon, so the boundary

conditions force it to vanish. So we obtain an analytic solution for B
(0)
α . We plug this back

into the first equation eq. (B.1) which can then directly be solved for h
(0)α
t .

The zeroth order solutions then enter in the κ and λ equations as an inhomogeneous

term. These equations can be solved in the same manner, the only difference being that

in this case the boundary conditions do not get rid of the integral. In this way we obtain

an analytic solution involving a double integral, shown in appendix C. Note that for the

conductivities we only need the asymptotics of the derivatives of the solutions, which we

can get from this integral solution fully analytically.

To find the matrices A and B we need to look at the second order action. Our full

action can be written as

S = S0 + SCS + SGCS + SGH + SCSK + Sct . (3.15)

Then the second order actions have the following schematic form (omitting the terms that

do not contribute to A or B),

(S0 + SCS + ∂uSGH)(2) =

∫

M

d5x
(

Φ′
−kA0Φ

′
k +Φ−kB0Φ

′
k

)

,

S
(2)
ct =

∫

∂M

d4xΦ−kBctΦk ,

S
(2)
GCS =

∫

M

d5x
(

Φ′
−kA

1
λΦ

′
k +Φ−kBλΦ

′
k +Φ′

−kA
2
λΦ

′′
k

)

,

S
(2)
CSK =

∫

∂M

d4x
(

Φ−kA
3
λΦ

′
k +Φ′

−kA
4
λΦ

′
k

)

.

(3.16)

All but two of these contributions can be dealt with without problems using the formalism

outlined above, the problematic terms are A2
λ and A4

λ. The reason that these problematic

terms are present is that the variational problem is not well defined for the gravitational

Chern-Simons term, i.e. if we take the variation of SGCS + SCSK we get

δ(SGCS + SCSK) = − λ

2πG

∫

∂M

d4x
√
−hǫmlqrDrAmδKqvKl

v . (3.17)
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We deal with these terms by using the fluctuation equations to replace a double derivative

on a fluctuation with single derivatives (for the A4
λ term we first have to take the derivative

of the entire thing to bring it from the bulk to the boundary).

However this turns out to be insufficient, as in this way the condition

d

du

(

G−G†
)

= 0 (3.18)

is not satisfied. We can remedy this as follows, [51]. When we substitute the solutions to

the fluctuation equations in eq. (3.17) it has a term of the form

∫

∂M

d4xǫαβB̄α−kζ(u, uc, k)H̄
′
βk . (3.19)

We take this ζ as contributing to the B matrix. The final matrices are shown in appendix D.

Combining this with the solutions to the fluctuation equations, we find that the condi-

tion eq. (3.18) is satisfied and we obtain the Green’s functions shown in appendix E. Note

that at this point we changed our fields (and sources) from Bα and gt
α to aα and gtα.

Expressed in terms of temperature and chemical potential and using eq. (3.7) we obtain

the conductivities in eq. (3.20),

σB =
µ(uc)

4π2
,

σV = −
(

µ(uc)
2

8π2
+

T 2

24

)

,

σǫ
B = −

(

µ(uc)
2

8π2
+

T 2

24

)

,

σǫ
V =

µ(uc)
3

12π2
+

1

12
µ(uc)T

2 .

(3.20)

There is no explicit α-dependence and only the trivial renormalization of µ(uc) = µ(1−uc).

In particular these results are exactly the same as those in [51] and agree with [42] and [44].

Also note the change in sign with respect to (1.4), this is because here we fluctuate gtα,

which corresponds to Tt
α, while (1.4) corresponds to T tα.

We stress that there is a nontrivial implicit α-dependence through the temperature

and chemical potential. We refer the reader to appendix E where we present the Green’s

functions and their dependence on the parameters of the model b, ρh and α in detail.

3.2 Flow equations

Following [51] we now provide another check that the Green’s functions found above. This

is only applicable to the κ parts however, as it directly uses the stress-energy tensor, and

it is not clear how to define this in the presence of the gauge-gravitational anomaly.

The idea is as follows. We have two ways of expressing the current and stress energy

tensor. The first is through the Green’s functions,

δJα
cons. = Gxxδαβaβ +Gxzǫαβaβ + P xtδαβgtβ + P ztǫαβgtβ ,

δTt
α
cons. = Gxx

ǫ δαβaβ +Gxz
ǫ ǫαβaβ + P xt

ǫ δαβgtβ + P zt
ǫ ǫαβgtβ ,

(3.21)
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and the second is as a variation of the action,

δJα = δ
δS

δAα
= δ

(√−g

16πG
e−

4α
3
φFαr

)

=
fe−

4αφ
3 ρ2h

8πGL3

(

a′α + µgtα
)

,

δTt
α = δ

δS

δgtα
= δ

(√−g

8πG

(

Kt
α − gt

αK − 3

L
ht

α − L

2
Ĝt

α

))

= − fρ4h
8πGL5R2u2

(

gtα

(

uf ′ + f

(

2uR′

R
− 3

)

+ 3
√

f

)

+ fu(gtα)
′

)

.

(3.22)

Here K is the extrinsic curvature, defined by Kµν = 1
2(∇µnν +∇νnµ), where nµ =

√
grrdr

is the radial normal vector, and the stress energy tensor was found in [63] Note that the κ

term in the current is absent because we use the covariant current.

Of course these expressions should be the same, and from this we can extract a

system of nonlinear differential equations for the correlators. Equating (δJα
cons.)

′ = (δJ)′

we get a set of equations involving double and single derivatives of the fields. We first

get rid of the double derivatives using the fluctuation equations, and then get rid of the

single derivatives using directly δJα
cons. = δJα. Then we obtain a system of equations

involving only the fields, and the Green’s functions and their first derivatives. Since the

field fluctuations are independent in this context (the two expressions of the current and

energy-momentum tensor are equal also off-shell) we find that the coefficients of the fields

must vanish individually, obtaining a first order coupled system of nonlinear differential

equations for the Green’s functions, shown in appendix F.

The system is hard to solve directly, but one can easily verify that it is solved by the

Green’s functions we already found. More precisely, substituting in in Gxx = P xt = Gxx
ǫ =

0, as is done in [51], the system can be solved (requiring the anomalous conductivities to

vanish at the horizon) and we find the same conductivities as with the method above. The

last Green’s function P xt
ǫ is then solved by

P xt
ǫ =

fρ4h
8πGL5R2u2

(

−uf ′ − 2fuR′

R
+ 3f − 3

√

f

)

. (3.23)

Hence, the results found above by direct computation agree with the flow equations derived

here. This is just an additional check of our results.

4 Dynamical gauge fields and the axion

4.1 Gluonic contribution to the chiral anomaly

The conclusion of the last section is that the anomalous conductivities do not get any

corrections from interactions in a large class of non-conformal QFTs parametrized by

the parameter α. More precisely, the form of the conductivities expressed in terms of

temperature and the chemical potential is of the same form as the conformal case which

corresponds to the choice α = 0, for which we know that the form of the conductivities is

the same as in free Weyl fermions [42–45].

As discussed in the introduction, this result is expected whenever the strongly inter-

acting QFT can be treated as a hydrodynamical system where the only hydrodynamical
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degrees of freedom are the chemical potential µ(x), the temperature T (x) (or energy density

ǫ(x) and the 4-velocity uµ(x) [34].

Another piece of information we have is the field theory calculation of [36, 37] which

shows that the anomalous conductivities can receive quantum corrections through dynami-

cal gluon fields running in the loops. This contribution is obtained in [36, 37] by writing the

vacuum polarization diagrams 〈AµAν〉 in terms of the triangle anomaly diagrams 〈JµGνGρ〉
where Gν are the gluon fields. Therefore we expect such quantum corrections to arise only

when the anomaly equation possess these gluonic contribution and read16

∂µJ
µ,5 = Nc a1 ǫ

µ1µ2µ3µ4 Tr (Fµ1µ2Fµ3µ4) +Nf a3 ǫ
µ1µ2µ3µ4 Tr (Gµ1µ2Gµ3µ4) , (4.1)

instead of just

∂µJ
µ,5 = Nc a1 ǫ

µ1µ2µ3µ4 Tr (Fµ1µ2Fµ3µ4) . (4.2)

where a1 and a3 are fixed numerical factors independent of Nc and Nf for the fundamental

representation. In the latter case, when the theory in the strong coupling limit is treated as

a hydrodynamical system without the dynamical gluons, the only hydrodynamical degrees

of freedom are µ(x), the temperature T (x) and the 4-velocity uµ(x), hence one is back

to the scenario of [34] and one do not expect quantum corrections. Therefore there is no

inconsistency in the results of [36, 37] and [34]. The holographic calculation we presented

in the previous section also ignores the dynamical gauge field contribution to the anomaly

equation hence attaining (4.2) instead of the correct form (4.1). Our calculation fulfills

the expectation of [34], therefore there is neither any inconsistency with the holographic

calculation nor with the results of [36, 37].

However, this logic also suggests a way to obtain such quantum corrections in the

holographic description. One simply introduces the necessary bulk degrees of freedom in

the GR dual in effect to correct the anomaly equation (4.2) and attain (4.1) instead. It is

well-known how to obtain such a correction in the holographic picture since the work of

Ouyang, Klebanov and Witten [52]. It was shown in this paper in the top-down context

that such terms arise from the various form fields on the cycles in the internal part of the

10D background. In the particular case of the N = 1 cascading SU(N+M)×SU(N) gauge

theory it arises from the two-form F3 = dC2 on the three cycle in the T 1,1 geometry.

The idea was later generalized in [54] in a form suitable for the bottom-up approach we

take in this picture. Instead of reviewing the arguments in [54] let us apply them directly

to our case of 5D gravity coupled to the various from fields. Let us first review how the first

term in (4.1) arises. In the previous section the anomaly equation arose from the Chern-

Simons term (3.3) and (3.4). Let us ignore the gravitatonal CS term for the moment, for

simplicity. We will put it back in later. In the discussion of [54] the gauge field AM lives

on the flavor 4-branes, and the CS action arises from the Wess-Zumino term of the flavor

16We show here the covariant form of the anomalies for the sake of the discussion, as they are more

familiar. We also do not include in this discussion the gravitational anomaly for simplicity. We retain it in

section B below.
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brane action:17

SWZ = Tp

∫

Σp+1

C ∧ Str exp
[

iπα′F
]

= T4

∫

M

d5x
{

iC−1(u) ∧ Str exp[i2πα′F ]|6 − iC̃3(u) ∧ Str exp[i2πα′F ]|2

−C1(u) ∧ Str exp[i2πα′F ]|4
}

(4.3)

where, C is the combination of the various form fields C =
∑

n(−i)
p−n+1

2 Cn and we specified

to flavor 4-branes in the second line. Tn denote the D-brane tensions. The super connection

F contains the flavor gauge field AM , see [54] for details of the definitions of F and the

super-trace18 Str. The super-traces in (4.3) are closed forms that can be written as19

Str exp[i2πα′F ]|2 = w2Tr (iF ) ≡ dΩ1 (4.4)

Str exp[i2πα′F ]|4 =
w4

2
Tr (−F ∧ F ) ≡ dΩ3 (4.5)

Str exp[i2πα′F ]|6 =
w6

6
Tr
(

− iF ∧ F ∧ F
)

≡ dΩ5 , (4.6)

where w2, w6 and w4 are constants, the first two to be determined by the anomaly equation.

The first term in (4.3) can therefore be written as F0Ω5 where F0 is Poincare dual

to a space-filling 5-form F̃5 which should therefore be constant. This 5-form arises from

the gluon D3 branes in the decoupling limit, therefore we learn that F0 ∝ Nc for a gauge

group SU(Nc). Using the last equation in (4.6), choosing the constant w6 appropriately

and noting that κ/G ∝ Nc (see equation (3.7)) one finds precisely the CS term (3.3) with

the correct factor of Nc in front. A gauge transformation of AM then produces a boundary

term as the first term in (4.1) hence leads to the holographic representation of the U(1)

axial anomaly equation (4.2) [41].

The second term in (4.3) involves a three form C̃3 that has the same degrees of freedom

as its Hodge dual C0 = ⋆C̃3. Therefore we can choose to work with the axion20 C0. One

can easily obtain the action of the axion [54, 55]. Including the kinetic term for C̃3 in the

bulk action, this dual action takes the form [55]

Sa =
M3

p

2

∫

d5x
√
gZ0(φ) (dC0 −Nf w2A)

2 . (4.7)

17In what follows we denote the holographic coordinate by u in line with the notation of the previous

section.
18In [54] the super-connection also includes an open-string tachyon that T that we set to zero here. This

is expected to be the case in the black-hole backgrounds, see [64]. The argument is simple: by symmetry

T can only be a function of the radial variable u. If this function is non-trivial, then one can show by

analyzing the equation of motion for T that it diverges at the horizon. In [54] it is shown that this gives rise

spontaneous breaking of the chiral flavor symmetry, hence a non-trivial value of the chiral condensate. On

the other hand we are interested in field theories where the chiral symmetry is restored in the deconfined

(hence BH) phase. Then the only sensible solution to the tachyon equation is T = 0 which is indeed always

a special solution.
19Here we simplify the discussion by first setting the tachyonic contributions to zero, and second by

ignoring possible dependence on the dilation in these equations. This is sufficient for the discussion in this

section as we only want to discuss modifications due to the Ramond fields in a qualitative manner. The

conclusions are unaltered when such contributions are included.
20This is a 5D bulk field, not to be confused with the auxiliary boundary axion in [15].
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where Z0(φ) is some function of the dilation. By symmetry C0 can only be a function of

u. Here w2 is a constant. For a generic metric of the form

ds2 = −gtt(u)dt
2 + guu(u)du

2 + gxx(u)dx
2
3 , (4.8)

and in an arbitrary gauge Au the solution to (4.7) is

C0(u) = θ + θ̃

∫ u√ guu
gttg3xx

Z0(φ)
−1 +Nfw2

∫ u

Au , (4.9)

where θ and θ̃ are integration constants. On a BH background then we should require

θ̃ = 0 for regularity at the horizon [58]. On the other hand Maxwell equation for the

u-component of the gauge field determines Nfw2Au = ∂uC0. Substituting this in (4.9) we

then find that the background value of the axion on the BH background is a constant.

This constant equals θ above in the gauge Au = 0, however its value changes in a different

gauge. In particular under Au → Au + ∂uλ it transforms as21

θ → θ +Nfw2λ(0) . (4.10)

Now the crucial point is that C0 also couples to the gluon fields that live on the D3

branes [52, 54]. This coupling can be read off from the Wess-Zumino term on a probe D3

brane as

SWZ,3 =
T3

2

∫

d4x
√
−hC0(u)TrG ∧G =

T3

2
θ

∫

d4x
√
−hTrG ∧G , (4.11)

where h is the induced metric on the probe brane and this action again follows from a

generic form (4.3) where the super-connection F is replaced by the gluon field strength

Gµν . This is the holographic analog of the theta-term in QCD. Then, as a result of (4.10),

the gauge transformation of Au in the bulk generates the desired second piece in (4.1)

upon appropriate choice of the constant w2. Therefore we learn that in order to include

dynamical gauge field contributions to the two-point functions 〈JJ〉 etc. in (1.2) one has

to include the axion field C0 in the dual gravitational background. Now from the axion

action (4.7) we see that even though dC0 = 0 on-shell, this coupling gives rise to a mass

term for the bulk gauge field A that is dual to the U(1) axial current. This is clearly the

analog of the Higgsing effect described in [52].

We finally consider the third term22 in (4.3), that is of the form F2 ∧A ∧ F . By time

translation and rotational invariance C1 should be of the form C1 = C1,t(u)dt+C1,u(u)du.

Part of the bulk action that contains C1 has the general form

SC1 =
M3

p

2

∫

d5x
√
g Z3(φ) (dC1)

2 + T4Nf w4

∫

d5xF2 ∧A ∧ F , (4.12)

21λ(u) should vanish at the horizon again by regularity.
22The role of C1 in the dual field theory is not entirely clear in this setting. It is argued to be dual to

the baryon number current in [65] and indeed C1 may serve as an alternative way to include both the axial

and the vector currents in the field theory instead of introducing an additional gauge field on the probe

branes as in [44]. Here we will not dwell on the physics of C1 much, but include it in the discussion for

completeness. Nevertheless we attain the Wess-Zumino term of the form in (4.12) which guarantees absence

of any additional anomaly terms on the boundary that would arise form the C1gauge transformations.
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where Z3(φ) is a function of the dilation and w4 is a constant. Clearly the last term does

not contribute to the equation of motion when A is on-shell. Then one can solve (4.12)

similarly to (4.9) and find

C1 = dt

(

c1 + c2

∫ u√guugtt
g3xx

Z3(φ)
−1

)

, (4.13)

where c1 and c2 are integration constants. Note that in contrast to (4.9) the constant c2 is

not required to vanish by regularity at the horizon. However, one can easily see that there

is no additional term in the anomaly equation (4.1) that would possibly arise from the

third term in the Wess-Zumino action (4.3) (that is the second term in (4.12) ) because F2

only has the (0u) component on-shell. Thus, we managed to satisfy the desired anomaly

equation (4.1) in the holographic setting. To summarize: the first term in (4.1) arises

from the first term in (4.3) and the second term in (4.1) arises from the combination of

the second term in (4.3) and (4.11).

4.2 Gluonic contribution to the conductivities

Having fixed the Ramond contributions to the bulk action, whose presence is required by

the correct anomaly equation (4.1) now we can look at the fluctuations of the various fields

to the quadratic order and reconsider the calculation of the two-point function.

We can summarize the findings in the previous subsection by the total action

Sbulk = M3
pN

2
c

∫

d5x
√−g

(

R− 4

3
(∂φ)2 − 1

4
Z1(φ)F

2 − V (φ)

)

(4.14)

−M3
p

∫

d5x
√−g

(

Z0(φ)

2
F 2
1 +

Z3(φ)

4
F 2
2

)

+

∫

(

κ̃

90
A ∧ F ∧ F +

λ̃

30
A ∧R ∧R+ ξ̃ F2 ∧A ∧ F

)

, (4.15)

where F1 = dC0 −Nf w2A and F2 = dC1 and the constants ˜̃κ, λ̃ and ξ are related to T4,

w4 and F0 of the previous subsection. We also reinstated the gravitational anomaly term

in (4.15), although this will not play an important role in the discussion below. For the

discussion below it suffices to note that

κ̃ ∼ λ̃ ∼ Nc, ξ̃ ∼ Nf , Z1(φ) ∼
Nf

Nc
, Z0(φ) ∼ Z3(φ) ∼ 1 . (4.16)

The background values of the fields are of the form,

ds2 = −gtt(u)dt
2 + grr(u)du

2 + gxx(u)d~x
2 ,

A = At(u)dt ,

C0 = θ ,

C1 = c1dt ,

(4.17)
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The fluctuation equations are obtained by making the replacement in the action

A → At(u)dt+ ax(u)e
−ikyydx+ az(u)e

−ikyydz

C1 → c1 + δC1,x(u)e
−ikyydx+ δC1,z(u)e

−ikyydz

C0 → θ + δC0(u)e
−ikyy

gMN → gMN + δgtx(u)e
−ikyy + δgtz(u)e

−ikyy + δgyx(u)e
−ikyy + δgyz(u)e

−ikyy

and expanding it to the quadratic order. Here we first want to discuss three changes in

the fluctuation equations with respect to the fluctuation equations used in the previous

section, that arise from inclusion of the form fields. It will be useful define the ratio

x ≡ Nf

Nc
. (4.18)

In the previous section we took Nf = 1 therefore x → 0 in the ’t Hooft limit. Here we

would like to discuss the situation in the Veneziano limit

Nc → ∞, Nf → ∞, x ∼ 1 . (4.19)

We may still want to consider x ≪ 1 and expand the solutions in x.

Let us know list the various changes in the fluctuation equations stemming from addi-

tion of the form-fields in the game.

1. By analyzing scaling of the various terms it is easy to see that the background for

gMN , AM and φ is O(1) and for C0 and C1 are O(N−1
c ), therefore one can safely

ignore their back reaction on the background without the form fields.

2. However there is an O(x) mass term for the gauge field A that arise from the axion

field strength F1. Accordingly the Maxwell equation for the background changes. The

maxwell equation now is (ignoring the O(N−1
c ) mixing with C1):

∂N
(√−gZ1(φ)F

MN
)

=
√−g xw2 Z0(φ)A

M . (4.20)

Note that the old background with vanishing spatial components Ai = 0 is still

a solution, and we will consider this as a background, however the At component

necessarily changes because of theO(x) mass term, along with the other fields through

mixing. We stress that this change is O(x):

{At, φ, gMN}(new) = {At, φ, gMN}(old) +O(x) . (4.21)

3. The same mass term affects the fluctuation equations for ax and az, the fluctuation

equations now become massive. As a result we expect that the anomalous conduc-

tivities will get renormalized by order O(x). This of course has to be confirmed by

direct calculation.

4. There is a mixing between the fluctuations δC0 and the longitudinal gauge fluctua-

tions δAy , that we do not consider in this paper. This is of the form Nf ky δC0 δAy.

Since C0 ∼ N−1
c this mixing affects the fluctuation equation for δAy at order O(x).

Since this mixing only affects the longitudinal component of the gauge field it should

not modify the calculation of the anomalous conductivities.
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5. There exists a mixing between the fluctuation δC1 and the gauge fluctuations, that

we are interested in, namely ax and az. This comes from the ξ term in (4.15) and

is of the form kyNf A
′
t(u) (δC1,xaz − δC1,zay). Again noting that C1 ∼ N−1

c this

mixing also modifies the gauge fluctuation equations, hence expected to affect the

conductivities at order O(x).

To conclude, we identified three different modifications of the calculation due to presence

of the form-fields above, items 2, 3 and 5, which all possibly alter the result at order O(x).

This is precisely the same order we expect changes to happen in the dual field theory

by addition of the gluonic contribution to the anomaly equation, as comparison of (4.1)

with (4.2) shows.

Changes in the fluctuation equations for the metric components is harder to see directly

from the action (4.15). We worked them out explicitly and we present the results below

for completeness. Below we present only the new terms that arise from mixing with δC1,µ

in the fluctuation equations23 for aµ and gt
µ where µ = x, z. The new terms are shown

schematically, i.e. ignore the explicit coefficients, etc. We also show the result only for the

µ = x component, there are similar terms obtained by exchanging x with z. We only exhibit

dependence on Nc and x =
Nf

Nc
below, including also the most suppressed contribution in

the original equations for comparison, dividing by a factor of NcNf everywhere:

Maxwell:

(

O
(

1

Nf

)

(from κ̃, λ̃ ) +O(1)

)

+ x (ax +Atgt
x) +

1

Nc

(kA′

tδC1,z + kA′

taz) ,

Einstein:

(

O
(

1

Nf

)

(from κ̃, λ̃ ) +O(1)

)

+ x
(

Atax +A2

t gt
x
)

+
1

NcNf

(

(C ′

1,t)
2gt

x + C ′

1,tδC
′

1,x

)

,

One-form: A′

taz +
1

NcNf

(

δC ′′

1,x + δC ′

1,x + C ′

1,tgt
x
)

. (4.22)

where prime denotes the derivative with respect to the holographic coordinate u. The first

terms i the Maxwell and Einstein equations denote the original equations before addition

of the p-forms. The fsecond terms in the Maxwell and Einstein equations are due to the

new mass term we described in item 3 above and the first term in the one-form equation

is due to the mixing described in item 5. We see that the mass term gives corrections of

relative order x, while the one-form contributions are suppressed with powers of Nc.

Also the matrix B in (3.13) receives an additional contribution of the form

B3,1 ∝
ikξ√−g

C1,t , (4.23)

the other matrix entries and the whole A matrix are unchanged.

5 Discussion and outlook

In this paper we extended the holographic calculation of the anomalous conductivities

that determine the magnitude of the Chiral Magnetic and the Chiral Vortical effects, to

theories that are not conformally invariant. This holographic calculation for the special

23As mentioned above the background itself is affected by O(x) on top of the explicit modifications below.
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case of N = 4 conformal field theory was previously done in [42] and it was found that

none of the terms in the anomalous conductivities receive any radiative corrections, hence

they strong coupling result fully agrees with the free Weyl fermion limit. We extend this

calculation to non-conformal and confining theories. Our results are expected to be valid

in the large Nc and large ’t Hooft coupling limit. In particular we considered a bottom-up

approach and focused on a gravitational black-hole background coupled to a non-trivial

dilation and gauge field found by Gao and Zhang [49]. The background solution is analytic

which makes our calculations technically much easier.

The background has a non-trivial dilation potential that depends on a parameter α. In

the case α = 0 it reduces to the cosmological constant term. Therefore these backgrounds

can be considered as deformations of N = 4 super Yang Mills theory by a massive operator

dual to the dilaton. It turns out this is a deformation by turning on an expectation value

for an operator of dimension ∆ = 2, hence similar to a mass deformation. Although the

scale dimension of the deformation is independent of α, the entire background depends

on this parameter, and we consider α to be the “non-conformality” parameter introducing

non-conformality in the system. We showed that for the specific value of α = 2 the theory

admits a confinement-deconfinement type transition that corresponds to a Hawking-Page

transition in the gravitational dual. Therefore this is an ideal setting to study the problem

of anomalous transport in a strongly coupled but non-conformal theory with a mass gap.

There is no direct field theory argument that guarantees non-renormalization of the

conductivities, and in particular it was shown in [36, 37] that the coefficient of the T 2 term

in chiral vortical conductivity does receive radiative corrections. Moreover various lattice

studies [38] indicate that also the chiral magnetic conductivity can receive corrections.

Therefore it is natural to expect radiative corrections especially in theories with an intrinsic

mass scale like ΛQCD that are in a different universality class than the conformal theories.

We computed the chiral magnetic and chiral vortical and the associated heat conductivities

in non-conformal theories via the Kubo formulae and yet we find precisely the same form

as in the case of N = 4 SYM, indicating that there are no radiative corrections for non-

conformal theories either. Our results are presented in equations (3.20) in section 3.1.

In particular the dependence of the conductivities on the chiral chemical potential and

temperature is precisely the same form as in the N = 4 SYM theory and the free theory

limit, showing no explicit dependence on the non-conformality parameter α. We emphasize

that this result follows in a non-trivial manner: The background, the fluctuation equations,

temperature and the chemical potential all exhibit non-trivial and explicit dependence on

α, yet when the result is expressed in terms of the parameters all the dependence become

implicit and the result in terms of physical quantities µ and T becomes identical to the

conformal case. We further confirmed these result in an independent manner by working

out the “flow equations” in section 3.2 generalizing the results found in [51].

There indeed exists an indirect argument supporting this non-renormalization prop-

erty in case the QFT when the contribution of the dynamical gauge fields (gluons) to

the anomaly equation is absent [34]. Therefore our results provide both a non-trivial di-

rect check of the intricate arguments presented in [34] and a check of the validity of the

holographic calculation in case of non-conformal theories.
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It seems that the resolution of the clash between the direct field theory calculations

of [36, 37] and [38] and the arguments in [34] lies in taking into account the contribution of

the gluon fields to the anomaly equation. Motivated by this idea in section 4 we sought for

such corrections in the holographic dual. It is known that such gluonic contributions to the

anomaly equation in the holographic picture arise from coupling of the various p-form fields

to the flavor and probe branes throughgh the Wess-Zumino terms [52, 54]. We showed in

section 4 that in the case of the 5D bottom-up approach this role is played by the zero-form

C0 (axion) and the one-form C1. We generalized the fluctuation equations derived in 3.1 by

including such form-fields and showed that indeed there exists non-trivial mixing between

the gauge and graviton fluctuations with the axion and the one-form fluctuations. It turns

out that the calculation is altered in three distinct ways: 1. the background gets corrected

through a mass term for the background value of A0, which arises from mixing with the ax-

ion, 2. the fluctuation equations for the transverse components δAx and δAx are corrected

by the same kind of a mass term, 3. the fluctuation equations further are modified through

mixing with the fluctuations of the one-form. All of these corrections turn out to be of

order O(Nf/Nc) thus only visible in the Veneziano limit Nc → ∞, Nf → ∞ with their ratio

fixed. This is also the order that the gluonic contribution to the anomaly equations enter.

There are various further directions of investigation. First of all the arguments in sec-

tion 4 are schematic, and although we present strong arguments for why the conductivities

should acquire radiative corrections at order Nf/Nc we have not carried out this calcu-

lation in detail to obtain such expected corrections. The reason for this is the technical

complications arise in realizing the Veneziano limit holographically. In particular, as men-

tioned above the background itself receive corrections at this order making the analytic BH

solution invalid. We plan to return this calculation in a future work. In particular, it seems

most natural to first study the simpler case of N = 4 SYM theory coupled to flavor branes

in the Veneziano limit by taking into the back reaction of the D7 or D5 branes on the AdS

geometry [66–68]. Without supplying the arguments in section 4 by detailed calculations

we cannot rule out the following possibilities: 1. it may be that the three type of correc-

tions we descrbed in section 4 miraculously cancel each other and yield a result identical to

the free limit; 2. It may be that the corrections do change the conductivities but only by

correcting the anomaly coefficient which would now include the correction from the gluons.

Secondly, our calculations are simplified by only considering fermions of one-type of

chirality. The true calculation should involve both the left and right gauge fields, although

our qualitative results are expected to hold also after inclusion of the second gauge field [44].

We also plan to consider this issue in our future work.

A more interesting future study should be to reconsider the arguments in [34] by includ-

ing the new degree of freedom that represents the contribution of the gluons to the anomaly

of the form TrG∧G. This is indeed the operator dual to the axion field considered in sec-

tion 4 that seems to generate the expected modifications. It will be very interesting to study

this generalization in the context of the Euclidean partition function considered in [34] in

the hydrodynamic limit. Ref. [28] seems to be a good starting point for such a construction.

There are various more direct generalizations that involve: the study of the Chiral

Separation and the Chiral Vortical Separation effects, study of the anomalous conductivity
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two-point functions beyond the IR limit by considering their dependence on the frequency

and spatial momentum, studying fluctuations in different channels, e.g. the spin-0 and the

spin-2 channels, study of anomalous conductivities also in the low T confining phase, and

related to this, searching for discontinuities in the conductivities across the confinement-

deconfienment phase transition at Tc. The Gao-Zhang background we consider in this

paper with α = 2 seems to be a natural starting point for such an investigation. Finally it

is also of interest to carry out such calculations in different holographic backgrounds either

in the bottom-up or in the top-down approach.
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A Nature of the phase transition

Here we discuss some details of the phase transition discussed in section 2.4 and compare

the situation with the general considerations in [59] . It was shown in [59] that a coordi-

nate independent criterion for the type of “marginal” phase transition to happen for the

uncharged black-holes was that the dilaton potential near the transition point behaves as

V (φ) → e
4
3
φ (1 + Vsub(φ)) , φ → ∞ , (A.1)

where Vsub is a subleading term that determines the order of the transition. One can also

formulate this condition in terms of the “fake super-potential” as

W (φ) → e
2
3
φ (1 +Wsub(φ)) , φ → ∞ . (A.2)

Now one can ask if the special case above with γ = 2/3 satisfies this condition. The dilaton

potential in this case reads

V (φ) = −4e
4
3
φ
(

1 + 2e−2φ
)

. (A.3)

We also note that the “fake” super-potential that corresponds to this solution behaves as

W (φ) = ±3i

2
e

2
3
φ

(

1− 1

2
e−2φ

)

, φ → ∞ . (A.4)

We indeed find that (A.3) and (A.4) satisfies (A.1) and (A.2) respectively. The subleading

term exp(−2φ) corresponds to a second order phase transition according to the analysis

in [59]. This seems like a contradiction with the finding above that the transition for

γ = 2/3 is first order. The contradiction is resolved however, once one notes that the

analysis in [59] is only valid for uncharged BHs whereas the solution above is charged.
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B Fluctuation equations

These are the fluctuation equations up to first order in momentum, including both the κ

and λ contributions. They are written in terms of the parameters ρh, v = b
ρh

and ξ = α2−1
α2+2

.

0 = B′′
α − 2u

(

1− v2
)2ξ

B′
α

(

(ξ − 1)uv2 + 1
)

(uv2 − 1)
(

u2 (1− v2)2ξ − (1− uv2)2ξ
) +

(

1− uv2
)2ξ

gαt
′

u2 (1− v2)2ξ − (1− uv2)2ξ

− 4i
√
2kǫαβ

(

1− v2
)ξ (

1− uv2
)2ξ−1

√
1− ξvρh

(

u2 (1− v2)2ξ − (1− uv2)2ξ
)

[

− κL2(ξ − 1)v2Bβ

(

uv2 − 1
)

(B.1)

+ λu
(

2
(

ξ2 − 3ξ + 2
)

u2v4 + 7(ξ − 1)uv2 + 3
)

gβt
′
]

,

0 = 2(ξ − 1)uv2
(

1− v2
)2ξ

B′
α

(

1− uv2
)−2ξ−1

+ gαt
′′ +

(

2ξuv2 + 1
)

gαt
′

u (uv2 − 1)

− 8ikλ
√
2− 2ξuvǫαβ

(

1− v2
)ξ

ρh

[

ugβt
′′ +

(

2(ξ + 1)uv2 − 1
)

gβt
′

uv2 − 1

− u
(

1− v2
)2ξ

B′
β

(

2
(

ξ2 − 3ξ + 2
)

u2v4 + 7(ξ − 1)uv2 + 3
) (

1− uv2
)−2(ξ+1)

(B.2)

+Bβ

(

1− v2
)2ξ (

1− uv2
)−2ξ−3 (

4
(

ξ2 − 3ξ + 2
)

u3v6 +
(

−6ξ2 + 25ξ − 19
)

u2v4 (B.3)

− 14(ξ − 1)uv2 − 3
)

]

.

C Solutions

The full solutions to the fluctuation equations can be divided into three terms as follows,

Bα = B(0)
α + ikǫαβ

(

κB
(κ)
β + λB

(λ)
β

)

,

gt
α = g

(0)
t

α + ikǫαβ

(

κg
(κ)
t

β + λg
(λ)
t

β
)

.
(C.1)

We will now give all of these terms.

C.1 Case of k = 0

B(0)
α = B̄α +

(u− uc) H̄
α
(

1− v2uc
)

2ξ

(1− v2uc) 2ξ − u2c (1− v2)2ξ
,

g
(0)
t

α =

(

(

1− uv2
)2ξ − u2

(

1− v2
)2ξ
)

(

1− ucv
2
)

2ξ

(

(1− ucv2)
2ξ − u2c (1− v2)2ξ

)

(1− uv2)2ξ
H̄α .

(C.2)
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C.2 Finite κ

B
(κ)
β =

∫ ∫

Ψ
(κ)
β +

4iκkL2
√
2− 2ξvǫαβ (uc − 1) (uc − u)

(

1− v2
)ξ

B̄β

(

1− v2uc
)

2ξ

ρh

(

u2c (1− v2)2ξ − (1− v2uc) 2ξ
)

+
2iκkL2

√
2− 2ξvǫαβ (uc − 1) 2 (uc − u)

(

1− v2
)ξ

H̄β
(

1− v2uc
)

4ξ

ρh

(

(1− v2uc) 2ξ − u2c (1− v2)2ξ
)

2
,

g
(κ)
t

β =
(

1− u2
(

1− v2
)2ξ (

1− uv2
)−2ξ

)

∫

Ψ
(κ)
β

− 4L2
√
2− 2ξv

(

1− v2
)ξ

B̄β

(

1− uv2
)−2ξ

ρh

(

u2c (1− v2)2ξ − (1− v2uc) 2ξ
) ×

(

(

1− uv2
)2ξ (

(u− 1)u2c
(

1− v2
)2ξ

+ (uc − u)
(

1− v2uc
)

2ξ
)

− u2 (uc − 1)
(

1− v2
)2ξ (

1− v2uc
)

2ξ
)

− 2L2
√
2− 2ξv

(

1− v2
)ξ

H̄β
(

1− uv2
)−2ξ (

1− v2uc
)

2ξ

ρh

(

(1− v2uc) 2ξ − u2c (1− v2)2ξ
)

2
×

((

(u− uc)
2
(

1− uv2
)2ξ − u2 (uc − 1) 2

(

1− v2
)2ξ
)

(

1− v2uc
)

2ξ

− (u− 1) (−2uc + u+ 1)u2c
(

1− v2
)2ξ (

1− uv2
)2ξ
)

,

(C.3)

where integrals are from uc to u and Ψ(κ) is given by

Ψ
(κ)
β =

4L2√2− 2ξv
(

1− v2
)ξ

B̄β

(

1− uv2
)2ξ−1

ρh

(

(1− uv2)2ξ − u2 (1− v2)2ξ
)2 u

(

1− v
2)2ξ (

ξ
(

u
2 − 1

)

v
2 + u+ v

2 − 2
)

+
(

1− uv
2)2ξ+1 − 4L2√2− 2ξv

(

1− v2
)ξ

H̄β
(

1− uv2
)2ξ−1 (

1− v2uc

)

2ξ

3ρh
(

(1− uv2)2ξ − u2 (1− v2)2ξ
)2 (

u2
c (1− v2)2ξ − (1− v2uc) 2ξ

)
×

(

u
(

1− v
2)2ξ (−3uc

(

ξ
(

u
2 − 1

)

v
2 + u+ v

2 − 2
)

+ v
2 (2ξ

(

u
3 − 1

)

+ u
3 + 2

)

− 3
)

+ 3 (u− uc)
(

1− uv
2)2ξ+1

)

.

(C.4)
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C.3 Finite λ

B
(λ)
β =

∫ ∫

Ψ
(λ)
β − 8

√
2

vρh

√

1− ξ (u− uc) H̄
β

(

1− v2
)ξ−1 (

1− v2uc

)

2ξ−1

(1− ξ)
(

(1− v2uc) 2ξ − u2
c (1− v2)2ξ

)

2
×

(

(ξ − 1)v2 + 1
)2 (

1− v
2
uc

) 2ξ+1 − u
3
c

(

1− v
2)2ξ+1 (

(ξ − 1)v2uc + 1
) 2

,

g
(λ)
t

β =
(

1− u
2 (1− v

2)2ξ (1− uv
2)−2ξ

)

∫

Ψ
(λ)
β

+
8
√
2− 2ξ

(

1− v2
)3ξ−1

H̄β
(

1− uv2
)

−2ξ−1 (
1− v2uc

)

2ξ−1

(ξ − 1)vρh
(

(1− v2uc) 2ξ − u2
c (1− v2)2ξ

)

2
×

[

(u− 1)u2 (1− v
2
uc

) 2ξ((ξ − 1)2u(u+ 1)v6 − (ξ − 1)v4(ξ + u(ξ + (ξ − 1)u− 3)− 1)

− 2(ξ − 1)(u+ 1)v2 − 1
)

+−(u−1)u2
v
2
uc

(

1−v
2
uc

) 2ξ((ξ−1)2u(u+1)v6−(ξ−1)v4(ξ+u(ξ+(ξ−1)u−3)−1)

− 2(ξ−1)(u+1)v2−1
)

+u
2
c

(

u
3 (1−v

2)2ξ+1 (
(ξ−1)uv2+1

)2−
(

(ξ−1)v2+1
)2 (

1−uv
2)2ξ+1

)

+ u
3
c

( (

(ξ − 1)v4
(

(ξ − 1)v2 + 2
)

+ 1
) (

1− uv
2)2ξ+1

− u
2 (1− v

2)2ξ+1 (
(ξ − 1)u2

v
4 ((ξ − 1)uv2 + 2

)

+ 1
) )

+ 2(ξ − 1)v2
(

v
2 − 1

)

u
4
c

(

uv
2 − 1

)

(

(

1− uv
2)2ξ − u

2 (1− v
2)2ξ

)

− (ξ − 1)2v4
(

v
2 − 1

)

u
5
c

(

uv
2 − 1

)

(

u
2 (1− v

2)2ξ −
(

1− uv
2)2ξ

)]

,

(C.5)

where integrals over Ψ are all from uc to u, and Ψ(λ) is given by,

Ψ
(λ)
β =

8
√
2− 2ξuv

(

1− v2
)3ξ−1

B̄β

(

1− uv2
)2(ξ−1)

ρh

(

(1− uv2)2ξ − u2 (1− v2)2ξ
)2 ×

(

2(ξ − 2)(ξ − 1)u3 (
v
2 − 1

)

v
4 + 7(ξ − 1)u2 (

v
2 − 1

)

v
2 + 2(ξ − 1)v2

(

(ξ − 1)v2 + 2
)

− u
3 (1− v

2)2ξ+1 (
(ξ − 1)uv2

(

2uv2 − 3
)

− 1
) (

1− uv
2)−2ξ

+ u
(

−2(ξ − 1)2v6 − 4(ξ − 1)v4 + v
2 − 3

)

+ 2
)

+
8i
√
2u

(

1− v2
)3ξ−1

H̄β
(

1− v2uc

)

2ξ

√
1− ξvρh (uv2 − 1)2

(

(1− uv2)2ξ − u2 (1− v2)2ξ
)2 (

u2
c (1− v2)2ξ − (1− v2uc) 2ξ

)
×

(

(

1− uv
2)2ξ

(

u
(

v
2 (1− 2(ξ − 1)v2

(

(ξ − 1)v2
(

2(ξ − 1)v2 + 5
)

+ 4
))

− 3
)

+ 2
(

2(ξ − 1)v2 + 1
) (

(ξ − 1)v2 + 1
)2

)

+ (ξ − 1)u2
v
2 (

v
2 − 1

)

(

2u3
v
2 (1− v

2)2ξ (−4ξ + 3(ξ − 1)uv2 + 6
)

+ 15
(

1− uv
2)2ξ

)

+ u
3 (

v
2−1

)

(

(

1−v
2)2ξ (−7(ξ−1)uv2−1

)

+2(ξ−1)v4
(

1−uv
2)2ξ (9ξ+(ξ−1)(2ξ−5)uv2−11

)

)

× (ξ − 1)v2uc

(

u
3 (1− v

2)2ξ+1 (
(ξ − 1)uv2

(

2uv2 − 3
)

− 1
)

−
(

1− uv
2)2ξ

(

2(ξ − 2)(ξ − 1)u3 (
v
2 − 1

)

v
4 + 7(ξ − 1)u2 (

v
2 − 1

)

v
2

+ u
(

−2(ξ − 1)2v6 − 4(ξ − 1)v4 + v
2 − 3

)

+ 2
(

(ξ − 1)v2 + 1
)2

)

)

)

(C.6)
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D Matrices A, B

Here we list the matrices A and B, where everywhere a prefactor of
ρ4h

16πGL5 is implied but

not written.

The matrix A has as only nonzero components

A11 = A33 = −2(ξ − 1)v2
(

1− v2
)2ξ

(

u2
(

v2 − 1

uv2 − 1

)2ξ

− 1

)

,

A22 = A44 =

(

1− uv2
)2ξ+1

u
,

A32 = −A14 =
8ikλ

ρ2h

√

2− 2ξu2vρh
(

1− v2
)3ξ (

(ξ − 1)uv2 + 1
)

,

A42 = −A24 =
8ikλ

ρh

√

2− 2ξuv
(

1− v2
)ξ (

1− uv2
)2ξ+1

.

(D.1)

The matrix B can be split up into three parts, BCSK coming from SCSK , BCT coming

from the counter term and BAdS+∂ coming from the rest. BAdS+∂ is given by

BAdS+∂ =















0 −2v2
(

1− v2
)2ξ

(ξ − 1) 0 0

0 −(1−uv2)
2ξ
(2u(ξ−1)v2+3)
u2 B23

AdS+∂ 0

0 0 0 −2v2
(

1− v2
)2ξ

(ξ − 1)

B41
AdS+∂ 0 0 −(1−uv2)

2ξ
(2u(ξ−1)v2+3)
u2















, (D.2)

with

B41
AdS+∂=−B23

AdS+∂=
8ikλ

√
2− 2ξuv

(

1− v2
)3ξ (

2
(

ξ2 − 3ξ + 2
)

u2v4 + 7(ξ − 1)uv2 + 3
)

ρh (uv2 − 1)
.

(D.3)

Note that the component B42
AdS+∂ is also present, but it is proportional to u−uc, so it does

not contribute and we do not write it here.

BCSK has as only nonzero components

B41
CSK = −B32

CSK = −16ikλ
√
2− 2ξu3v

(

1− v2
)5ξ (

1− uv2
)

−2ξ−1 (
(ξ − 1)uv2 + 1

)2 (
1− v2uc

)

2ξ

ρh

(

u2
c (1− v2)2ξ − (1− v2uc) 2ξ

) . (D.4)

Finally BCT has as only nonzero components

B22
CT = B44

CT =
3
(

1− uv2
) 1

3
(7ξ+2)

u2
√

(1− uv2)2ξ − u2 (1− v2)2ξ
. (D.5)

Note that there are no κ contributions to these matrices. Naively there is a contribution

to B31 = −B13 but this cancels because we work with the covariant current.
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E Green’s functions

Expressed in terms of ρh, v = b
ρh

and ξ = α2−1
α2+2

, the Green’s functions are as follows,

〈Tt
x
Tt

x〉 = −
ρ4h

(

1− v2uc

)

2ξ
(

u2
c

(

v2
−1

v2uc−1

)

2ξ − 1
)

2

8πGL5u2
c

×

×
(

2u2
c

(

1−v2
)2ξ (

(ξ−1)v2uc+1
)

u2
c (1−v2)2ξ−(1−v2uc) 2ξ

−2(ξ−1)v2uc+
3
(

1−v2uc

) ξ+2

3

√

(1−v2uc) 2ξ−u2
c (1−v2)2ξ

−3

)

,

〈Jx
J
z〉 = − iκkρh√

2πGL
(1− uc)

√

1− ξv
(

1− v
2)ξ

,

〈Jx
Tt

z〉 = iκkv2ρ2h
2πGL2

(1− ξ) (1− uc)
2 (1− v

2)2ξ +
2ikλρ2h
πGL4

(

1− v
2)2ξ−1 (

(ξ − 1)v2 + 1
)2

,

〈Tt
x
J
z〉 = iκkv2ρ2h

2πGL2
(1− ξ) (1− uc)

2 (1− v
2)2ξ +

2ikλρ2h
πGL4

(

1− v
2)2ξ−1 (

(ξ − 1)v2 + 1
)2

,

〈Tt
x
Tt

z〉 = − i
√
2κkv3ρ3h
3πGL3

(1− uc)
3(1− ξ)3/2

(

1− v
2)3ξ

− 4ikλρ3h
πGL5

√

2− 2ξ(1− uc)v
(

1− v
2)3ξ−1 (

(ξ − 1)v2 + 1
)2

,

(E.1)

with other components vanishing.

F Flow equations

G
′

xx = −8πGL5R2u (PztG
ǫ
xz − PxtG

ǫ
xx)

f2ρ4h
− 8πGL3e

4αφ
3

(

G2
xx −G2

xz

)

fρ2h
,

G
′

xz =
8πGL5R2u (PxtG

ǫ
xz + PztG

ǫ
xx)

f2ρ4h
− 16πGL3e

4αφ
3 GxxGxz

fρ2h
+

iκkµ

2πG
,

P
′

xt = −8πGL5R2uP ǫ
ztPzt

f2ρ4h
−Gxx

(

8πGL3e
4αφ
3 Pxt

fρ2h
− µ

)

+
8πGL3e

4αφ
3 GxzPzt

fρ2h
− PxtΠ

ǫ
xt ,

P
′

zt =
8πGL5R2uPxtP

ǫ
zt

f2ρ4h
−Gxz

(

8πGL3e
4αφ
3 Pxt

fρ2h
− µ

)

− 8πGL3e
4αφ
3 GxxPzt

fρ2h
− PztΠ

ǫ
xt ,

(Gǫ
xx)

′ = −8πGL5R2uGǫ
xzP

ǫ
zt

f2ρ4h
−Gxx

(

8πGL3e
4αφ
3 Gǫ

xx

fρ2h
− µ

)

+
8πGL3e

4αφ
3 Gǫ

xzGxz

fρ2h
−G

ǫ
xxΠ

ǫ
xt ,

(Gǫ
xz)

′ =
8πGL5R2uGǫ

xxP
ǫ
zt

f2ρ4h
−Gxz

(

8πGL3e
4αφ
3 Gǫ

xx

fρ2h
− µ

)

− 8πGL3e
4αφ
3 GxxG

ǫ
xz

fρ2h
−G

ǫ
xzΠ

ǫ
xt,

(P ǫ
xt)

′ = −8πGL5R2u
(

P 2ǫ
zt − P 2ǫ

xt

)

f2ρ4h
− P

ǫ
xt

(

−2f ′

f
− 4R′

R
+

6

u

)

− Pxt

(

8πGL3e
4αφ
3 Gǫ

xx

fρ2h
− µ

)

+
8πGL3e

4αφ
3 PztG

ǫ
xz

fρ2h
+ µG

ǫ
xx

−
fρ4h

(

Ru (Ruf ′′ − f ′ (2uR′ +R)) + f
(

−3R2 − 10u2 (R′)
2
+ 2Ru (uR′′ + 8R′)

))

8πGL5R4u3
,

(P ǫ
zt)

′ =
16πGL5R2uP ǫ

xtP
ǫ
zt

f2ρ4h
− P

ǫ
zt

(

−2f ′

f
− 4R′

R
+

6

u

)

− 8πGL3e
4αφ
3 PxtG

ǫ
xz

fρ2h

− Pzt

(

8πGL3e
4αφ
3 Gǫ

xx

fρ2h
− µ

)

+ µG
ǫ
xz ,

(F.1)

with

Πǫ
xt =

(

2f2uρ4hR
′ − 3f2Rρ4h + fRuf ′ρ4h

f2Ruρ4h
+

8πGL5R2uP ǫ
xt

f2ρ4h

)

. (F.2)
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