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Abstract: We present results for the renormalization constants of bilinear quark operators

obtained by using the tree-level Symanzik improved gauge action and the Nf = 2 twisted

mass fermion action at maximal twist, which guarantees automatic O(a)-improvement.

Our results are also relevant for the corresponding standard (un-twisted) Wilson fermionic

action since the two actions only differ, in the massless limit, by a chiral rotation of the

quark fields. The scale-independent renormalization constants ZV , ZA and the ratio ZP /ZS

have been computed using the RI-MOM approach, as well as other alternative methods. For

ZA and ZP /ZS , the latter are based on both standard twisted mass and Osterwalder-Seiler

fermions, while for ZV a Ward Identity has been used. The quark field renormalization

constant Zq and the scale dependent renormalization constants ZS , ZP and ZT are de-

termined in the RI-MOM scheme. Leading discretization effects of O(g2a2), evaluated in

one-loop perturbation theory, are explicitly subtracted from the RI-MOM estimates.
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1 Introduction

Non-perturbative renormalization is an essential ingredient of lattice QCD calculations

which aim at a percent level accuracy. In this paper, we present calculation methods and

results for the renormalization constants (RCs) of bilinear quark operators for the lattice

action used by the ETM Collaboration. The simulations with Nf = 2 dynamical flavours

employ the tree-level Symanzik improved gauge action and the twisted mass fermionic

action at maximal twist. In the chiral limit, the latter is related to the standard Wilson

fermionic action by a chiral transformation, under which quark composite operators behave

in a definite and simple way. Therefore the RCs we compute here can be also employed to

renormalize bilinear quark operator matrix elements computed with the same glue action

but standard (un-twisted) Wilson quarks.
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For the computation of the bilinear operator RCs we have used the RI-MOM

method [1]. For the calculation of the scale independent RCs, ZV , ZA and the ratio ZP /ZS ,

a set of alternative methods have also been used. In particular, we have determined ZV

by imposing the validity of the axial Ward identity whereas for ZA and ZP /ZS we have

employed a new method which makes a combined use of standard twisted mass (tm) and

Osterwalder-Seiler (OS) formalism. A comparison of the results obtained with different

approaches provides an estimate of the size of the systematic errors affecting the calcula-

tion of the RCs at fixed lattice bare coupling. Needless to say, in renormalized quantities

the discretization errors coming from both RCs and bare quantities will be removed by

continuum extrapolation, as illustrated with an example in section 3.3.

Throughout the paper we follow the standard practice of labelling the RCs according

to the notation adopted in the un-twisted Wilson case. Thus, for instance, ZV and ZA

denote the RCs of the local vector and axial-vector currents of the standard Wilson action

even though, in the maximal twist case, they renormalize in the physical basis the local

(charged) axial-vector and polar-vector currents respectively. We refer to table 1 for the

explicit presentation of the renormalization pattern.

We have computed the RCs at three values of the gauge coupling, namely β = 3.80,

3.90 and 4.05, which correspond to inverse lattice spacing a−1 ≃ 2.0, 2.3 and 2.9 GeV.

Preliminary results of this work have been presented in ref. [2]. Further details concerning

the ETMC simulations can be found in refs. [3]–[6].

The paper’s contents are the following. In section 2 we present the novel approach of

computing the scale independent RCs ZA and ZP /ZS and the Ward identity determination

of ZV . In section 3 we discuss the RI-MOM approach applied to tm quarks and provide

the details of the numerical analysis. A collection of our final results for the RCs can

be found in tables 4, 5 and 6. In tables 4 and 5 the predictions of one loop boosted

perturbation theory [7, 8] for the various RCs are also given. Finally in the appendix

we present the proof of the automatic O(a)-improvement of the RI-MOM RCs calculated

with maximally twisted quarks.

An RI-MOM calculation of the RCs of bilinear quark operators similar to the one de-

scribed in the present paper but for the standard Wilson’s plaquette gauge action and non-

perturbatively improved Wilson (clover) fermions has been recently presented in ref. [9].

2 A novel approach to the calculation of the scale independent RCs

In this section we present a calculation of the scale independent RCs, namely ZV , ZA and

ZP /ZS . The evaluation of ZV is based on the PCAC Ward identity, which in the quenched

approximation has led to very precise results (see e.g. refs. [10, 11]). On the other hand,

ZA and ZP /ZS are computed from two-point correlators only with a new method, which

is based on the simultaneous use of two regularizations of the valence quark action. One

is the standard tm action at maximal twist, while the other is the OS variant [12, 13]. In

the so called physical basis these actions can be written in the form:

Sval = a4
∑

x

∑

q=u,d

q̄(x)
(

γ∇̃ − iγ5 rq Wcr + µq

)

q(x) , (2.1)
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OS case tm case

(AR)µ,ud = ZAAµ,ud = ZAA
′

µ,ud (AR)µ,ud = ZV Aµ,ud = −iZV V
′

µ,ud

(VR)µ,ud = ZV Vµ,ud = ZV V
′

µ,ud (VR)µ,ud = ZAVµ,ud = −iZAA
′

µ,ud

(PR)ud = ZSPud = iZSS
′

ud (PR)ud = ZP Pud = ZP P
′

ud

(TR)µν,ud = ZT Tµν,ud = iZT T̃
′

µν,ud (TR)µν,ud = ZT Tµν,ud = ZT T
′

µν,ud

Table 1. Renormalization pattern of the bilinear quark operators for the OS and tm case at

maximal twist. The unprimed operators refer to the physical basis while the primed ones to the

twisted basis. The symbols Pud and T̃µν,ud indicate the operators ūγ5d and ūσµνγ5d.

with Wcr = −a
2

∑

µ ∇
∗
µ∇µ + Mcr. The Wilson parameters are ru = −rd = 1 for the

standard tm case and ru = rd = 1 for OS quarks. In the sea sector we have two degenerate

quarks, regularized in the standard tm framework.

Let us illustrate the general idea of the calculation of the scale independent RCs, ZA

and ZP /ZS . It is based on the observation that the axial transformations of the quark

fields from the physical basis to the so called twisted basis (primed fields),

q = exp (iγ5rqπ/4) q′ and q̄ = q̄′ exp (iγ5rqπ/4) , (2.2)

transform the tm and OS actions of eq. (2.1) into an action with the Wilson term in the

standard form (i.e. having no γ5 and ru = rd = 1) and a mass term which takes the form
(

iµuū′γ5u
′ − iµdd̄

′γ5d
′
)

in the tm case and
(

iµuū′γ5u
′ + iµdd̄

′γ5d
′
)

in the OS case. This

also implies, in turn, that the RCs for the operators in the twisted basis, being defined in

the chiral limit, are the same for the Wilson, tm and OS cases. Consider, now, a non-singlet

quark bilinear operator, OΓ = ūΓd, defined in terms of the fields of the physical basis.

Under the axial transformations of eq. (2.2) this operator transforms into an operator in

the twisted basis, denoted as OΓ̃ and OΓ̂ for the tm and OS case respectively. In general,

the two operators are not of the same form. However their renormalized matrix elements

between given physical states, say ZO
Γ̃
〈α|OΓ̃|β〉

tm and ZO
Γ̂
〈α|OΓ̂|β〉

OS are estimates of

the same physical matrix element 〈α|(OΓ)R|β〉 up to O(a2) errors:

〈α|(OΓ)R|β〉 = ZO
Γ̃
〈α|OΓ̃|β〉

tm + O(a2) = ZO
Γ̂
〈α|OΓ̂|β〉

OS + O(a2) . (2.3)

RCs are named, as anticipated, after the twisted basis, in which the Wilson term has its

standard form. The operator renormalization pattern in the physical and twisted bases is

given in table 1 for both OS and tm formulations at maximal twist. The primed operators

refer to the twisted basis while the unprimed ones to the physical basis. Notice that the

condition of maximal twist ensures that cut-off effects are of order O(a2) [14].

The main point of eq. (2.3) is that the tm and OS determinations of the same continuum

matrix element are equal up to discretization effects. Our proposal for the determination

of ZP /ZS and ZA, described in the following subsections, is based on this observation.

– 3 –
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2.1 Calculation of ZP /ZS

The method is based on comparing the amplitude gπ = 〈0|P |π〉, computed both in tm and

OS regularizations. We start by considering, in the physical basis, the correlation function

CPP(t) ≡ −
∑

x

〈ūγ5d(x) d̄γ5u(0)〉 , (2.4)

which at large time separations behaves like

CPP(t) ≃
|gπ|

2

2mπ
[exp(−mπt) + exp(−mπ(T − t))] (2.5)

From table 1 we see that in the twisted basis this corresponds to CS′S′ (t) (for OS regular-

ization) and CP ′P ′ (t) (for tm regularization):

[CPP(t)]cont = Z2
P [CP ′P ′(t)]tm + O(a2) = Z2

S [CS′S′(t)]OS + O(a2) , (2.6)

which implies

[gπ]cont = ZP [gπ]tm + O(a2) = ZS [gπ]OS + O(a2) . (2.7)

The ratio ZP /ZS is extracted from the above equation in the chiral limit. As our simulations

are performed at finite quark masses, an extrapolation of our ZP /ZS -estimators to zero

quark mass is necessary.

2.2 Calculation of ZA

In order to compute ZA, we consider the calculation of the charged pseudoscalar meson

decay constant fπ, in both OS and tm regularizations. We start with the tm regularization.

From the axial Ward identity in the physical basis, we have the well-known result for the

pseudoscalar meson decay constant [15]:

[fπ]cont = [fπ]tm + O(a2) =

[

2µqgπ

m2
π

]tm

+ O(a2) . (2.8)

Note that in this case no RC is needed [15]. Thus the pion decay constant can be extracted

from gπ, i.e. from the large time asymptotic behaviour of [CP ′P ′(t)]tm.

In the OS formulation we consider, besides the correlator CPP of eq. (2.4), also CAP,

which is defined by

CAP(t) ≡
∑

x

〈ūγ0γ5d(x) d̄γ5u(0)〉 . (2.9)

Its large time asymptotic behaviour is:

CAP(t) ≃
ξAP

2mπ
[exp(−mπt) − exp(−mπ(T − t))] , (2.10)

with

ξAP = 〈0|A0|π〉〈π|P |0〉 = [fπmπigπ]OS . (2.11)

– 4 –
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The last equation may be solved for fπ, which is thus obtained from the correlation

functions of eqs. (2.5) and (2.10). With the aid of table 1, this solution is expressed in

terms of OS-regularized quantities in the twisted basis (note ξAP = iξA′S′) as follows:

[fπ]cont = ZA[fπ]OS + O(a2) = ZA
ξA′S′

[gπ]OS[mπ]OS
+ O(a2) . (2.12)

Combining eqs. (2.8) and (2.12), we obtain

[fπ]cont = [fπ]tm + O(a2) = ZA[fπ]OS + O(a2) , (2.13)

from which an estimate of ZA can be extracted. Again, results obtained at finite quark

masses need to be extrapolated to the chiral limit. In ref. [16] the discretization effects

affecting the quenched pseudoscalar decay constant in the tm and OS regularizations have

been studied in detail. The tm and OS results were compatible within one standard devia-

tion for three values of the lattice spacing, indicating the smallness of O(a2) cut-off effects.

2.3 Calculation of ZV

The determination of the renormalization constant ZV can be done using solely tm quarks.

It is based on the comparison of the point-like axial current Aµ,ud, which renormalizes with

ZV (see table 1), with the exactly conserved one-point split current [V ′
µ]1PS

ud = [Aµ]1PS
ud .

The four-divergence of the latter is exactly equal to the sum of the valence quark mass

values, (µ1 + µ2), times the corresponding pseudoscalar density. Therefore, we extract ZV

by solving the equation:

ZV ∂̃0 [CV ′P ′(t)]tm = (µ1 + µ2) [CP ′P ′(t)]tm (2.14)

where ∂̃0 is the symmetric lattice time derivative, and extrapolating results to the chiral

limit.

2.4 Results

In table 2 we give various details of our Nf = 2, partially quenched simulations. The

smallest sea quark mass corresponds to a pion of about 300 MeV for the two larger β

values, while for the smallest coupling the lightest pion weights approximately 400 MeV.

The highest sea quark mass is around half the strange quark mass. For the inversions in

the valence sector we have made use of the stochastic method (one-end trick of ref. [17])

in order to increase the signal to noise ratio. Propagator sources have been placed at

randomly located timeslices. This turned out to be an optimal way to further reduce

the autocorrelation time. Our correlation functions are computed for all combinations of

valence quark masses appearing in table 2. In order to deal with effectively independent

measurements of RC-estimators, we have selected gauge field configurations separated by

20 HMC (length 1/2) trajectories. Within each ensemble of such gauge configurations

statistical errors are evaluated using a jackknife procedure. For results involving an

extrapolation in the sea quark mass and/or combined fits at several lattice couplings, sta-

tistical errors have been estimated with a bootstrap procedure for a 1000 bootstrap events.
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β L3 × T aµsea aµval Nconf

A2 3.80 243 × 48 0.0080 {0.0080, 0.0110, 0.0165, 0.0200} 400/240

A3 0.0110 {0.0080, 0.0110, 0.0165, 0.0200} 400/240

A4 0.0165 {0.0080, 0.0110, 0.0165, 0.0200} 400/240

B1 3.90 243 × 48 0.0040 {0.0040, 0.0064, 0.0085, 0.0100, 0.0150} 240/240

B2 0.0064 {0.0040, 0.0064, 0.0085, 0.0100, 0.0150} 240/240

B3 0.0085 {0.0040, 0.0064, 0.0085, 0.0100, 0.0150} 240/240

B4 0.0100 {0.0040, 0.0064, 0.0085, 0.0100, 0.0150} 240/240

C1 4.05 323 × 64 0.0030 {0.0030, 0.0060, 0.0080, 0.0120} 130/240

C2 0.0060 {0.0030, 0.0060, 0.0080, 0.0120} 130/160

C3 0.0080 {0.0030, 0.0060, 0.0080, 0.0120} 130/160

Table 2. Details of the simulations performed for computing RCs. The number Nconf of gauge

configurations we analysed is given for both the case of the scale independent RCs discussed in this

section (first figure) and the RI-MOM analysis of section 3 (second figure).

Typical plots on the data quality of ZV , ZA and ZP /ZS are shown in figure 1; in this

example we show the case aµmin
sea = aµ1 = aµ2 for the three values of the gauge coupling.

Various methods have been implemented in taking the chiral limit (in the sea and

valence quark sector). A first method consists in calculating the RCs at fixed sea quark

mass for three choices of valence quark pairs, namely with aµ1 = aµ2, or for all pairs of

(aµ1, aµ2) or for (aµ1, aµ2) ≥ aµsea and taking the “valence chiral limit” using a linear fit

in terms of the sum of the valence quark masses. Subsequently, the RCs were quadratically

extrapolated to the sea quark chiral limit. Note that a quadratic dependence on aµsea

is expected from the form of the sea quark determinant, assuming that lattice artefacts

on the RCs are not sensitive to spontaneous chiral symmetry breaking. However we have

verified that a linear fit in µsea leads to compatible results, albeit with larger final errors.

A second method consists in inverting the order of the two chiral limits. A third method

is simply the extraction of the RCs from the subset of data satisfying µvalence = µsea. This

allows reaching the chiral limit with a single, linear extrapolation in the quark mass. In

most cases the quality of the fits is very good and the final results, obtained from these

different extrapolations, are compatible within one standard deviation. We have opted

to quote as final results those produced by the first method, for all pairs of (aµ1, aµ2),

followed by a linear fit in terms of a2µ2
sea. In figure 2 (left panel) we show the “valence

chiral limit” extrapolation of the three scale independent RCs, computed at the lightest

sea quark mass for each gauge coupling. In figure 2 (right panel) we present the chiral

limit in the sea sector for all the RCs for each gauge coupling.
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Figure 1. The plateaux quality for ZV (a), ZA (b) and ZP /ZS (c) for three gauge couplings and

masses aµmin
sea = aµ1 = aµ2. From table 2 we have aµmin

sea (β = 3.80) = 0.0080, aµmin
sea (β = 3.90) =

0.0040 and aµmin
sea (β = 4.05) = 0.0030. Note that in figure(b) the data have been shifted for clarity.
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Figure 2. Left panel: valence chiral limit for the three scale independent RCs at β = 3.80,

aµsea = 0.0080 (a), β = 3.90, aµsea = 0.0040 (c) and β = 4.05, aµsea = 0.0030 (e). Right panel: sea

chiral limit for the same constants at β = 3.80 (b), β = 3.90 (d) and β = 4.05 (f). Note that the

data for ZP /ZS have been shifted for clarity.
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Our final results are collected in table 4 (see rows labelled as “Alt. methods”). For

comparison with the RI-MOM results and conclusions on the precision of the methods

used, see below. Here we point out that the ZV value at β = 3.90 compares nicely with

the result of ref. [18], produced from 3- and 2-point correlation functions, in the context

of a calculation of the pion form factor.

3 Renormalization constants in the RI-MOM scheme

The non-perturbative determination of the RCs in the RI-MOM scheme [1] is based on the

numerical evaluation, in momentum space, of correlation functions of the relevant operators

between external quark and/or gluon states. In this work we are interested in the case of the

bilinear quark operators OΓ = ūΓd, where Γ = S,P, V,A, T stands for I, γ5, γµ, γµγ5, σµν

respectively. The fields u and d of the operator OΓ belong to a twisted doublet of quarks,

regularized by the tm action of eq. (2.1), with ru = −rd = 1.

The relevant Green functions are the quark propagator

Sq(p) = a4
∑

x

e−ip·x 〈q(x)q̄(0)〉 (q = u, d) , (3.1)

the forward vertex function

GΓ(p) = a8
∑

x,y

e−ip·(x−y) 〈u(x)OΓ(0)d̄(y)〉 , (3.2)

and the amputated Green function1

ΛΓ(p) = Su(p)−1GΓ(p)Sd(p)−1 . (3.3)

The RI-MOM renormalization scheme consists in imposing that the forward amputated

Green function, computed in the chiral limit in the Landau gauge and at a given (large

Euclidean) scale p2 = µ2, is equal to its tree-level value. In practice, the renormalization

condition is implemented by requiring in the chiral limit that

Z−1
q ZΓ VΓ̃(p)|p2=µ2 ≡ Z−1

q ZΓ Tr[ΛΓ̃(p)PΓ̃]|p2=µ2 = 1 , Γ̃ = e−iγ5π/4Γeiγ5π/4 , (3.4)

where PΓ̃ is a Dirac projector satisfying Tr [Γ̃ PΓ̃] = 1.2 The quark field RC Zq, which

1The calculation of GΓ(p) in eq. (3.2) involves the propagator Sd(0, y) which, in the tm approach, equals

γ5Su(y, 0)†γ5. Similarly, in eq. (3.3) the propagator Sd(p) stands for
P

y
eip·ySd(0, y) = γ5Su(p)†γ5.

2The appearance of Γ̃ in eq. (3.4) is a trivial consequence of the fact that RCs, as we said, are named

after the (here unphysical) twisted quark basis while the operator OΓ = ūΓd is expressed in the physical

quark basis.
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enters eq. (3.4), is obtained by imposing, in the chiral limit, the condition3

Z−1
q Σ1(p)|p2=µ2 ≡ Z−1

q

−i

12
Tr

[

/p Sq(p)−1

p2

]

p2=µ2

= 1 . (3.5)

In order to minimize discretization effects, we select momenta with components pν =

(2π/Lν)nν in the intervals

nν =

{

([0, 2], [0, 2], [0, 2], [0, 3])

([2, 3], [2, 3], [2, 3], [4, 7])
, for L = 24 (β = 3.8 and 3.9) (3.6)

and

nν =

{

([0, 2], [0, 2], [0, 2], [0, 3])

([2, 5], [2, 5], [2, 5], [4, 9])
, for L = 32 (β = 4.05) (3.7)

(Lν is the lattice size in the direction ν). The time component of the four-momentum

is shifted by the constant ∆p4 = π/L4, in order to account for the use of anti-periodic

boundary conditions on the quark fields in the time direction. Furthermore, we have only

considered for the final RI-MOM analysis the momenta satisfying

∆4(p) ≡

∑

ρ p̃ 4
ρ

(

∑

ρ p̃2
ρ

) 2 < 0.28 , (3.8)

where

p̃ν ≡
1

a
sin(a pν) , (3.9)

which helps in minimizing the contribution of Lorentz non-invariant discretization effects

(cfr eq. (3.17)).

In order to improve the statistical accuracy of the RCs, we have averaged the results

obtained in the chiral limit from the correlation functions of the operators OΓ = ūΓd and

O′
Γ = d̄Γu. Similarly, in the case of the quark field RC, we have computed Zq by averaging

the results obtained for the up and down quark propagators.

The RCs, calculated in the chiral limit in the way described above, are automatically

improved at O(a). Actually in the maximal twist situation O(a) improvement holds for

all external momenta p and non-zero (valence and sea) quark mass at the level of the basic

quantities Tr[ΛΓ(p)PΓ] and Tr
[

(/p Sq(p)−1)/p2
]

entering in eqs. (3.4)–(3.5). A proof of

this statement, which follows from an analysis based on the symmetries of the tm action

3Strictly speaking, the renormalization condition of eq. (3.5) defines the so called RI′ scheme. In the

original RI-MOM scheme the quark field renormalization condition reads

Z−1

q

−i

48
Tr

»

γµ
∂Sq(p)−1

∂pµ

–

p2=µ2

= 1 .

The two schemes differ in the Landau gauge at the N2LO. In this work, when perturbative predictions are

used, the difference between the two schemes has been properly taken into account.
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at maximal twist and the O(4) symmetry of the underling continuum theory, is given in

the appendix.4

Details of the RI-MOM simulation are collected in table 2. The lattice parameters are

those used also in the determination of the scale independent constants with the methods

discussed in the previous section. However, a different ensemble of independent gauge

configurations has been analyzed in each case. Moreover, the inversions in the valence

sector for the RI-MOM study have been performed without using the stochastic approach,

but with point-like sources randomly located on the lattice for each gauge configuration.

3.1 Analysis of the twisted mass quark propagator

The necessary Green functions for the RI-MOM determination of RCs of bilinear quark

operators are the quark propagator Sq(p) and the amputated vertex ΛΓ(p), evaluated in

momentum space in the Landau gauge. In this section, we first illustrate the results on

the tm quark propagator.

At O(a), the spin-flavour structure of the lattice artefacts of the quark propagator

differs from that of the standard Wilson case, due to the twisted Wilson term in the

action. With tm fermions, the explicit breaking of parity at finite lattice spacing allows

for the presence of a parity violating contribution in the quark propagator. By neglecting

O(4) symmetry violating effects, which only appear at O(a2), the inverse quark propagator

can be expressed in terms of three scalar form factors, as follows:

Sq(p)−1 = i /p Σ1(p
2) + Σ2(p

2) − i γ5 Σ3(p
2) . (3.10)

At large p2, Σ1 and Σ2 are related to the quark field RC Zq (see eq. (3.5)), and to the

renormalized quark mass µ̂q respectively [20]. The parity violating term proportional to Σ3

represents an O(a) discretization effect, induced by the twisted Wilson term in the action.5

At maximal twist, the form factors Σ1,2,3 are given at tree-level by

Σ1(p
2) = 1, Σ2(p

2) = µq, Σ3(p
2) =

a rq

2
p2 . (3.11)

In figure 3, the non-perturbatively determined form factors Σ1,2,3 are plotted against

a2p̃2, for β = 3.90 and aµsea = 0.0040. The following observations are in order:

• The form factor Σ1 exhibits a nice plateau at large p2, with a tiny slope which is

partly due to a NLO renormalization scale dependence (the quark field anomalous

dimension vanishes at LO in the Landau gauge) and partly to O(a2) discretiza-

tion effects. The quark field RC Zq is obtained from the Σ1 results at large p2,

extrapolated to the chiral limit (see eq. (3.5)).

4As discussed in the appendix, with the standard Wilson or Clover actions, the RCs determined with

the RI-MOM method are also O(a)-improved. The RC-estimators are however improved only at large

momenta, where spontaneous chiral symmetry breaking effects can be neglected [19]. This is sufficient,

as the RI-MOM scheme is defined precisely in the high-momentum region. We remark, however, that the

O(a)-improvement of the RI-MOM RCs, with the standard Wilson or Clover actions, does not imply the

automatic O(a)-improvement of the operators as well. The latter can only be achieved, in the Clover case,

by implementing a mixing with higher-dimension operators with properly tuned coefficients.
5In the standard Wilson case, the analogous O(a) artifact contributes to the form factor Σ2.
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Figure 3. The form factors Σ1 (top), Σ2 (center) and Σ3 (bottom), computed at β = 3.90 with

aµsea = 0.0040, as a function of a2p̃2.
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• The form factor Σ2 also exhibits a plateau at large p2, which is expected to be

proportional, up to the quark field RC, to the renormalized valence quark mass µ̂q

in the RI-MOM scheme. Indeed, at variance with the cases of Σ1 and Σ3, a clear

separation among the results obtained for Σ2 at different bare valence quark masses

is visible in the plot.

• As expected, the form factor Σ3, which represents a pure O(a) discretization

effect, has opposite sign for the up and down quark propagators (ru = −rd = 1).

Its behaviour is quite close to the tree level estimate of eq. (3.11). We find

Σ3 ≃ ± cq ap2/2, with cq ≃ 0.8 ÷ 0.9.

3.2 Renormalization constants

The RCs in the RI-MOM scheme are determined by closely following the procedure sum-

marised in section 3 above and described in detail in ref. [19]. This procedure involves two

main steps: the chiral limit extrapolation of the RCs, at fixed coupling and renormalization

scale, and the study of the renormalization scale dependence.

3.2.1 Chiral extrapolations

RI-MOM is a mass independent renormalization scheme. Since in practice the RCs are

obtained at non vanishing values of the quark masses, an extrapolation of the results to

the chiral limit, both in the valence and the sea quark masses, must be performed.

The validity of the RI-MOM approach relies on the fact that, at large p2, Green func-

tions are expected to depend smoothly on the quark masses, since their non-perturbative

contributions vanish asymptotically in that limit. However, specific care must be taken

in the study of the pseudoscalar Green function VP , since the leading 1/p2-suppressed

contribution is divergent in the chiral limit, due to the coupling with the Goldstone

boson [1, 21, 22]. Moreover, for tm fermions, the explicit breaking of parity at finite

lattice spacing induces a coupling of the Goldstone boson also with the scalar operator.

Though the latter is suppressed at O(a2), its effect may be not negligible at the couplings

considered in the present simulations.

In order to subtract the pseudoscalar mass dependence of the amputated vertex func-

tions VP and VS, at each given p2 we fit their values at different quark masses to the Ansatz

VP (S)(p
2, µ1, µ2) = AP (S)(p

2) + BP (S)(p
2)M2

PS(µ1, µ2) +
CP (S)(p

2)

M2
PS(µ1, µ2)

, (3.12)

where MPS(µ1, µ2) is the mass of the pseudoscalar meson composed by valence quarks of

mass µ1 and µ2 (with r1 = −r2).
6 The first term in the fit, i.e. the function AP (S)(p

2),

represents the Green function VP (S) in the (valence) chiral limit, from which the RC

6In our preliminary analysis presented in [2], the fitting function used to subtract the Goldstone pole

contribution was expressed in terms of the sum of quark masses µ1 +µ2 rather than the pseudoscalar meson

mass squared MPS(µ1, µ2)
2, as in eq. (3.12). Since the latter is simply proportional to µ1 + µ2 at maximal

twist, the two fits lead to completely consistent results.
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ZP (S) is eventually extracted. The last term in eq. (3.12) accounts for the presence of the

Goldstone pole. Using the results of the fit, we can define the subtracted correlators

Vsub
P (S)(p

2, µ1, µ2) = VP (S)(p
2, µ1, µ2) −

CP (S)(p
2)

M2
PS(µ1, µ2)

. (3.13)

The effect of the subtractions is illustrated in figure 4. We find that, while in the case

of VP the contribution of the Goldstone pole is clearly visible, the subtraction is practically

irrelevant in the case of VS , indicating a strong O(a2) suppression of the parity violating

coupling. We have also verified that, the alternative procedure [23] for the Goldstone pole

subtraction, based on the definition

Vsub
P (S)(p

2, µ1, µ2, µ3, µ4) =
M2

PS(µ1, µ2)VP (S)(p
2, µ1, µ2) − M2

PS(µ3, µ4)VP (S)(p
2, µ3, µ4)

M2
PS(µ1, µ2) − M2

PS(µ3, µ4)
.

(3.14)

leads to consistent results in the chiral limit, within our statistical errors.

The dependence of ZV , ZA and ZT , which are not affected by the Goldstone pole

contamination, on the valence quark masses, is shown in figure 5, for all three couplings.

For illustration purposes, a specific value of the sea quark mass has been chosen in each

case. We see that the valence quark mass dependence of the RCs is rather weak and well

consistent with a linear behaviour.

In the tm formulation of lattice QCD with Nf = 2 flavours of degenerate sea quarks,

the fermionic determinant is a function of the sea quark mass squared. Therefore, we

expect that the RCs, which by definition are insensitive to the effects of spontaneous chiral

symmetry breaking, will also exhibit the same dependence. This is shown in figure 6. We

find that all RCs depend very weakly on the sea quark mass squared. We thus obtain our

mass independent RCs by performing the sea quark mass extrapolation to the chiral limit

linearly in a2µ2
sea. We also checked that chiral extrapolations based on a first or second

order polynomial fit in aµsea lead within errors to practically equivalent results.

3.2.2 Renormalization scale dependence and subtraction of the O(g2a2) effects

Once the RCs have been extrapolated to the chiral limit, we investigate their dependence

on the renormalization scale by evolving, at fixed coupling, the RCs to a reference scale

µ0 = 1/a. This is done using

ZΓ(a, µ0) = CΓ(µ0, µ) ZΓ(a, µ) , (3.15)

where the evolution function CΓ is expressed in terms of the beta function β(α) and of the

anomalous dimension of the relevant operator γΓ(α) by

CΓ(µ0, µ) = exp

[

∫ α(µ)

α(µ0)

γΓ(α)

β(α)
dα

]

. (3.16)

This function is known, in the RI-MOM scheme, at the N2LO for ZT [24] and at the N3LO

for ZS and ZP [25]. Since ZV , ZA and the ratio ZP /ZS are scale independent, they have

vanishing anomalous dimensions; thus for these quantities we have CΓ(µ0, µ) = 1.
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Figure 4. The amputated Green functions VP (p2, µ1, µ2) and VS(p2, µ1, µ2), evaluated at a scale

a2p̃2 ≃ 1, as a function of the pseudoscalar meson mass squared. The subtracted Green functions

are defined in eq. (3.13). Dashed and solid lines illustrate the results of the fit to eq. (3.12) (with

C = 0 for Vsub
P (S)).
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Figure 5. Dependence of ZV , ZA and ZT on the valence quark mass, at a2p̃2 ≃ 1. The solid lines

are linear extrapolations to the (valence) chiral limit.
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Γ b
(1)
Γ b

(2)
Γ c

(1)
Γ c

(2)
Γ c

(3)
Γ

V -0.48369852(8) 0 1.5240798(1) -1/3 -125/288

A 3.57961385(3) 0 0.6999177(1) -1/3 -125/288

S 0.58345905(5) -3 2.3547298(2) -1/4 1/2

P 8.7100837(1) -3 0.70640549(6) -1/4 1/2

T 0.51501972(6) 1 0.9724758(2) -13/36 -161/216

Table 3. Values of the coefficients b
(i)
Γ and c

(i)
Γ entering the 1-loop expression (3.17) of the ampu-

tated projected Green functions VΓ(p). Results are presented for the case of the tree-level Symanzik

improved gluon action in the Landau gauge and the tm fermionic action at maximal twist.

In the non-perturbative calculation, the RCs evolved to the reference scale µ0 = 1/a

maintain a dependence on the renormalization scale p2 at which they have been initially

computed. We will keep track of this dependence, which (at large enough p2) is mostly

due to discretization effects, by denoting these RCs as ZΓ(1/a; a2p2), where the first

variable indicates the renormalization scale, µ0 = 1/a, and the second the dependence on

the initial momentum.

In figure 7 we show the results for all ZΓ(1/a; a2p2) at β = 3.9 as a function of a2p̃2

(empty symbols). The residual a2p2-dependence which is observed in these results in the

large momentum region is practically linear, suggesting that leading discretization effects

are O(a2p2). As illustrated in the plots, this dependence is particularly pronounced in the

case of the pseudoscalar RC ZP .

In order to reduce the size of discretization errors, we analytically subtract from the

quark propagator and the amputated vertex functions the O(g2a2) contributions, recently

computed in lattice perturbation theory [8]. Up to 1-loop and up to O(a2), the amputated

projected Green functions VΓ(p), defined in eq. (3.4), have the simple and general expression

VΓ(p)pert. = 1 +
g2

12π2

{

b
(1)
Γ + b

(2)
Γ ln(a2 p2)

+a2

[

p2
(

c
(1)
Γ +c

(2)
Γ ln(a2 p2)

)

+c
(3)
Γ

∑

ρ p4
ρ

p2

]}

+O(a4 g2, g4). (3.17)

The values of the coefficients b
(i)
Γ and c

(i)
Γ are collected in table 3 for the lattice action used

in the present study, namely the tree-level Symanzik improved gluon action in the Landau

gauge and the tm fermionic action at maximal twist.7

A result similar to eq. (3.17) also holds for the form factor Σ1(p) of the inverse quark

propagator, from which the quark field RC Zq is evaluated:

Σ1(p)pert. = 1 +
g2

12π2

{

b(1)
q + b(2)

q ln(a2 p2)

+a2

[

p2
(

c(1)
q +c(2)

q ln(a2 p2)
)

+c(3)
q

∑

ρ p4
ρ

p2

]}

+O(a4 g2, g4). (3.18)

7The same results are also valid for the standard Wilson fermionic action, except for the exchange of

the values of the vector (V) and axial (A) coefficients.
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Our definition of this form factor on the lattice, which is equivalent to eq. (3.5) up to terms

of O(a2), is

Σ1(p) ≡
−i

12N(p)
Tr

[

∑

ρ

′
(

γρ S(p)−1
)

/p̃ρ

]

, (3.19)

where the sum
∑ ′

ρ only runs over the Lorentz indices for which pρ is different from zero

and N(p) =
∑ ′

ρ 1. With this definition, the coefficients of eq. (3.18) take the values

b(1)
q = −13.02327272(7) ; b(2)

q = 0 ; c(3)
q =

7

240
;

c(1)
q = 1.14716212(5) +

2.07733285(2)

N(p)
; c(2)

q = −
73

360
−

157/180

N(p)
. (3.20)

Using eqs. (3.17) and (3.18), we then define the corrected amputated Green functions

and the corrected form factor Σ1 as

VΓ(p)corr. = VΓ(p) −
g2

12π2
a2

[

p̃2
(

c
(1)
Γ + c

(2)
Γ ln(a2 p̃2)

)

+ c
(3)
Γ

∑

ρ p̃4
ρ

p̃2

]}

,

Σ1(p)corr. = Σ1(p) −
g2

12π2
a2

[

p̃2
(

c(1)
q + c(2)

q ln(a2 p̃2)
)

+ c(3)
q

∑

ρ p̃4
ρ

p̃2

]}

, (3.21)

which are free of O(g2a2) effects. Note that the O(a2) terms depend not only on the

magnitude,
∑

ρ p2
ρ, but also on the direction of the momentum, pρ, as manifested by the

presence of
∑

ρ p4
ρ. As a consequence, different renormalization prescriptions, involving

different directions of the renormalization scale pρ, treat lattice artifacts differently. In

the numerical evaluation of the perturbative correction in eq. (3.21), we replaced g2 with

a simple boosted coupling [26], defined as g̃2 = g2
0/〈P 〉, where the average plaquette 〈P 〉

is computed non-perturbatively.

The effect of the subtraction (3.21) is also illustrated in figure 7, which shows that

the a2p2-dependence of the RCs is significantly reduced by the perturbative correction.

By fitting the RCs as

ZΓ(1/a; a2p2) = ZΓ(1/a) + λΓ a2p̃2 (3.22)

in the large momentum region a2p̃2 & 1 (with λΓ just constrained to depend smoothly

on g2 — see eq. (3.24)), we find that the slopes λΓ are reduced, after the perturbative

subtraction, at the level of 10−2 or smaller for ZV , ZA, ZT and Zq. For ZS we find

that the slope, which is also about 10−2 before implementing the correction, increases

slightly after the subtraction. For ZP , on the other hand, the slope is rather large before

the subtraction; i.e. λP ≃ 5 · 10−2. As shown in figure 7, the effect of the subtraction

is beneficial also in this case, but inadequate for correcting the bulk of the observed

a2p2-dependence. This is not completely unexpected: when discretization effects are large,

the subtraction of only the leading O(g2a2) terms may be not sufficient to reduce them

to a negligible level. Similar results, with approximately equal values of the slopes λΓ, are

obtained at all three values of the lattice spacing.

A useful way to investigate the size of lattice artifacts, which are left after the

perturbative subtraction, consists in comparing the renormalization scale dependence of
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Figure 7. The RCs ZΓ(1/a; a2p2) at β = 3.9, evaluated at the reference scale µ0 = 1/a, plotted

against the initial renormalization scale a2p2. Filled squares (empty circles) are results obtained with

(without) the subtraction of the O(g2a2) discretization effects computed in perturbation theory, see

eq. (3.21). The solid lines are linear fits to the data.

the RCs as observed at different lattice spacings. Specifically, at each value of the lattice

spacing we fix two common values of the renormalization scale, µ and µ′, and compute

the step scaling functions

ΣΓ(µ, µ′; a) =
ZΓ(a, µ)

ZΓ(a, µ′)
. (3.23)

If not for discretization effects, the step scaling functions should be independent of the
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Figure 8. Values of the step scaling functions ΣΓ(µ, µ′; a) evaluated for (µ2, µ′ 2) = (8.5, 6.0) GeV2

(red circles) and (µ2, µ′ 2) = (8.5, 7.25) GeV2 (blue squares) at the three values of the lattice

coupling. The solid lines and the empty markers show the results of a linear extrapolation to

the continuum limit. For comparison, the corresponding perturbative estimates of the evolution

functions CΓ(µ, µ′) are also shown in the plots (black circles and squares).

cut-off and equal to the evolution functions CΓ(µ, µ′) of eq. (3.15).

In figure 8 we show the results obtained for the step scaling functions of the quark bi-

linear operators and of the quark field RCs, as a function of (a/r0)
2, for two common pairs

renormalization scales, (µ2, µ′ 2) = (8.5, 6.0) GeV2 and (µ2, µ′ 2) = (8.5, 7.25) GeV2, which

both lie in the interval of momenta accessible at all values of the lattice spacing. We see

from these plots that the dependence of the step scaling functions on the lattice cut-off is

tiny in most of the cases, being clearly visible only in the case of ΣP . Moreover, for the scale

independent RCs ZV and ZA, a linear extrapolation of the results to the continuum limit

leads to values which are perfectly consistent with unity, within the statistical errors. For

the other RCs, the continuum limit of the step scaling functions leads to non-perturbative

results which are in good agreement with the perturbative determinations of the evolution

functions CΓ(µ, µ′), computed at the N2LO for ZT and at the N3LO for ZS , ZP and Zq.

These results provide evidence that higher order perturbative contributions to the anoma-

lous dimensions of the various operator are not relevant for describing the renormalization

scale dependence of the RCs in the region of momenta explored in the present calculation.

In order to account for the residual discretization effects in the calculation of the RCs,

we follow two different approaches:

- Extrapolation method (M1): after subtraction of the O(g2a2) terms according

to eq. (3.21), we extrapolate the RCs linearly to a2p2 → 0. Specifically, we fit

ZΓ(1/a; a2p2) with eq. (3.22) in the large momentum region, 1.0 . a2p̃2 . 2.2. The

slopes λΓ exhibit only a very mild dependence on the coupling. We parameterize

this dependence by performing a simultaneous extrapolation at the 3 values of the
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coupling and writing the slopes as

λΓ(g2) = λΓ(g2
0) + λ′

Γ(g2
0) · (g2 − g2

0) , (3.24)

where g0 is the coupling corresponding to the intermediate value β = 3.9. The

intercept of the extrapolation as determined from the fit, and indicated with ZΓ(1/a)

in eq. (3.22), provides our final estimate of the RC with the extrapolation method.

The fit is illustrated, for all RCs, in figure 9.

- p2-window method (M2): in this approach we do not attempt any additional sub-

traction of discretization effects, besides the perturbative one. The final estimates

of RCs are obtained by taking directly the results of ZΓ(1/a; a2p2) at a fixed value

of p2 (in physical units). In practice, this is done by fitting the RCs to a constant

in the small momentum interval p̃2 ∈ [8.0, 9.5] GeV2. The idea behind this approach

is that, once RCs are combined with bare quantities, so as to construct the physical

observables of interest, the residual O(a2) effects, which are present in both RCs

and bare quantities, will be extrapolated away in the continuum limit.

The two methods are compared below, in a specific example. This consists in the scaling of

the pseudoscalar meson mass, composed by two degenerate quarks of fixed (renormalized)

mass. As expected, the two methods give different results at fixed lattice cut-off, but the

difference disappears in the continuum limit.

3.3 Analysis of systematic errors

Before presenting our final results for the RCs, we list and discuss in some detail the main

systematic uncertainties.

- Finite size effects: the RCs, determined in the RI-MOM scheme at large momenta,

are short distance quantities and, as such, should not be affected by significant finite

size effects. In order to verify this expectation, an additional RI-MOM calculation

at β = 3.90 has been performed, on a 323 × 64 lattice. A comparison of these results

with those obtained on the smaller 243 ×48 lattice is illustrated in figure 10. We find

that, for the momentum range in which results on both volumes are available, the

differences are smaller than statistical errors.

- Subtraction of the Goldstone pole and chiral extrapolations: the chiral extrapolation

of the RCs is rather delicate for ZP (and to a lesser extent for ZS), due to the

presence of the Goldstone pole which has to be subtracted. The uncertainty

introduced by the subtraction of the Goldstone pole contribution to ZS and ZP can

be estimated by comparing the results obtained following two different subtraction

approaches: the fit of eq. (3.12) or, alternatively, the procedure based on eq. (3.14).

We find that differences are always negligible for ZS , whereas for ZP they are at the

level of our statistical errors.

As illustrated in figures 5 and 6, the chiral extrapolations in the valence quark

mass for the other RCs and in the sea quark mass for all RCs are quite smooth.
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Figure 9. The RCs ZΓ(1/a; a2p2), evolved to the reference scale µ0 = 1/a, as a function of

the initial renormalization scale a2p̃2. The solid lines are linear fits to the data.

They are also well consistent with the expected leading linear and purely quadratic

dependence on the valence and sea quark masses respectively. Therefore, we estimate

that the uncertainties associated with these chiral extrapolations are negligible with

respect to the statistical errors.
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Figure 10. Comparison of the RCs obtained, at β = 3.90, on 243 × 48 and 323 × 64 lattices.

- Discretization effects: the analysis of these effects has been presented in sec-

tion 3.2.2. The leading O(g2a2) discretization errors have been accounted for, using

the analytical results of ref. [8]. With the method denoted as M1 in section 3.2.2,

after the perturbative subtraction, residual O(a2p2) effects are extrapolated away,

with the Ansatz (3.22). These contributions are not subtracted, instead, in the
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Figure 11. Scaling of the pseudoscalar meson mass squared, computed at a fixed value of

the quark mass. The M1 and M2 determinations for Zµ = Z−1
P lead to compatible results

in the continuum limit.

approach denoted as M2. Discretization effects affecting both RCs and the bare

matrix elements will be corrected for, by extrapolating the physical (renormalized)

quantity to the continuum limit.

As an example of the results obtained by implementing the two approaches, we show

in figure 11 the continuum extrapolation of the pseudoscalar mass squared, computed

at a fixed value of the renormalized quark mass µR. The renormalization of the latter

has been achieved using the estimates M1 and M2 for ZP given in tables 4 and 5.8

Although the two ZP determinations differ by visible discretization effects at finite

lattice spacing, particularly at the two coarsest lattice, the continuum limit results of

the pseudoscalar mass squared are consistent within the two determinations. This is

evidence that the discretization errors as well as other possible systematic effects in

the analysis of the RI-MOM RCs are well under control, at least within our current

statistical errors (say at the level of one standard deviation and possibly even less).

3.4 Final results and comparison with perturbation theory

The final results for the bilinear quark operators and the quark field RCs, obtained with

the RI-MOM method, are collected in tables 4 and 5 (labelled as RI-MOM (M1) and

RI-MOM (M2)). These results are compared with those obtained in section 2 for the

scale independent ZV , ZA and ZP /ZS (Alt. methods). In addition, we give in tables 4

and 5 the predictions of one loop boosted perturbation theory (BPT) [7, 8], obtained with

two definitions of the boosted coupling: the first is g̃2 = g2
0/〈P 〉, also used in the previous

section, and the second is based on the one-loop tadpole-improved expansion of log〈P 〉 [26].

From tables 4 and 5, we see that the largest deviations between the central values of the

RI-MOM (M1) determinations and the alternative determinations of section 2 are at the

8Note that in tm lattice QCD we have Zµ = Z−1

P .
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β Method ZV ZA ZP /ZS

RI-MOM (M1) 0.604(07) 0.746(11) 0.580(17)

3.80 RI-MOM (M2) 0.623(05) 0.727(07) 0.653(07)

Alt. methods 0.5816(02) 0.747(22) 0.498(22)

BPT 0.61-0.70 0.71-0.77 0.72-0.80

RI-MOM (M1) 0.624(04) 0.746(06) 0.626(13)

3.90 RI-MOM (M2) 0.634(03) 0.730(03) 0.669(08)

Alt. methods 0.6103(03) 0.743(18) 0.579(19)

BPT 0.63-0.71 0.72-0.78 0.74-0.82

RI-MOM (M1) 0.659(04) 0.772(06) 0.686(12)

4.05 RI-MOM (M2) 0.662(03) 0.758(04) 0.710(07)

Alt. methods 0.6451(03) 0.746(18) 0.661(21)

BPT 0.65-0.73 0.74-0.80 0.76-0.83

Table 4. Values of ZV , ZA and ZP /ZS , obtained with the RI-MOM methods M1 and M2 (see text

for details), as well as with the methods described in section 2 (labelled as “Alt. method”). The

predictions of one loop boosted perturbation theory (BPT) are also shown for comparison.

level of 3-4% or smaller for ZA and ZV . These differences are not always accounted for by

the errors quoted for each result. When statistically significant, these differences provide an

estimate of the systematic uncertainties affecting the calculations. As discussed in the pre-

vious section, we expect these uncertainties to be dominated by O(a2) discretization effects.

Nevertheless, we do not include these differences in the final errors. The reason is that such

estimates of discretization effects, though meaningful at finite lattice spacing, are of no prac-

tical significance when the continuum limit of a physical quantity is eventually computed.

The comparison of the ZP /ZS results, obtained with the RI-MOM and the alternative

method, deserves a further comment. The difference between the two results is about 15%

for the coarsest lattice and 4% for the finest one. The rather big difference noticed in the

former case may be attributed not only to discretization effects, but also to an imprecise

tuning of the twist angle to maximal twist at this coupling. This is expected to influence

substantially the OS pseudoscalar density.

As shown in tables 4 and 5, the non-perturbative results also lie in the range of

one-loop BPT estimates, with the exception of ZS and, more notably, of ZP . We emphasise

that the accuracy of ZP is crucial in the determination of quark masses, since the bare

quark mass, computed with maximally twisted fermions, renormalizes with of Z−1
P ; see for

example ref. [27].
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β Method ZRI
S (1/a) ZRI

P (1/a) ZRI
T (1/a) ZRI

q (1/a)

3.80 RI-MOM (M1) 0.603(15) 0.338(10) 0.743(09) 0.755(07)

RI-MOM (M2) 0.668(06) 0.437(04) 0.719(06) 0.755(05)

BPT 0.68-0.75 0.49-0.60 0.68-0.75 0.69-0.76

3.90 RI-MOM (M1) 0.615(09) 0.377(06) 0.743(05) 0.758(04)

RI-MOM (M2) 0.669(05) 0.447(05) 0.724(03) 0.755(03)

BPT 0.70-0.76 0.52-0.62 0.70-0.76 0.71-0.77

4.05 RI-MOM (M1) 0.645(06) 0.440(06) 0.763(06) 0.782(05)

RI-MOM (M2) 0.678(04) 0.480(04) 0.752(04) 0.778(03)

BPT 0.72-0.78 0.55-0.65 0.72-0.78 0.73-0.79

Table 5. Values of ZS , ZP and ZT , obtained with the RI-MOM methods M1 and M2 (see text

for details). The predictions of one loop boosted perturbation theory (BPT) are also shown for

comparison.

β ZV ZA ZMS
S (2 GeV) ZMS

P (2 GeV) ZMS
T (2 GeV) ZMS

q (2 GeV)

3.80 0.604(07) 0.746(11) 0.734(18) 0.411(12) 0.733(09) 0.745(07)

3.90 0.624(04) 0.746(06) 0.713(10) 0.437(07) 0.743(05) 0.751(04)

4.05 0.659(03) 0.772(06) 0.699(06) 0.477(06) 0.777(06) 0.780(05)

Table 6. Final results for the RCs of bilinear quark operators and the quark field, obtained with

the RI-MOM method. The scheme dependent RCs are given in the MS scheme at scale µ=2GeV.

In most phenomenological applications, the renormalization scheme of choice is MS and

the preferred reference scale is 2GeV. For this reason, we provide in table 6 the values of

the scheme dependent RCs ZS , ZP , ZT and Zq in the MS scheme at the scale of 2GeV. The

conversion from the RI-MOM scheme at µ = 1/a to MS at µ =2GeV has been performed

using renormalization group-improved perturbation theory at the N2LO for ZT and at the

N3LO for ZS , ZP and Zq. For completeness, we also report in the table the results for the

scale independent ZV and ZA. Note, however, that the Ward identity determination of

ZV , given in tables 4 and 5, has a much better statistical accuracy.

It should be remarked that in table 6 we only quote the results obtained from RI-

MOM renormalization conditions with the method M1, since they are in general affected by

smaller discretization effects and should hence be preferably used in computations at fixed

gauge coupling without continuum extrapolation.9 The case of figure 11 is an exception

9Anyway, the values of the RCs in the MS scheme at the scale of 2GeV obtained with the method M2
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in this sense, because there an accidental cancellation (enhancement) of the cutoff effects

coming from the bare pseudoscalar meson mass Mps and from ZP computed with the

method M2 (M1) leads to a similar scaling behaviour of the two sets of data corresponding

to the M2 and M1 determinations of ZP . Moreover, with respect to the method M1, the

method M2 tends to give results that are affected by smaller statistical uncertainties, since

the latter procedure does not involve the extrapolation to a2p2 = 0 of eq. (3.22).

4 Conclusions

In this paper we have presented a non-perturbative determination of the RCs of bilinear

quark operators for the tree-level Symanzik improved gauge action and the Nf = 2 twisted

mass fermion action at maximal twist, which guarantees automatic O(a)-improvement.

The values of these constants do not depend on whether tm, OS or Wilson fermions are

used. The RCs of the five bilinear quark operators and the quark field have been deter-

mined with the RI-MOM method. We have also obtained an independent estimate of ZV ,

based on a Ward identity, and have introduced a new method for ZA and ZS/ZP , based on

a combined use of standard tm and OS fermions. The main results for the RCs are collected

in tables 4, 5 and 6, where they are also compared with the predictions of one-loop per-

turbation theory. We find that the differences between perturbative and non-perturbative

determinations are large in the cases of ZS and ZP . This result is of particular relevance

to the lattice determinations of quark masses and the chiral condensate.

A O(a)-improvement of RI-MOM renormalization constants

In this appendix we prove that:

1. at maximal twist the RI-MOM “form factors” from which RCs are extracted [1] are

automatically O(a) improved at all p2 values;

2. at generic values of the twist angle, form factor improvement is guaranteed only at

“large” p2 values; i.e. where spontaneous chiral breaking effects can be neglected.

In both cases the resulting renormalization constants will be improved. In the first case this

is obvious because they are extracted from ratios of automatically improved form factors.

In the second case the desired conclusion follows from the observation that RCs are short-

distance quantities (insensitive to infrared effects), evaluated from large p2 correlators. In

the ensuing sections we give a detailed proof of these two statements.

A.1 Improvement at maximal twist

In the RI-MOM scheme the RC Z fh
Γ of the bilinear operator

Ofh
Γ = q̄fΓqh, (A.1)

can easily be obtained for each a = a(β) from their M1-method counterparts and the RI-MOM results in

tables 4 and 5 with the help of the relation ZMS

Γ (2 GeV)|M2/Z
RI

Γ (1/a)|M2 = ZMS

Γ (2 GeV)|M1/Z
RI

Γ (1/a)|M1.
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is defined by the condition

lim
µf,h

val
, µsea→0

Z−1
q Z fh

Γ Tr[Λfh
Γ (p)PΓ]

∣

∣

∣

p2=µ2
= 1 , (A.2)

where f, h = 1, 2 are flavour indices, and PΓ is the projector onto the Dirac structure of

the bilinear. The other quantities entering eq. (A.2) are defined by

lim
µf

val
, µsea→0

Zq
−i

12

Tr[/p Sf
q (p)−1]

p2

∣

∣

∣

∣

∣

p2=µ2

= 1 (A.3)

with

Λfh
Γ (p) = Sf

q (p)−1 Gfh
Γ (p) Sh

q (p)−1 , (A.4)

Sf
q (p) = a4

∑

x

e−ip·x 〈qf (x)q̄f (0)〉 , (A.5)

Gfh
Γ (p) = a8

∑

x,y

e−ip·(x−y) 〈qf (x)Ofh
Γ (0)q̄h(y)〉 . (A.6)

Two useful observations are: (i) the “form factors” Vq(p) = Tr[/p Sf (p)−1] and V fh
Γ (p) =

Tr[Λfh
Γ (p)PΓ] are H(4) invariant by construction. In the continuum limit they approach

quantities which are invariant under both O(4) and parity. (ii) Zq carries no flavour index

f since, owing to its definition (A.3), it depends quadratically on rq.

The proof that our estimators of the RI-MOM RCs are O(a)-improved at all quark

masses and external momenta in maximally twisted QCD follows closely the argument of

ref. [14] (subsequently refined in ref. [28, 29]) for automatic improvement of correlation

functions. It is based on the exact invariance of the maximally twisted QCD action

under the transformation P ×Dd × (µq → −µq), where µq is the twisted quark mass. For

completeness we recall the definition of the discrete transformations P (continuum parity)

and Dd in the physical quark basis

P :











U0(x) → U0(xP) , Uk(x) → U †
k(xP − ak̂) , k = 1, 2, 3

qf (x) → γ0q
f (xP)

q̄f (x) → q̄f (xP )γ0

(A.7)

Dd :











Uµ(x) → U †
µ(−x − aµ̂)

qf (x) → e3iπ/2qf (−x)

q̄f (x) → e3iπ/2q̄f (−x)

(A.8)

where xP = (−x, x0) and µ̂ is the unit vector in the µ-direction. Actually the proof is

also valid in the more general “mixed action” setting, where Osterwalder-Seiler fermions

are used as valence quarks. This is because the corresponding action is similarly invariant

under P × Dd × (Mq → −Mq), where Mq denotes the set of all quark (sea and valence)

twisted mass parameters.
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A.1.1 The proof

The proof can be given in three steps:

• Due to H(4) symmetry, the lattice form factors Vq(p) and V fh
Γ (p) have no terms of the

form pk
0 + pk

1 + pk
2 + pk

3 and (p0p1p2p3)
k, with odd k. Thus they are invariant under

parity transformation; i.e. they satisfy the relations

Vq(p) = Vq(pP) , V fh
Γ (p) = V fh

Γ (pP) , pP = (−p, p0) . (A.9)

• As has been proved in [28, 29], the invariance of maximally twisted QCD under

P×Dd×(µq → −µq) implies that O(aj) cut-off artefacts of lattice correlators arise, in

their Symanzik expansion, from the insertion of Symanzik operators of parity (−1)j .

• Subsequently, O(aj) terms with odd j must then be absent in the Symanzik

expansion of parity-even form factors, like Vq(p) and V fh
Γ (p).

The Symanzik expansion of the form factors above is straightforwardly obtained from that

of the correlators in terms of which they are defined.

A.2 Improvement at a generic value of the twist angle

Since RCs are UV quantities, they should be independent of the QCD infrared structure

and properties; in particular they should be unaffected by spontaneous chiral symmetry

breaking. Thus, if we compute RCs at zero quark mass and at high momentum scale p2

such that chiral breaking effects are negligible, we can fully exploit the R5-symmetry of

the continuum theory. This will be useful because in turn the lattice action is invariant

under R5 ×Dd, where

R5 =
∏

f

Rf
5 , Rf

5 :

{

qf → γ5q
f

q̄f → −q̄fγ5
(A.10)

is a transformation belonging to the SU(Nf )L×SU(Nf )R chiral group in the unitary case

(or the graded SU(N sea
f + Nval

f |Nval
f )L×SU(N sea

f + Nval
f |Nval

f )R chiral group in the mixed

action case). In eq. (A.10) the product is extended over all flavour species f .

A.2.1 The proof

The proof of the O(a) improvement of RCs in lattice QCD at generic values of the twist

angle, e.g. of the bare twist angle ω0 = arctan(µq/(m0 − Mcr)), runs on lines similar to

those of the previous section, with R5 replacing P. One can, in fact, argue as follows.

• RCs constants can be extracted from the large-p2 behaviour of the Vq(p) and V fh
Γ (p)

form factors in the chiral limit. In this regime chiral breaking effects can be ignored

and Vq(p) and V fh
Γ (p) are invariant under R5.

• The invariance of the theory under R5×Dd implies that the R5-parity of an operator

equals the parity of its naive dimension. Thus, O(aj) lattice artefacts of correlators

or form factors arise in the Symanzik expansion from the insertion of operators of

R5-parity equal to (−1)j .

– 30 –
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• Therefore O(aj) terms with odd j cannot be present in the Symanzik expansion of R5-

even form factors, like Vq(p) and V fh
Γ (p). In fact, the continuum target theory is invari-

ant under the chiral group (including R5), while O(aj) terms would be odd under R5.

A.3 A final comment

The O(a) improvement of RI-MOM RCs at any value (including zero) of the twist

angle ω0 hardly comes as a surprise because the RC-estimators computed at generic ω0

become ω0-independent in the chiral limit, provided they are analytic in the complex

mass parameter (m0 −Mcr) + iµq, which is certainly the case at sufficiently large p2. As a

consequence, a unique set of RI-MOM RCs, all free from O(aj) (j odd) artifacts, exist for

lattice QCD with Wilson quarks and a given pure gauge lattice action. These RCs can in

principle be extracted from simulations at arbitrary (and not necessarily all equal) values

of the twist angle. Computing the RI-MOM RCs at maximal twist (|ω0| = π/2), as we do

in the present study, is just a simple and technically convenient choice. In our case this

choice was a quite natural one, as we could then evaluate the necessary correlators on the

Nf = 2 gauge ensembles which were produced for studying large volume physics.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,
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