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Background
Segmentation is an especially important part of diagnostic medical imaging because it 
can separate abnormal regions from normal regions [1]. This study is focused on osteo-
arthritis (OA), a prevalent but poorly understood disease that affects millions of adults 
and occurs in the bone-like cartilage of the femur or tibia [2]. To diagnose OA, doc-
tors must extract the cartilage, femur, or tibia from a time series of MRIs to determine 
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their shape and size. Recently, previous works attempted to segment for knee magnetic 
resonance imaging (MRI) from various techniques; atlas-based segmentation [3–7] and 
others [8–11]. But the cartilage segmentation is difficult, because cartilage intensity var-
ies, it is thin, and fat and muscle tissues encircle the cartilage boundary. Fat and muscle 
tissue in a knee MRI create abstract noise, which leads to holes or over-segmentation.

There have been several knee segmentation methods that are relevant to our work. 
Folkesson et al. [8] proposed the cartilage segmentation method for MRIs with two step 
multiclass classification scheme. In [8], they implemented a fully automatic cartilage 
segmentation in low-field MR scanners. Also, Grau et al. [3] used a novel modification of 
watershed transform, which led to better incorporation of prior information. Li et al. [9] 
proposed a non-model-based method based on novel multi-surface graph search algo-
rithm for cartilage segmentation as a semi-automatic cartilage segmentation procedure. 
However, the above methods [3, 8, 9] doesnt include final separation, which means only 
femoral and tibial cartilage segmentation without patella was performed. Also, these 
methods reported poor performance of cartilage segmentation [3, 8, 9].

We summarized fully automatic segmentation methods with finial separation of knee 
cartilages as shown in Table  1. These studies have assessed fully automatic segmenta-
tion, and most methods studied cartilage segmentation with template images, since 
cartilage is the important tissue. The methods evaluated MRIs of various Tesla values; 
a higher Tesla value indicates less noise. We also focus on fully automated bone and 
cartilage segmentation with template images from knee MRIs with noise. Tamez-Pena 
et al. [6] proposed a fully automated knee segmentation procedure that could segment 
the femoral and tibial cartilage in a knee MRI scan without human intervention. They 
showed the relative accuracy of the volumetric measurements for the entire femur, the 
femoral trochlea, the central lateral femur, the posterior lateral femur, the medial tibia, 
and the lateral tibia. But fuzzy voting algorithm is one kind of heuristic methods, which 
is difficult to express by numerical verification. Shan et al. [5] proposed an automatic, 

Table 1 Comparison of existing knee segmentation methods

Authors Key algorithm Segmentation 
tissues

Modalities Tesla Subject 
numbers

Template 
image

Tamez‑Pena 
et al. [6]

Fuzzy voting 
algorithm

Femoral cartilage, 
tibial cartilage

T1‑weighted MRI 
(3‑D DESS WE)

3T 12 Used

Shan et al. [5] kNN classifica‑
tion

Femoral cartilage, 
tibial cartilage, 
femur, tibia

T1‑weighted 
and partially 
T2‑weighted 
MRI

– 18 Used

Ringenbach 
et al. [4]

Fast marching 
algorithm 
(region grow‑
ing)

Femur, tibia, 
patella

CT – 20 Used

Ababneh  
et al. [7]

Graph‑cut 
algorithm

Femur, tibia T2‑weighted MRI 3T 200 (14 slices 
per each 
subject)

Used

Dodin et al. [11] Ray casting 
technique

Femur, tibia T2‑weighted MRI 
(3‑D‑FISP)

1.5T 161 Unused

Dodin et al. [10] Bayesian deci‑
sion criterion

Femoral cartilage, 
tibial cartilage

T1‑weighted MRI 
(3‑D DESS WE)

3T 14 Unused
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atlas-based, three-label cartilage segmentation approach with a probabilistic classifier 
that created atlas images. They segmented the femoral and tibial cartilage, which have 
lower mean dice similarity coefficients (DSC) of 78.2 and 82.6 %, respectively, than [6]. 
A hybrid segmentation method [4] was proposed and based on pre-segmentation with 
a statistical shape model and a fine segmentation with a fast marching algorithm from 
knee CTs. They segmented the femur, tibia, and patella stably and with good accuracy. 
However, this method was not suitable for cartilage segmentation, because segmenta-
tion can fail for image data with locally weak bone edges. Ababneh et al. [7] proposed 
a new, fully automated, content-based system for knee bone segmentation from MRI. 
They used a content-based image block classification mechanism in conjunction with 
graph-cut methodology. The results showed an automatic bone detection rate of 0.99 
and an average segmentation accuracy of 0.95 DSC. However, this segmentation is only 
suitable for knee bone, because it uses a content-based image block classification mecha-
nism, which is not suitable for cartilage. Dodin et  al. [10] developed a new automatic 
segmentation algorithm to quantify human knee cartilage volume from knee 3-D MR 
images that contain the bone-cartilage interfaces of the femur and tibia. They had vali-
dated results with DSCs of 0.84, 0.85 and 0.84 for the global, femoral, and tibial carti-
lage, respectively. They also proposed a fully automated bone segmentation method for 
the human knee (femur and tibia) from MRI based on the ray casting technique. This 
technique relies on the decomposition of the MR images into multiple surface layers to 
localize the bone boundaries, and several partial segmentation objects are automatically 
merged to obtain the final segmentation of the bones [11]. However, they focused on 
bone segmentation and did not include cartilage segmentation.

In this paper, we propose a novel template-based knee segmentation method, based on 
level set algorithm, which is more accurate for the segmentation of all three cartilages. 
We focused on the level set segmentation algorithm and on parametric deformable 
models, because the level set segmentation algorithm can accommodate the variabil-
ity of biological structures over time and across individuals. Level set segmentation can 
be divided into two different classes: edge-based [12] and region-based [13] segmenta-
tion. The edge-based model, which uses image gradient information to find contours 
with a force function, has advantages for use with inhomogeneous objects. However, 
it is sensitive to noise and requires a long computational time. In contrast, the region-
based model, which deforms to minimize a given energy function, is less sensitive to the 
initial contour location than is the edge-based model and requires less computational 
time. The region-based model, however, cannot resolve segments in an inhomogeneous 
object. To segment an object with inhomogeneous properties, Lankton et al. proposed 
using localizing active contours segmentation [13]. However, localizing active contours 
is sensitive to the initial contour. If the initial position is far away from the objects, the 
model may have a local minima problem. On the other hand, the model can get a more 
accurate segmentation if the initial contour is closer to the genuine boundary.

In this paper, we propose a novel, template-based knee segmentation method that 
is more accurate for the segmentation of all three cartilages. The proposed method is 
based on a level set algorithm and creates an initial contour by Spatial Fuzzy C-Means 
(SFCM) [14] for a fully automatic algorithm. We have already investigated the acquisi-
tion of the automatic initial contour based on localizing region-based active contours in 
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[15] and describe this procedure in the Initial contour subsection of the Methods sec-
tion. Finally, we created a template data set and modified the force function in a level set 
algorithm, which can segment knee cartilage from knee bone.

Methods
Figure  1 shows the proposed overall algorithm. Our method operates in two phases: (1) 
decide the initial contour; and (2) apply the level-set method with modified localizing 
region-based active contours. The initial contour is moved toward outside or inside by local 
energy. The contour is moved by minimizing the local energy with the proposed energy 
model. We modified localizing region-based active contour model. The template improves 
the procedures in both phases. The approach is applied to three structures, namely femoral, 
tibial, and patella cartilage, respectively. The template provides initial contours for three car-
tilage structures separately. Thus, each cartilage segmentation starts with respective initial 
contour and the contour is optimized by our proposed local energy model.

We used knee MRI data from the OAI (The Osteoarthritis Initiative, http://www.oai.
ucsf.edu) [16] and created template images to calculate the initial contour by SFCM. In 
calculating the initial contour, we approximated the initial boundary via modified SFCM. 
The prior information is generated image registration, which aligns each subjects knee 
MR image with the template data. Next, we applied the segmentation by localizing active 
contours with the newly modified force function. The fully automatic processes yielded 
segmented images of the femur, tibia, femoral cartilage, and tibial cartilage. In this sec-
tion, we explain the proposed segmentation method in detail.

MRI acquisition
The MRI exams consisted of testretest acquisitions on a 3-T MRI system (Siemens 
Magnetom Trio, Erlangen, Germany) with a quadrature transmitting-receiving knee 
coil (USA Instruments, Aurora, OH, USA) [4]. We used MR images from participants 

Fig. 1 Proposed overall algorithm

http://www.oai.ucsf.edu
http://www.oai.ucsf.edu
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randomly chosen from the OAI database. We employed a 3-D dual echo steady state 
(DESS) sequence with water excitation (WE), and the images were acquired with a 
384 × 384 matrix (0.365-mm in-plane resolution) and a slice thickness of 0.7 mm. These 
3-D DESS WE image series have been used previously [16].

Knee template
We used 20 normal subjects from the OAI database ranging in age from 40 to 79 years, 
divided into four age groups (4049, 5059, 6069 and ≥70). We applied group-wise regis-
tration, Symmetric Group-wise Normalization (SyGN) [17], to form the template data. 
The resulting template images are shown in Fig. 2. A probabilistic template provided the 
spatially dependent prior, P(l), for the segmentation method. This allowed us to restrict 
the segmentation to the ROI, helped to minimize the influence of noise, and improved 
segmentation robustness. The knee templates were obtained through three-label seg-
mentations into categories such as femoral, tibial, and patellar cartilage. The templates 
were derived from 3-D DESS WE series from 20 subjects with visually normal knee 
images. Each template is made by 5120 slices because one subject has 256 slices. The 
series for these templates were selected from the public release OAI image dataset 0.E.1 
and were from the baseline pilot study. We used template images to calculate the initial 
contour in the level set algorithm, and the template images were also applied to the new 
energy function.

Initial contour
Traditional fuzzy C-mean clustering (FCM) is one of the most widely applied methods 
in medical image segmentation [12]. The aim of this method is to classify image into 
clusters by minimizing an objective function as follows:

where X = (x1, x2, ..., xN ) is an image with N pixels, c is the number of clusters with 
2 ≤ c ≤ n− 1 , and vi is the ith cluster center. The parameter m > 1 , which is set to 2 in 
this paper, is a parameter to control the fuzziness of the result. The membership func-
tion uij , which indicates the degree of membership of the jth object to the ith cluster, is 
constrained as follows:

(1)JFCM =

N
∑

j=1

c
∑

i=1

umij ||xj − vi||
2

Fig. 2 Knee template images. a Patellar cartilage, b femoral cartilage, c tibial cartilage
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The membership function, uij , and centroids, vi, are updated iteratively:

Although FCM is an unsupervised technique and is useful for clustering methods, it 
does not consider spatial information. Hence, it fails to segment images in the presence 
of noise. Chuang et al. [14] proposed a way to incorporate spatial information into the 
membership function for clustering as follows:

where p and q are parameters, which are set to 1 in this paper, to control the relative 
importance of both functions. Spatial information, hij, is defined as:

where NB(xj) denotes a square window centered on pixel xj in the spatial domain. The 
membership function, uij, and centroids, vi, are recalculated with Eqs. (3) and (4).

By using spatial information, the method improves the segmentation results. These 
results show the effect of noise in this segmentation method. We consider this method 
to be a pre-processing step to approximate cartilage contours.

Modified localizing region‑based active contours
The segmentation by localizing region-based active contours is a model-based tech-
nique that can be used with a suitable volumetric (or 3-D) image and that is insensitive 
to noise. The localizing region-based active contours algorithm is not based on global 
region models. Instead, it allows the foreground and background to be described in 
terms of smaller local regions, removing the assumption that the foreground and back-
ground regions can be represented with global statistics. Analyzing local regions leads 
to the construction of a family of local energies at each point along the curve. To opti-
mize these local energies, each point is considered separately and moved to minimize 
(or maximize) the energy computed in its local region. To compute these local ener-
gies, local neighborhoods are split into local interiors and local exteriors by the evolving 

(2)

c
∑

i=1

uij = 1, 0 ≤ uij ≤ 1

(3)
uij =

1

∑c
k=1

(

||xj−vi||2

||xj−vk ||
2

)
2

m−1

(4)vi =

∑n
j=1 u

m
ji xj

∑n
j=1 u

m
ji

(5)uij =
u
p
ijh

q
ij

∑c
k=1 u

p
kjh

q
kj

(6)
hij =

∑

k∈NB(xj)

uik
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curve. The energy is then optimized by fitting a model to each local region. Our pro-
posed model implements segmentation by minimizing the following energy function:

where � is an image domain with independent spatial variables x and y, and the smooth 
Dirac delta function, δ, is defined as in [13]:

In addition, I(x) is the intensity of pixel on the domain �, φ(x) is a signed distance func-
tion while φ(x) = 0 is a set of contour pixels, Kσ is a truncated Gaussian kernel with 
scale σ , which is used to remove some noise in local regions, and Fnew is an internal 
energy measure used to express local adherence to the given model at each point along 
the contour. Fnew is represented by:

where the proposed Ftemplate and Fpenalty terms are explained more clearly in the subsec-
tion for Knee template and Eq. (14), respectively. F is an internal energy measure used 
to express the local adherence to a given model at each point along the contour and is 
represented by [13]:

where H is the Heaviside function to specify the interior of the contour:

The local mean intensities of the interior function, u(x), and exterior function, v(x), are 
obtained as:

Ftemplate, the second term in Eq. (9), which has already been obtained from the prior 
information of knee template data in the subsection for Knee template, is an energy 

(7)

E
(

φ
)

= �

∫

�x

δ
(

φ(x)
)

||∇φ(x)|| dx

+

∫

�x

δ
(

φ(x)
)

∫

�y

Kσ (x, y)Fnew
(

I(y),φ(y)
)

dydx

(8)δ(φ(x)) =







1, φ(x) = 0

0, |φ(x)| < ε
1
2ε

�

1+ cos
�

πφ(x)
ε

��

, otherwise

(9)Fnew
(

I(y),φ(y)
)

= F
(

I(y),φ(y)
)

+ βFtemplate + αFpenalty

(10)F
�

I(y),φ(y)
�

=











H
�

φ(y)
��

I(y)− u(x)
�2

+
�

1−H
�

φ(y)
���

I(y)− v(x)
�2
, for C-V feature

�

v(x)− u(x)
�2

for Yezzi feature

(11)H
�

φ(y)
�

=











1, φ(y) < −ε

0, φ(y) > ε
1
2

�

1+ 1
ε
+ 1

π
sin

�

πφ(y)
ε

��

, otherwise

(12)u(x) =

∫

�
KσH

(

φ(y)
)

I(y) dy
∫

�
KσH

(

φ(y)
)

dy

(13)v(x) =

∫

�
Kσ

(

1−H
(

φ(y)
))

I(y) dy
∫

�
Kσ

(

1−H
(

φ(y)
))

dy
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function of the knee template, and Fpenalty, the third term in Eq. (9), is a novel term that 
is incorporated into the fitting term. Fpenalty is designed for pixels that do not belong to 
the regional subject. The penalty term increases to 1 as the pixel intensity moves away 
from the region, and equals zero within the region. Hence, the penalty term is defined 
as:

where Tlow and Thigh are the low and high thresholds, respectively.
The probability density of subject intensity usually follows a Gaussian distribution with 

mean µ and standard deviation σ. Hence, Tlow and Thigh are defined as:

where µ = 1
n

∑n
i=1 I(xi), σ 2 = 1

n−1

∑n
i=1(I(xi)− µ)2, n is the number of pixels in the 

subject samples, and k is a factor determining the confidence level. Tlow and Thigh deter-
mine the valid subject region. We define the pixel sign as −1 for areas outside the region 
and 1 for areas inside the region:

From Eqs. (14) and (16), Fpenalty can be rewritten as follows:

Fpenalty is always negative for areas outside the valid region, indicating that pixels outside 
the region are assigned a penalty value. This term is, therefore, incorporated into the fit-
ting term to guide the level set evolution toward deflation.

Minimizing the energy function in Eq. (7) with respect to φ by calculating the first 
variation, we obtain the evolution equation as follows:

In the level set method, φ is moved toward the boundary of a target object, like cartilage, 
on the condition that Eq. (18) is minimized in each step.

Results
Parameters and performance metric

We demonstrated the performance of the proposed method on cartilage segmentation 
in knee MR images with a size of 384 × 384 × 160 pixels. We set � = 0.008× 255× 255  , 
α = 8 , β = 1, Gaussian kernel size σ = 2, �t = 0.1. Then, Tlow and Thigh were constructed 
from 20 cartilage samples to obtain Tlow = 148 and Thigh = 233. The proposed method 
was compared with the adjusted Lanktons method [13] that incorporated SFCM ini-
tialization in the same way as the proposed method. We used Advanced Normalization 

(14)Fpenalty =







0, x ∈ [Tlow ,Thigh]

max

�

Tlow−I(x)
Tlow

,
I(x)−Thigh

I(x)

�

, otherwise

(15)Tlow = µ− kσ ; Thigh = µ+ kσ

(16)sign(x) =

{

1, x ∈ [Tlow ,Thigh]

−1, otherwise
⇔ sign(x) =

(

I(x)− Tlow

)(

Thigh − I(x)
)

(17)Fpenalty =
sign(x)− 1

2
max

(

Tlow − I(x)

Tlow
,
I(x)− Thigh

I(x)

)

(18)
∂φ

∂t
= �δ

(

φ(x)
)

div

(

∇φ(x)

|∇φ(x)|

)

+ δ
(

φ(x)
)

∫

�y

Kσ (x, y)∇φ(y)Fnew
(

I(y),φ(y)
)

dy
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Tools (ANTs) [18] to create template images of prior information from 20 participants in 
the progression sub-cohort from the OAI. To validate the performance comparisons, we 
used DSC to show the similarity between a test image and the reference image. A higher 
DSC value indicates better agreement between two binary masks:

where A represents the automatic segmentation mask and M is the manual segmenta-
tion by experts, which is the standard for comparison. In this paper, we use average DSC 
for segmentation accuracy, because one subject has 256 slices.

Level set based algorithm
We performed a preliminary experiment of cartilage segmentation from a knee MRI 
with the existing level set segmentation, edge-based level set segmentation, and segmen-
tation to localize active contours. Figure 3 shows the results: Fig. 3a is the edge-based 
level set [12], Fig. 3b is the global region-based level set, Fig. 3c is the localizing region-
based level set [13], and Fig.  3d is the manual segmentation, used as the standard for 

(19)DSC =
2|A ∩M|

|A| + |M|

Fig. 3 Cartilage segmentation in knee MRI. a Edge‑based level set based cartilage segmentation in knee. b 
Global region region‑based level set. c Localizing region‑based level set. d Referenced manual segmentation
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evaluating automatic segmentation. Figure 3a shows the results of automatic edge-based 
level set segmentation, which automatically sets the initial contour with a spatial fuzzy 
clustering technique.

The results show that the edge-based level set algorithm is not suitable for segment-
ing knee cartilage, because the knee cartilage is inhomogeneous and has a weak bound-
ary. Figure 3c shows the results of localizing region-based level set segmentation, which 
had sufficient resolution to better extract inhomogeneous objects when compared with 
the global region-based level set segmentation in Fig. 3b. Localizing region-based level 
set segmentation, however, depends on the position of the initial contour. If the initial 
contour is close to the knee cartilage, the result is more accurate, but if not, the result 
is poor. Since the initial contour included some muscle pixels, the result includes some 
muscle tissue, like the region marked in yellow in Fig. 3c. The results of Fig. 3 indicate 
that an algorithm is required to calculate the initial contour, and a new force function is 
needed for more accuracy in the level set algorithms.

Table 2 shows the performance of the proposed segmentation via comparison with the 
gold standard that is provided by experts. The average DSCs for the femoral, patellar, 
and tibial cartilage from 10 people, that are different from 20 subjects for template data, 
were 0.871, 0.817 and 0.848, with standard deviations of 1.10, 1.40 and 1.79 %, respec-
tively. We compare the average DSCs of the proposed segmentation with Lankton’s seg-
mentation in Fig. 4. The proposed method showed improvements of 8.8, 4.3 and 3.5 % in 
the average DSCs for the femoral, tibial and patellar cartilage, respectively.

Table 2 DSC results with standard deviations from 10 people with 160 slices each

Person no. Femoral cartilage DSC Patellar cartilage DSC Tibial cartilage DSC

#1 0.87 (1.80 %) 0.85 (2.86 %) 0.85 (2.29 %)

#2 0.85 (0.52 %) 0.81 (0.86 %) 0.83 (2.36 %)

#3 0.85 (1.00 %) 0.83 (2.47 %) 0.84 (2.87 %)

#4 0.89 (1.60 %) 0.84 (3.32 %) 0.85 (1.50 %)

#5 0.87 (1.88 %) 0.81 (0.83 %) 0.87 (3.77 %)

#6 0.87 (1.74 %) 0.80 (1.29 %) 0.86 (2.18 %)

#7 0.89 (0.91 %) 0.80 (1.11 %) 0.84 (1.51 %)

#8 0.87 (1.04 %) 0.80 (2.89 %) 0.87 (3.60 %)

#9 0.87 (1.29 %) 0.80 (0.99 %) 0.84 (1.16 %)

#10 0.87 (1.39 %) 0.83 (1.75 %) 0.83 (1.30 %)

Fig. 4 Overlap analysis of the proposed segmentation (solid line) and Lanktons segmentation (dashed line). a 
Average DSC of femoral cartilage. b Average DSC of tibial cartilage. c Average DSC of patellar cartilage



Page 11 of 14Ahn et al. BioMed Eng OnLine  (2016) 15:99 

We collected three types of template data: femoral, patellar, and tibial cartilage tem-
plates. Our templates were based on manual segmentation from 20 normal people. Fig-
ure 5a shows template data images of femoral, patellar, and tibial cartilage. In the first 
row, only the femoral and tibial cartilage can be distinguished; in the second row, only 
the femoral and patellar cartilage are distinguishable; the third and fourth rows repre-
sent femoral, patellar, and tibial cartilage. Our method uses the integrating SFCM to 
approximate the cartilage contours in Fig. 5b. We then adjust morphological operators 
to remove unnecessary small areas from the SFCM result. Figure 5b shows that the mor-
phological adjustment efficiently identified the ROI for the initial contour of the level set 
algorithm. Lanktons method uses a manual initial boundary, which is almost identical to 
the manual segmentation boundary. The results of Lankton’s method in Fig. 5c indicate 
that the femoral, patellar, and tibial cartilage cannot be differentiated, because Lanktons 
method does not use template data. Our proposed method uses template data not only 
in the initial boundary decision step, but also in the level set force function. The pro-
posed method uses an energy function of knee template data, Ftemplate, in Eq. (9), and 
distinguishes each of the femoral, patellar, and tibial cartilage boundaries.

For example, if Ftemplate in Eq. (9) is the template data of the femoral cartilage, then 
the result of our segmentation is the red boundary in Fig. 5d. If we apply the template 
data for the patellar or tibial cartilage to the Ftemplate in Eq. (9), the result is the green 
or yellow boundary, respectively, in Fig. 5d. Figure 5e shows the manual segmentation 
used as the basis for comparison. The perceptual evaluation in Fig. 5, which combines 
segmentation results of different structures denoted by different color assignments for 
visual assessment, demonstrates that our proposed method is more precise than Lank-
ton’s method, our reference method. Lankton’s method could not segment each cartilage 
as a separate object.

Fig. 5 Knee cartilage segmentation for various cases in two dimensions. Each row represents a slice of a knee 
MR image in a single series. a Our template image from normal subjects: femoral (left), patellar (center), and 
tibial (right) cartilage. b Warping results from the template to the original image: SFCM (left) and morphologi‑
cal adjustment (right). c The result of Lanktons method. d The result of our proposed method. e The result of 
manual segmentation for reference
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Recent knee segmentation method
The recent method, introduced by Tamez-Pena et al. [6], is based on the fuzzy voting 
algorithm and has the best segmentation performance to the best of our knowledge. We 
select it as the reference paper for performance comparison of our works. Table 3 shows 
a comparison of three segmentation methods: a recent knee segmentation method 
introduced by Tamez-Pena et al. [6], a reference segmentation by Lankton [13], and our 
proposed method. All three segmentation methods had a high specificity of methodol-
ogy (>99 %) and at least 87 % sensitivity. Overlap analysis of our proposed segmentations 
showed an increase in accuracy of 7, 3 and 8 % as compared with Lankton’s method at 
the femur, tibia, and patella, respectively. We also compared the proposed method with 
Tamez-Pena et al.’s method, which is based on a fuzzy voting algorithm using six normal 
subjects. Tamez-Pena et al.’s approach includes a proprietary atlas which was unavailable 
to public. Thus, we used our own template data and implemented the Tamez’s algorithm. 
The average overlap accuracy was 89  % at the tibial cartilage and 88  % at the femoral 
cartilage, and there was no data for patellar cartilage. Our segmentation is based on a 
widely used level-set algorithm. We used 20 normal subjects from the OAI datasets for 
our template data, as did Tamez-Pena et al. However, our template data included prior 
information from 20 normal subjects, whereas Tamez-Pena et al.’s method does not use 
prior information. We obtained DSC values of 87.1, 84.8 and 81.7 % for the femoral, tib-
ial, and patellar cartilage, respectively, with lower standard deviations than those seen in 
Tamez-Pena et al.’s method. Also, the sensitivities of our results were 90.6 % for femoral 
cartilage and 87.5 % for tibial cartilage, which were higher than those seen in Tamez-
Pena et al.’s method (88 and 89 %, respectively).

Discussion
The purpose of our study is to improve the segmentation performance for knee carti-
lages and to approach with level set based segmentation method which is effective in 
field inhomogeneity, i.e., pixel intensities have a great deal of variation within the same 
tissue. Femur bone, tibia bone, and cartilage all suffer difficulty in segmentation from 
field inhomogeneity.

Above all, we make template images for each cartilage such as femoral, tibial, and 
patellar cartilage, which is made by 5120 slices. To form the template data, we use SyGN 
for registration. The template images are applied to the automatic initial contour and 

Table 3 DSC comparisons with standard deviations

Segmented tissue DSC Sensitivity Specificity

A recent knee segmentation [6] Femoral cartilage 88.0 % (4.0 %) 88.0 % (4.00 %) 99.9 % (0.00 %)

Tibial cartilage 84.0 % (5.0 %) 89.0 % (6.00 %) 100 % (0.00 %)

Patellar cartilage – – –

The localizing region‑based active 
contour segmentation [13]

Femoral cartilage 80.0 % (2.14 %) 99.9 % (0.00 %) 99.9 % (0.00 %)

Tibial cartilage 81.3 % (2.19 %) 99.9 % (0.00 %) 99.9 % (0.00 %)

Patellar cartilage 73.3 % (5.44 %) 99.9 % (0.00 %) 99.9 % (0.00 %)

The proposed segmentation Femoral cartilage 87.1 % (1.10 %) 90.6 % (2.22 %) 99.7 % (0.05 %)

Tibial cartilage 84.8 % (1.40 %) 87.5 % (3.82 %) 99.9 % (0.01 %)

Patellar cartilage 81.7 % (1.79 %) 90.2 % (1.24 %) 99.8% (0.04 %)
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the new energy function. In our previous work, we suggested SFCM algorithm to be a 
pre-processing step to approximate cartilage contours. SFCM can make initial contour 
for our proposal cartilage segmentation method. In this work, the proposed method is 
the first approach by level set method for knee cartilage segmentation. We attempt to 
apply the localizing region-based active contours algorithm [13] into knee MRIs. How-
ever, it does not work because femoral, tibial, and patella cartilage are too thin to directly 
adjust the localizing active contours algorithm. To overcome this problem, we make 
template images for each cartilage and modify force function in level set algorithm. As a 
result, our proposed algorithm overcomes the problem of thin and inhomogeneity with 
improving segmentation performance. We evaluate the performance of segmentation 
accuracy by DSC. We compare with referenced Lanktons method [13]. Actually, both 
methods are synchronized automatic initial contour and the template data. The only dif-
ference is the force function in level set algorithm. But we improved 8.8, 4.3 and 3.5 % in 
the average DSCs for femoral, tibial, and patellar cartilage, respectively. And we perform 
the evaluation of the recent knee segmentation method and our proposal method. Actu-
ally, we evaluate the similar accuracy of the cartilage segmentation with lower standard 
deviations than Tamez-Pena et al.’s method. Also, the sensitivity of our results were 90.6 
and 87.5 % for femoral cartilage and tibial cartilage, compared with Tamez-Pena et al.’s 
method (88 and 89 %, respectively).

Regarding execution time, we spend about 180 h to make the template data by using 
group-wise registration, SyGN [17], with the exception of the manual segmentation 
time. It takes additional 48 h to segment all cartilages from one’s MRI data set in our 
experimental environment. Our experiment was conducted in dual CPUs (Intel Xeon 
3.0GHz × 2) and 16GB dram hardware with Red Hat 4.4.5 linux.

Conclusions
We propose a fully-automated, level set-based knee segmentation with a template (or 
atlas prior). For a fully automation, we apply SFCM to create an initial contour auto-
matically. The manually segmented data by experts are used to construct the template 
data. The template data had a significant effect on the result of cartilage segmentation, 
which led to improved performance of our approach. We modify Lankton’s force func-
tion based on the level set algorithm [13] to improve its accuracy for knee cartilage seg-
mentation. The modified force function supplements the energy function of the template 
and penalty in Lankton’s force function. Moreover, we create a template dataset with 
MRI data from 20 normal subjects from the OAI database. The SFCM algorithm used 
the template for full automation, and the modified force function also used the template 
to improve segmentation accuracy. By using multiple thresholds as global information, 
the proposed method overcomes the limitations of Lankton’s method. The experimental 
results show that the proposed method increases performance by an average of 5 % over 
Lankton’s method. Our proposed method provides a fully automatic and robust model 
for knee cartilage segmentation.

Our method has some limitations; the modified force function is based on slice-by-
slice processing and the performance is significantly affected by the template dataset. 
For further studies, we will use a full 3D segmentation method to improve performance.
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