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Abstract

Background: In this study, clustering was performed using a bitmap representation of HIV reverse transcriptase and
protease sequences, to produce an unsupervised classification of HIV sequences. The classification will aid our
understanding of the interactions between mutations and drug resistance. 10,229 HIV genomic sequences from the
protease and reverse transcriptase regions of the pol gene and antiretroviral resistant related mutations represented
in an 82-dimensional binary vector space were analyzed.

Results: A new cluster representation was proposed using an image inspired by microarray data, such that the rows
in the image represented the protein sequences from the genotype data and the columns represented presence or

Keywords: HIV, Mutation, Cluster

absence of mutations in each protein position.The visualization of the clusters showed that some mutations
frequently occur together and are probably related to an epistatic phenomenon.

Conclusion: We described a methodology based on the application of a pattern recognition algorithm using binary
data to suggest clusters of mutations that can easily be discriminated by cluster viewing schemes.

Background

The human immunodeficiency virus (HIV) shows exten-
sive genetic variability that helps the selection of drug
resistance mutations in response to antiretroviral ther-
apy. Hence, it is important to understand the relationship
between HIV genotype and phenotype (i.e., drug resis-
tance) to increase the probability of treatment success.

To infer antiretroviral resistance, look-up tables [1,2]
and rule-based systems [3,4] were developed by differ-
ent groups to infer phenotypic resistance based on HIV
genomic sequences from infected patients that failed on
antiretroviral therapy. In Brazil, a look-up table [2] was
developed and used by the Brazilian Ministry of Health
AIDS program to help the decision-making process
for antiretroviral salvage therapy (http://algoritmo.aids.
gov.br/).

In Brazil, patients who fail on antiretroviral ther-
apy receive genotype tests for antiretroviral resistance
throughout a network of laboratories [5]. This collection
of HIV genomic sequences represents the variability of
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the HIV population in this country. With this extensive
amount of data, questions arise as to whether it is pos-
sible to classify the sequences, based on the occurrences
of resistance-related mutations in the different amino
acid positions, and whether it is possible to achieve a
classification that can express current knowledge of the
relationship between mutations and drug resistance.

One possible way to answer these questions is to apply
clustering algorithms on reverse transcriptase and pro-
tease sequences, to obtain clusters containing sequences
that are similar. This similarity among the sequences may
reveal some of the relationships among the mutations
related to antiretroviral resistance.

Nonetheless, extraction of a simple and compact rep-
resentation of the dataset is complex because of the
number and size of sequences. The clusters thus gener-
ated may provide a representation that contributes to the
understanding of the classification and the relationships
between mutations.

In the present study, a pipeline (see Figure 1) was intro-
duced to represent clusters inspired by microarray data, in
which extensive amounts of data are available. Microarray
data were used as inspiration because such applications
typically contain large volumes of information on gene
patterns from thousands of genes at once. Thus, clusters
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Figure 1 Pipeline summarizing the proposed framework. 1) Protease and reverse transcriptase sequences were gathered from patients from all
over Brazil, 2) binarization of the sequences, 3) clustering of the mutations, 4) characterization of the clusters and 5) comparison with the Brazilian

were represented in an image corresponding to a matrix,
such that the rows in the image represented each pro-
tein sequence and the columns indicated the presence
or absence of resistance-related mutations. This image
enabled us to summarize the dataset without losing any
information about clustering, permitting the observation
of important characteristics of each cluster and enabling
cluster comparison, thus providing insights into the data.

Previous studies have attempted to identify common
protease and reverse transcriptase mutation patterns
[6-15] (as shown in Tables 1, 2 and 3). However, many
previous works search only for pairs of mutations, not
being able to find larger mutation patterns, which are
known to exist [11,16-21]. Furthermore, frequently, only
subtype B virus sequences are used, and mutations occur
with different probabilities in the different subtypes [22].
Also, in some of the previous works a small number of
protein positions are used. Consequently, not all muta-
tion patterns in the data are found and it is more dif-
ficult to compare results. Finally, small datasets used in
some of the related works do not represent all of the
virus population variability, also missing mutation pat-
terns. Therefore, there is no clear consensus on which are
the important mutation patterns that arise in the protein
sequences.

Nonetheless, some patterns have been reported in pre-
vious works such as the simultaneous presence of muta-
tions at positions 30 and 88 of the protease [7,9-12,23],
selected by nelfinavir [24]. The same applies to thymi-
dine analog mutations (TAMs) in reverse transcriptase,
which can be discriminated in TAM1 and TAM2 profiles
[11,16-21]. The TAMI1 profile presents mutations at

codons 41, 210 and 215, whereas TAM2 presents muta-
tion at codons 67, 70, and 219.

Such studies on mutation patterns are important
because the co-existence of mutations may result in dif-
ferent antiretroviral resistance profiles. For example, a
mutation can restore the fitness decrease from another
mutation that confers drug resistance. However, some
of the previous studies only investigated pairs of muta-
tions, and most of them only analyzed subtype B HIV-1
sequences. Moreover, previous studies analyzed specific
mutation profiles, making it difficult to compare results
between different studies. Thus, mutation patterns have
not been fully characterized in the protease and reverse
transcriptase sequences. Characterization of these pat-
terns may lead to a better understanding of the interac-
tions among these mutations and to classification of the
sequences.

In the present study, a large number of codons (38
from reverse transcriptase and 44 from protease, as shown
in Table 4) from subtypes B, C and F were clustered,
and the sequences were classified according to the muta-
tion patterns. These clusters were compared with clusters
reported in other studies.

Look up tables and rule-based systems

Based on genotype-phenotype correlation studies on lab-
oratory HIV-1 isolates, genotype-phenotype correlations
on clinical isolates and genotype-treatment history cor-
relations [25], some efforts have been made to try to
understand the relationship between HIV genotype and
phenotype. For example, look-up tables [1,2,26] have been
compiled using information from the scientific literature,



Table 1 Related works

Author

Proteins

Drugs

Protein positions

Mutation patterns Number of sequences

Method

Liu et al. 2008 [7]

Protease

Pl

PR1 to PR99

(PR30 PR75 PR88),
(PR1-PR9 PR12-PR15

PR17 PR19 PR20 PR22

PR25 PR26 PR28

PR31 PR35-PR42

PR45 PR49 PR52)

(PR56 PR57 PR59

PR61 PR65 PR68-PR70
PR77 PR83 PR87

PR89 PR96-PR99)

(PR1 PR2 PR9 PR26 PR30
PR40 PR45 PR56

PR59 PR75 PR81 PR88 PR98)
(PR13-PR15 PR20 PR35-PR38
PR41 PR42 PR49 PR57

PR69 PR70 PR77 PR83 PR89)
(PR10 PR23 PR24

PR27 PR32-PR34 PR43
PR46-PR48 PR50 PR53-PR55
PR58 PR71 PR76 PR80 PR82)
(PR30 PR75 PR88)

(PR1 PR2 PR9 PR26

PR40 PR45 PR59 PR87 PR98)
(PR13-PR15 PR20 PR35-PR38
PR41 PR49 PR57 PR69

PR70 PR77 PR83 PR89)
(PR10 PR23 PR24

PR27 PR32-PR34

PR42 PR43 PR46-PR48
PR50 PR53-PR55

PR58 PR71PR76 PR30 PR82)

775848761 (Subtype B and non-Subtype B)

k-way clustering
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Table 1 Related works (Continued)

Reuman et al. 2010 [8]

Reverse transcriptase

NNRTI

RT90, RT94, RT98,
RT100, RT101, RT102
RT103, RT105, RT106,
RT108, RT138,
RT139,RT178,RT179,
RT181,RT188,
RT190, RT221, RT223,
RT225,RT227,
RT230, RT232,
RT234, RT236,
RT237,RT238,
RT241,RT242,RT318

(RT101,RT181,RT190)
(RT103,RT181,RT190)
(RT108,RT181,RT221)
(RT98,RT181,RT190)

(RT181,RT190,RT221)
(RT103,RT181,RT221)
(RT103,RT108,RT221)
(RT101,RT108,RT181)
(RT101,RT108,RT190)
(RT103,RT108,RT181)
(RT108,RT190,RT221)
(RT98,RT108,RT181)

(RT98,RT101,RT190)

(RT98,RT101,RT181)

(RT101,RT181,RT190)
(RT101,RT181,RT221)
(RT98,RT103,RT108)

(RT101,RT181,RT190)
(RT108,RT181,RT190)
(RT98,RT103,RT181)

13039

(10504 Subtype B,
747 Subtype C,
363 (CRF) O1_AE,
210 Subtype A,
320 CRF 02_AG,
895 others)

Jaccard similarity
coefficient,
Holm'’s correction,

Poissoness plot

Wu et al. 2003 [10]

Protease

PR1 to PR99

(PR10 PR63
PR71 PR73 PR90)
(PR10 PR63
PR71 PR90 PR93)
(PR10 PR62
PR63 PR90 PRI3)
(PR10 PR62
PR63 PR73 PR90)
(PR10 PR20
PR71 PR73 PR90)
(PR10 PR20
PR62 PR73 PR90)

2244 (Subtype B)

binomial correlation

coefficients, pca
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Table 1 Related works (Continued)

(PR10 PR46

PR71 PR90 PR93)

(PR10 (PR30)

PR73 PR84 PR90)

(PR10 (PR30)

PR46 PR84 PR90)

(PR10 PR71 PR73 PR84 PR90)
(PR10 PR46 PR71 PR84 PR90)
(PR10 PR24 PR46

PR10 PR46 PR90)

(PR10 (PR30)

PR46 PR54 PR82)

(PR10 PR48 PR54 PR82)
(PR10 PR24

PR46 PR54 PR82)

(PR32 PR46 PR82)

(PR10 PR46 PR53

PR54 PR71 PR82)

(PR30 (PR82) PR88)

(PR13 PR30 PR88)

(PR30 PR75 PR88)

(PR10 PR46

PR63 PR71 PR93)

(PR20 PR36 PR54)

(PR10 PR20 PR54 PR71)
(PR63 (PR64) PR71)
(PR10 PR77 PR93)

(PR20 PR36 PR62)

(PR20 PR35 PR36 (PR77))
(PR15 PR20 PR36 (PR77))
(PR10 PR24 PR89)
(PR10 PR20 PR73)
(PR10 PR73 PR77)

Protease positions are represented by the prefix PR and reverse transcriptase positions by the prefix RT.
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Table 2 Related works

Author Proteins Drugs Protein positions Mutation patterns Number of sequences Method
Rhee et al. 2004 [9] Protease PI, PR24, PR30, PR32, (PR30 ,PR88) (PR46 ,PR90) 2795
and Reverse NRTI, PR46, PR47, PR4S, (PR73 ,PRO0) (27 Subtype C,
transcriptase NNRTI PR50, PR53, PR54, (PR54 ,PR82 ,PR90) 15 Subtype A,
PR73, PR82, PR84, (PR24 PR46 PR54 PR82) 7 Subtype D,
PR88, PR9O (PR73 ,PR84 ,PR90) 2746 Subtype B)

RT41, RT44, RT62,
RT65, RT67, RT69,
RT70,RT74,RT115,
RT116,RT118,RT151,
RT184, RT210,
RT215,RT219

(PR46 ,PR54 ,PR82 ,PRO0)

(PR84 ,PR90) (PR46 ,PR88)
(PR46 ,PR73 ,PR9O0) (PR54 PR82)
(PR46 ,PR84 ,PR9I0)
(PR46 ,PR54 ,PR82 PR90)
(PR46 ,PR73 ,PR84 PR90)

(PR30 ,PR88 ,PRI0)

(PR48 ,PR54 ,PR82),

(PR32 ,PR46 ,PR82 ,PRO0)

(PR24 ,PR46 ,PR54 ,PR82)

(PR53 ,PR54 ,PR82 ,PR90)

(PR24 ,PR46 ,PR82) (PR46 PR82)
(PR46 ,PR90) (PR30 ,PR46 PR38)
(RT41, RT184, RT215)

(RT41, RT184, RT210)
(RT41,RT215)

(RT67, RT70, RT184, RT219)
(RT70, RT184)

(RT41, RT210, RT215)

(RT184, RT215)

(RT41,RT118, RT184)

(RT210, RT215)

(RT41, RT67,RT118, RT210, RT215)
(RT74, RT184)

(RT67, RT70, RT184)

(RT67, RT69, RT70, RT184, RT219)
(RT41, RT67, RT184,
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Table 2 Related works (Continued)

RT210, RT215)
(RT41,RT184)
(RT62, RT184)
(RT41, RT44, RT67,RT118)

(RT184, RT210, RT215)

(RT67, RT70, RT184, RT215, RT219)
(RT67, RT70, RT219)

(RT67,RT70)

(RT41, RT184, RT215)
(RT41,RT118, RT210, RT215)
(RT41, RT67, RT210, RT215)

(RT69, RT70)

(RT41, RT44, RT67,RT118,

RT210, RT215)

RT41, RT74, RT184, RT215, RT69)
RT103 RT181)

RT100 RT103)(RT103 RT108)
RT101 RT190)

RT103 RT225)

RT103 RT181 RT190)

RT103 RT190)
RT181 RT190)
RT103 RT238)(RT101 RT103)
RT108 RT181)
RT101 RT181 RT190)

RT98 RT103)

RT103 RT108 RT181)

RT103 RT188)(RT103 RT230)

Gonzales et al. 2003 [11] Protease
and Reverse

transcriptase

P,
NRTI,
NNRTI

RT41,RT62, RT65,
RT67, RT69, RT70,
RT74,RT75,RT77,
RT115,RT116,RT151,
RT184,RT210,

(RT41,RT184,RT215) 487 Fisher's
(RT41,RT184,RT210,RT215) (Subtype B) exact
(RT67,RT70,RT215,RT219) test,
(RT41,RT67,RT69,RT210,RT215) Benjamini-
(RT41,RT67,RT184,RT210, Hochberg,

SE9L(SLO7) SDUWLOJUIOIG DING D 12 eIRYeZO

€7 jo / abed



Table 2 Related works (Continued)

RT215,and RT219
PR24, PR30, PR32,
PR46, PR47, PR48,
PR50, PR53, PR54,
PR73, PR88, PR82,

RT215,RT219) K-medoids
(RT41,RT67,RTE9,RT70,

RT184,RT215,RT219)

(RT65,RT70,RT75,RT77,RT115,

RT116,RT151,RT184,RT219)

PR84, and PR90O (PR54,PR73,PR84,PRO0)
(PR46,PR84,PR9O0)
(PR24,PR46,PR54,PR82)
(PR46,PR54,PR82,PRI0)
(PR48,PR,54,PR82)
Sing et al. 2005 [6] Reverse NRTI RT41, RT43, RT44, RT62, (RT41, RT210,RT215) 1355 hierarchical
transcriptase RT67, RT69, RT70, (RT67,RT70,RT219) clustering,
RT74,RT75,RT77, Fisher's
RT116, RT118,RT151, exact test
RT203, RT208,
RT210, RT215, RT215,
RT218, RT219,
RT219, RT223,
RT228,RT228
Brehm et al. 2012 [41] Reverse NNRTI (RT184,RT348) 12

transcriptase

(Subtype Q)

Protease positions are represented by the prefix PR and reverse transcriptase positions by the prefix RT.
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Table 3 Related works

Author Proteins Drugs Protein positions Mutation patterns Number of sequences Method
Hoffman et al. 2003 [12] Protease Pl PR10, PR12, PR13, PR14, (PR10,PR93) (PR12,PR19) 1179 Mutual
PR15, PR19, PR20, PR30, (PR35,PR38)(PR63,PR64) (Subtype B) information
PR32, PR35, PR36, PR37, (PR37,PR41)(PR62,PR71)
PR41, PR46, PR48, PR54, (PR71,PR77) (PR71,PR93)
PR57, PR60, PR62, PR63, (PR77,PR93)(PR12,PR19)
PR64, PRE9Y, PR71, PR72, (PR15,PR77)(PR20,PR36)
PR73, PR77, PR82, PR84, (PR30,PR88)(PR35,PR36)
PR88, PR90, PR93 (PR35,PR37)(PR36,PR62)
(PR36,PR77)(PR46,PR82)
(PR46,PR84)(PR48,PR54)
(PR48,PR82)(PR54,PR82)
(PR63,PR64)(PR63,PRI0)
(PR77,PR93)(PR84,PR90)
(PR73,PRO0)
Alteri et al. 2009 [13] Reverse PI, RT41, RT65, RT67, (RT215,RT41,RT210) 213 Binomia
transcriptase NRTI, RT69, RT70, RT74, RT75, (RT60,RT103) (Subtype B) correlation
NNRTI RT77,RT100, RT101, coefficient,
RT103, RT106, RT115, Benjamini-
RT116,RT151,RT181, Hochberg
RT184,RT188, RT190, method
RT210, RT215,RT219,
RT225, RT230, RT236,
Doherty et al. 2011 [14] Protease PI PR10, PR24, PR30, (PR10,PR32,PR33, 398 Optimal
PR32, PR33, PR43, PR46,PR47,PR54, integer

PR46, PR47, PR48,
PR50, PR53, PR54,
PR71, PR73, PR74,
PR76, PR82, PR83,
PR84, PR88, PR90O

PR71,PR73,PR84,PRO0)
(PR10,PR33,PR43,PR46,
PR54,PR71,PR82,PR84,PRO0)
(PR10,PR24,PR46,
PR54,PR71,PR74,PR82)
(PR32,PR33,PR46,PRS3,
PR54,PR71,PR84,PRO0)
(PR10,PR30,PR32,PR33,PRAS6,
PR54,PR71,PR84,PR88,PRO0)
(PR10,PR33,PR43,PR46,PRAS,

programming-
based

clustering

SE9L(SLO7) SDUWLOJUIOIG DING D 12 eIRYeZO

€7 J0 6 abeq



Table 3 Related works (Continued)

PR50,PR54,PR71,PRS2)
(PR10,PR32,PR46,
PR71,PRS2,PRS4)
(PR10,PR46,PR54,PR82,PRIO)
(PR10,PR48,PR54,PR71,
PR73,PR76,PR84,PRI0)
(PR10,PR24,PR32,PR33, PR43,
PR46,PR54,PR71,PR82,PR84)
(PR10,PR24,PR30,
PR33,PR43,PR53,PR8S)
(PR10,PR43,PR47,PR48,
PR53,PR54,PR71,PR82,PR84)
(PR10,PR32,PR46,
PR47,PR71,PR82,PRI0)
(PR10,PR33,PR54,
PR73,PR84,PRO0)
(PR10,PR46,PR71,PR84,PRI0)
(PR10,PR54,PR71,
PR73,PR82,PRO0)
(PR10,PR32,PR33,
PR47,PR71,PR82,PR0)
(PR10,PR46,PR54,
PR71,PR82,PRO0)
(PR10,PR24,PR33,PR46,
PR54,PR71,PRS2)
(PR10,PR48,PR54,PR82,PRI0)
(PR10,PR32,PR43,
PR46,PR47,PRS2)
(PR10,PR54,PR71,PR82)
(PR10,PR46,PRA7,
PR71,PR88,PROO)
(PR10,PR33,PR43,PR46,
PR50,PR54,PR71,
PR73,PR82,PRO0)
(PR10,PR33,PR46,
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Table 3 Related works (Continued)

PR54,PR71,PR88,PR0)
(PR10,PR46,PR71,
PR74,PR88,PR90)
(PR10,PR54,PR74,PR76,PR82)
(PR73,PR90)
(PR10,PR46,PR9O0)
(PR10,PR71,PR90)
(PR10,PR46,PR71)
(PR10,PR24,PR46,PR54,PR82)

Heider et al. 2013 [15] Reverse
transcriptase

NRTI RT1 to RT240

(RT41,RT70, 600
RT210,RT215) (Subtype B)
(RT41,RT65,RT67,

RT70,RT210,RT215,RT219)

(RT65,RT74,RT115)

(RT151,RT62,RT69,

RT75RT77,RT116)

Multilabel
classification

Yahi et al. 1999 [16] Protease
and
Reverse

transcriptase

PI, PR63, PR77,PR71,

NRTI, PR10, PR93, PR 36

NNRTI PR82, PR46, PR20,
PR90 and PR54
RT215, RT41, RT67,
RT69, RT70, RT184,
RT210 and RT219

PR10,PR46) (PR46,PR71) 287

PR46,PR90) (PR71,PR82)

PR10,PR82) (PR54,PR82)

PR82,PR90) (PR71,PRI0)

PR10,PR90) (PR46,PRI0)

PR54,PR90) (PR77,PRI0)

PR82,PR90)

RT41,RT210) (RT67,RT70)

RT69,RT70) (RT70,RT219)

RT41,RT210) (RT184,RT210)

RT210,RT215) (RT70,RT219)
) (

RT67,RT219) (RT69,RT219)

)
(

Chi-square
or Kendall
and
Fisher's
two-tailed

Melikian et al. 2013 [28] Reverse
transcriptase

NNRTI

(RT101,RT103,RT106, 1752
RT181,RT188,RT190) (1681
(RT100,RT101,RT103, Subtype B)
RT106,RT188,RT190)

(RT101,RT181,RT190,RT227)

(RT100,RT101,RT18T,

RT190,RT227)

Least
angle
regression
(LARS)

Protease positions are represented by the prefix PR and reverse transcriptase positions by the prefix RT.
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Table 4 Protease and reverse transcriptase amino acid positions considered in the present study

Protein Position Protein Position

1 Reverse transcriptase 41 Protease 8

2 Reverse transcriptase 44 Protease 10
3 Reverse transcriptase 50 Protease 1
4 Reverse transcriptase 65 Protease 13
5 Reverse transcriptase 67 Protease 15
6 Reverse transcriptase 69 Protease 16
7 Reverse transcriptase 70 Protease 20
8 Reverse transcriptase 74 Protease 24
9 Reverse transcriptase 75 Protease 30
10 Reverse transcriptase 77 Protease 32
1 Reverse transcriptase 98 Protease 33
12 Reverse transcriptase 100 Protease 34
13 Reverse transcriptase 101 Protease 35
14 Reverse transcriptase 103 Protease 36
15 Reverse transcriptase 106 Protease 41
16 Reverse transcriptase 108 Protease 43
17 Reverse transcriptase 115 Protease 45
18 Reverse transcriptase 116 Protease 46
19 Reverse transcriptase 118 Protease 47
20 Reverse transcriptase 151 Protease 48
21 Reverse transcriptase 157 Protease 50
22 Reverse transcriptase 179 Protease 53
23 Reverse transcriptase 180 Protease 54
24 Reverse transcriptase 181 Protease 57
25 Reverse transcriptase 184 Protease 58
26 Reverse transcriptase 188 Protease 60
27 Reverse transcriptase 190 Protease 62
28 Reverse transcriptase 208 Protease 63
29 Reverse transcriptase 210 Protease 67
30 Reverse transcriptase 211 Protease 69
31 Reverse transcriptase 214 Protease 70
32 Reverse transcriptase 215 Protease 71
33 Reverse transcriptase 219 Protease 73
34 Reverse transcriptase 225 Protease 74
35 Reverse transcriptase 227 Protease 76
36 Reverse transcriptase 230 Protease 77
37 Reverse transcriptase 236 Protease 82
38 Reverse transcriptase 333 Protease 83
39 Protease 84
40 Protease 85
41 Protease 88
42 Protease 89
43 Protease 90

44 Protease 93




Ozahata et al. BMC Bioinformatics (2015) 16:35

which has been turned into rules in which the occur-
rences of mutations, or combinations of mutations, are
correlated with drug resistance. In addition to look-up
tables, some rule-based systems [3,4] have created scor-
ing systems to calculate the likelihood of therapy failure,
which are also based on published data. Look-up tables
and rule-based systems are efforts to correlate the set
of known mutations with the potential for drug resis-
tance. Both represent current knowledge concerning the
relationships between virus genotype and drug resistance
and its application. Look-up tables and rule-based sys-
tems group mutations into clusters of mutations, thereby
predicting the possible result of drug treatment.

Clustering

Similar to the classifications retrieved from look-up tables
and rule-based systems, pattern recognition methods are
designed to extract information from data to classify
them. In cases where little prior information is available
and the decision-maker must make as few assumptions as
possible about the data, the clustering technique is useful
[27].

By applying clustering algorithms to reverse tran-
scriptase and protease sequences, clusters containing
sequences that are similar to each other are obtained.
The clusters may contain sequences with similar drug
response patterns. Applying clustering algorithms, and
comparing the clusters with the classifications from look-
up tables will achieve a better understanding of the rela-
tionship between genotype and phenotype.

In addition to providing comparisons with look-up
tables, clusters also allow hypothesizes regarding the
occurrences of mutations to be formed. Therefore, such
analysis can show which mutations have higher proba-
bility of occurring together and those that may influence
each other.

One of the best-known algorithms for clustering is K-
means, which is popular because the time complexity is
O(n), where n is the number of patterns [27]. The time
complexity makes this a good choice when dealing with a
large volume of data, which was the case here.

Methods

Pipeline

Figure 1 summarizes the methodology used in this work to
analyze the protease and reverse transcriptase sequences.
First, HIV genomic sequences from patients from 27
Brazilian states were extracted from the national database
and binarized according to the presence or absence of
mutations. The sequences were clustered and an image
was created to represent the clusters. The clusters were
characterized given the occurrence of mutations and
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compared with the prediction of drug resistance from the
Brazilian look-up table.

The scripts created for data clustering (step 3) and clus-
ter representation (steps 4 and 5) are available at http://
www.ime.usp.br/~mcintho/.

Sequence representation

In the present study, 10,229 reverse transcriptase and pro-
tease sequences from HIV subtype B, 801 from subtype F
and 424 from subtype C, were obtained from the national
database. These samples were taken in accordance with
the ethics standards of the Ethics Committee of the Fed-
eral University of Sdo Paulo and with the Helsinki Decla-
ration of 1975, revised in 1983. All biological samples were
obtained in full accordance with signed informed con-
sent forms (process number in research ethics committee
1433/09).

The Brazilian Guidelines for Resistance Testing allowed
only one genotype testing for each patient at the time the
sequences were generated; therefore, duplication of the
sequences from the same patient was not expected.

To simplify the representation and comparison of
the reverse transcriptase andprotease sequences, bitmap
mapping was used. In this technique, if a sequence
hadthe same amino acid as the wild-type sequence, it was
replaced with the value zeroand when the sequence had
a different amino acid, it was replaced by the valuel, as
previously described (Reuman et al. [8] and Melikian et al.
[28]). Thus, the sequences could be interpreted as binary
vectors in and 99 dimensional spaces (amino acids from
reverse transcriptase and 99 from protease).

When working with patterns of high dimensionality,
the “curse of high dimensionality” must be avoided. The
“curse of high dimensionality” makes all distances look
alike in high dimensional spaces [29] and makes it difficult
to evaluate similarity. One way to avoid it is to decrease
the dimensionality of the data.

To escape the “curse of high dimensionality’; 38 posi-
tions from reverse transcriptase and 44 positions from
protease 4 known to be related to drug resistance were
analyzed [2,25].

K-means

In an attempt to classify reverse transcriptase and pro-
tease sequences using a pattern recognition algorithm,
we applied K-means from the R Project for Statistical
Computing [30] to the 10,229 sequences. Sequences were
divided according to HIV subtype and genomic region.
Thus, K-means was used to search for clusters in the pro-
tease and reverse transcriptase sequences from subtypes
B, C and F, separately. The algorithm was repeated 10
times for each of the datasets, with random centroids.
The value of k, i.e. the number of clusters to be retrieved,
ranged from 2 to 16.


http://www.ime.usp.br/~mcintho/
http://www.ime.usp.br/~mcintho/
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Cluster characterization

One problem that arose from generating the clusters was
how to view and interpret them in the domain of HIV
mutations, which was caused by the large number of
sequences and amino acid positions used in our analy-
sis. Images can be used to solve this problem because
they provide an intuitive information visualization tool
to support and validate the results, and to formulate and
test hypotheses. When the research entails data-intensive
analysis, the use of images becomes even more impor-
tant, because the volume of data makes it difficult to
manipulate and visualize the data directly. Thus, images
can help in the analysis process and can summarize the
data and results.

Therefore, to analyze the clusters, observe whether
they followed any mutation patterns and to determine
what these patterns might be, images of the clusters
were created inspired by microarray data visualization.
Binary images (i.e. black and white) represented the binary
sequences featured as rows and the amino acid positions
as columns: 44 columns for protease and 38 columns
for reverse transcriptase. The sequences were grouped
according to clusters and separated by blue lines. When
a sequence had the value of 1 in an amino acid position,
it would be represented by a black pixel, and when it had
a value of 0, it would be represented by a white pixel. Six
images were created for each value of k, combining the
proteins and subtypes.

The black and white pixels were useful for distinguish-
ing the clusters, accentuating differences among them and
describing them, as well as for summarizing the informa-
tion within the sequences and clusters. They also helped
to view the amino acid positions that represented and
characterized the clusters.

To provide more details about the clusters, histograms
were plotted for each cluster, for protease and reverse
transcriptase, showing the percentage of sequences in the
cluster with mutations in each position. Each bar in
the histogram represented an amino acid position and
the percentage of sequences in the cluster with a mutation
at that position.

To compare the clusters with the look-up table used
to interpret the genotypic resistance from the Brazilian
algorithm for resistance interpretation, another image was
generated. The HIVDAG software [31] was used to cre-
ate this other image. HIVDAG interprets the rules in the
Brazilian look-up table in the context of the sequences
and produces a prediction regarding antiretroviral resis-
tance. The software classifies the sequences as resistant
(R), intermediate resistant (I) and susceptible (S).

To represent the three possible results, red, yellow and
green were used for resistance, intermediate resistance
and susceptibility, respectively. Thus, as in the binary
figure, the rows featured the protein sequences and the
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columns were the predictions for drug resistance given by
the look-up table for that sequence.

In these colored images, vertical lines presenting a dom-
inant color in each cluster indicated that the sequences
in that cluster have the same drug resistance prediction.
Clusters that showed red, yellow or green vertical lines
in different positions indicated that there was some cor-
respondence between the prediction of the look-up table
and the K-means clusters.

Results and discussion

For distinct k values, the sequences were distributed in
different clusters; black and white images were created
for each combination of subtype, k value and protein.
Figures 2 and 3 represent the clusters for subtype B, where
k = 6 for protease and reverse transcriptase, respectively.
The value of k=6 was chosen because it represents bet-
ter the current knowledge of mutation occurrence and
mutation relationships. For k = 6, both TAM groups and
the mutation profile comprising substitutions on protease
codons 30 and 88 are represented. Nonetheless, as k val-
ues progressed, the clusters were first divided into groups
of sequences with many mutations and with few or no
mutations. For each increase in the k value, the group with
many mutations was repeatedly split, although stability
and consistency were maintained.

K-medoids have been used in a previous study [14]
for clustering a smaller number of subtype B sequences.
In order to evaluate this alternative clustering method,
it has been applied to the dataset here described. The
K-medoids implementation available at [32] has been
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Cluster 6.6 1366
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Cluster 6.5
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Figure 2 Black and white figure of kmeans clusters for subtype B
sequences of the HIV protease. The figure displays the different
mutation patterns characterizing each subtype B protease cluster.
The columns in the figure represent the amino acid positions
selected to the clustering and the rows, the protein sequences. Blue
lines delimit the six classes, the black pixels represent mutations and
the white pixels the absence of mutations. The number identifying
each cluster is on the left and the number of the sequences in the
cluster on the right.
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Cluster 6.5 = 1639
Figure 3 Black and white figure of kmeans clusters for subtype B sequences of the HIV reverse transcriptase. The figure displays the
different mutation patterns characterizing each subtype B reverse transcriptase cluster. The columns in the figure represent the amino acid
positions selected for clustering and the rows represent the protein sequences. Blue lines delimit the six classes, the black pixels represent
mutations and the white pixels represent the absence of mutations. The number identifying each cluster is on the left and the number of the
sequences in the cluster on the right.
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Figure 4 Black and white figure of k-medoids clusters for subtype B sequences of the HIV protease. The figure displays the different mutation
patterns characterizing each subtype B protease cluster. The columns in the figure represent the amino acid positions selected to the clustering and
the rows, the protein sequences. Blue lines delimit the six classes, the black pixels represent mutations and the white pixels the absence of mutations.
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mutations and the white pixels represent the absence of mutations.
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Figure 5 Black and white figure of k-medoids clusters for subtype B sequences of the HIV reverse transcriptase. The figure displays the
different mutation patterns characterizing each subtype B reverse transcriptase cluster. The columns in the figure represent the amino acid
positions selected for clustering and the rows represent the protein sequences. Blue lines delimit the six classes, the black pixels represent

adopted and Figures 4 and 5 shows the clustering results.
As it can be seen, the results are similar to those shown
in Figures 2 and 3, except for clusters B6.4, B6.5 and B6.1
from protease and clusters B6.2 and B6.5 from reverse
transcriptase.They contain sequences that are predicted
to be susceptible to most of the drugs and do not rep-
resent patterns of mutations. This difference is probably
because although both algorithms are related, k-medoids
represents clusters by the median of cluster points, instead
of the mean [33]. But, except for these differences, both
methods lead to similar results, which corrobotate our
findings.

To characterize the clusters, the histograms shown in
Figures 6 and 7 for subtype B and k = 6, for protease
and reverse transcriptase, respectively, were produced.
These histograms display the percentage occurrence of
mutations at each amino acid position for each clus-
ter. The mutations that had higher percentages defined
the clusters and determined which cluster the sequences
belonged to. Those that had high frequencies in one
cluster and low frequencies in the others enabled differ-
entiation between the sequences and between the clus-
ters. Additionally, the positions with higher frequencies of

mutations in a cluster were those that occurred together
more frequently, and their occurrences were considered as
related.

To compare the clusters with the predictions of drug
resistance given by the rules in the Brazilian look-up table,
colored images were created. The images from the pro-
tease clusters (see Figure 8 at k = 6) showed division of the
sequences into groups that were sensitive to the majority
of the drugs and other groups that were resistant to the
majority of the drugs. However, the reverse transcriptase
clusters showed different combinations of predictions for
different clusters, with similar predictions for sequences
in the same cluster and different predictions for sequences
in different clusters (see Figure 9).

As seen in Figures 2 and 3, the clusters had dif-
ferent mutation profiles for the two proteins. K-means
successfully distinguished the sequences and grouped
them according to the different mutations, indicating that
it is possible to obtain a classification for HIV protein
sequences using clustering algorithms, according to the
occurrences of the mutations.

The different occurrence patterns for the mutations are
emphasized in Figures 6 and 7, which show the distinct
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Figure 6 Histogram showing the frequency of mutations in the protease kmeans clusters
mutations for each selected amino acid position in protease for each of the six clusters in subtype B at k = 6. Each histogram represents one cluster
found by K-means for k = 6 in the protease sequences. Each bar in the histogram represents a protein position and the percentage of sequences in
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Figure 7 Histogram showing the frequency of mutations in reverse transcriptase kmeans clusters. Histograms containing the frequencies of
mutations for each selected amino acid position in the reverse transcriptase for each of the six clusters in subtype B at k = 6. Each histogram
represents one cluster found by K-means for k = 6 in the reverse transcriptase sequences. Each bar in the histogram represents a protein position
and the percentage of sequences in the cluster that contain a mutation at that position.
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Figure 8 Colored figure of the kmeans clusters for subtype B
sequences of the HIV protease. The figure displays the predictions
of drug resistance from the Brazilian look-up table for each cluster.
The columns in the colored figure represent the nine drugs selected
(ATV/R, DRV/R, FPV/R, IDV/R, LPV/R, SQV/R and TPV/R, in that order)
and the rows represent the protein sequences. Black lines delimit the
classes. The number identifying each cluster is on the left and the
number of the sequences in the cluster on the right.
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Figure 9 Colored figure of the kmeans clusters for subtype B
sequences of the HIV reverse transcriptase. The columns in the
colored figure represent the nine drugs selected (3TC, ABC, AZT, d4T,
ddl, TDF, EFV, ETV and NVP, in that order) and the rows represent the
protein sequences. Black lines delimit the classes. The number
identifying each cluster is on the left and the number of the
sequences in the cluster is on the right.

Cluster 6.5

percentages of mutations present at each protein position
and at each cluster for subtype B. Some positions are
important for the characterization and description of the
clusters, such as positions 10, 82 and 90 of the protease,
and 67, 70 and 219 of the reverse transcriptase.

Additionally, K-means was able to produce clusters that
correlated with different predictions of drug resistance,
especially for the reverse transcriptase (see Figure 9). The
figures show that although clusters were found for both
proteins, reverse transcriptase clusters display more pat-
terns of prediction of drug resistance. As protease gene
variation is higher than for reverse transcriptase gene in
non-treated patients, the pathways for a strain to become
resistance are more limited in reverse transcriptase as
compared to the protease. Therefore, we believe that the
constrains for variation in the reverse transcriptase gene
facilitate the detection of the clusters.

The results for subtypes C and F are summarized in
Tables 5 and 6. Tables 5 and 6 also attempt to sum-
marize the clusters and depict the essential information
that is necessary to understand and compare them. In
these tables, the amino acid positions of the proteins
are presented for positions where more than 50% of the
sequences in the cluster had mutations.

Tables 5 and 6 show that for the different subtypes, the
mutations that characterized some clusters were similar.
The clusters from sequences of subtypes B, C and F were
similar in terms of the positions in each cluster that had
higher frequencies of mutations, excluding positions that
occurred more frequently in a given subtype in this data
set. For example, positions 15, 20, 36, 41, 69, 89 and 93
for subtype C in the protease; positions 15, 35, 36, 41 and
89 for subtype F in the protease; and position 211 for sub-
types C and F in the reverse transcriptase. Moreover, the
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Table 5 Reverse transcriptase amino acid positions with mutations in at least 50% of the sequences by kmeans cluster

Reverse transcriptase positions

Cluster Size 41 67 69 70 103 184 210 211 214 215 219
Cluster B6.1 2010 X X X X

Cluster B6.2 2195 X X

Cluster B6.3 823 X X X X X
Cluster B6.4 1570 X X X X X X
Cluster B6.5 1639 X

Cluster B6.6 1992 X X X X X X X

Cluster C6.1 89 X X

Cluster C6.2 60 X X X X X X

Cluster C6.3 37 X X X X X X X X X X
Cluster C6.4 106 X X X X

Cluster C6.5 53 X X X X X X X X
Cluster C6.6 59 X X X X X X
Cluster F6.1 159 X X X X X

Cluster F6.2 164 X X

Cluster F6.3 99 X X X X X X X

Cluster F6.4 54 X X

Cluster F6.5 162 X X X X X X X
Cluster F6.6 94 X X X X

Table 6 Protease amino acid positions with mutations in at least 50% of the sequences by kmeans cluster

Protease positions

Cluster Size 0 13 15 20 30 35 36 41 46 54 62 63 71 82 8 8 90 93
Cluster B6.1 2425 X

Cluster B6.2 1952 X X X X X X X X X X X
Cluster B6.3 1071 X X X X X X X

Cluster B6.4 1752 X X

Cluster B6.5 1663 X

Cluster B6.6 1366 X X X X X X X
Cluster C6.1 53 X X X X X X X X
Cluster C6.2 138 X X X X
Cluster C6.3 114 X X X X
ClusterC64 31 X X X X X X X X X

Cluster C6.5 52 X X X X X X X X X X X
Cluster C6.6 16 X X X X X X X
Cluster F6.1 89 X X X X X X X X X

Cluster F6.2 70 X X X X X X X X X
Cluster F6.3 81 X X X X X X X X X X X X
Cluster F6.4 247 X X X X X

Cluster F6.5 98 X X X X X X X X X X X

Cluster F6.6 147 X X X X
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datasets for subtypes C and F were much smaller than the
dataset for subtype B and thus might not represent all the
variability in the subtypes. Subtype C was more different
compared with subtypes B and F; however, there was still
correspondence among the codons defining the clusters.

Correspondence among the clusters could be observed;
for example, in protease clusters B6.2, C6.5 and F6.3,
which had high percentages of sequences with mutations
in positions 10, 54, 82 and 90 (as described in [10,16])
and clusters B6.3, C6.4 and F6.1 in positions 30 and 88 (as
described in [7,9-12,23]). Reverse transcriptase clusters
B6.3, B6.4, C6.5, C6.6 and F6.5 also showed correspon-
dence and had high percentages of sequences with muta-
tions in positions 67, 70 and 219 (as described in [6,9,25])
and clusters B6.6, C6.3 and F6.3 in positions 41, 67 and 210
(as described in [16]). Clusters B6.1, B6.4, B6.5, C6.2, C6.3,
F6.4 and F6.6 from the protease and B6.2, B6.5, C6.1, C6.4,
F6.2, F6.4 and F6.6 from the reverse transcriptase con-
tained sequences with few mutations, and are probably
susceptible to drugs.

Thus, the clusters suggested that mutations in codons
10, 54, 82 and 90, or in codons 30 and 88, in the pro-
tease are related and frequently occur together. In addi-
tion, mutations in codons 67, 70 and 219, or in codons
41, 67 and 210 in the reverse transcriptase frequently
occur together. These patterns were also reported in
previous studies [6,7,9-12,16,23,25] and will be impor-
tant when investigating the genotype and phenotype
(drug resistance) relationships and in designing new
drugs.

Conclusion

In this work, a new approach to analyzing HIV mutation
data was presented. Current classification schemes are
based on rule-based systems and look-up tables that com-
prise data from scientific studies. The proposed frame-
work is based on a bitmap representation that extracts
information from protease and reverse transcriptase
sequences and provides information on the interactions
among mutations.

A new visualization scheme inspired by microarray data
analysis was proposed to better understand the clusters
in the HIV domains. The images produced were useful
for viewing and comparing the clusters with binary vec-
tors and large volumes of data. In our study, the black
and white figures indicated the occurrence and absence of
mutations in sequences in each cluster, respectively, thus
highlighting the differences between the clusters.

To represent the genetic variability of the virus in a
different way from previous works, a large number of
sequences and protein positions were used, along with
three different HIV-1 subtypes. In the analysis, sequences
were clustered, and the clusters were characterized
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according to the mutation patterns that they represented.
The clusters were compared with those clusters revealed
by previously published studies, and with the current
knowledge of mutation patterns.

Along with the large number of sequences and pro-
tein positions, the application of a binary representation
for the sequences helped to define a simple measure of
similarity. The choice of K-means as the algorithm for
mutation pattern searching rendered the method suitable
for larger data sets because of its time complexity. The
use of the binary image also allowed the analysis of large
data sets, as the information in the data is visualized more
easily, as is the characterization of the clusters and the
mutation patterns.

K-means obtained clusters with similar sequences rep-
resenting different mutation profiles, and the clusters
showed that some mutations frequently occur together,
which are important for defining the clusters and that are
present in a large number of the sequences. These posi-
tions need to be taken into consideration when inferring
drug resistance, because they affect a large number of
patients.

Some interesting insights came from this clustering
result. Notably, mutations in protease codons only pro-
duced clusters among non-B strains. Furthermore, as
described previously, mutations at codons 89 and 90 in
the protease do not cluster together [34], suggesting that
methionine at positions 89 and 90 result in a protein struc-
ture that is not stable. Mutations at codons 30 and 90 may
be selected by the protease inhibitor nelfinavir, but again,
these two pairs of mutations do not appear together. It
makes biological sense that once you have a replacement
such as D30N, you will need a mutation N88D, because
these two amino acids interact with each other in the pro-
tease protein [35]. However, it has been suggested that
the pathway for resistance to nelfinavir will preferentially
select the F30N complex among subtype B and exclusively
the L90M complex among non-B subtypes [36]. However,
we observed the D30N complex among clusters for sub-
types B and F (Table 6). It is also interesting that major
protease inhibitor mutations, such as in codons 46, 82 and
90, frequently form clusters (Table 6).

Pathways for resistance mutations are the pathways
that viruses select for resistance mutations and this is
closely related to cross-resistance. TAM 1 and TAM 2 are
well-defined distinct pathways for resistance, but we spec-
ulate that these are merely initiating pathways because
we observed clusters for the reverse transcriptase with
between three and six TAMs, thus augmenting levels of
resistance and cross resistance (Table 5). Interestingly,
all clusters with resistance mutations show the 3TC-
related mutation at codon 184 in the reverse transcriptase.
When there is an antiretroviral treatment failure using
non-nucleoside reverse transcriptase analogs, mutation at
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codon 103 will emerge in more than 50% of cases and 50%
of these viruses will also harbor the mutation at codon
184 [37]. However, all clusters harboring 103 mutations
will also be accompanied of 184 mutations, suggesting that
real life virological failure is somehow different.

One interesting outcome from this cluster representa-
tion is their alleged relationships with previous exposure
to specific antiretrovirals. In this sense, timing or the
number of drug exposures, as well as the use of spe-
cific drugs, would suggest a specific selection of a cluster
of mutations and imply possible resistance/cross resis-
tance. The negative predictive value of a genotype result
is low, meaning that the absence of a specific mutation or
group of mutations does not mean that this mutation is
not present in a minority population and is not present
because of the selective pressure of current antiretrovirals
being used. Therefore, the history of antiretroviral expo-
sure and the projected profile of mutations can result in a
more reliable future salvage therapy regimen.

Furthermore, protease inhibitors are designed accord-
ing to the structure of the proteins; therefore, the clusters
may help in designing future drugs for resistant strains.

In addition to antiretroviral resistance, understanding
the mutation patterns is also useful in collaborative efforts
to study of immune escape pathways and vaccine research.
However, the HIV mutation patterns can confound the
determination of the immune escape mechanisms [38]
that are relevant to the vaccine research [39].

Our future work will include further validation of the
clusters in the HIV domains and updating the current
knowledge concerning mutations. We will also evaluate a
recent approach to pattern recognition known as biclus-
tering [40,41] for the protease and reverse transcriptase
sequences. Biclustering algorithms seem to fit our pur-
poses because they search for submatrices in the data
matrix, following a determined pattern, and have been
applied to large data sets, such as microarray data.
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