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1 Introduction and summary

Fermi liquid theory is one of the very few low energy effective theories at finite density that

we understand well. Since the AdS/CFT correspondence provides a simple description of

strongly coupled field theories at finite density, it is natural to ask whether a Fermi liquid

description can be recovered at low energies in a holographic model. The possibility of

observing a Fermi surface at leading order in the “1/N expansion” was first raised in [1].

More recently, the logarithmic violation of the entanglement entropy was suggested as

signifying the appearance of a Fermi surface [2, 3]. In [4], a certain singular behavior of

the current-current correlator was suggested as an indicator of a Fermi surface. These

models imply that the effective theory at low energy differs from the conventional Landau

Fermi liquid theory, which is characterized (among other things) by a linear heat capacity

at small temperatures and by the validity of Luttinger’s theorem.1

1Constructing Fermi liquids by the explicit inclusion of charged fermions in the bulk is another interesting

direction [5–8].
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On the other hand, the discovery of a gapless mode in holographic models at finite

density and zero temperature [9] raised the possibility that the Landau Fermi liquid is not

too far off: it contains a similar excitation called zero sound (subsequent work on vari-

ous aspects of holographic zero sound includes [10–26]). It was pointed out in [10] that

the equality between the speed of holographic zero sound and the speed of hydrodynamic

sound is consistent with the Landau parameters, which control the interaction strength in

a Fermi liquid, being parametrically large. In this paper we consider a particular back-

ground (reviewed in section 2) which exhibits a linear heat capacity at small temperatures

and features a holographic zero sound mode. In section 3 we show that linearized hydrody-

namics is completely sufficient to describe the holographic zero sound excitation to second

order in the derivative expansion: it should therefore be identified with the usual hydro-

dynamic sound mode. The situation here is similar to [27], where a different background

was considered.

In section 4 we consider Landau Fermi liquid theory and show that the observations

in the holographic model can be explained by considering a regime of parametrically small

Fermi velocity and taking the second Landau parameter to the stability bound F2→ − 5

corresponding to the Pomeranchuk critical point. In particular, the quasiparticle lifetime

τ ∼ (F2 + 5) becomes parametrically small, and as a result, linearized hydrodynamics is

valid for energies that are much larger than the temperature, as long as they are small

compared to the chemical potential. This parametrically small lifetime means that we are

pushing the Landau Fermi liquid into a regime where it behaves like a non-Fermi liquid.

This choice of parameters also resolves an apparent paradox: the viscosity/entropy density

ratio for any model that involves Einstein-Hilbert gravity is η/s = 1/4π [28–31]. At first

sight, the viscosity/entropy ratio of a generic Fermi liquid diverges like η/s ∼ µ3/T 3 for

large ratios of chemical potential µ and temperature T . However, as we explain in section 4,

the coefficient in front of the leading term in η/s vanishes for F2 = −5, and so a Fermi

liquid description may be compatible once we tune the Landau parameters accordingly.

This raises the question of whether we can have a holographic dual of a generic Landau

Fermi liquid, where hydrodynamics breaks down at high energies and collisionless behavior

takes over? One clear signature of any such model is that η/s ∼ µ3/T 3. In section 5, we

describe a procedure by which one could construct a model with precisely this behavior,

by adding higher derivative terms to the gravitational Lagrangian. We discuss our results

in section 6. The appendices contain some technical details related to sections 3 and 5.

2 The two-charge black hole

Here we briefly review the dilatonic black hole in AdS5 recently explored in [32–35]. This

black hole is usually referred to as the two-charge black hole, because it arises as a solution

to the truncation of IIB supergravity on AdS5 × S5 where two of the three U(1) charges

are equal and non-vanishing while the third one is zero [36].

After this truncation one obtains the action [32, 35]

I0 =
1

16πG

∫
d5x

√
g

(
R− 1

2
(∂φ)2 − 8

L2
eφ/

√
6 − 4

L2
e−2φ/

√
6 + 2e2φ/

√
6FabF

ab

)
, (2.1)
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with φ a scalar field and Fab the field strength of the Maxwell field Ab. The 2-charge black

hole solution is [32, 35]

ds2 = e2a(r)
(
h(r)dt2 − dx2 − dy2 − dz2

)
− e2b(r)

h(r)
dr2 , (2.2)

where

a(r) = log

(
r

L

(
1 +

Q2

r2

) 1
3

)
, b(r) = − log

(
r

L

(
1 +

Q2

r2

) 2
3

)
, h(r) = 1− (r2H +Q2)2

(r2 +Q2)2
,

(2.3)

φ(r) =

√
2

3
log

(
1 +

Q2

r2

)
, At(r) =

Q

2L

(
1− r2H +Q2

r2 +Q2

)
. (2.4)

The temperature T , chemical potential µ, entropy density s, charge density σ, energy

density ε and pressure P of the dual field theory are given in terms of the parameters of

the 2-charge black hole (2.2) via

T =
rH
πL2

, µ =

√
2Q

L2
, s =

rH
4GL3

(r2H +Q2), σ =

√
2Qs

2πrH
, ε = 3P =

3
(
r2H +Q2

)2

16πGL5
.

(2.5)

At large densities, this black hole is dual to a semi-local quantum liquid [37] which violates

hyperscaling [38]. See [39–45] for related work.

3 Hydrodynamics

In common with other field theories, for small amplitude excitations around this equilibrium

state with sufficiently small frequencies and momenta, local thermal equilibrium is main-

tained and one can describe the system using hydrodynamics [46]. In this hydrodynamic

limit, the excitations of the system include hydrodynamic sound modes with dispersion

relations [47]

ω = ±
√

dP

dε
k − i

2η

3 (ε+ P )
k2 + . . . , (3.1)

where the ellipsis denotes higher order terms in k. The attenuation of this hydrodynamic

sound mode is controlled by the viscosity η of the field theory. For the two-charge black

hole, η = s/4π [31], and thus the hydrodynamic sound mode dispersion relation is

ω = ± 1√
3
k − i

rHL2

6
(
r2H +Q2

)k2 + . . . ,= ± 1√
3
k − i

πT

3 (µ2 + 2π2T 2)
k2 + . . . . (3.2)

Note that the leading k2 contribution to the attenuation vanishes linearly with T in the

limit T → 0. This is because s ∼ T at low T .

We are interested in the two-charge black hole solution in the large density limit µ ≫
T, ω, k. Furthermore, we will assume |ω| ∼ k from now, since this is true for the sound

mode in which we are interested. Within this large density limit, the ratio k/T is still

– 3 –
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arbitrary. We will now clarify our previous assertion of how “sufficiently small” k must be

such that hydrodynamics is applicable. In a quasiparticle description, there is a mean free

path lη between (thermal) collisions and the regime of applicability of hydrodynamics is

then klη ≪ 1. For the two-charge black hole, we can identify a natural expansion parameter

from the dispersion relation (3.2)

lη =
T

µ2 + 2π2T 2
. (3.3)

This suggests that hydrodynamics is valid provided that k/µ ≪
(
µ/T + 2π2T/µ

)
. Within

the large density limit, this inequality is always satisfied and hence the hydrodynamic

result (3.2) should be true for arbitrary k within the large density limit. This is intimately

related to the fact that η ∼ s for holographic theories, since from (3.1) we can write the

range of applicability of hydrodynamics more abstractly as |ω| ∼ k ≪ l−1
η ∼ η−1 ∼ s−1

and s ∼ T is always small (in units of µ) in the large density limit. In a Landau Fermi

liquid, lη ∼ µ/T 2 is the length scale over which individual fermions interact such that a

hydrodynamic state is formed. For a generic holographic theory with η ∼ s, the equivalent

length scale is always small, indicating that a single-particle description is not applicable.

This applicability of hydrodynamics at arbitrarily low temperatures was shown ana-

lytically for the collective excitations of the Reissner-Nordstrom-AdS4 black brane in [27].

To verify this for the two-charge black hole, we have calculated numerically the dispersion

relation of the sound mode of the field theory dual to the two-charge black hole over a

large range of temperatures. The details of this calculation are given in appendix A and

the results are shown in figure 1. The dispersion relation agrees well with the hydrody-

namic prediction (3.2) down to very low T . In the limit T → 0, where the leading order

hydrodynamic result (3.2) for the sound attenuation vanishes, the numerical result begins

to differ from the (vanishing) hydrodynamic prediction. This difference is of order k3 and

thus the numerical results are consistent with the hydrodynamic prediction (3.2) to O
(
k2
)

for all T in the large density limit. At higher orders in k, we expect that they will differ due

to logarithmic terms present in the correlators of the semi-local quantum liquid state [27].

We emphasise here that this behaviour is totally different to that in a generic Landau

Fermi liquid, which has η ∼ T−2 (since η 6= s/4π). For Landau Fermi liquids, hydrody-

namics breaks down at low temperatures |ω| ∼ τ−1
η ∼ η−1 ∼ T 2/µ where the hydrody-

namic sound attenuation becomes very large [48–50]. It is replaced by a collisionless regime

where quantum interactions sustain a ‘zero sound’ mode with a different dispersion relation

than (3.1). This has been confirmed experimentally [51].

4 Can Landau Fermi liquid theory describe the two-charge black hole?

In this section we explore the possibility that Landau Fermi liquid theory might explain the

low energy physics of the collective excitations in the theory holographically dual to (2.2).

As explained in the previous section, this can only happen for a very specific limit of Fermi

liquid theory, since the gravity dual necessarily implies that η/s = 1/4π.

– 4 –
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Figure 1. Numerical results for the imaginary part of the sound dispersion relation. The real part

(not shown) is always ≈ k/
√
3. Left : the sound attenuation at fixed k/µ = 0.1 as a function of

T/µ. The numerical results (shown as black dots) agree very well with the hydrodynamic dispersion

relation (3.2) (shown as a red line) down to very small temperatures. Right : logarithmic plot of

the sound attenuation at fixed, very small T/µ = 0.001 as a function of k/µ. The best fit to the

numerical results (shown as black dots) is a straight line of gradient ≈ 2.96 (shown as a black line),

indicating a k3 dependence.

4.1 Establishing the N-dependence of the Fermi liquid parameters

The low temperature heat capacity of the field theory holographically dual to (2.2) is

given by

cV =
πL3

8G
µ2T =

N2

4
µ2T, (4.1)

where we have used L3/G = 2N2/π (see e.g. [52]). This should be compared to the Landau

Fermi liquid result

cV =
kFm

∗

3
T. (4.2)

Let us assume that Luttinger’s theorem holds and therefore that the charge density is

σ = α

∫ kF

0

dτ

(2π)3
= α

k3F
6π2

. (4.3)

We assume that the numerical coefficient α is O(N0) and counts the number of charged

operators as well as their charge. This would be true, for example, if the charge in the state

is carried by an O(1) number of fermionic operators. The validity of Luttinger’s theorem

has been widely debated in the literature (see e.g. [8, 53, 54]). In [54] it was shown that, by

including magnetic monopole contributions, Friedel oscillations in the charge density are

seen at a wavevector satisfying Luttinger’s theorem for a (1+1)-dimensional theory. The

validity of this result in higher dimensions (see [55] for progress in this direction) would be

a useful check of our assumption.

With this assumption, we can deduce the N -dependence of the various Landau Fermi

liquid parameters. We can rewrite one of the expressions in (2.5) as

σ =
L3

16πG
µ3 =

N2

8π2
µ3, (4.4)

– 5 –
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at T = 0. Comparing this to (4.3), we deduce that

kF =

(
3N2

4α

) 1
3

µ. (4.5)

Now comparing (4.1) and (4.2) and using (4.5) we obtain the following expressions for the

effective quasiparticle mass and the Fermi velocity

m∗ = α
1
3

(
3N2

4

) 2
3

µ, υF = α− 2
3

(
3N2

4

)− 1
3

. (4.6)

We are therefore dealing with an extremely massive Fermi liquid whose Fermi velocity

is parametrically small. We will now compare (4.6) with the formula for the effective

quasiparticle mass in a relativistic Landau Fermi liquid

m∗ = µ

(
1 +

F1

3

)
, (4.7)

to deduce the Landau interaction parameter

F1

3
= α

1
3

(
3N2

4

) 2
3

= α
1
3 ǫ−2, (4.8)

where we have neglected terms that are O(N−2/3) and introduced an expansion parameter

ǫ =

(
3N2

4

)− 1
3

≪ 1. (4.9)

We next consider the Landau Fermi liquid expression for the speed of hydrodynamic sound

c1 =
υF√
3

[
(1 + F0)

(
1 +

F1

3

)] 1
2

=
1√
3
, (4.10)

where the last equality is true for the theory holographically dual to (2.2). From (4.10) we

deduce that

F0 = α− 1. (4.11)

The main lesson of this equation is that F0 = O(1), contrary to F1 = O(N4/3) as given in

equation (4.8).

With these N -dependences, we can explain the results of various holographic computa-

tions, as we will show shortly. To explain the hydrodynamic results of the previous section,

one more assumption is needed. We must tune F2 → −5 so that the quasiparticles are

short-lived. This means that a hydrodynamic, rather than a single-particle, description is

applicable at low T , as we found for the holographic theory in the previous section.

In this limit, the speed of the zero sound mode c0 is equal to the hydrodynamic value

c1 = 1/
√
3. To compute the speed of zero sound, one needs to solve the integral equation

(
c0
vF

− cos θ

)
ν(θ, ϕ) = cos θ

∫
F (θ, θ′)ν(θ′, ϕ′)

dΩ′

2π
, (4.12)

– 6 –
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where ν(θ, ϕ) parametrizes the deviation of the Fermi surface from the spherical form. For

zero sound, this deviation is ϕ-independent and we can expand in Legendre polynomials,

ν(θ, ϕ) =
∑

l

Pl(cos θ)νl, ν̃l =
νl

2l + 1
. (4.13)

Equation (4.12) then becomes

ν̃l +
∑

l

Ωll′

(
c0
vF

)
Fl′ ν̃l′ = 0, (4.14)

where

Ωll′

(
c0
vF

)
=

1

2

∫ 1

−1
dyPl(y)

y

y − c0
vF

Pl′(y). (4.15)

We now substitute

s̃ ≡ υF
c0

= O(ǫ), (4.16)

into (4.14) and (4.15) and expand in powers of s̃. This is an expansion in inverse powers

of N . We start by computing the determinant of

All′ = δll′ +Ωll′

(
c0
vF

)
Fl′ . (4.17)

For (4.14) to have a non-trivial solution, it must be that detA = 0.

At this point we will make an important assumption that

Fn = O(1), n > 1, (4.18)

which will simplify things considerably. We will only keep terms up to O(s̃2) in the matrix

All′ (4.17). After some algebra, we arrive at

detA = 1− F0s̃
2

3
− F1s̃

2

5
− F0F1s̃

2

9
− 4

225
F1F2s̃

2 +O(s̃2). (4.19)

In (4.19), we have used (4.18) and F1, F0F1 = O(s̃−2) to write only terms that can possibly

be O(1) (or smaller). It is now clear that keeping terms subleading to O(s̃2) in (4.15)

and (4.17) will only modify subleading terms in (4.19).

We now substitute

s̃2 =
3

(1 + F0)(1 + F1/3)
, (4.20)

into (4.19) (i.e. impose that c0 = c1) and demand detA = 0, which gives rise to

4

25

F1(5 + F2)

(1 + F0)(3 + F1)
= O(s̃2), (4.21)

which implies

F2 = −5 +O(s̃2). (4.22)

We also need to determine the values of ν̃l. This computation is technically more

involved than calculating the determinant: we now need to compute the eigenvector of A

associated with the vanishing eigenvalue. We have done this calculation with Fn 6= 0, n ≤ 3.

The result is

ν̃0 = 1, ν̃1 =
α

1
3 ǫ√
3
, ν̃2 =

2

5
, ν̃3 = O(ǫ2). (4.23)

– 7 –
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4.2 Observables

We start by considering observables that present some obvious contradictions with a Lan-

dau Fermi liquid description and we will see how these are resolved by counting powers of

N . We will then consider the fate of collective excitations at small temperatures, where

the Fermi liquid description predicts a particular low temperature behavior.

Friedel oscillations. It has been argued that the two-point functions of the currents

should develop a non-analytic behavior at k = 2kF and ω→0. As is clear from (4.5),

such non-analytic structure cannot be observed from the usual linear fluctuations in su-

pergravity, since the equations of motion for these fluctuations have k ∼ O(N0). To

detect non-analytic behavior at kF ∼ O(N2/3), one should include the effects of magnetic

monopoles along the lines of [54, 55].

Particle-hole continuum; Landau damping. A related problem is a non-trivial struc-

ture of the spectral function associated with the particle-hole continuum. On the ω axis,

the upper edge of the continuum is defined, for small ω and k, by ω = υFk. The physics

of this has been recently reviewed in [20], where it was proposed that the continuum is

not seen because of a parametrically small υF . Precisely such a situation is implied by

eq. (4.6). See [4] for related work.

Entanglement entropy. It has been argued that the presence of a Fermi surface leads

to a logarithmic violation of the area law

S ≃ L2k2F logL+ . . . . (4.24)

Such a violation has not been observed (see e.g. [56]). The resolution of this puzzle is

simple: according to (4.5), the L2 logL term in the entanglement entropy must multiply

a factor of N4/3, while the tree level result [57, 58] only gives the leading term which

is O(N2).

Collective modes with azimuthal dependence. As well as zero sound, a Landau

Fermi liquid can support other collective modes due to more complicated fluctuations

of the Fermi surface. These have not yet been seen in any holographic theory. Including

azimuthal dependence in the deformation of the distribution function (4.13) leads to simple

modifications of eqs. (4.14) and (4.15). The analog of the matrix (4.17), whose determinant

must vanish, is now

Am
ll′ = δll′ +Ωm

ll′(s)Fl′ , (4.25)

where

Ωm
ll′(s) =

1

2

(l − |m|)!
(l + |m|)!

∫ 1

−1
dyPm

l (y)
y

y − s
Pm
l′ (y), (4.26)

and m ≤ l, l′. Repeating the steps that led to (4.21), we obtain

1− 3F1(5 + F2)S
2
1

25(1 + F0)(3 + F1)
= O(s̃2), (4.27)

– 8 –
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where S1 is the speed of the m = 1 collective mode c(m=1) measured in units of c0, S1 =

c(m=1)/c0. When F0 ∼ α ∼ O(1), eq. (4.27) implies that for generic values of F2, in

addition to the m = 0 zero sound mode, there is also another collective mode. However

because of the special value of F2 given in (4.22), there is actually no solution of (4.27)

with c(m=1) of order one. We have also checked that for higher modes (m > 1) the analog

of eq. (4.27) has no solutions with c(m>1) = O(1).

Shear viscosity. In the holographic model that we consider, the shear viscosity satisfies

the universal law [31]
η

s
=

1

4π
. (4.28)

This, at first sight, presents a puzzle, since the Fermi liquid result is

η =
1

5
ρkFυF τη ∼ ρkFυF τ, (4.29)

where
τη
τ

=
2

π2

∑

ν=1,3,5,...

2ν + 1

ν(ν + 1)[ν(ν + 1)− 2λη]
, (4.30)

and λη = O(1). The quasiparticle lifetime, τ in (4.29) is related to the scattering proba-

bilities of the quasiparticles W (θ, ϕ) via

τ =
8π

m∗3〈W 〉T 2
, (4.31)

where

〈W 〉 =
∫

dΩ

4π

W (θ, ϕ)

cos(θ/2)
. (4.32)

The probabilities are related to the scattering amplitudes which, in turn, can be related to

the Landau parameters, if assumed to be ϕ-independent:

W (θ, ϕ) = 2π|A(θ, ϕ)|2 = 2π5

m∗2k2F
|
∑

l

FlPl(cos θ)|2, (4.33)

where

Fl =
Fl

1 + Fl/(2l + 1)
. (4.34)

From (4.34) it is clear that generally Fl = O(1) and therefore τ ∼ k2F /(m
∗T 2), which gives

η ∼ N2µ5/T 2 and η/s ≃ µ3/T 3 in sharp contradiction with (4.28). However the value of

F2 in (4.22) is very non-generic! Precisely for this value, the denominator in (4.34) vanishes

(as O(ǫ2)) and τ receives an extra factor of ǫ4. Hence, once (4.22) is taken into account, the

leading order result (in powers of N2) for η/s is no longer µ3/T 3, and one needs to consider

higher order terms in T/µ. Field theoretic calculations indicate that, in the F2 → −5 limit,

marginal Fermi liquid-type excitations exist [59], and it would be interesting to determine

the viscosity in models like this.

– 9 –
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The applicability of hydrodynamics. In section 3 we observed that the characteristic

length scale where a hydrodynamic description of the sound mode breaks down is given

by eq. (3.3). As explained above, this is consistent with Landau Fermi liquid theory with

F2 = −5, in which the divergence of the viscosity at low T — which ensures the breakdown

of hydrodynamics — is suppressed.

5 Higher derivative corrections

In the previous section we have shown that in the limit F2 → −5, many of the generic

properties of a Landau Fermi liquid are no longer realised. It is important that we can

recover these generic properties by altering the gravitational theory such that F2 is no

longer fine-tuned in this way. In this section we will discuss a procedure by which one

may be able to recover the expected η/s ∼ µ3/T 3 behavior of a Landau Fermi liquid, by

including specific higher-derivative terms in the gravitational Lagrangian.

5.1 Entropy

To compute the entropy of the field theory dual to a gravitational solution, we use the

Wald formula

S = −2π

∫
dΩ

δL
δRabcd

EabEcd , (5.1)

where L is the Lagrangian, dΩ = d3x
√
g3 is the horizon volume element, Eab =

√
|g2|ǫab is

the antisymmetric tensor with indices taking values t, r, and g2 = gttgrr. We will consider

a set of three different four-derivative gravitational terms with coefficients ci, i = 1, 2, 3.

After setting the gravitational constant G = 1 and the AdS radius L = 1, the terms in the

Lagrangian which contribute to the Wald formula are

LR =
1

16π

(
R+ (β1e

γ1φ + β2e
γ2φ)(c1R

2 + c2RabR
ab + c3RabcdR

abcd)
)
, (5.2)

where β1, β2, γ1 and γ2 are constants. We wish to fix the various constants to satisfy two

requirements: that the viscosity is that of a Landau Fermi liquid in the low-temperature

limit rH/Q ≪ 1, as discussed in the next subsection, and that the metric and dilaton

have the same near-boundary asymptotics as in the two-derivative theory, as discussed in

appendix B.

The Wald formula (5.1) gives the following expression for the entropy:

S =
A

4

(
1 + (β1e

γ1φ + β2e
γ2φ)

(
2c1R+ c2(R

t
t +Rr

r) + 4c3g
ttgrrRtrtr

)
|r=rH

)
, (5.3)

where A is the area of the horizon. For the two-charge black hole (2.2) we obtain

S =
A

4


1 +

8(β1e
γ1φ + β2e

γ2φ)

3r2H

(
1 + Q2

r2
H

)2/3
[
(11c1 + 4c2 + 5c3)Q

2 + 24(5c1 + c2 − c3)r
2
H

]

 . (5.4)
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To retain the Fermi liquid result s ∼ T , we do not want the entropy to get corrections from

these higher-derivative terms. For this purpose we choose

c1 = 1 , c2 = −4 , c3 = 1 , (5.5)

which corresponds to the Gauss-Bonnet term. The entropy density is therefore given

by (2.5).

Note that in addition to the explicit corrections to the entropy density due to the

higher-derivative contributions to the Wald formula, there is also a correction ∆s coming

from the O(β) correction to the classical background (2.2). The two-derivative term gives a

contribution s = (gxx(rH))3/2/4 to the entropy, and therefore ∆s = 3
√
gxx(rH)∆gxx(rH)/8.

However, we can define a new radial coordinate ρ (see appendix B) such that, as in [60],

gxx(ρ) = −ρ2. Then we can choose the constants of integration of the higher-derivative

equations of motion for the metric such that the horizon radius ρH is unchanged, and

therefore ∆gxx(ρH) = 0 and ∆s = 0.

5.2 Viscosity to entropy ratio

The total action we study I = I0 + Ihd + Ia + Ipot is a sum of the two-derivative terms I0,

given by (2.1), the higher-derivative Gauss-Bonnet term with dilaton coupling (see (5.2)

and (5.5))

Ihd =
1

16π

∫
d5x

√
g(β1e

γ1φ + β2e
γ2φ)(R2 − 4RabR

ab +RabcdR
abcd) , (5.6)

the extra dilaton terms

Ia =
1

16π

∫
d5x

√
g
(
β1e

γ1φ(a1 + b1g
µν∂µφ∂νφ) + β2e

γ2φ(a2 + b2g
µν∂µφ∂νφ)

)
, (5.7)

and the extra dilaton potential terms

Ipot =
1

16π

∫
d5x

√
g(gµν∂µφ∂νφ)

2β1e
γ1φ
(
c1 + d1e

w1φ + d2e
w2φ + d2e

w2φ
)
. (5.8)

Note that the terms (5.7) and (5.8) do not contribute to the Wald formula (5.1). As we

will explain, the terms (5.7) and (5.8) do not contribute to the viscosity either.

There are two reasons for adding the terms (5.7) and (5.8) to the action. Firstly, by

choosing

a1 = a2 = −120 , b1 = b2 = 4 , (5.9)

the near-boundary asymptotics of the metric and dilaton are the same as in the two-

derivative theory. The additional parameters c1, d1,2,3 and w1,2,3 are required so that, by

fine tuning them, we still have

T ≃ rH , µ ≃ Q , (5.10)

in the limit rH/Q ≪ 1, as in the two-derivative theory (2.5). We elaborate on both of

these points in appendix B.
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Consider the fluctuation hyx(r, t, x) of the metric tensor in the momentum representa-

tion

hyx =

∫
d2k

(2π)2
φk(r)e

−iωt+ikz . (5.11)

The action I = I0 + Ihd, expanded up to second order in fluctuations, has the general

form [60–62]

I =
1

16π

∫
d2k

(2π)2
[
A(r)φ′′

kφ−k +B(r)φ′
kφ

′
−k + C(r)φ′

kφ−k

+D(r)φkφ−k + E(r)φ′′
kφ

′′
−k + F (r)φ′′

kφ
′
−k

]
, (5.12)

plus an appropriate Gibbons-Hawking boundary term. The viscosity can be computed

from the equation [60, 62]

η =
1

8π
(κ2(rH) + κ4(rH)) , (5.13)

where

κ2(r) =

√
−grr
gtt

(
A(r)−B(r) +

F ′(r)

2

)
, κ4(r) =

(
E(r)

(√
−grr
gtt

)′)′

, (5.14)

where a prime denotes a derivative with respect to r, and where the momentum k and

frequency ω are set to zero. The terms Ia and Ipot, given in (5.7) and (5.8), do not

involve derivatives of hyx and so do not affect the viscosity. We can separately compute

the contribution to the viscosity η0 from the two-derivative terms in the action I0, and the

contribution to the viscosity η1 from the higher-derivative terms in the action Ihd. The

total viscosity is given by η = η0 + η1.

Consider first the higher-derivative term Ihd. We can expand Ihd up to second or-

der in fluctuations and extract the corresponding coefficients A1, B1, E1, F1, before using

equations (5.13) and (5.14) to give

η1 =
1

8π

(
κ
(1)
2 (rH) + κ

(1)
4 (rH)

)

= −β1(Q
2(1− 2

√
6γ1) + 3r2H)

6π

(r2H +Q2)
√

2/3γ1+1/3

r
2
√

2/3γ1−1/3

H

− β2(Q
2(1− 2

√
6γ2) + 3r2H)

6π

(r2H +Q2)
√

2/3γ2+1/3

r
2
√

2/3γ2−1/3

H

. (5.15)

Now we will determine the contribution to the viscosity from the two-derivative term

I0. The most general two-derivative term which contributes to the entropy density and to

the shear viscosity is of the form

S =

∫
d5x

√
g(R+ Lm) , (5.16)

where Lm is the Lagrangian for matter. We denote the corresponding viscosity as η0
and the corresponding entropy density as s0. If the classical background is corrected by
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higher-derivative terms, then the viscosity receives a correction ∆η and the entropy density

receives a correction ∆s. In addition to these, the higher-derivative terms, evaluated on

the classical background, contribute η1 and s1 to the viscosity and the entropy density

respectively, as previously explained.

The question is whether we need to compute ∆η and ∆s to determine η/s. To leading

order in β, the effect of these terms is

η0 +∆η + η1
s0 +∆s+ s1

− η0 + η1
s0 + s1

∼ η0 +∆η

s0 +∆s
− η0

s0
∼ s0∆η − η0∆s. (5.17)

But it is known [28, 31, 63] that η/s, when computed from the two-derivative action (5.16),

does not depend on the background. In fact since η = g
3/2
xx /(16π) (one can derive this in

the formalism of [60], that is using equation (5.13) for the action (5.16) with arbitrary

background metric), and s = g
3/2
xx /4, one always has s0∆η−η0∆s = 0 for any correction to

the background. Therefore as long as we are interested in η/s, we do not have to compute

∆η and ∆s [60, 62]. In fact, as we noted in the previous subsection, we have ∆s = 0 and

∆η = 0 satisfied separately, simply because of the ∆gxx(rH) = 0 equation.

We choose

γ1 =
7

2
√
6
, β1 = 3β , γ2 = − 7√

6
, β2 =

3

2
β . (5.18)

The parameters β1,2 and γ1,2 then satisfy

β1
β2

γ1
γ2

= −1 , (5.19)

which, as shown in appendix B, is crucial to obtain the correct asymptotic behavior of gtt
and the dilaton. Therefore in the limit rH/Q ≪ 1, we obtain

η ≃ Q5

r2H
. (5.20)

This behavior agrees with the low-temperature result of Landau Fermi liquid theory, pro-

vided that the black hole solution has T ∼ rH and µ ∼ Q when rH/Q ≪ 1, as in the

two-derivative theory. This is a non-trivial requirement which needs fine tuning of the co-

efficients c1, d1,2,3 and w1,2,3. In appendix B, we describe a numerical procedure by which

one can tune these coefficients and change the leading functional dependence of T and µ

on rH and Q. It is clear from this analysis that it is not easy to produce a gravitational

dual of these generic Landau Fermi liquid properties. This further underlines how different

holographic metals are, compared to their conventional counterparts.

6 Discussion

In section 4 we described a scenario where a Landau Fermi liquid with specific parameters

was responsible for the properties of the two-charge black hole. The two crucial assumptions

were the existence of a single or, at most, O(1) Fermi surfaces and the applicability of

Luttinger’s theorem. There is some tension with the observation of singularities in the

two-point function of the gauge-invariant fermionic operators [33], which would signify
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that kF ∼ µ (as opposed to (4.5)). If one takes the singularities at kF ∼ µ seriously, two

logical possibilities present themselves: i) the Fermi surface is formed by the N2 species

of gauginos, and Luttinger’s theorem is almost satisfied [33], or ii) Luttinger’s theorem is

strongly violated in holographic models where charge is sourced by black hole horizons due

to fractionalization in the dual field theory [3, 53].

In this paper we raise a third possibility, which explains all other observable data (such

as the absence of Friedel oscillations, the particle-hole continuum and the logarithmic

violation of entanglement entropy, as well as the behavior of collective excitations). To

make this picture more precise, it would be interesting to identify possible effects responsible

for (4.5), and also to check more thoroughly whether one can depart from the F2 = −5 limit

and recover a generic Landau Fermi liquid. In this case, there are precise predictions for the

behavior of the sound mode outside of the hydrodynamic regime.2 We took the first steps

in this direction in section 5 by describing how one could, in principle, construct a higher

derivative gravitational theory which reproduces the viscosity of a Landau Fermi liquid.

It would be interesting to check our assumption of Luttinger’s theorem by a calculation

along the lines of [54] (work in this direction was undertaken in [55]). We do not have

anything to say at the moment regarding the microscopic origin of the parametrically large

kF . It is known that the naive large N counting breaks down in vector models at finite

chemical potential [64, 65], and the recent works [66–70] have suggested other ways to

construct controlled microscopic descriptions of related systems. It would be interesting to

see whether the power law in (4.5) can be naturally reproduced. Finally, let us comment

on the nature of the F2 = −5 limit. It is known that for Fl < −2l − 1 the Landau Fermi

liquid becomes unstable. If our scenario is correct, it would be interesting to identify this

instability from a bulk perspective (see [71] for related work).
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A Quasinormal modes of the two-charge black hole

The dispersion relations of the collective excitations in the field theory dual to a black

hole solution are given by the dispersion relations of the quasinormal modes of that black

hole [72]. These quasinormal modes are solutions of the linearised equations of motion for

perturbations of the fields around the background solution (2.2) which are infalling at the

2We remind the reader that hydrodynamics fixes the speed of the sound mode c1 to be equal to the

thermodynamic value, c21 = ∂P/∂ε, which is different from the speed of zero sound in a generic Fermi liquid.
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horizon r = rH and whose leading term vanishes at the boundary r → ∞. It is convenient

to go to Fourier space and perturb the background fields as follows

φ (r) → φ (r) +

∫
dωdk

(2π)2
e−iωt+ikzϕ (r, ω, k) ,

Aµ (r) → Aµ (r) +

∫
dωdk

(2π)2
e−iωt+ikzaµ (r, ω, k) ,

gµν (r) → gµν (r) +

∫
dωdk

(2π)2
e−iωt+ikzhµν (r, ω, k) . (A.1)

The equations of motion for these perturbations can be obtained from the action (2.1) but

they are very lengthy and we will not present them here.

The sound mode in which we are most interested is associated with longitudinal density

oscillations in the field theory and thus is realised in the gravitational dual as a quasinormal

mode of htt (which is dual to the component of the field theory energy-momentum tensor

T tt). At linear order, htt couples to hzz, hxx+hyy, hrr, htr, hzr, hzt, at, az, ar, and ϕ. Within

this set of fields there are, in fact, only three independent degrees freedom which are

invariant under infinitesimal diffeomorphisms and U(1) gauge transformations. We choose

the basis

Zh = 2ωkhzt + ω2hzz − k2hhtt −
1

2

[
ω2 − k2

(
h+

rgh′

2g + rg′

)] (
hxx + hyy

)
,

Za = ωaz + kat − k
rgA′

t

2 (2g + rg′)

(
hxx + hyy

)
,

Zϕ = ϕ−

√
3
2rg

′

2 (2g + rg′)

(
hxx + hyy

)
, (A.2)

and write the equations of motion in the form

Z ′′
h + C1Z

′
h + C2Z

′
a + C3Z

′
ϕ + C4Zh + C5Za + C6Zϕ = 0,

Z ′′
a + C7Z

′
h + C8Z

′
a + C9Z

′
ϕ + C10Zh + C11Za + C12Zϕ = 0,

Z ′′
ϕ + C13Z

′
h + C14Z

′
a + C15Z

′
ϕ + C16Zh + C17Za + C18Zϕ = 0, (A.3)

where the coefficients Ci will be given shortly. Near the spacetime boundary r → 0, the

solutions of these equations are of the form

Zh = Z
(1)
h

[
Z

(0)
h

Z
(1)
h

(1 + . . .) + r−4 (1 + . . .)

]
,

Za = Z(1)
a

[
Z

(0)
a

Z
(1)
a

(1 + . . .) + r−2 (1 + . . .)

]
,

Zϕ = Z(1)
ϕ

[
Z

(0)
ϕ

Z
(1)
ϕ

r−2 log

(
r

r0

)
(1 + . . .) + r−2 (1 + . . .)

]
, (A.4)

where the ratios Z(0)/Z(1) are fixed by imposing infalling boundary conditions at the hori-

zon. Quasinormal modes are solutions to these equations of motion which are infalling at
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the horizon and for which Z(0)/Z(1) vanishes for all three fields. These modes exist only

for a discrete set of quasinormal frequencies ω (k, T, µ). To determine these quasinormal

frequencies numerically we follow the ‘determinant method’ described in [73] with one dif-

ference. Since the source term in the near-boundary expansion of ϕ is the logarithmic

term [74], we extract it by fitting the near-boundary expansion of the numerical solution to

the form in (A.4) and construct the determinant with this. We note that this method does

not give any information about the residue of the pole, only its location in the complex

frequency plane. It would be interesting to determine the corresponding residue but we

will not address this issue here.

Without further ado, we now list the coefficients Ci in the equations of motion (A.3)

C1 =
[
k4
(
r2 − r2H

) (
8Q10

(
6r4 − r2r2H + r4H

)
+ 4Q8

(
53r6 − 19r4r2H + 23r2r4H + 3r6H

)

+ 2Q6
(
262r8 − 181r6r2H + 83r4r4H + 73r2r6H + 3r8H

)

+Q4
(
563r10 − 181r8r2H − 324r6r4H + 348r4r6H + 73r2r8H + r10H

)

+ 6Q2r2
(
44r10 + 13r8r2H − 49r6r4H + r4r6H + 29r2r8H + 2r10H

)

+ 3r4
(
15r10 + 15r8r2H − 16r6r4H − 16r4r6H + 9r2r8H + 9r10H

))

− 2k2ω2
(
Q2 + r2

) (
2Q10

(
5r4 − 5r2r2H + 2r4H

)
+Q8

(
109r6 − 120r4r2H + 35r2r4H + 4r6H

)

+Q6
(
303r8 − 288r6r2H + 16r4r4H + 40r2r6H + r8H

)

+ 2Q4r2
(
193r8 − 156r6r2H − 36r4r4H + 38r2r6H + 5r8H

)

+Q2r4
(
219r8 − 102r6r2H − 156r4r4H + 72r2r6H + 19r8H

)
+ 3r6

(
15r8 − 17r4r4H + 6r8H

))

+ ω4
(
Q2 + r2

)4 (
Q2 + 3r2

)2 (
Q2
(
6r2 − 2r2H

)
+ 5r4 − r4H

)]
/
[
r
(
Q2 + r2

) (
Q2 + 3r2

)

(
r2 − r2H

) (
2Q2 + r2 + r2H

) (
k2
(
r2 − r2H

) (
2Q2 + r2 + r2H

)
− ω2

(
Q2 + r2

)2)

(
k2
(
Q2
(
4r2 − 2r2H

)
+ 3r4 − r4H

)
− ω2

(
Q4 + 4Q2r2 + 3r4

))]
, (A.5)

C2 =− 16kLQ
(
Q2 + r2H

) (
k2
(
Q2
(
2r2H − 4r2

)
− 3r4 + r4H

)
+ ω2

(
Q4 + 4Q2r2 + 3r4

))

r (Q2 + r2) (Q2 + 3r2)
(
k2 (r2 − r2H) (2Q2 + r2 + r2H)− ω2 (Q2 + r2)

2
) , (A.6)

C3 =0, (A.7)

C4 =
[
k4L4

(
Q2 + 3r2

) (
Q2 + r2

)2 (
r2 − r2H

) (
Q4
(
8r2 − 4r2H

)
+ 2Q2

(
5r4 + r2r2H − 2r4H

)

+ 3r6 + 3r4r2H − r2r4H − r6H

)
− 2k2

(
Q12

(
r2
(
3L4ω2 − 32r2H

)
− 2L4r2Hω2 + 32r4

)

+Q10
(
5r4

(
5L4ω2 + 16r2H

)
− 16r2

(
L4r2Hω2 + 9r4H

)
− L4r4Hω2 + 64r6

)

+Q8r2
(
r4
(
81L4ω2 + 256r2H

)
− 24r2

(
2L4r2Hω2 + r4H

)
− 8

(
L4r4Hω2 + 32r6H

)
+ 24r6

)

+ 4Q6
(
3r8

(
11L4ω2 + 8r2H

)
+ r6

(
96r4H − 17L4r2Hω2

)
− 2r4

(
3L4r4Hω2 + 32r6H

)
− 56r2r8H

)

+Q4r2
(
115L4r8ω2 + 2r6

(
72r4H − 23L4r2Hω2

)
+ r4

(
256r6H − 34L4r4Hω2

)
− 304r2r8H − 96r10H

)

+Q2r2
(
51L4r10ω2 − 12L4r8r2Hω2 + r6

(
96r6H − 23L4r4Hω2

)
+ 64r4r8H − 144r2r10H − 16r12H

)

+ 3r4
(
3L4r10ω2−2L4r6r4Hω2+8r4r8H−8r12H

))
+L4ω4

(
Q2+3r2

)2 (
Q2+r2

)5]
/
[(
Q2+r2

)2

(
Q2 + 3r2

) (
r2 − r2H

)2 (
2Q2 + r2 + r2H

)2 (
k2
(
Q2
(
2r2H − 4r2

)
− 3r4 + r4H

)

+ ω2
(
Q4 + 4Q2r2 + 3r4

))]
, (A.8)
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C5 =
[
64kLQ

(
Q2 + r2H

)3 (
2k4r2

(
2Q2 + 3r2

) (
r2 − r2H

) (
2Q2 + r2 + r2H

)

+ k2ω2
(
Q6
(
2r2H−4r2

)
+Q4

(
−27r4+16r2r2H+r4H

)
+Q2

(
−40r6+18r4r2H+8r2r4H

)

− 15r8 + 9r4r4H

)
+ ω4

(
Q4 + 4Q2r2 + 3r4

)2)/[(
Q2 + r2

)2 (
Q2 + 3r2

) (
r2 − r2H

)

(
2Q2+r2+r2H

) (
ω2
(
Q2+r2

)2−k2
(
r2−r2H

) (
2Q2+r2+r2H

))(
k2
(
Q2
(
2r2H−4r2

)

− 3r4 + r4H

)
+ ω2

(
Q4 + 4Q2r2 + 3r4

))]
, (A.9)

C6 = −
[
8

√
2

3
k2Q2

(
Q2 + r2H

)2 (
k4
(
−
(
r2 − r2H

)2) (
2Q2 + r2 + r2H

)2 (
2Q2

(
6r2 − r2H

)

+15r4−r4H

)
+2k2ω2

(
2Q8

(
3r4−7r2r2H+2r4H

)
+Q6

(
57r6−106r4r2H+29r2r4H+4r6H

)

+Q4
(
110r8 − 158r6r2H − 13r4r4H + 36r2r6H + r8H

)

+Q2r2
(
72r8 − 58r6r2H − 79r4r4H + 40r2r6H + 9r8H

)
+ r4

(
15r8 − 29r4r4H + 10r8H

))

+ ω4
(
Q2 + r2

)2 (
2Q6

(
r2 + r2H

)
+Q4

(
−13r4 + 32r2r2H + r4H

)

+Q2
(
−42r6 + 54r4r2H + 16r2r4H

)
− 15r8 + 27r4r4H

))]
/
[(
Q2 + r2

)3 (
Q2 + 3r2

)

(
r2 − r2H

) (
2Q2 + r2 + r2H

) (
ω2
(
Q2 + r2

)2 − k2
(
r2 − r2H

) (
2Q2 + r2 + r2H

))

(
k2
(
Q2
(
2r2H − 4r2

)
− 3r4 + r4H

)
+ ω2

(
Q4 + 4Q2r2 + 3r4

))]
, (A.10)

C7 =−
[
kQr

(
Q2 + r2H

) (
k2
(
2Q4

(
2r2 + r2H

)
+Q2

(
5r4 + 6r2r2H + r4H

)
+ 3r2

(
r4 + r4H

))

+ ω2
(
Q2 − 3r2

) (
Q2 + r2

)2)]
/
[
L
(
Q2 + 3r2

) (
ω2
(
Q2 + r2

)2

− k2
(
r2 − r2H

) (
2Q2 + r2 + r2H

))(
k2
(
Q2
(
2r2H − 4r2

)
− 3r4 + r4H

)

+ ω2
(
Q4 + 4Q2r2 + 3r4

))]
, (A.11)

C8 =
[
k2
(
r2 − r2H

) (
4Q6

(
r2H − 5r2

)
+ 4Q4

(
2r4 − 11r2r2H + r4H

)

+Q2
(
27r6 − 9r4r2H − 35r2r4H + r6H

)
+ 9r2

(
r2 − r2H

) (
r2 + r2H

)2)

− ω2
(
Q2 + r2

)2 (
Q2 + 3r2

) (
2Q2

(
r2 + r2H

)
+ 3r4 + r4H

)]
/
[
r
(
Q2 + 3r2

) (
r2 − r2H

)

(
2Q2 + r2 + r2H

) (
k2
(
r2 − r2H

) (
2Q2 + r2 + r2H

)
− ω2

(
Q2 + r2

)2)]
, (A.12)

C9 =

√
2
3kQr

(
Q2 + r2H

)

L (Q2 + r2)2
, (A.13)

C10 =
[
4kr2

(
2Q3 + 3Qr2

) (
Q2 + r2H

)3]
/
[
L
(
Q2 + r2

) (
Q2 + 3r2

) (
r2 − r2H

)

(
2Q2 + r2 + r2H

) (
k2
(
Q2
(
2r2H − 4r2

)
− 3r4 + r4H

)
+ ω2

(
Q4 + 4Q2r2 + 3r4

))]
,

(A.14)
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C11 =
[
− L4

(
Q4 + 4r2Q2 + 3r4

) (
r2 − r2H

)2 (
2Q2 + r2 + r2H

)2 (
3r4 − r4H +Q2

(
4r2 − 2r2H

))
k6

−
(
r2 − r2H

) (
2Q2 + r2 + r2H

) (
2
(
3r2Hω2L4 + 64r4 − r2

(
5ω2L4 + 64r2H

))
Q10

+
(
256r6 +

(
64r2H − 71L4ω2

)
r4 − 40

(
8r4H − L4r2Hω2

)
r2 + 3L4r4Hω2

)
Q8

+ 4r2
(
24r6 + 2

(
64r2H − 23L4ω2

)
r4 +

(
23L4r2Hω2 − 88r4H

)
r2 − 64r6H + 5L4r4Hω2

)
Q6

+ 2
(
3
(
32r2H − 37L4ω2

)
r8 + 4

(
11r2Hω2L4 + 32r4H

)
r6 +

(
23L4r4Hω2 − 192r6H

)
r4

− 32r8Hr2
)
Q4 +

(
−126L4ω2r10 + 6

(
5r2Hω2L4 + 16r4H

)
r8 + 44L4r4Hω2r6 − 96r8Hr4

)
Q2

+ 3L4r8
(
5r4H − 9r4

)
ω2

)
k4 + ω2

((
6r2Hω2L4 + 64r4 + 32r4H − 8r2

(
ω2L4 + 12r2H

))
Q14

+
(
592r6 −

(
77ω2L4 + 832r2H

)
r4 + 8

(
7r2Hω2L4 + 18r4H

)
r2 + 96r6H + 3L4r4Hω2

)
Q12

+ 2
(
588r8 − 6

(
25ω2L4 + 32r2H

)
r6 +

(
103L4r2Hω2 − 928r4H

)
r4 + 2

(
240r6H + 7L4ω2r4H

)
r2

+ 52r8H

)
Q10 +

(
784r10 +

(
1776r2H − 617L4ω2

)
r8 − 128

(
26r4H − 3L4r2Hω2

)
r6

+
(
103L4r4Hω2 − 480r6H

)
r4 + 1200r8Hr2 + 48r10H

)
Q8 + 2

(
84r12 + 28

(
28r2H − 13L4ω2

)
r10

+
(
193L4r2Hω2 − 132r4H

)
r8 − 32

(
49r6H − 3L4r4Hω2

)
r6 + 540r8Hr4 + 288r10H r2 + 4r12H

)
Q6

+ r2
(
96r12H + 720r2r10H − 784r4r8H + r10

(
336r2H − 495L4ω2

)
+ 8r8

(
25r2Hω2L4 + 98r4H

)

+ r6
(
193L4r4Hω2 − 1152r6H

))
Q4 − 2r4

(
−60r12H + 144r4r8H − 50L4r6ω2r4H + 90L4r10ω2

− 21r8
(
r2Hω2L4 + 4r4H

))
Q2 + 3L4r12

(
7r4H − 9r4

)
ω2

)
k2

−
(
Q4 + 4r2Q2 + 3r4

)2
ω4

((
−ω2L4 + 16r2 − 16r2H

)
Q8 + 4

(
2r4 +

(
8r2H − L4ω2

)
r2

− 10r4H

)
Q6 + 2

(
−16r6H + 8r2r4H + r4

(
8r2H − 3L4ω2

))
Q4 − 4

(
2r8H − 2r4r4H + L4r6ω2

)
Q2

− L4r8ω2

)]
/
[(
Q2 + r2

) (
Q2 + 3r2

) (
r2 − r2H

)2 (
2Q2 + r2 + r2H

)2 ((
Q2 + r2

)2
ω2

− k2
(
r2 − r2H

) (
2Q2 + r2 + r2H

))((
−3r4 + r4H +Q2

(
2r2H − 4r2

))
k2

+
(
Q4 + 4r2Q2 + 3r4

)
ω2

)]
, (A.15)

C12 =
[
4

√
2

3
kQr2

(
Q2 + r2H

) (
k4
(
−Q2

) (
r2 − r2H

)2 (
2Q2 + r2 + r2H

)2 (
4Q4

+ 2Q2
(
3r2 + r2H

)
+ 3r4 + r4H

)
− k2ω2

(
Q2 + r2

)2 (
2Q8

(
2r2 + r2H

)

+Q6
(
−7r4 + 50r2r2H − 19r4H

)
+Q4

(
−15r6 + 58r4r2H + 13r2r4H − 20r6H

)

+Q2
(
−6r8 + 18r6r2H + 29r4r4H − 12r2r6H − 5r8H

)
+ 9r6r4H − 3r2r8H

)
+ 3ω4

(
Q2 + r2

)4

(
Q6 +Q4

(
r2 + 4r2H

)
+Q2

(
−r4 + 6r2r2H + 2r4H

)
+ 3r2r4H

))]
/
[
L
(
Q2 + r2

)3

(
Q2 + 3r2

) (
r2 − r2H

) (
2Q2 + r2 + r2H

) (
ω2
(
Q2 + r2

)2 − k2
(
r2 − r2H

) (
2Q2 + r2 + r2H

))

(
k2
(
Q2
(
2r2H − 4r2

)
− 3r4 + r4H

)
+ ω2

(
Q4 + 4Q2r2 + 3r4

))]
, (A.16)
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C13 =
[
4
√
6Q2r

(
k2 − ω2

) (
Q2 + r2

)3 ]
/
[(
Q2 + 3r2

) (
ω2
(
Q2 + r2

)2

− k2
(
r2 − r2H

) (
2Q2 + r2 + r2H

))(
k2
(
Q2
(
2r2H − 4r2

)
− 3r4 + r4H

)

+ ω2
(
Q4 + 4Q2r2 + 3r4

))]
, (A.17)

C14 =
8
√
6kLQ

(
Q2 + r2

) (
Q2 + r2H

)

r (Q2 + 3r2)
(
k2
(
r2 − r2H

) (
2Q2 + r2 + r2H

)
− ω2 (Q2 + r2)2

) , (A.18)

C15 =
Q2
(
6r2 − 2r2H

)
+ 5r4 − r4H

r
(
r2 − r2H

) (
2Q2 + r2 + r2H

) , (A.19)

C16 =−
[
4
√
6Q2

(
Q2 + r2

) (
Q2 + r2H

)2]
/
[(
Q2 + 3r2

) (
r2 − r2H

) (
2Q2 + r2 + r2H

)

(
k2
(
Q2
(
2r2H − 4r2

)
− 3r4 + r4H

)
+ ω2

(
Q4 + 4Q2r2 + 3r4

))]
, (A.20)

C17 =
[
32
√
6kLQ3

(
k2 − ω2

) (
Q2 + r2

) (
Q2 + r2H

)]
/
[(
Q2 + 3r2

) (
ω2
(
Q2 + r2

)2

− k2
(
r2 − r2H

) (
2Q2 + r2 + r2H

))(
k2
(
Q2
(
2r2H − 4r2

)
− 3r4 + r4H

)

+ ω2
(
Q4 + 4Q2r2 + 3r4

))]
, (A.21)

C18 =
[
−L4

(
Q4 + 4r2Q2 + 3r4

) (
r2 − r2H

)2 (
2Q2 + r2 + r2H

)2 (
3r4 − r4H +Q2

(
4r2 − 2r2H

))
k6

+
(
r2 − r2H

) (
2Q2 + r2 + r2H

) (
2
(
−3r2Hω2L4 + 48r4 + 40r4H + r2

(
5L4ω2 − 88r2H

))
Q10

+
(
200r6 +

(
71L4ω2 − 144r2H

)
r4 − 40

(
r2Hω2L4 + 5r4H

)
r2 + 144r6H − 3L4r4Hω2

)
Q8

+ 4
(
73r8 +

(
46L4ω2 − 44r2H

)
r6 −

(
23r2Hω2L4 + 30r4H

)
r4 −

(
28r6H + 5L4ω2r4H

)
r2

+ 29r8H

)
Q6 +

(
324r10 +

(
222L4ω2 − 256r2H

)
r8 − 8

(
11r2Hω2L4 + 5r4H

)
r6

− 2
(
24r6H + 23L4ω2r4H

)
r4 − 28r8Hr2 + 48r10H

)
Q4 + 2

(
90r12 +

(
63L4ω2 − 48r2H

)
r10

−
(
15r2Hω2L4 + 64r4H

)
r8 +

(
24r6H − 22L4r4Hω2

)
r6 − 6r8Hr4 + 4r12H

)
Q2

+ 3r6
(
12r8 + 9L4ω2r6 − 16r4Hr4 − 5L4r4Hω2r2 + 4r8H

))
k4 +

(
Q2 + r2

)
ω2

(
2
(
3r2Hω2L4

+ 8r4 − 16r4H + r2
(
8r2H − 4L4ω2

))
Q12 +

(
−216r6 +

(
720r2H − 69L4ω2

)
r4

+ 50
(
L4r2Hω2 − 12r4H

)
r2 + 96r6H + 3L4r4Hω2

)
Q10 +

(
−672r8 +

(
1216r2H − 231L4ω2

)
r6

+ 4
(
39r2Hω2L4 + 2r4H

)
r4 +

(
25L4r4Hω2 − 736r6H

)
r2 + 184r8H

)
Q8 +

(
−1096r10

+ 2
(
720r2H − 193L4ω2

)
r8 + 4

(
57r2Hω2L4 + 64r4H

)
r6 +

(
78L4r4Hω2 − 352r6H

)
r4

− 344r8Hr2 + 96r10H

)
Q6 − 2

(
492r12 +

(
171L4ω2 − 488r2H

)
r10 −

(
79r2Hω2L4 + 264r4H

)
r8

+
(
176r6H − 57L4r4Hω2

)
r6 + 44r8Hr4 + 48r10H r2 − 8r12H

)
Q4 + r2

(
−432r12

+ 3
(
80r2H − 51L4ω2

)
r10 +

(
42r2Hω2L4 + 488r4H

)
r8 +

(
79L4r4Hω2 − 192r6H

)
r6 − 88r8Hr4

− 16r12H

)
Q2 − 3r8

(
24r8 + 9L4ω2r6 − 40r4Hr4 − 7L4r4Hω2r2 + 16r8H

))
k2

−
(
Q2 + r2

)4
ω4

((
−ω2L4 + 24r2 − 24r2H

)
Q8 − 4

(
3r4 +

(
2L4ω2 − 30r2H

)
r2 + 27r4H

)
Q6
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− 2
(
42r6 +

(
11L4ω2 − 60r2H

)
r4 − 30r4Hr2 + 48r6H

)
Q4 − 12

(
9r8 +

(
2L4ω2 − 6r2H

)
r6

− 5r4Hr4 + 2r8H

)
Q2 − 9r6

(
r2ω2L4 + 4r4 − 4r4H

))]
/
[(
Q2 + r2

) (
Q2 + 3r2

) (
r2 − r2H

)2

(
2Q2 + r2 + r2H

)2 ((
Q2 + r2

)2
ω2 − k2

(
r2 − r2H

) (
2Q2 + r2 + r2H

))((
−3r4 + r4H

+Q2
(
2r2H − 4r2

))
k2 +

(
Q4 + 4r2Q2 + 3r4

)
ω2

)]
. (A.22)

B Black hole thermodynamics

In this appendix we discuss the thermodynamics of the charged black hole solution of the

theory whose action is the sum of (2.1), (5.6), (5.7) and (5.8).

B.1 Adding Gibbons-Hawking boundary terms

The total action is

I = I0 + Ihd + Ia + Ipot, (B.1)

and must be supplemented by boundary terms which compensate for the variations of

derivatives of the fields on the boundary of AdS, r = ∞. For the two-derivative action I0,

this is the Gibbons-Hawking term

IGH = − 1

8π

∫
d4x
√
|h|K, (B.2)

where hab is the metric on the boundary, K is the trace of the extrinsic curvature tensor

Kb
a = ∇an

b, and the unit vector normal to the boundary is given by

nr =
√
grr , na = 0 , a 6= r. (B.3)

For the Gauss-Bonnet term Ihd, the necessary boundary term is (see e.g. [75, 76])

Ibd =
1

4π

∫
d4x

√
−h (β1e

γ1φ + β2e
γ2φ)

(
KKb

aK
b
a −

1

3
(K3 + 2Ka

bK
b
cK

c
a)

)
. (B.4)

Consider first the two-derivative action I0. Evaluating it on the ansatz

ds2 = e2a(r)(h(r)dt2 − dx2 − dy2 − dz2)− e2b(r)

h(r)
dr2, (B.5)

with dilaton φ(r) and gauge potential At(r), we obtain

I0 =
1

16π

∫
d5xe4a+b

(
−4e

−
√

2
3
φ − 8e

φ√
6 +

1

2
e−2bh

(
8a′
(
5a′ − 2b′

)
+ φ′2 + 16a′′

)
+

+e−2b

(
−4e

−2a+
√

2
3
φ
A′2

t +
(
9a′ − b′

)
h′ + h′′

))
. (B.6)

Despite the presence of the second derivatives of the fields h′′ and a′′ in the action (B.6), we

have a well-defined variational problem due to the boundary term (B.2). Now, evaluating

the Gauss-Bonnet term Ihd on the ansatz (B.5), we obtain

Ihd =
1

16π

∫
d5x12(β1e

γ1φ + β2e
γ2φ)e4a−3ba′

(
a′h′2+2h2a′

(
5a′2−4a′b′+4a′′

)
+

+ h
(
h′
(
9a′2−3a′b′+2a′′

)
+a′h′′

))
. (B.7)

Again, the action depends on the second derivatives of the fields. Thanks to the boundary

terms (B.4), we have a well-defined variational problem.
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B.2 Scaling charge

Following [32], we note that the total action Itot possesses a scaling symmetry

(x, y, z) → c(x, y, z) , t → t/c3 , b → b+ 4 log c , a → a− log c , h → c8h , At → c3At .

(B.8)

The corresponding conserved charge is given by

Q = −8C0At + e4a−bh′ + 12βe4a−3bha′h′
(
eγ1φ

(
a′ + 2γ1φ

′)+ χeγ2φ
(
a′ + 2γ2φ

′)) , (B.9)

where we have used the equation of motion for the gauge field

A′
t = C0e

−2a+b−
√

2/3φ, (B.10)

and where C0 is a constant. We have also denoted β1 = β and β2 = χβ. For our

choice (5.18), χ = 1/2. We choose the integration constant, which is related to the field

theory charge density, to be

C0 = Q(Q2 + r2H) . (B.11)

which is consistent with the two-derivative solution.

To O(β), the charge conservation equation Q(r = rH) = Q(r = ∞) can be written

− 8C0At(∞) + (1 + 18β)r5h′|r=∞ + 48(1 + χ)β(r2H +Q2)2 = 16πTs, (B.12)

where we have used

s =
1

4
e3a(rH) , T =

1

4π
ea−bh′|r=rH , At(rH) = 0 , (B.13)

the asymptotic near-boundary behavior e4a−b = eδr5 = (1 + 18β)r5, and equation (5.18);

the near-boundary behavior of δ is derived in the next subsection. At the two-derivative

level, this is identical to the thermodynamic relation

− P = ε− Ts− µσ , P = ε/3 . (B.14)

Our strategy will be to evaluate numerically this equation at O(β) and solve for At (∞) at

this order. This allows us to determine how the chemical potential depends upon rH and

Q at O(β).

B.3 Temperature and chemical potential

In the remainder of this appendix we are going to describe how to numerically construct

the black hole solution to O(β), and then explain how, by fine tuning the parameters c1,

d1,2,3 and w1,2,3 in the extra dilaton potential terms Ipot, one can change the functional

dependence of T and µ on rH and Q. It is convenient to choose the ansatz (as in [77])

ds2 = B(ρ)e−2δ(ρ)dt2 − ρ2(dx2 + dy2 + dz2)− dρ2

B(ρ)
, (B.15)

where ρ is a new radial coordinate. In this ansatz the total Lagrangian, including the

Gibbons-Hawking terms (B.2) and (B.4), is
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Ltot =
1

2
e−δρ

(
2ρ
(
−4e−

√
2

3
φρ− 8e

φ
√

6 ρ− 4e2δ+
√

2

3
φρA′2

t − 3B′

)
+B

(
−12 + 12ρδ′ + ρ2φ′2

))

+ 3βe−δ+γ1φ
(
a1ρ

3 +B
(
−b1ρ

3φ′2 − 4B′ (1 + 3γ1ρφ
′)

+ B
(
−8γ1φ

′ +
(
c1 + d1e

w1φ + d2e
w2φ + d3e

w3φ
)
ρ3φ′4 + 8δ′ (1 + 3γ1ρφ

′)
)))

+ 3χβe−δ+γ2φ
(
a2ρ

3 +B
(
−b2ρ

3φ′2 − 4B′ (1 + 3γ2ρφ
′) +B (−8γ2φ

′ + 8δ′ (1 + 3γ2ρφ
′))
))

.

(B.16)

It is convenient to work with the dimensionless parameter θ = rH/Q.

First of all, we solve for the gauge field

A′
t = C0e

−δ−
√

2
3
φ
ρ−3, (B.17)

with C0 given in (B.11). Then we solve the equations of motion for δ, B and φ perturba-

tively up to O(β). Denoting the background (two-derivative) solution as δ0, B0 and φ0,

the equations for the O(β) corrections to the background, which we denote as δ1, B1 and

φ1, are

3e
7φ0√

6 ρB1

(
12 + ρ2φ′2

0

)
−
√
6e

7φ0√
6 ρφ1

(
6ρ

(
4e

φ0√
6 ρ−B′

0

)
−B0

(
12 + ρ2φ′2

0

))

+ 3

(
3

(
a2+2a1e

7
2

√

3
2
φ0

)
ρ3+6e

7φ0√
6 ρ2B′

1+B0

(
ρ3φ′

0

(
2e

7φ0√
6 φ′

1−3

(
b2+2b1e

7
2

√

3
2
φ0

)
φ′
0

)

+18B′
0

(
2− 7

√
6ρφ′

0 + e
7
2

√

3
2
φ0
(
4 + 7

√
6ρφ′

0

))
+ 6B0

(
14
√
6

(
−1 + e

7
2

√

3
2
φ0

)
φ′
0

+ 49

(
2 + e

7
2

√

3
2
φ0

)
ρφ′2

0 + e
7
2

√

3
2
φ0
(
c1 + d1e

w1φ0 + d2e
w2φ0 + d3e

w3φ0

)
ρ3φ′4

0

+ 14
√
6

(
−1 + e

7
2

√

3
2
φ0

)
ρφ′′

0

)))
= 0, (B.18)

2e
7φ0√

6 ρ2φ1

(
72e

φ0√
6 ρ+

√
6
(
φ′
0

(
6ρB′

0 +B0

(
18 + ρ2φ′2

0

))
+ 6ρB0φ

′′
0

))

+ 3

(
ρB2

0φ
′
0

(
18

(
32 + 3e

7
2

√

3
2
φ0
(
5 + 8c1 + 8d1e

w1φ0 + 8d2e
w2φ0 + 8d3e

w3φ0

))
ρφ′2

0

+

(
56
√
6 + e

7
2

√

3
2
φ0
(
−56

√
6 + 63

√
6c1 + 9

(
d1e

w1φ0

(
7
√
6 + 12w2

)

+ d2e
w2φ0

(
7
√
6 + 12w2

)
+ d3e

w3φ0

(
7
√
6 + 12w3

))))
ρ2φ′3

0

+ 48e
7
2

√

3
2
φ0
(
c1 + d1e

w1φ0 + d2e
w2φ0 + d3e

w3φ0

)
ρ3φ′4

0 − 84
√
6

(
−1 + e

7
2

√

3
2
φ0

)
ρφ′′

0

− 24φ′
0

(
7
√
6

(
−1 + e

7
2

√

3
2
φ0

)
− 18e

7
2

√

3
2
φ0
(
c1 + d1e

w1φ0 + d2e
w2φ0 + d3e

w3φ0

)
ρ2φ′′

0

))

+ ρ

(
21
√
6a2ρ

2+36B′
0

(
7
√
6B′

0−b2ρ
2φ′

0

)
−3e

7
2

√

3
2
φ0
(
7
√
6a1ρ

2+84
√
6B′2

0 +24b1ρ
2B′

0φ
′
0

)

+ 2e
7φ0√

6 ρ
(
6ρB′

0φ
′
1 + φ′

0

(
6ρB′

1 +B1

(
18 + ρ2φ′2

0

))
+ 6ρB1φ

′′
0

))

– 22 –
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− 3B0

(
2B′

0

(
84
√
6

(
−1 + e

7
2

√

3
2
φ0

)
− ρ2φ′2

0

(
−35

√
6

(
−1 + e

7
2

√

3
2
φ0

)

+ 48e
7
2

√

3
2
φ0
(
c1 + d1e

w1φ0 + d2e
w2φ0 + d3e

w3φ0

)
ρφ′

0

))
+ ρ

(
−84

√
6B′′

0

− 2e
7φ0√

6 ρ
(
φ′
1

(
6 + ρ2φ′2

0

)
+ 2ρφ′′

1

)
+ b2ρ

(
36φ′

0 − 7
√
6ρφ′2

0 + 4ρ2φ′3
0 + 12ρφ′′

0

)

+ e
7
2

√

3
2
φ0
(
84
√
6B′′

0 + b1ρ
(
72φ′

0 + 7
√
6ρφ′2

0 + 8ρ2φ′3
0 + 24ρφ′′

0

)))))
= 0, (B.19)

−δ′1 =
1

3
ρφ′

1φ
′
0 +

1

6ρ
e
− 7φ0√

6

(
−3b2ρ

2φ′2
0 − 6b1e

7
2

√

3
2
φ0ρ2φ′2

0 + 288B0φ
′2
0 + 135e

7
2

√

3
2
φ0B0φ

′2
0

− 21
√
6

(
−1+e

7
2

√

3
2
φ0

)
ρB0φ

′3
0 +12e

7
2

√

3
2
φ0
(
c1+d1e

w1φ0+d2e
w2φ0+d3e

w3φ0

)
ρ2B0φ

′4
0

− 42
√
6B0φ

′′
0 + 42

√
6e

7
2

√

3
2
φ0B0φ

′′
0

)
. (B.20)

The two-derivative solution can explicitly be written as

B0(ρ) =
(3(r(ρ))2 + 1)2h(r(ρ))

9(r(ρ))2
, φ0(ρ) =

√
2

3
log

(
1 +

1

(r(ρ))2

)
, δ(ρ) = log

3(r(ρ))2 + 1

3ρr(ρ)
,

(B.21)

where

r(ρ) =
−2 · 31/3 + 21/3

(
9ρ3 +

√
12 + 81ρ6

)2/3

62/3
(
9ρ3 +

√
12 + 81ρ6

)1/3 , (B.22)

is the solution to the equation

e2a(r(ρ)) = ρ2 . (B.23)

Expanding near the boundary, ρ ≫ 1, we find

φ1 =
1

ρ2
(Cf1 + Cf2 log ρ+ Cfp log

2 ρ) + . . . , (B.24)

B1 = 36ρ2 +
Cb2

ρ2
+

Cb3 log ρ

ρ2
+

Cbp log
2 ρ

ρ2
+ . . . , (B.25)

where the expression (5.19) plays a key role. The constants Cfp and Cbp are independent

of rH and Q. By choosing

a1 = a2 = −120 , b1 = b2 = 4, (B.26)

the constants Cfp and Cbp are zero. We have verified this by fitting the numerical solution

to the asymptotic formulae (B.24), (B.25) and making sure that the coefficients Cf1, Cf2,

Cb2, Cb3 are stable towards the change of the UV cut-off (the position of the boundary).

After we have solved for B1 and φ1, we can use this solution to integrate (B.20) to find

δ1. We fix the constant of integration in such a way that gtt/ρ
2 = Be−2δ/ρ2 asymptotes to

– 23 –



J
H
E
P
0
7
(
2
0
1
4
)
1
0
9

one near the boundary, so that the speed of light is equal to one in the dual field theory.

Using (B.24) and (B.25) we obtain for ρ ≫ 1

δ1 = −−4 + 2
(
−2169 + 12b1 + 6b2 − 2

√
6Cf1

)
β

36ρ4
+ 18β + . . . . (B.27)

Therefore the near-boundary expansion of gtt = Be−2δ is given by

gtt
ρ2

=

(
1 +

−1− 2θ2 − θ4

ρ4

)
+

(
−1917 + 12b1 + 6b2 + 9Cb2 − 2

√
6Cf1 + 648θ2 + 324θ4

)
β

9ρ4
.

(B.28)

We want to extract δg
(4)
tt , the coefficient of the sub-leading 1/ρ4 term at O (β), as this

will allow us to determine the chemical potential At (∞) from equation (B.12).3 At O
(
β0
)
,

this term, which controls the energy density of the dual field theory, is proportional to Q4

at low T . It follows from (B.28) that, to find the O(β) correction to it, we need to find the

coefficients Cf1 and Cb2 in the near-boundary expansions (B.24) and (B.25) of the dilaton

and the metric.

Our numerical procedure is as follows. We solve equations (B.18) and (B.19) for φ1

and B1, with the horizon boundary conditions given by

B1(ρH) = 0 , φ1(ρH) = c , (B.30)

φ′
1(ρH) =

1

12ρ2HB′
0(ρH)

e
−

7φ0(ρH )
√
6

(
−21

√
6a2ρ

2
H + 21

√
6a1e

7
2

√

3
2
φ0(ρH)

ρ2H

− 48e
4
√

2
3
φ0(ρH)

ρ2Hc− 252
√
6B′

0(ρH)2 + 252
√
6e

7
2

√

3
2
φ0(ρH)

B′
0(ρH)2

+ 6a2ρ
3
Hφ′

0(ρH) + 12a1e
7
2

√

3
2
φ0(ρH)

ρ3Hφ′
0(ρH)− 16

√
6e

4
√

2
3
φ0(ρH)

ρ3Hcφ′
0(ρH)

+ 36b2ρ
2
HB′

0(ρH)φ′
0(ρH) + 72b1e

7
2

√

3
2
φ0(ρH)

ρ2HB′
0(ρH)φ′

0(ρH)

)
. (B.31)

We then fix numerically the value of c such that Cf2 = Cb3 = 0 (we have verified numerically

that both of these coefficients go to zero at the same time for the particular value of c).

This ensures that φ1 and B1 behave, near the boundary, in the same way as φ0 and B0

respectively. For this value of c, we then extract numerically the coefficients Cf1 and Cb2

in the near-boundary expansions.

From (B.28) we find that the O(β) correction to the coefficient of ρ−4 in gtt is

δg
(4)
tt

Q4
= −1917 + 12b1 + 6b2 + 9Cb2 − 2

√
6Cf1 + 648θ2 + 324θ4 , (B.32)

and the O (β) correction to the temperature is

∆T

Q
= T̃

(
B′

1(ρH)

B′
0(ρH)

− δ1(ρH)

)
, (B.33)

where T̃ = T/Q = θ/π is the Q-normalized two-derivative result for the temperature.

3In equation (B.12) we have

r5h′ = −4

(

−(1 + k2)2 +

(

−1917 + 12b1 + 6b2 + 9Cb2 − 2
√
6Cf1 + 648θ2 + 324θ4

)

β

9

)

. (B.29)
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After fixing w1, w2, w3, we find numerically that, for generic c1, d1,2,3, one finds (for

θ ≪ 1),

δg
(4)
tt

Q4
=

C1

θ
+O(1), (B.34)

∆T

T
=

C2

θ3
+

C3

θ2
+

C4

θ
+O(1). (B.35)

By varying c1, d1, d2, d3, the four coefficients C1,2,3,4 change. It is possible to make these

coefficients numerically small, and we expect that by suitably fine tuning these coefficients,

it is possible to produce a black hole solution with C1,2,3,4 = 0. However, this is a very

expensive procedure to implement numerically and we have not been able to determine the

required values of c1 and d1,2,3. Supposing that this solution exists, it would have T ∼ rH

and δg
(4)
tt ∼ Q4 to O (β) in the small T/µ limit. Equation (B.12) then implies that µ ∼ Q

in this limit, as required.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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