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HIGH-DIMENSIONAL EXPLORATORY ITEM FACTOR ANALYSIS
BY A METROPOLIS–HASTINGS ROBBINS–MONRO ALGORITHM
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A Metropolis–Hastings Robbins–Monro (MH-RM) algorithm for high-dimensional maximum mar-
ginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM
algorithm converges with probability one to the maximum likelihood solution. Details on the computer
implementation of this algorithm are provided. The accuracy of the proposed algorithm is demonstrated
with simulations. As an illustration, the proposed algorithm is applied to explore the factor structure un-
derlying a new quality of life scale for children. It is shown that when the dimensionality is high, MH-RM
has advantages over existing methods such as numerical quadrature based EM algorithm. Extensions of
the algorithm to other modeling frameworks are discussed.
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1. Introduction

Full-information Item Factor Analysis (IFA; Bock, Gibbons, & Muraki, 1988) has long been
a useful tool for exploring the latent structure underlying educational and psychological tests. It
is also being increasing utilized in mental health and quality of life research due to a recent surge
of interest among researchers in the application of item response theory to develop standardized
measurement instruments for patient reported outcomes. A notable example is the National Insti-
tutes of Health Patient Reported Outcomes Measurement Information System (PROMIS; Reeve,
Hays, Bjorner, Cook, Crane, & Teresi, 2007). IFA proves to be crucial in these new domains of
application, yet despite recent advances in methods for fitting high-dimensional item response
theory models, maximum marginal likelihood estimation in IFA remains a difficult numerical
problem. The biggest obstacle stems from the need to evaluate intractable high-dimensional in-
tegrals in the likelihood function for the item parameters. Depending on how the integrals are
approximated, existing algorithms for maximum likelihood estimation in IFA can be grouped
roughly into the following four classes.

The first class involves adaptive Gaussian quadrature. By replacing fixed-point quadrature
rules with adaptive rules (Liu & Pierce, 1994; Naylor & Smith, 1982), approximations to the
high-dimensional integrals impose significantly less computational burden. Adapting the quadra-
ture nodes also stabilizes likelihood computations, because when the number of items is large
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the likelihood becomes so concentrated that standard Gaussian quadrature formulae do not ac-
curately capture its mass. With care in implementation, pointwise convergence of the estimates
to a local maximum of the likelihood function can be obtained (e.g., Rabe-Hesketh, Skrondal,
& Pickles, 2005; Schilling & Bock, 2005). Because of over two decades of success with Bock
and Aitkin’s (1981) EM algorithm, adaptive quadrature based EM algorithm is often considered
a gold standard against which other algorithms are compared. It is also possible to use adaptive
quadrature in a Newton–Raphson algorithm such as in GLLAMM (Rabe-Hesketh, Skrondal, &
Pickles, 2004a). Despite its popularity, adaptive quadrature still limits the number of factors that
an IFA software can handle simply because the number of quadrature points must grow expo-
nentially as the dimensionality of the latent traits increases. This phenomenon is often referred
to as the “curse of dimensionality” in the literature. In addition, if the EM algorithm is used
in conjunction with quadrature, variability information of parameter estimates is not an auto-
matic by-product. Additional computation for parameter standard errors is required (see, e.g.,
Cai, 2008b) upon EM’s convergence. As a result, TESTFACT does not print standard errors in
its output.

The second class is characterized by the use of Laplace approximation (Tierney & Kadane,
1986). Applications of this method can be found in Kass and Steffey (1989), Thomas (1993), and
Huber, Ronchetti, and Victoria-Feser (2004). In the context of IFA, the Laplace method is essen-
tially adaptive Gauss–Hermite integration with 1 quadrature point. It is computationally fast (see,
e.g., Raudenbush, Yang, & Yosef, 2000, in a slightly different application), but a notable feature
of this method is that the error of approximation decreases only as the number of items increases.
When few items are administered to each examinee, such as in an adaptive test design, or when
there are relatively few items loading on a factor, such as in the presence of testlets (Wainer &
Kiely, 1987), the degree of imprecision in approximation can become substantial and may lead
to biased parameter estimates (Joe, 2008). Raudenbush et al. (2000) argue for the use of higher-
order Laplace approximation, but the complexity of software implementation grows dramatically
as the order of approximation increases. In addition, the truncation point in the asymptotic series
expansion (6th degree in their paper) of the integrand function is essentially arbitrary. Thus, the
utility of the Laplace method in high-dimensional full-information IFA remains an open question.

The third class of methods is intimately related to Wei and Tanner’s (1990) MCEM algo-
rithm, wherein Monte Carlo integration replaces numerical quadrature in the E-step (e.g., Meng
& Schilling, 1996; Song & Lee, 2005). To achieve pointwise convergence, simulation size (the
number of random draws for Monte Carlo integration) must increase as the estimates move closer
to the maximum so that Monte Carlo error in the E-step does not overwhelm changes in the
M-step. To automate the amount of increase in simulation size, adaptive algorithms have been
devised (e.g., Booth & Hobert, 1999), but the number of random draws in the final iterations of
these adaptive algorithms can become prohibitively high (in the order of tens of thousands as
observed by Jank, 2004), dramatically slowing down MCEM’s convergence. The MCEM algo-
rithm is also inefficient in the use of simulated data because at each E-step, a new set of random
draws are generated, and all previous draws are discarded.

The fourth class is purely stochastic. A defining characteristic of this class of algorithms
is the use of fully Bayesian sampling-based estimation methods such as Markov chain Monte
Carlo (MCMC; Tierney, 1994). Within the Bayesian estimation framework, maximum likeli-
hood can be approximated by choosing an appropriate non-informative prior distribution. Since
properties of the posterior distribution of the item parameters are of primary interest, one con-
structs an ergodic Markov chain whose unique invariant measure is the posterior, and then af-
ter a certain “burn-in” period, samples from the chain may be regarded as random draws from
the posterior, from which any functional of the posterior distribution can be estimated. While
the basic principle is easy to state, the implementations vary to a wide extent (Albert, 1992;
Béguin & Glas, 2001; Dunson, 2000; Patz & Junker, 1999a, 1999b; Segall, 1998; Shi & Lee,
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1998), and the relative algorithmic efficiency of the existing implementations have not been en-
tirely settled (see, e.g., Edwards, 2005). Prior specification (particularly of the noninformative
kind) is another inherent difficulty (see, e.g., Natarajan & Kass, 2000).

From the preceding discussion, it seems clear that a flexible and efficient algorithm that
converges pointwise to the maximum likelihood estimate (MLE) is much desired for high-
dimensional IFA. Indeed, in the research proposed here, a Metropolis–Hastings Robbins–Monro
(MH-RM) algorithm is suggested to address most of the afore-mentioned difficulties. The MH-
RM algorithm is well suited to general computer programming for large-scale analysis involving
many items, many factors, and many respondents. It is efficient in the use of Monte Carlo be-
cause the simulation size is fixed and usually small throughout the iterations. In addition, it also
produces an estimate of the parameter information matrix as a by-product that can be used sub-
sequently for standard error estimation and goodness-of-fit testing (e.g., Cai, Maydeu-Olivares,
Coffman & Thissen, 2006).

In brief, the MH-RM algorithm is a data augmented Robbins–Monro type (RM; Robbins &
Monro, 1951) stochastic approximation (SA) algorithm driven by the random imputations pro-
duced by a Metropolis–Hastings sampler (MH; Hastings, 1970; Metropolis, Rosenbluth, Rosen-
bluth, Teller, & Teller, 1953). The MH-RM algorithm is motivated by Titterington’s (1984) re-
cursive algorithm for incomplete data estimation, and is a close relative of Gu and Kong’s (1998)
SA algorithm. It can also be conceived of as a natural extension of the Stochastic Approxi-
mation EM algorithm (SAEM; Celeux & Diebolt, 1991; Celeux, Chauveau, & Diebolt, 1995;
Delyon, Lavielle, & Moulines, 1999). Probability one convergence of the sequence of estimates
to a local maximum of the likelihood surface is established along essentially the same line as Gu
and Kong’s (1998) Theorem 1.

SA algorithms have been well studied in the fields of systems engineering, adaptive con-
trol, and signal processing (see, e.g., Benveniste, Métivier, & Priouret, 1990; Borkar, 2008;
Kushner & Yin, 1997) since the pioneering work of Robbins and Monro (1951). Until recently,
statistical applications of SA algorithms have remained predominantly in the area of generalized
and nonlinear mixed-effects modeling (Gu & Kong, 1998; Gu & Zhu, 2001; Gu, Sun, & Huang,
2004; Gueorguieva & Agresti, 2001; Kuhn & Lavielle, 2005; Makowski & Lavielle, 2006;
Zhu & Lee, 2002). While the IFA model can be thought of as a nonlinear mixed model, it has
features requiring specialized software implementation for practical testing situations.

The remainder of this paper is organized as follows. First, an IFA model for graded responses
is introduced in Section 2. The MH-RM algorithm is derived in Section 3. Section 4 addresses
details for efficiently implementing MH-RM for IFA and compares MH-RM with the Bock and
Aitkin (1981) EM algorithm by means of a small simulation study. Section 5 contains results
from two empirical studies in which MH-RM is compared with quadrature based EM algorithm.
It is shown that MH-RM has distinct advantages in terms of speed, stability, and flexibility.
Extensions to the basic MH-RM algorithm is discussed in Section 6, and the paper concludes
with directions for future research in Section 7.

2. A Model for Item Factor Analysis

2.1. A Multidimensional Graded Model

This section (re)introduces notation for a logistic IFA model for graded responses. The
derivations are straightforward extensions of Samejima’s (1996) graded response model and
bears some similarity to the multidimensional model of te Marvelde, Glas, and van Damme
(2006). Let there be i = 1, . . . ,N independent respondents, j = 1, . . . , n items. For item j , let
there be Cj response categories. Let yij denote the response from respondent i to item j . Sup-
pose there are p factors and βj is the p × 1 vector of item slopes for item j , and xi is the
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p × 1 vector of factor scores for respondent i. As is customarily assumed, the factor scores fol-
low a multivariate normal distribution with a null mean vector and identity covariance matrix.
Let αj = (αj1, . . . , αj (Cj −1))

′ be a (Cj − 1) × 1 vector of category intercepts for item j . Let
θ j = (α′

j ,β
′
j )

′ be a vector containing all parameters for item j . Conditional on the item parame-
ters and xi , define the following set of boundary response probabilities:

P(yij ≥ 0|θ j ,xi ) = 1,

P (yij ≥ 1|θ j ,xi ) = 1

1 + exp(−αj1 − β ′
j xi )

,

. . . (1)

P(yij ≥ Cj − 1|θ j ,xi ) = 1

1 + exp(−αj(Cj −1) − β ′
j xi )

,

P (yij ≥ Cj |θ j ,xi ) = 0.

It follows that the conditional probability for the response yij = k is given by

πijk = P(yij = k|θ j ,xi ) = P(yij ≥ k|θ j ,xi ) − P(yij ≥ k + 1|θ j ,xi ), (2)

for k ∈ {0,1, . . . ,Cj − 1}. Note that not all parameters are identified (estimable) in this model.
Reflection and rotation of the factor pattern are both possible. Identification can be achieved by
fixing p(p − 1)/2 slopes to zero. Rotation to simple structure is still necessary for the interpre-
tation of the factor pattern.

2.2. Observed and Complete Data Likelihood

First, it is useful to define an indicator function

χk(y) =
{

1, if y = k,
0, otherwise,

(3)

for k ∈ {0,1, . . . ,Cj − 1}. It follows from Equation (2) that the conditional distribution of yij is
that of a multinomial with Cj cells, trial size 1, and cell probabilities πijk :

f (yij |θ j ,xi ) =
Cj −1∏
k=0

π
χk(yij )

ijk . (4)

Let yi = (yi1, . . . , yin)
′ be the ith person’s response pattern. By the conditional independence

assumption (Lord & Novick, 1968), the conditional density of yi is

f (yi |θ ,xi ) =
n∏

j=1

f (yij |θ j ,xi ), (5)

where θ is a d × 1 parameter vector containing the estimable item parameters for all n items. For
a person randomly sampled from a population with standard multivariate normally distributed
latent traits, the marginal density of yi is

f (yi |θ) =
∫ n∏

j=1

f (yij |θ j ,x)�(dx), (6)
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where �(·) is the standard multivariate normal distribution function, and the integral in Equation
(6) is a p-fold Lebesgue–Stieltjes integral over R

p . Let Y be an N × n matrix of individual
response patterns, whose ith row is y′

i . The observed data likelihood is

L(θ |Y) =
N∏

i=1

[∫ n∏
j=1

f (yij |θ j ,x)�(dx)

]
. (7)

The factor scores can be thought of as missing data. Let X be an N × p matrix of factor
scores whose ith row is x′

i . The observed data Y can be augmented by missing data X to permit
the representation of complete data as Z = (Y,X). The complete data likelihood for the IFA
model has the following factored form

L(θ |Z) =
N∏

i=1

[
φ(xi )

n∏
j=1

f (yij |θ j ,xi )

]
=

[
N∏

i=1

φ(xi )

][
N∏

i=1

n∏
j=1

f (yij |θ j ,xi )

]
, (8)

where φ(·) is the standard multivariate normal density.

2.3. MLE, Sparseness, and Goodness-of-Fit

Direct maximization of L(θ |Y) in Equation (7) leads to the maximum marginal likelihood
estimator θ̂ . As Bock and Aitkin (1981) showed, L(θ |Y) is a multinomial likelihood function
based on an underlying contingency table of the full cross-classifications of the item responses
with T = ∏n

j=1 Cj cells. Therefore, θ̂ is referred to as the full-information estimator in the
literature, in contrast with the limited-information estimators that identify the item parameters
from lower-order marginal tables. A comparison of full-versus-limited information estimators for
item factor analysis is beyond the scope of this paper. Interested readers are referred to the recent
reviews by Bolt (2005) and Wirth and Edwards (2007). In brief, the full-information estimator
is more flexible, can readily handle missing responses, and provides a basis for the development
of Bayesian estimators (see, e.g., Mislevy, 1986). A large body of applied item response theory
research related to educational and psychological testing relies on this estimator as implemented
in computer programs such as BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003) and
MULTILOG (Thissen, 2003).

A feature of the contingency table considered here is that if the number of items n is large,
this table becomes sparse—a well-known issue that Bartholomew and Knott (1999) discuss in
detail. The MLE θ̂ itself is root-N consistent and asymptotically normally distributed with min-
imum variance (Bishop, Fienberg, & Holland, 1975) for a given table size T . However, a major
problem arises when one attempts to use full-information goodness-of-fit statistics such as the
likelihood ratio G2 or Pearson’s X2 statistic to test the absolute fit of the item factor model. The
sparseness invalidates the use of the asymptotic chi-square approximation as the reference dis-
tribution for these statistics. Recent advances in limited-information goodness-of-fit testing have
partly addressed this recurring difficulty (e.g. Bartholomew & Leung, 2002; Cai et al., 2006;
Maydeu-Olivares & Joe, 2005). As to the likelihood ratio testing of two nested models, under
conditions stated by Haberman (1977), sparseness does not invalidate the chi-square approxi-
mation for the likelihood ratio G2 difference statistic if the larger (less restrictive one) of the
two models is correct (see also Table 1 in Maydeu-Olivares & Cai, 2006). As to standard er-
rors, results in Cai (2008b) show that when the table is sparse, the inverse of the information
matrix continue to serve as a useful characterization of the asymptotic covariance matrix of the
parameter estimates.
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2.4. Factor Loadings in Normal Metric

The logistic item response model is preferred in maximum likelihood estimation due to
simplifications in calculations of the log-likelihood derivatives (Baker & Kim, 2004). On the
other hand, for historical reasons, exploratory factor analysis results are usually presented as
a matrix of rotated factor loadings in the standardized normal metric. Thus, in keeping with
the psychometric tradition, and to facilitate the reporting of comparative studies in Section 5
involving computer software with different parameterizations, the item parameters are converted
into thresholds and loadings in normal metric. Formulae for such conversions are standard results
and can be found in many places (e.g., Wirth & Edwards, 2007).

Central to the conversion is a scaling constant D that puts the logistic parameters on a nor-
mal ogive metric. Traditionally D is taken to be 1.702 (Camilli, 1994) based on the minimax
principle, but recently Savalei (2006) derived a new scaling constant D = 1.749 from Kullback
and Leibler’s (1951) information criterion. The old constant D = 1.702 is used in the sequel
to remain consistent with standard practice. Let α∗

j = (1/D)αj and β∗
j = (1/D)βj . Then the

thresholds τ j and factor loadings λj in normal metric can be computed as

τ j = −α∗
j√

1 + (β∗
j )

′β∗
j

, λj = β∗
j√

1 + (β∗
j )

′β∗
j

. (9)

3. A Metropolis-Hastings Robbins-Monro Algorithm

3.1. The EM Algorithm and Fisher’s Identity

Using the notation of Section 2.2, where Z = (Y,X), the complete data likelihood is L(θ |Z)

for a d-dimensional parameter vector θ ∈ 	. Suppose X ∈ E , where E is some sample space.
The task is to compute the MLE θ̂ based on the observed data likelihood L(θ |Y).

Let l(θ |Y) = logL(θ |Y) and l(θ |Z) = logL(θ |Z). Instead of maximizing l(θ |Y) directly,
Dempster, Laird, and Rubin (1977) transformed the observed data estimation problem into a
sequence of complete data estimation problems by iteratively maximizing the conditional ex-
pectation of l(θ |Z) over �(X|Y, θ), where �(X|Y, θ) denotes the conditional distribution of
missing data given observed data. Let the current estimate be θ∗. One iteration of the EM algo-
rithm consists of: (a) the E(xpectation) step, in which the expected complete-data log-likelihood
is computed as

Q(θ |θ∗) =
∫

E
l(θ |Z)�(dX|Y, θ∗), (10)

and (b) the M(aximization)-step, in which Q(θ |θ∗) is maximized to yield an updated estimate.
Let

s(θ |Z) = ∇θ l(θ |Z) (11)

be the gradient of the complete data log-likelihood, where ∇θ returns a d × 1 vector of first
order derivatives of l(θ |Z) with respect to θ . By Fisher’s Identity (Fisher, 1925), the conditional
expectation of s(θ |Z) over �(X|Y, θ) is equal to the gradient of the observed data log-likelihood:

∇θ l(θ |Y) =
∫

E
s(θ |Z)�(dX|Y, θ). (12)
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The MH-RM algorithm is strongly motivated by Fisher’s Identity. Equation (12) suggests,
rather counter-intuitively that in a gradient-based scheme, one can optimize l(θ |Y) without di-
rectly evaluating its gradient. Instead, the ascent directions are given by the conditional expec-
tation of the complete data gradient s(θ |Z). A solution that is a zero for the right-hand side of
(12) also satisfies the likelihood equations and is an optimizer of l(θ |Y). The central connection
lies in taking the expectation of s(θ |Z) with respect to the conditional distribution of X given
Y, which amounts to augmenting missing data from its posterior predictive distribution. Since
θ is unknown and �(X|Y, θ) depends on θ , the solution can only be obtained iteratively. The
MH-RM algorithm is no more than a formalization of this idea.

3.2. MH-RM as a Data Augmented RM Algorithm

Robbins and Monro’s (1951) algorithm is a root-finding algorithm for noise-corrupted re-
gression functions. In the simplest case, let g(·) be a real-valued function of a real variable θ . If
g(·) were known and continuously differentiable, one can use Newton’s procedure

θk+1 = θk + [−∇θg(θk)
]−1

g(θk)

to find its root. Alternatively, if differentiability cannot be assumed, one can use the following
successive approximation:

θk+1 = θk + γg(θk)

in a neighborhood of the root if γ is sufficiently small. Now suppose that g(θ) can only be
measured imprecisely as g(θ) + ζ , where ζ is a zero mean random variable representing the
noise process. This is the original situation Robbins and Monro (1951) were dealing with. The
Robbins–Monro method iteratively updates the approximation to the root according to the fol-
lowing recursive scheme:

θk+1 = θk + γkRk+1, (13)

where Rk+1 = g(θk)+ζk+1 is an estimate of g(θk) and {γk; k ≥ 1} is a sequence of gain constants
such that:

γk ∈ (0,1],
∞∑

k=1

γk = ∞, and
∞∑

k=1

γ 2
k < ∞. (14)

Taken together, the three conditions ensure that the gain constants decrease slowly to zero. The
intuitive appeal of this algorithm is that Rk+1 does not have to be highly accurate. This can be
understood from the following: if θk is still far away from the root, taking a large number of
observations to compute a good estimate of g(θk) is inefficient because Rk+1 is useful insofar as
it provides the right direction for the next move. The decaying gain constants eventually eliminate
the noise effect so that the sequence of estimates converges to the root.

The MH-RM algorithm is an extension of the basic algorithm in Equation (13) to multipa-
rameter problems that involve stochastic augmentation of missing data. Let

H(θ |Z) = −∂2l(θ |Z)

∂θ∂θ ′

be the d ×d complete data information matrix, and let K(·,A|Y, θ) be a Markov transition kernel
such that for any θ ∈ 	 and any measurable set A ∈ E , it generates a uniformly ergodic chain
having �(X|Y, θ) as its invariant measure so that∫

A

�(dX|Y, θ) =
∫

E
�(dX|Y, θ)K(X,A|Y, θ). (15)
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Let initial values be (θ (0),
0), where 
0 is a d ×d symmetric positive definite matrix. Let θ (k) be
the parameter estimate at the end of iteration k. The (k + 1)th iteration of the MH-RM algorithm
consists of

• Stochastic Imputation: Draw mk sets of missing data {X(k+1)
j ; j = 1, . . . ,mk} from

K(·,A|Y, θ (k)) to form mk sets of complete data {Z(k+1)
j = (Y,X(k+1)

j ); j = 1, . . . ,mk}.
In practice, it is often useful to exploit the relation �(X|Y, θ) ∝ L(Z|θ) and construct an
MH sampler to produce these imputations.

• Stochastic Approximation: Using the relation in Equation (12), compute an approximation
of ∇θ l(θ

(k)|Y) by the sample average of complete data gradients

s̃k+1 = 1

mk

mk∑
j=1

s
(
θ (k)

∣∣Z(k+1)
j

)
, (16)

and a recursive approximation of the conditional expectation of the complete data infor-
mation matrix


k+1 = 
k + γk

{
1

mk

mk∑
j=1

H
(
θ (k)

∣∣Z(k+1)
j

) − 
k

}
. (17)

• Robbins–Monro Update: Set the new parameter estimate to

θ (k+1) = θ (k) + γk

(

−1

k+1s̃k+1
)
. (18)

The iterations are terminated when the estimates converge. In practice, γk may be taken as 1/k,
in which case the choice of 
0 becomes arbitrary. One can show that under certain regularity
conditions the MH-RM algorithm converges to a local maximum of l(θ |Y) with probability one
(see Appendix A). Though the simulation size mk is allowed to depend on the iteration number k,
it is by no means required. The convergence result shows that the algorithm converges with a
fixed and relatively small simulation size, i.e., mk ≡ m, for all k.

The MH-RM for maximum likelihood estimation is not too different from the engineering
application of the RM algorithm for the identification and control of a dynamical system with
observational noise. Finding the MLE amounts to finding the root of ∇θ l(θ |Y), but because of
missing data, ∇θ l(θ |Y) is difficult to evaluate directly. In contrast, the gradient of the complete
data log-likelihood s(θ |Z) is often much simpler. Making use of Fisher’s identity in Equation
(12), the conditional expectation of s(θ |Z) is equal to ∇θ l(θ |Y), so if one can augment missing
data by sampling from a Markov chain having �(X|Y, θ) as its target, ∇θ l(θ |Y) can be approx-
imated by taking a sample average, as in Equation (16).

As to the matrix 
k , it approximates the conditional expectation of H(θ |Z) over �(X|Y, θ).
In multiparameter optimization, use of curvature information often speeds up convergence. The
complete data information matrix is easy to compute, especially so in IFA (see Section 4.2), and
the recursive filter in Equation (17) helps stabilize the Monte Carlo noise. The term (
−1

k+1s̃k+1)

serves precisely the same role as Rk+1 in Equation (13). Finally, in Equation (18), MH-RM
proceeds by using the same recursive filter as Equation (13) to average out the effect of the
simulation noise on parameter estimates, so that the sequence of estimates converges to the root
of ∇θ l(θ |Y) with probability one.

3.3. Relation of MH-RM to Some Existing Algorithms

It is easy to see that stochastic imputation in MH-RM replaces deterministic Gaussian
quadrature in Bock and Aitkin’s (1981) EM algorithm. By doing so MH-RM escapes from the
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“curse of dimensionality.” One can also understand MH-RM from the angle of Joint Maximum
Likelihood (JML; see Baker & Kim, 2004)—a historically popular estimator in IRT. JML com-
putations iterate between two stages that are similar to the first and last stages in MH-RM: (1) re-
placing the unobserved factor scores with modal estimates given current item parameters, and
(2) maximizing the log-likelihoods of the items with factor scores treated as known. JML is not
necessarily convergent because a single modal estimate fails to acknowledge the inherent uncer-
tainty due to not observing the factor scores, whereas the variability of the stochastic imputations
in MH-RM ensures that this uncertainty is properly accounted for.

Cai (2006) showed that when the complete data log-likelihood corresponds to that of the
generalized linear model for exponential family outcomes, the MH-RM algorithm can be de-
rived as an extension of the SAEM algorithm by the same linearization argument that leads to
the iteratively reweighted least squares algorithm (McCullagh & Nelder, 1989) for maximum
likelihood estimation in generalized linear models. This result implies that if the complete data
model is ordinary multiple linear regression for Gaussian outcomes (e.g., conventional linear
factor analysis), the SAEM algorithm and the MH-RM algorithm are numerically equivalent.
In other cases when this finite-time numeric equivalence does not hold, Delyon et al. (1999)
showed that the SAEM algorithm has the same asymptotic (in time) behavior as the stochastic
gradient scheme. Equation (18) makes it clear that the MH-RM algorithm is a stochastic gradient
algorithm, which implies that MH-RM and SAEM share the same asymptotic dynamics.

The MH-RM algorithm has much in common with Gu and Kong’s (1998) stochastic approx-
imation Newton–Raphson algorithm. However, the two algorithms differ in an important way. Gu
and Kong’s (1998) algorithm uses an estimate of the information matrix of the observed data log-
likelihood whereas MH-RM uses the conditional expectation of the complete data information
matrix. By the missing information principle (Orchard & Woodbury, 1972), the step size of the
MH-RM algorithm is smaller than Gu and Kong’s (1998) algorithm. As it will become clear in
Section 4.2, by making smaller step sizes, the MH-RM algorithm becomes easier to implement,
requires much less computation per iteration, and is more stable than Gu and Kong’s (1998) al-
gorithm whenever the complete data likelihood is of a factored form. This will subsequently be
important because the IFA model has a factored complete data likelihood.

If one sets γk to be identically equal to unity throughout the iterations, the MH-RM algo-
rithm becomes a Monte Carlo Newton–Raphson algorithm (MCNR; McCulloch & Searle, 2001).
Unlike MCEM, there is no explicit maximization step in the MH-RM algorithm, so the two are
not transparently related. However, if γk ≡ 1, the Robbins–Monro update step can be thought
of as a single iteration of maximization, in the same spirit as Lange’s (1995) algorithm with
a single iteration of Newton–Raphson in the M-step, which turns out to be locally equivalent
to the EM algorithm. Thus, the MH-RM algorithm with constant step size may be taken as a
stochastic counterpart of Lange’s (1995) gradient algorithm. MH-RM is also closely related to
Titterington’s (1984) algorithm for incomplete data estimation.

In addition to γk being unity, if the number of iterations is also equal to one, i.e., mk ≡ 1
for all k, the MH-RM algorithm becomes a close relative of Diebolt and Ip’s (1996) stochastic
EM (SEM) algorithm. The sequence of estimates produced by the SEM algorithm forms a time-
homogeneous Markov chain. The mean of its invariant distribution is close to the MLE, and the
variance reflects loss of information due to missing data. In psychometric models similar to IFA,
the SEM algorithm is found to converge quickly to a close vicinity of the MLE (see, e.g., Fox,
2003). Thus, the version of MH-RM similar to the SEM algorithm leads to a simple and effective
method for computing start values for the subsequent MH-RM iterations with decreasing gain
constants. The implementation details will be elaborated in Section 4.3.
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3.4. Approximating the Information Matrix

Following Louis (1982), the information matrix of the observed data log-likelihood is

−∂2l(θ |Y)

∂θ∂θ ′ =
[∫

E
H(θ |Z)�(dX|Y, θ) −

∫
E

s(θ |Z)
[
s(θ |Z)

]′
�(dX|Y, θ)

]

+
∫

E
s(θ |Z)�(dX|Y, θ)

∫
E

[
s(θ |Z)

]′
�(dX|Y, θ).

This is a direct consequence of Orchard and Woodbury’s (1972) missing information principle.
Note that the part in the square brackets can be recursively approximated as

�k = �k−1 + γk

{
1

mk

mk∑
j=1

[
H

(
θ (k)

∣∣Z(k)
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(
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}
,

and Fisher’s identity in Equation (12) suggests the following procedure to recursively approxi-
mate the score vector:

ψk = ψk−1 + γk

{
1

mk

mk∑
j=1

s
(
θ (k)

∣∣Z(k)
j

) − ψk−1

}
.

Putting the pieces together, the observed data information matrix can be approximated as

Ik = �k − ψkψ
′
k. (19)

As k tends to infinity and the MH-RM iterations converge,

Ik → −∂2l(θ |Y)

∂θ∂θ ′ .

The inverse of Ik is the large-sample covariance matrix of the parameter estimates.

4. Implementing the MH-RM Algorithm for IFA

4.1. The MCMC Imputation Procedure

The MCMC procedure for imputing the factor scores can be derived in a similar way as in
Patz and Junker (1999a) from a Metropolis-within-Gibbs calculation (Chib & Greenberg, 1995).
Let ξ(xi |x1, . . . ,xi−1,xi+1, . . . ,xN,Y, θ) be the full conditional density for xi , and let xl

i be the
value of xi in the lth iteration of a Gibbs sampler consisting of the following steps:

Draw xl
1 ∼ ξ

(
x1

∣∣x(l−1)
2 , . . . ,x(l−1)

N ,Y, θ
)
,

Draw xl
2 ∼ ξ

(
x2

∣∣xl
1,x(l−1)

3 , . . . ,x(l−1)
N ,Y, θ

)
,

. . .

Draw xl
i ∼ ξ

(
xi

∣∣xl
1, . . . ,xl

i−1,x(l−1)
i+1 , . . . ,x(l−1)

N ,Y, θ
)
,

. . .

Draw xl
N ∼ ξ

(
xN

∣∣xl
1, . . . ,xl

N−1,Y, θ
)
.

(20)
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Let the transition kernel defined by this Gibbs sampler be K(X,A|Y, θ). Standard results (e.g.,
Gelfand & Smith, 1990) ensure that it satisfies the condition in Equation (15). Hence if Xl =
{xl

i; i = 1, . . . ,N}, the sequence {Xl; l ≥ 0} converges in distribution to �(X|Y, θ).
The full conditionals are difficult to directly sample from, but they are specified up to a

proportionality constant, i.e.,

ξ(xi |x1, . . . ,xi−1,xi+1, . . . ,xN,Y, θ)

∝ L(θ |Z) = f (yi |θ ,xi )φ(xi )

[
N∏

h�=i

φ(xh)

n∏
j=1

f (yhj |θ j ,xh)

]
.

This suggests coupling the Gibbs sampler with the MH algorithm. To draw each xi , the following
MH transition kernel is used:

K(xi , dx∗
i |Y, θ)

= q(xi ,x∗
i )min

{
f (yi |θ ,x∗

i )φ(x∗
i )[

∏N
h�=i φ(xh)
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j=1 f (yhj |θ j ,xh)]q(x∗
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,1

}
dx∗
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= q(xi ,x∗
i )min
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i )φ(x∗
i )q(x∗

i ,xi )

f (yi |θ ,xi )φ(xi )q(xi ,x∗
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}
dx∗

i

= K(xi , dx∗
i |yi , θ) (21)

for x∗
i �= xi and K(xi , {xi}|yi , θ) = 1 − ∫

x∗
i �=xi

K(xi , dx∗
i |yi , θ), where q(xi ,x∗

i ) is any aperiodic
recurrent transition density. Piecing the Gibbs part and the MH part together, the transition kernel
for generating the stochastic imputations can be written as

K(X, dX∗|Y, θ) =
N∏

i=1

K(xi , dx∗
i |yi , θ). (22)

In the sequel, a simple random walk chain x∗
i = xi + ei is used to generate the proposal

draws, where the increment density is that of a scaled standard multivariate normal distribution
in p dimensions, i.e., ei ∼ Np(0, c2Ip). The scalar parameter c adjusts the dispersion of the
increments, so one can change its value to tune the acceptance ratio of the MH chain. Simple cal-
culation shows that q(xi ,x∗

i ) = det(2πc2Ip) exp{−(x∗
i − xi )

′(x∗
i − xi )/(2c2)} for this increment

density. Because q(xi ,x∗
i ) = q(x∗

i ,xi ), Equation (21) can be further reduced to

K(xi , dx∗
i |yi , θ) = q(xi ,x∗

i )min

{
f (yi |θ ,x∗

i )φ(x∗
i )

f (yi |θ ,xi )φ(xi )
,1

}
dx∗

i . (23)

The kernel in Equation (22) represents a remarkably simple sampling plan because all the
conditioning kernels K(xi , dx∗

i |yi , θ) on the right-hand side can be evaluated independently of
each other. This means that the N updates in Equation (20) can be finished simultaneously, if a
matrix-oriented programming language such as GAUSS (Aptech Systems, Inc., 2003) is used. In
brief, one first generates an N × p matrix E, whose ith row is e′

i , from a matrix normal distribu-
tion (Mardia, Kent, & Bibby, 1979) with independent rows each distributed as Np(0, c2Ip), and
compute the proposals as X∗ = X + E. Then for all rows, one evaluates the acceptance probabil-
ities in Equation (23). Because the acceptance probability for each new xi only depends on the
item response part of the IFA model f (yi |θ ,xi ) for that particular i, the acceptance probabilities
can be computed as a “dot” division of two vectors.
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Since Y is fixed, let Kk(·,A) = K(·,A|Y, θ (k)) denote the transition kernel in the (k + 1)th
iteration of MH-RM. From initial state X(k)

0 , a sequence {X(k)
l ; l ≥ 0} is generated by iterating

Kk(X,A), i.e.,

Pr
(
X(k)

l ∈ A
∣∣X(k)

0

) = Kl
k

(
X(k)

0 ,A
)
,

where Kl
k(X

(k)
0 ,A) denotes the lth iterate of the kernel. The sequence of random imputations

{X(k)
j ; j = 1, . . . ,mk} can be chosen from {X(k)

l ; l ≥ 0} as a subsequence, using standard “burn-

in” and/or “thinning” methods. The initial state can be chosen as the last element of {X(k−1)
j ; j =

1, . . . ,mk−1}, i.e., X(k)
0 = X(k−1)

mk−1 . One should tweak the scalar dispersion parameter c so that the
rejection rates of the MH chain is within a reasonable range of the optimal rates as discussed
by Roberts and Rosenthal (2001). While the current method may not have the optimal proposal
distribution, it is simple to implement and does not involve a large amount of computation per
iteration. As will be shown in Section 5, the performance of the MH chain is quite admirable.
Note that standard subsampling methods have little impact on the asymptotic behavior of the
MH-RM algorithm because the convergence proof does not require uncorrelated imputations. If
the starting values are sufficiently close to the MLE, one may take mk ≡ 1 for all k and set the
number of “burn-in” iterates to as small as 5.

4.2. Complete Data Log-Likelihood and Derivatives

Using Equation (8), dropping parts that are constant, the complete data log-likelihood for
the IFA model can be written as

l(θ |Z) ∝
n∑

j=1

N∑
i=1

logf (yij |θ j ,xi ) =
n∑

j=1

[
N∑

i=1

Cj −1∑
k=0

χk(yij ) logπijk

]
. (24)

The part in the square brackets can be recognized as the log-likelihood for ordinal logistic regres-
sion (McCullagh, 1980). For the jth item, the imputed values in X serve as a matrix of predictors
and the vector of observed responses in the j th column of Y is the outcome variable.

Next, the derivatives of the complete data model are needed. Note that in Equation (24)
the ordinal regression models are independent of each other, so it suffices to consider a generic
item j . The independence implies that the information matrix H(θ |Z) is block diagonal, with n

blocks each corresponding to an item. For each item, the contributions to the log-likelihood and
its derivatives are then summed over i.

The computational efficiency of the MH-RM algorithm over Gu and Kong’s (1998) algo-
rithm becomes evident, especially in the many-factor many-item case. The complete data log-
likelihood in Equation (24) is a sum of n independent terms, so the derivative computation and
parameter updating can be performed for each item separately, or even in parallel if the com-
puting environment supports multiple processors. In addition, if C is the maximum number of
categories across all items, the matrix inversion needed in MH-RM is at most of dimension
p + C − 1 (cf. n times (p + C − 1) in Gu and Kong’s algorithm). The necessary first and second
order derivatives for the IFA model are given in Appendix B.

4.3. Starting Values and Convergence Check

A two-stage procedure is used to find starting values for the MH-RM algorithm. First, an
unweighted least squares factor extraction using the sample polychoric correlation matrix gives
initial values to start M SEM-type iterations, wherein both the gain constants and the mk’s are
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set to 1 for k = 1, . . . ,M . At the end of the M th iteration, the sequence of parameter estimates
obtained from SEM-type iterations are averaged and used as starting values for the subsequent
MH-RM iterations with decreasing gain constants.

As Borkar (2008) noted, stability is a great virtue of stochastic approximation based algo-
rithms. It makes small changes per cycle so that the algorithm has a graceful behavior. It is, of
course, not infallible. If starting values are poor, or if the data contain little information about
some of the parameters, the MH-RM algorithm will fail. However, the use of the two-stage
starting value procedure appears to mitigate commonly encountered difficulties associated with
EM-type algorithms using numerical quadrature (see, e.g., Section 5.2).

Convergence of the MH-RM can be monitored by computing a window of successive dif-
ferences in parameter estimates. The iterations are terminated if and only if all differences in the
window are less than some prescribed threshold, which is set to equal 1.0×10−4 in the computer
applications reported in this paper. The window size is set to 3 to prevent premature stop due to
random variation.

4.4. A Small Simulation Study

As a verification of the theoretical development, a small Monte Carlo simulation study was
conducted to compare the MH-RM algorithm with the celebrated Bock and Aitkin (1981) EM
algorithm in terms of parameter recovery and sampling variability. The data generating model is
the IFA model presented in Section 2.1 with p = 2 dimensions and n = 10 three-category items.
Table 1 presents the true item intercepts and slopes (in the logistic metric). These generating
parameters were chosen to resemble values encountered in real data analysis. The number of
Monte Carlo replications is 100 and the sample size N is equal to 1000. The relatively small
number of replications is more than sufficient for the stated purposes.

In each replication, the 2-dimensional model (same as the data generating model) is fitted
to the simulated data set, using both Bock and Aitkin (1981) EM and MH-RM. Both algorithms
were implemented in the C++ programming language as part of the numeric engine in the pro-
totype IRTPRO program (Cai, du Toit, & Thissen, 2009). For MH-RM, the simulation size mk is
set to equal 1 for all cycles and the gain constant γk = 1/k. For Bock and Aitkin (1981) EM, there
are 20 quadrature points per dimension, equally spaced between −4 and 4. The EM iterations are
deemed converged if the maximum absolute inter-iteration change in parameter estimates drops
below 1.0×10−5. For MH-RM, the convergence criteria are as given in Section 4.3. The starting
values for both algorithms are: .25 for the first intercept for all items, −.25 for the second inter-
cept for all items, and 1.0 for all slopes but the second slope of the first item, which is constrained
to zero as part of the identification restrictions.

Both algorithms lead to converged solutions in all replications. Table 2 compares the esti-
mated raw bias for estimating each parameter using Bock and Aitkin (1981) EM and MH-RM.
Estimated raw bias is equal to the average of the difference between the estimates and the true pa-
rameter values over the Monte Carlo replications. As one can easily tell, both algorithms perform
well in recovering the parameters and are nearly indistinguishable when measured by bias alone.

TABLE 1.
Simulation study: generating parameter values.

Item
1 2 3 4 5 6 7 8 9 10

Intercept 1 .67 1.09 −.18 −.76 .50 −.41 −.07 1.15 .13 −1.10
Intercept 2 −.72 −.14 −1.22 −1.42 −.36 −1.26 −.96 −.09 −.70 −1.56
Slope 1 2.20 2.00 2.60 1.60 1.70 1.80 1.80 1.90 1.60 1.70
Slope 2 .00 .00 .00 .00 .00 1.20 1.10 1.20 2.10 1.50
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TABLE 2.
Simulation study: raw bias (Monte Carlo standard deviations).

Item Intercept 1 Intercept 2 Slope 1 Slope 2
BAEM MHRM BAEM MHRM BAEM MHRM BAEM MHRM

1 .00 (.13) −.01 (.13) −.02 (.12) −.02 (.12) .03 (.20) .02(.20) N/A N/A
2 .01 (.13) .00 (.13) .00 (.12) .00 (.12) .02 (.17) .02(.17) −.01 (.15) −.01 (.14)

3 −.01 (.13) −.01 (.13) .00 (.14) .00 (.14) −.01 (.21) −.01(.21) .04 (.18) .03 (.17)

4 −.01 (.09) −.01 (.09) −.01 (.11) −.01 (.11) .00 (.13) .00(.13) .00 (.12) −.01 (.11)

5 −.01 (.10) −.01 (.10) .00 (.10) −.01 (.10) .01 (.14) .01(.14) .00 (.13) .00 (.12)

6 .00 (.12) −.01 (.12) −.03 (.14) −.03 (.14) .01 (.17) .01(.17) .03 (.16) .02 (.16)

7 −.01 (.11) −.01 (.11) −.01 (.10) −.01 (.10) .00 (.14) .00(.14) −.01 (.16) −.01 (.15)

8 .00 (.13) .00 (.13) .00 (.12) .00 (.12) −.01 (.16) −.01(.16) .02 (.16) .01 (.15)

9 .00 (.13) .00 (.13) .00 (.13) −.01 (.13) −.01 (.19) .00(.18) .02 (.30) .03 (.31)

10 −.02 (.13) −.02 (.13) −.02 (.13) −.02 (.13) .02 (.18) .03 (.18) .02 (.21) .02 (.21)

Note. BAEM = Bock–Aitkin EM algorithm; Bias is defined as the Monte Carlo average of estimates minus
the corresponding true value; Monte Carlo Standard Deviations are in the parentheses. Slope 2 of item 1 is
fixed to 0 as part of the identification constraints.

Also contained in Table 2 is the information about sampling variability. Specifically, the Monte
Carlo standard deviations, defined as the observed standard deviations of the estimates over
Monte Carlo replications, are again nearly indistinguishable between Bock and Aitkin (1981)
EM and MH-RM. The total root mean square deviation from true values for all parameters is
equal to .014 for both algorithms. The average of per replication run time is 30 seconds for Bock
and Aitkin (1981) EM and 41 seconds for MH-RM. The simulation suggests that the maximum
likelihood solutions produced by the Bock and Aitkin (1981) EM algorithm and the MH-RM
algorithm have comparable quality, though for sufficiently low-dimensional problems, a fully
optimized deterministic algorithm such as EM can be more efficient.

5. Numerical Illustrations

To examine the empirical performance of MH-RM, two sets of data were analyzed in a com-
parison of the proposed algorithm with well-established alternatives that include a Gibbs sam-
pling based MCMC estimation algorithm (Section 5.1) and an adaptive Gauss–Hermite quadra-
ture based EM algorithm (Section 5.2). To ensure fairness, only compiled native-code software
programs written in a high-level language such as FORTRAN or C++ are used in the compar-
ison. For MH-RM, the prototype IRTPRO (Cai et al., 2009) is used. The Gibbs sampling based
MCMC method developed and implemented by Edwards (2005) is chosen because the C++ pro-
gram (MultiNorm) was specifically designed for item factor analysis. The adaptive quadrature
EM module in IRTPRO (Cai et al., 2009) is also used because of its exclusive focus on item fac-
tor analysis. While Mplus 5.0 (Muthén & Muthén, 2008) is less focused on item factor analysis,
it serves as an independent benchmark in comparisons involving EM due to its wide availability.
CEFA (Browne, Cudeck, Tateneni, & Mels, 2008) is used for factor rotation. All analyses were
conducted on a laptop computer with a 2 GHz Intel Duo Core CPU and 2 GB of RAM. Parallel
processing on multi-core or hyper-threaded CPUs is directly supported in IRTPRO and Mplus,
but the capability is turned off in the comparisons.

5.1. MCMC for a Simulated Data Set

The data are the responses of 2000 simulees to a hypothetical scale consisting of 19
4-category graded items. There are four correlated factors underlying the item responses. The
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TABLE 3.
Rotated factor loadings for simulated data with generating values as the target.

Item Factor 1 Factor 2 Factor 3 Factor 4
Gen MH MC Gen MH MC Gen MH MC Gen MH MC

1 .82 .87 .86 0 −.05 .00 0 .08 −.02 0 −.09 −.04
2 .84 .82 .85 0 .00 −.04 0 .02 .08 0 .03 −.05
3 .78 .76 .79 0 .06 −.01 0 −.02 .00 0 .00 .01
4 .69 .69 .67 0 .02 .04 0 −.07 −.04 0 .09 .07
5 .77 .75 .72 0 .03 .04 0 −.03 −.02 0 .03 .04
6 0 −.07 −.07 .81 .85 .85 0 −.05 −.04 0 .07 .05
7 0 .04 .05 .73 .71 .70 0 −.05 −.04 0 .04 .03
8 0 .08 .05 .65 .60 .63 0 .09 .04 0 −.14 −.07
9 0 .00 .00 .77 .78 .77 0 −.01 .01 0 −.03 −.04

10 0 −.02 −.02 .76 .73 .74 0 .06 .04 0 −.01 −.02
11 0 .02 .02 0 .02 .01 .86 .79 .79 0 .06 .05
12 0 −.02 −.01 0 .04 .03 .88 .83 .81 0 .05 .05
13 0 .01 .02 0 −.04 −.05 .80 .86 .86 0 −.05 −.05
14 0 −.01 −.01 0 .00 −.01 .74 .77 .78 0 −.03 −.03
15 0 −.03 −.03 0 .02 .02 .78 .77 .78 0 .03 .01
16 0 −.01 −.01 0 −.05 −.05 0 .06 .05 .78 .76 .76
17 0 −.01 .00 0 .04 .02 0 −.06 −.05 .78 .83 .81
18 0 −.03 −.02 0 .04 .01 0 .04 .05 .69 .62 .61
19 0 .10 .04 0 −.09 −.02 0 .03 −.02 .63 .57 .61

Note. Gen = Generating values serving as the target; MH = target rotated MH-RM estimates; MC = target
rotated MCMC estimates.

TABLE 4.
Factor correlations after target rotation for simulated data.

Factor Correlations (i, j)

(2,1) (3,1) (3,2) (4,1) (4,2) (4,3)

Generating Value .75 .70 .75 .60 .50 .80
MH-RM Estimates .73 .67 .73 .62 .52 .79
MCMC Estimates .74 .68 .75 .64 .56 .81

first three factors are each measured by 5 items and the last one by 4 items. The details for data
simulation can be found in Edwards (2005) and Table 3 lists the generating factor pattern.

For MH-RM, the simulation size mk is set to 1 and the gain constants γk = 1/k, with the
same convergence criteria as given in Section 4.3. For the MCMC method, a total of 60,000
random draws were taken with diffuse priors on all item parameters. The first 10,000 draws
are regarded as “burn-in” and the “thinning” interval is 50. As noted by Edwards (2005), these
conservative choices ensure that the results are not dependent on the peculiarities of the starting
values. The posterior means of the item parameters can be understood as approximate MLEs.

Given the availability of the generating parameters, a completely specified oblique target
rotation (Browne, 2001) of the estimated factor loadings can be applied to both solutions, with the
generating loadings serving as the target. A side-by-side comparison of the target rotated loadings
are presented in Table 3, and a similar comparison of the factor correlations is available in Table 4.
As can be seen, the MH-RM and MCMC estimates are very close to each other and both are close
to the generating values. The Root Mean Square Deviation (RMSD) from target for MH-RM is
0.046 and the RMSD for MCMC is 0.039. It is worth noting that IRTPRO uses the logistic
parameterization and MultiNorm uses the normal ogive parameterization. In addition, IRTPRO



48 PSYCHOMETRIKA

TABLE 5.
Item wording for the social quality of life scale.

Wording

Item 1 I could talk with my friends.
Item 2 I felt good about how I got along with classmates.
Item 3 I felt comfortable with other kids my age.
Item 4 I felt loved by my parents or guardians.
Item 5 I was good at making friends.
Item 6 Other kids wanted to be with me.
Item 7 I felt accepted by other kids my age.
Item 8 I did things with other kids my age.
Item 9 I was good at talking with adults.

Item 10 My teachers understood me.
Item 11 I wanted to spend time with my family.
Item 12 I had problems getting along with my parents or guardians.
Item 13 I got into a yelling fight with other kids.
Item 14 I had trouble getting along with my family.
Item 15 Other kids made fun of me.
Item 16 I felt bad about how I got along with my friends.
Item 17 I felt different from other kids my age.
Item 18 Other kids were mean to me.
Item 19 I felt nervous when I was with other kids my age.
Item 20 I did not want to be with other kids.
Item 21 I had trouble getting along with other kids my age.
Item 22 I got along better with adults than with other kids my age.
Item 23 I was afraid of other kids my age.
Item 24 I wished I had more friends.

explicitly optimizes a log-likelihood while MultiNorm does not. These numerical differences
may have contributed to the .007 difference in RMSDs. There is, however, a large difference in
computational time. MH-RM required 47 seconds of run time in 197 cycles and MCMC required
1 hour 20 minutes and 34 seconds of run time.

5.2. A Social Quality of Life Scale for Children

The data are the responses of 753 children (between the ages of 8 to 17) to 24 social quality
of life items on an item tryout form for the Pediatric Quality of Life scales. Table 5 lists the text
of item wording. The five-point response scale is “Never” (0), “Almost never” (1), “Sometimes”
(2), “Often” (3), and “Almost Always” (4). The item responses have been recoded if necessary
so that the highest numerical value of the response scale indicates positive social quality of life.

The adaptive quadrature based EM implementation in IRTPRO is used. The convergence
criterion for EM considers a solution converged when the interiteration change in log-likelihood
drops below .001. For MH-RM, the simulation size mk is again set to 1 and the gain constants
γk = 1/k, with the same convergence criteria as in the previous sections.

5.2.1. A Unidimensional Model. Initial calibration of the items using a unidimensional
graded response model suggests that the model fits the data poorly and there is strong indi-
cation of local dependence. The unidimensional graded model is a special case of the graded
IFA model with a single latent variable (p = 1). For numerical integration, 21 adaptive Gauss–
Hermite quadrature points are used so that the log-likelihood can be approximated accurately.

Table 6 shows a side-by-side comparison of the two sets of item parameter estimates (in
logistic metric) obtained from the two algorithms. The EM algorithm required 5 seconds of run
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TABLE 6.
Unidimensional graded model parameter estimates.

Item Intercept 1 Intercept 2 Intercept 3 Intercept 4 Slope (SE)
MH-RM EM MH-RM EM MH-RM EM MH-RM EM MH-RM EM

1 3.32 3.32 2.60 2.61 .82 .82 −.09 −.08 1.31 (.10) 1.31 (.11)

2 3.07 3.07 2.19 2.19 .56 .56 −.59 −.59 .11 (.07) .11 (.07)

3 3.42 3.42 2.70 2.71 .77 .77 −.40 −.39 .73 (.08) .73 (.09)

4 4.53 4.53 3.72 3.72 1.88 1.89 .35 .36 1.62 (.13) 1.62 (.13)

5 3.28 3.28 2.58 2.59 1.03 1.04 −.39 −.38 1.32 (.10) 1.31 (.11)

6 3.42 3.42 2.46 2.46 .79 .79 −.41 −.40 .93 (.09) .92 (.09)

7 4.14 4.13 3.14 3.14 1.10 1.10 −.60 −.59 1.96 (.13) 1.94 (.14)

8 3.45 3.45 2.66 2.66 1.13 1.13 .11 .12 .82 (.09) .82 (.09)

9 3.58 3.59 2.94 2.95 1.54 1.56 .17 .18 1.67 (.12) 1.67 (.13)

10 4.04 4.05 3.77 3.78 2.74 2.74 1.62 1.63 .84 (.12) .85 (.12)

11 4.65 4.65 3.91 3.91 2.65 2.66 1.33 1.34 1.22 (.13) 1.23 (.13)

12 4.22 4.23 3.30 3.30 1.70 1.70 .21 .21 1.71 (.12) 1.71 (.13)

13 3.88 3.88 2.71 2.72 1.07 1.08 −.05 −.04 1.70 (.12) 1.70 (.13)

14 2.52 2.52 1.60 1.60 −.28 −.27 −1.24 −1.24 .87(.08) .87 (.09)

15 3.93 3.95 3.26 3.28 1.50 1.51 .19 .20 1.69 (.13) 1.70 (.13)

16 3.61 3.61 2.91 2.92 1.20 1.21 .12 .13 .91 (.09) .91 (.09)

17 3.65 3.64 2.69 2.69 1.23 1.23 −.14 −.14 .71 (.09) .70 (.09)

18 4.46 4.47 3.85 3.86 1.77 1.78 .26 .27 1.88 (.14) 1.88 (.14)

19 3.98 4.00 3.12 3.13 1.81 1.83 .47 .47 1.33 (.11) 1.34 (.12)

20 4.72 4.72 3.61 3.62 1.74 1.75 .33 .34 1.48 (.11) 1.48 (.12)

21 4.42 4.43 3.43 3.44 1.81 1.82 .55 .55 1.48 (.12) 1.49 (.13)

22 4.64 4.65 4.03 4.05 2.78 2.80 1.38 1.40 1.62 (.14) 1.63 (.15)

23 4.20 4.20 3.61 3.62 1.22 1.23 −.55 −.55 1.51 (.11) 1.51 (.12)

24 4.17 4.17 3.20 3.21 1.60 1.61 .04 .05 1.32 (.11) 1.32 (.11)

time in 47 cycles. The MH-RM algorithm required 10 seconds of run time in 128 cycles. As
can be seen from Table 6, the two sets of estimates are nearly identical. The absolute difference
between EM estimates and MH-RM estimates is no larger than .02. The standard errors of the
slopes are also quite similar. The observed data log-likelihood is equal to −19590.4, according
to EM. For MH-RM, the value is −19590.2. In this case there is no real difference in the quality
of estimates. As expected, MH-RM is less efficient than EM for this unidimensional problem.

5.2.2. A Five-Dimensional Model. The combination of expert advice, the wording of the
items in Table 5, as well as the existence of such problematic cases as Item #2 in the initial
calibration suggests that there may well be additional dimensions underlying the 24-item scale.
IFA is a useful tool for modeling these extra dimensions. Specifically, an IFA model with 5 latent
variables in a pseudo-bifactor structure seems plausible.

The approach taken here is conventional. One first fits an exploratory IFA model with 5 fac-
tors to the data, and then rotates the loadings orthogonally to a partially-specified target (Browne,
2001). Plausibility of the hypothesized factor structure can be inferred from the RMSD of the ro-
tated loadings from the target. Table 7 shows this target pattern. The entries in the table that are
marked with an X indicate unspecified loadings whose magnitude is to be determined by rota-
tion, whereas the 0s indicate loadings to be minimized by the target rotation. The first factor can
be regarded as a primary social quality of life dimension. The other factors mainly account for
extra local dependence.

Once again, both the MH-RM algorithm and the EM algorithm are used for fitting the IFA
model. Due to an increase in the number of factors, the number of quadrature points per dimen-
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TABLE 7.
Target rotated factor loadings.

Item Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
TP MH EM TP MH EM TP MH EM TP MH EM TP MH EM

1 X .62 .61 0 .14 .14 0 −.12 −.10 0 .04 .01 0 .02 .02
2 X .00 −.01 0 .19 .19 X .40 .39 0 .18 .17 0 −.13 −.11
3 X .28 .29 X .38 .36 0 .09 .09 X .32 .36 0 .06 .04
4 X .57 .57 X .47 .46 0 .01 .00 0 .16 .16 0 −.06 −.05
5 X .61 .61 0 .08 .08 0 .02 .02 0 −.01 −.01 0 .06 .05
6 X .52 .52 0 −.08 −.08 X .55 .55 0 .02 .02 0 .05 .04
7 X .76 .76 0 .05 .04 0 −.09 −.09 0 .06 .06 X .55 .57
8 X .44 .45 0 −.04 −.04 0 .24 .24 0 −.01 .00 0 .27 .25
9 X .55 .55 X .52 .52 0 −.08 −.08 0 .07 .06 0 .01 .02

10 X .29 .29 X .44 .45 X .43 .44 X .34 .31 0 −.03 −.01
11 X .73 .73 0 −.16 −.15 0 −.17 −.17 0 .30 .29 0 −.09 −.08
12 X .72 .72 0 −.01 −.02 0 .02 .02 0 .00 .00 X .51 .50
13 X .75 .75 0 −.01 .00 0 .06 .05 0 −.08 −.08 0 .13 .12
14 X .50 .50 0 .01 .01 0 −.03 −.03 X −.51 −.53 0 −.05 −.05
15 X .56 .56 X .54 .53 0 −.06 −.06 0 .04 .03 0 .01 .01
16 X .34 .35 X .34 .34 0 .28 .28 0 −.01 .00 0 .10 .09
17 X .43 .43 0 −.08 −.09 X .68 .68 0 −.05 −.04 0 .00 −.02
18 X .56 .56 X .56 .55 0 .16 .17 0 −.03 −.04 0 .09 .08
19 X .65 .66 0 .01 .02 0 .19 .19 0 −.19 −.18 0 −.04 −.05
20 X .75 .76 0 −.03 −.03 0 −.03 −.05 0 −.01 .01 0 −.15 −.15
21 X .69 .69 0 .09 .09 0 .04 .03 0 −.15 −.14 0 −.08 −.08
22 X .53 .52 X .56 .57 0 −.05 −.05 0 −.04 −.05 0 −.05 −.04
23 X .50 .51 X .56 .56 0 −.12 −.12 0 −.04 −.03 0 .01 .01
24 X .46 .47 X .57 .57 0 −.13 −.13 0 −.11 −.11 0 −.07 −.07

Note. TP = Target Pattern, where X indicates unspecified elements whose magnitude is determined by
rotation; MH = target rotated MH-RM estimates; EM = target rotated EM estimates.

sion is reduced to 5 in EM. Thus, the E-step needs a total of 55 = 3125 function evaluations for
the integral approximation. The EM algorithm required 1 hours 27 minutes of run time in 301
cycles. The MH-RM algorithm required 95 seconds of run time in 540 cycles. The EM algorithm
used over 50 times more CPU time than MH-RM.

Table 7 compares the rotated factor loadings obtained from MH-RM and EM. Both solutions
generally fit within the hypothesized structure and are close to each other. The overall RMSD
from target is equal to .103 for MH-RM and .101 for EM. Note that the factor pattern presented
here is just one possible solution and there is nothing irrevocable about the target pattern. The
MH-RM solution has a log-likelihood of −18967.4, which is very close to the height of the
log-likelihood (−18968.7) that the EM algorithm attained.

5.3. Independent Verifications

Mplus (Muthén & Muthén, 2008) is used to independently verify the solutions obtained by
IRTPRO’s EM module for the social quality of life data. Also of interest is the run time. Figure 1
shows a head-to-head comparison of the computing time of the three approaches (MH-RM in
IRTPRO, EM in IRTPRO, and EM in Mplus), varying the numbers of factors extracted. For the
unidimensional model, 21 quadrature points are used; for all other number of factors, there are
5 quadrature points per dimension. While the estimates as well as the log-likelihood values are
virtually identical for all three programs, large difference in computing time surfaced for 4- and
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FIGURE 1.
Program run time comparisons. IRTPRO-MH-RM denotes the implementation of MH-RM algorithm in IRTPRO. IRT-
PRO-ADQEM denotes the implementation of the adaptive quadrature based EM algorithm in IRTPRO. Mplus-ADQEM
denotes the implementation of the adaptive quadrature based EM algorithm in Mplus.

5-dimensional models. One can clearly see that the computing time for adaptive quadrature based
EM is exponentially increasing while that of MH-RM grows only linearly as more factors are
extracted. As witnessed in the simulation study in Section 4.4, for sufficiently low dimensional
problems, MH-RM can be less efficient than EM, but in those situations, the absolute amount
of time required is not large; whereas for high-dimensional problems, MH-RM can be far more
efficient than EM because it does not involve numerical quadrature.

6. Extensions

6.1. Confirmatory Item Factor Analysis

Confirmatory item factor analysis is ideal when there exists sufficient prior theory about
the factor structure of the items. The MCMC sampling procedure and the RM step in the pro-
posed MH-RM algorithm remain the same as before. The constraints on the item parameters
are imposed on the complete data log-likelihood. Estimation of the factor inter-correlations is
straightforward because the complete data likelihood consists of two independent parts (see
Equation (8)) so that the estimation of population distribution parameters is separate from the
estimation of item parameters.

6.2. Explanatory and Multilevel IRT

Recent interest in generalizing the standard IRT model to include covariate effects, possi-
bly even random-effects, has called for new estimation algorithms (de Boeck & Wilson, 2004;
Fox & Glas, 2001; Fox, 2003, 2005). The MH-RM algorithm is uniquely suited to the goal of
finding the MLEs for these extended IRT models because once the latent variables are “filled-in,”
the complete data model often takes the form of a generalized linear model. For instance, in ex-
planatory IRT one can allow the item difficulty and slope parameters to depend on an observed
covariate. The MH-RM solution to this problem simply involves conditioning on the covariate in
addition to the observed response patterns when generating the factor score imputations, in which
case the complete data model is specified as a generalized linear model with main effects for the
covariate and the factor scores, as well as a term for their interaction. For multilevel IRT, the
cluster-level random-effects induced by the random regression coefficients can also be thought
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of as missing data that must be imputed along with the factor scores. In this case the complete
data model usually reduces to a generalized linear model with an “offset” term (McCullagh &
Nelder, 1989).

6.3. Other Types of Models

The MH-RM algorithm as implemented in its current form is designed with efficient item
factor analysis as the primary objective. However, the algorithm can in principle be applied to
fit more general kinds of latent variables models such as the comprehensive structural equation
model proposed by Muthén (1984), the generalized linear latent variable model of Bartholomew
and Knott (1999), and the GLLAMM model of Rabe-Hesketh, Skrondal, and Pickles (2004b). It
is also worth noting that because item response theory models can be represented as nonlinear
mixed-effects models (de Boeck & Wilson, 2004), the MH-RM algorithm may turn out to be
a useful computational tool for parameter estimation in general nonlinear multilevel models.
The SAEM algorithm, a close relative of the MH-RM algorithm (see Section 3.3), was initially
intended for the mixture problem (Celeux & Diebolt, 1991). Thus, it is conceivable that the
MH-RM may be extended to the case of categorical latent variables.

7. Discussion

This paper is concerned with the theoretical properties, implementation details, and empiri-
cal performance of a new parameter estimation algorithm for computing the MLE in the context
of high-dimensional item factor analysis. The Metropolis–Hasting Robbins–Monro algorithm is
a juxtaposition of elements from MCMC and stochastic approximation that appears to be more
efficient than quadrature based EM for high-dimensional problems. For practical data analysis,
the decrease in computational burden as witnessed in Section 5 translates into increase in pro-
ductivity. Though the highest number of dimensions reported in the empirical applications in
this paper is only five, Cai (2008a) already applied MH-RM successfully to problems with even
higher dimensionality, where the speed difference is even more striking.

Before Bock and Aitkin (1981), the Bock and Lieberman (1970) style Newton algorithm
simply could not handle the number of items that one encounters in day-to-day data analysis for
testing situations. The EM algorithm due to Bock and Aitkin (1981) made IRT modeling practical
for educational and psychological measurement. As IRT continues to evolve, high-dimensional
IFA has become a valuable tool in at least some of its new domains of application, e.g., mental
health and outcomes research. MH-RM provides a promising solution to the challenging numer-
ical problems that arise from high-dimensional IFA. More research is still needed to study its
behavior in a wide variety of situations and for models other than IFA.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License
which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and
source are credited.

Appendix A. The Convergence of MH-RM

The method for showing the convergence of the MH-RM algorithm relies on an Ordinary
Differential Equation (ODE) argument that has become the predominant approach in the Sto-
chastic Approximation literature (see Benveniste et al., 1990; Borkar, 2008; Kushner & Yin,
1997). It is instructive to illustrate this technique with the original Robbins–Monro algorithm.
Equation (13) can be rewritten as a stochastic difference equation:

θk+1 = θk + γkg(θk) + γkζk+1, (25)
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where the last part γkζk+1 has mean zero and is independent from the past, so it can be thought
of as a disturbance term. Due to the assumptions on the decaying gain constants, the asymptotic
effect of the disturbance term can be regarded as negligible as k tends to infinity. Thus, when k

is large and consequently γk is small, the remaining parts of (25) becomes

θk+1 = θk + γkg(θk). (26)

Equation (26) can be considered a discrete approximation to the trajectory of the following ODE:

dθ(t)

dt
= g

(
θ(t)

)
, (27)

similar to Euler’s scheme for numerically integrating (27) given initial values (θ0, g(θ0)):

θk+1 = θk + γg(θk). (28)

As long as the ODE (27) is well posed, which is usually the case for realistic models and appli-
cations, the root-finding problem amounts to finding the equilibrium solution of the ODE. Using
the foregoing argument, the Robbins–Monro recursions can be shown to asymptotically (in time)
track the ODE with probability one (see, e.g., Borkar, 2008). Thus, the Robbins–Monro sequence
should converge to a stable equilibrium of (27) and the root of g(θ) = 0 can be found without
even explicitly knowing the precise form of g(·).

Returning to the MH-RM algorithm, recall that Z = (Y,X). Reference to Y will be sup-
pressed because it is fixed once observed. To avoid intricate notation, it is sufficient to consider
mk = 1 for all k. Let

H̄(θ) =
∫

E
H(θ |Z)�(dX|θ), and s̄(θ) =

∫
E

s(θ |Z)�(dX|θ).

Inspection of the stochastic difference equations (17) and (18) shows that the following set of
ODEs govern the asymptotic (in time) behavior of MH-RM:( ∂

∂t
θ(t)

∂
∂t


(t)

)
=

(

(t)−1s̄(θ(t))

H̄(θ(t)) − 
(t)

)
,

(
θ(0)


(0)

)
=

(
θ




)
. (29)

It can be verified that for MLE θ̂ , the point (θ̂ , H̄(θ̂)) is a stable equilibrium of the ODE (29).
Therefore, the sequence of estimates generated by the MH-RM method converges to the MLE:

θ (k) → θ̂, with probability 1 as k → ∞. (30)

This result is a direct consequence of Gu and Kong (1998) Theorem 1, which is in turn based on
general convergence results in Benveniste et al. (1990). The conditions needed for the conver-
gence to hold are the same as those in Gu and Kong (1998) Theorem 1. These conditions guar-
antee (a) the integrability, convergence, and continuity of the Markov transition kernel, (b) the
continuity and the existence of sufficient moments for functions H(θ |Z) and s(θ |Z), and (c) that
the process {(θ (k),
k), k ≥ 1} as defined by Equation (18) is a bounded sequence.

Appendix B. Complete Data Log-Likelihood and Derivatives

Suppressing references to i and j , the log-likelihood under consideration can be written
using simplified notation as

l =
C−1∑
k=0

χk(y) log(Pk − Pk+1), (31)
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where Pk = P(y ≥ k|θ ,x) is as defined in Equation (1). The first derivatives of (31) are

∂l

∂αk

= −
(

χk−1(y)

Pk−1 − Pk

− χk(y)

Pk − Pk+1

)
∂Pk

∂αk

,

∂l

∂β
=

C−1∑
k=0

χk(y)

Pk − Pk+1

(
∂Pk

∂β
− ∂Pk+1

∂β

)
,

where ∂Pk/∂αk = Pk(1 − Pk), ∂Pk/∂β = Pk(1 − Pk)x. The second derivatives are given by

∂2l

∂α2
k

= −
(

χk−1(y)

(Pk−1 − Pk)2
+ χk(y)

(Pk − Pk+1)2

)(
∂Pk

∂αk

)2

−
(

χk−1(y)

Pk−1 − Pk

− χk(y)

Pk − Pk+1

)(
∂

∂αk

∂Pk

∂αk

)
,

∂2l

∂γk−1∂αk

= χk−1(y)

(Pk−1 − Pk)2

(
∂Pk−1

∂γk−1

)(
∂Pk

∂αk

)
,

∂2l

∂γk+1∂αk

= χk(y)

(Pk − Pk+1)2

(
∂Pk+1

∂γk+1

)(
∂Pk

∂αk

)
,

∂2l

∂β∂αk

= − χk(y)

(Pk − Pk+1)2

(
∂Pk

∂αk

)(
∂Pk

∂β
− ∂Pk+1

∂β

)

+ χk−1(y)

(Pk−1 − Pk)2

(
∂Pk

∂αk

)(
∂Pk−1

∂β
− ∂Pk

∂β

)

−
(

χk−1(y)

Pk−1 − Pk

− χk(y)

Pk − Pk+1

)(
∂

∂β

∂Pk

∂αk

)
,

∂2l

∂β∂β ′ =
C−1∑
k=0

{
− χk(y)

(Pk − Pk+1)2

(
∂Pk

∂β
− ∂Pk+1

∂β

)(
∂Pk

∂β ′ − ∂Pk+1

∂β ′
)

+ χk(y)

Pk − Pk+1

(
∂

∂β

∂Pk

∂β ′ − ∂

∂β

∂Pk+1

∂β ′
)}

,

where

∂

∂αk

∂Pk

∂αk

= Pk(1 − Pk)(1 − 2Pk),

∂

∂β

∂Pk

∂αk

= Pk(1 − Pk)(1 − 2Pk)x,

∂

∂β

∂Pk

∂β ′ = Pk(1 − Pk)(1 − 2Pk)xx′.
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