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Abstract Bats sonar algorithm (BSA) as a swarm intel-

ligence approach utilises the concept of echolocation of

bats to find prey. However, the algorithm is unable to

achieve good precision and fast convergence rate to the

optimum solution. With this in mind, an adaptive bats

sonar algorithm is introduced with new paradigms of real

bats echolocation behaviour. The performance of the

algorithm is validated through rigorous tests with several

single objective optimisation benchmark test functions.

The obtained results show that the proposed scheme out-

performs the BSA in terms of accuracy and convergence

speed and can be efficiently employed to solve engineering

problems.

Keywords Optimisation � Bats echolocation � Reciprocal
altruism � Bats sonar algorithm � Adaptive bats sonar

algorithm

1 Introduction

In general, optimisation is the process of obtaining either

the best minimum or best maximum result under specific

circumstances [16, 29]. Most of the engineering problems

in, for example, engineering design, manufacturing pro-

cesses and control are solved by employing optimisation

approaches [16]. Over the past four decades, researchers

have developed various types of algorithms for solving a

range of engineering optimisation problems [12]. Among

these is the evolutionary and metaheuristic algorithm [25]

which is based on combination of rules and randomness,

simulating natural phenomena such as animal behaviours

or processes of biological evolution [1, 12]. Swarm intel-

ligence has been categorised under evolutionary algo-

rithms. Swarm intelligence techniques are developed based

upon modelling the collective behaviour of social group of

living species, for instance; colony of ants, bacteria, bees,

bats, birds and fish [1, 8]. In general, swarms have self-

organisation and decentralised control features and all the

swarm follows the same system where a population of

swarm cooperates and interacts with each other in the

group and the environment under certain rules during for-

aging or socialising purpose [8, 25].

Nowadays, swarm intelligence raised a lot of attention

from the research community. There are many swarm

intelligence algorithms that have developed recently to

solve single objective optimisation problems. Yang [26]

presented a firefly algorithm (FA) that was encouraged

from the unique pattern of flashing light by a swarm of

fireflies. The FA idealised from three rules; all fireflies are

unisex, attractiveness is proportional to their brightness and

objective function landscape determines the brightness.

Yang [26] compared the performance of FA with GA and

PSO on ten single objective optimisation benchmark test

functions. The results indicated FA outperformed both of

the algorithms regarding the efficiency and success rate. In

the same year, [28] developed a cuckoo search (CS)

algorithm that was based on the obligate brood parasitic

behaviour of some cuckoo species. This algorithm is also

integrated with the Lévy flight behaviour of some birds and

fruit flies. The CS algorithm operates based on three rules

inspired by cuckoo breeding behaviour. The rules are: each

cuckoo lay one egg in a random nest at a time, the best nest

with the highest quality of eggs will bring forward to next
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generations and fixed number of available host nests. The

CS algorithm has been verified and compared with GA and

PSO on ten single objective optimisation benchmark test

functions. The simulation results showed that CS per-

formed better as compared to both established algorithms

especially for multi modal objective functions [28].

In 2012, a new swarm intelligence algorithm, the krill herd

(KH) algorithm was proposed by [7]. The KH algorithm is

based on the simulation of the herding behaviour of krill

individuals. The KH algorithm sets the minimum distances

and highest density of krill herd from food as the objective

function. Besides, KH algorithm also has taken movement

induced by the presence of other individuals, foraging activity

and random diffusion as three main factors to determine the

time-dependent position of each krill. The KH algorithm has

been compared with other eight existed algorithms to solve

twenty single objective optimisation benchmark test func-

tions. The result validated a better performance of the KH

algorithm to solve the benchmark test functions as well as

outperform other established algorithms [7]. Then, [18]

developed a hybrid algorithm of ant colony optimisation and

firefly algorithm (ACO-FA) algorithm for solving single

objective optimisation problems. The ACO-FA combined the

advantages of both swarm intelligence algorithms where ant

colonyworks as a global searcher andfirefly colonyworks as a

local searcher. Rizk-Allah et al. [18] performed the ACO-FA

algorithm on a set of fifteen single objective optimisation

benchmark test functions. The simulation results suggested

that the ACO-FA algorithm demonstrated better performance

for searching the global optimum solution as compared to

other prominent algorithms.

Next, [4] developed an algorithm inspired by bird mat-

ing strategy during mating season. The bird mating opti-

miser (BMO) algorithm is aimed to solve the single

objective optimisation problems. In BMO algorithm, the

population is called society and in each society member is

called a bird that represented a feasible solution. There are

five groups of birds in the society based on the real birds

mating system. The groups are parthenogenetic, polyan-

drous, monogamous, polygynous and promiscuous. The

BMO algorithm was tested on three categories of single

objective optimisation benchmark test functions. The cat-

egories are unimodal functions, multimodal functions and

low-dimensional multimodal functions. The simulation

results showed a better performance of BMO algorithm to

provide a good balance between global and local search

effectively as compared to other existing algorithms [4].

Recently, [13] proposed a social network-based swarm

optimisation algorithm (SNSO) targeted for solving single

objective optimisation problems. The SNSO algorithm

adopted a social network evolution model of the swarm to

improve the search performance of a swarm. The SNSO

introduced a dynamical population topology, extended

neighbourhood structure and divided the individuals into

two groups based on their fitness. Results from computer

simulation on twelve single objective optimisation bench-

mark test functions were validated that SNSO achieved

better performance as compared to seven others distin-

guished population-based algorithms [13].

Nevertheless, swarm intelligence algorithms based on

bats also appeared in the literature. Among significance bats-

based algorithm were bat algorithm (BA) by [27] and bats

sonar algorithm (BSA) by [21]. Both algorithms are inspired

from echolocation of a colony of the bats. This paper intro-

duces an adaptive version of the algorithm proposed by [21].

The modifications introduced are based on the nature of

echolocation of bats so as to address the shortcomings of the

original algorithm mentioned above. The paper is organized

as follows. The unique echolocation behaviour of bats is first

described in Sect. 2. The BA by [27] and BSA by [21] are

described in Sect. 3. The adaptive bats sonar algorithm

(ABSA) is presented in Sect. 4. The performance of ABSA

and BSA reflecting the number of bats and number of iter-

ations is discussed in Sect. 5. Comparative assessment of

ABSAwith the BSA and BA is presented with several single

objective optimisation benchmark test functions in Sect. 6,

and the paper is concluded in Sect. 7.

2 Bats echolocation

As one of the diverse and most extraordinary mammalian

order, bats have more than 900 species distributed all

around the world [3, 23]. According to [17] and [22], bats

generally live in a large colony with 700–1000 individuals

under sharing roosts.

The social calls and echolocation calls are two types of

acoustic communication used by a colony of bats [22]. A

colony of bats is able to construct good communication and

sharing information between each other about roost site or

foraging area [3]. According to [3], there are four basic

information transfer mechanisms in a colony of bats:

1. Intentional signalling: in the form of mating calls,

territorial calls, alarm calls or food calls (advertisement

of food and also to attract bats into foraging groups as

they leave their cave roosts).

2. Local enhancement: involves unintentionally directing

another bat to a specific part of the habitat.

3. Social facilitation: an increase in individual foraging

success brought about by group foraging behaviour.

4. Imitative learning: bats can learn foraging techniques

from other bats.

The term ’echolocation’ was described by Griffin in 1944

as the ability of bat to produce sound with echo beyond the

frequency range of human hearing and use for general
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orientation and finding prey [2]. In echolocation, a bat

emits ultrasonic pulses in short burst through mouth [3] as

shown in Fig. 1. The sound reflects back as echoes bump

into an object in the bat’s path. Altringham et al. [3] and

[20] agreed that by computing the time of reflection of

modulates echoes, the bat is able to recognise the object

and its distance.

The echolocation process of bats involves three phases to

search and capture prey: search phase, approach phase and

terminal phase [3]. During the search phase, the bat will start

to hunt for prey by emitting the pulse at low rate with fre-

quency around 10Hz. Then, the pulses have to get shorter as

the time between the pulse and echo is decreased in order to

avoid overlap when the bat spots and gets nearer to the

specific prey during the approach phase [3, 20]. In this phase

too, pulse emission rate gets steadily increased up to 200 per

second since the bat keeps updating the position of the prey

[3, 20]. In the terminal phase, the frequency of emitted pulses

upsurges more than 200 Hz as the pulse emission rate also

starts to accelerate at only fraction of millisecond long just

before the prey is netted [3].

The concept of reciprocal altruism of food sharing

also exists during the echolocation process in a colony of

bats [3, 5, 24]. This social behaviour is based on bats

returning favours to their mutual benefit [3]. For

instance, vampire bats species share the blood-meals

between the individuals in a colony as a response to

balance energy budget amongst in a colony [3, 5]. The

bats successfully establish an individual survivorship in

a colony after implementing this behaviour such that the

fitness of the recipient is allocated comparatively to a

non-recipient [24].

3 Bat algorithm and bats sonar algorithm

3.1 Bat algorithm

Bat algorithm (BA) by [27] is developed based on

echolocation behaviour of bat species to find their prey. Bat

form three-dimensional of surrounding by integrating the

production of the sound pulse and echo recognition time

difference, the variant intensity of the sound pulse and the

time delay between ears of the bat. In a such way, the bat

can identify the type, moving speed, distance and orienta-

tion of the prey.

Fig. 1 Sonar signal of a bat

[20]

Algorithm 1 Bat algorithm
1: Objective function F(x), x = (x1, . . . ,xd )T
2: Initialise: bat population xi(i= 1,2, . . . ,n) and vi(i= 1,2, . . . ,n); pulse frequency fi at xi; pulse rate ri and loudness Ai
3: while t ≤ Maximum number of iterations do
4: Generate new solutions by adjusting frequency, and updating velocities and locations/solutions as

Equation 1
5: if rand ≥ ri then
6: Select a solution among the best solutions
7: Generate a local solution around the selected best solution
8: end if
9: Generate a new solution by flying randomly
10: if rand ≤ Ai & F(xi) ≤ F(xi∗ ) then
11: Accept new solutions
12: Increase ri and reduce Ai
13: end if
14: Rank the bats and find the current best x∗
15: end while
16: Postprocess results and visualization
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To simplify, the algorithm was developed based on the

ideal rules which are [27]:

1. All bats use echolocation to detect distance and

differentiate between food, prey and obstacles.

2. Bats fly randomly with velocity vi at position xi by

fixed frequency fmin with varying wavelength k and

loudness A0 to search for prey.

3. Bats can spontaneously adjust the wavelength or

frequency and the rate of sound pulse emission r 2
½0; 1� depending on the proximity of their target.

4. Loudness of emitted sound pulse assumed varies from

a large positive A0 to a minimum constant value Amin.

5. No ray tracing is used in estimating the time delay and

the three dimensional topography.

6. Wavelength (k) and frequency (f) of emitted sound pulse

are related due to the fact kf is constant, so a range of

½fmin; fmax� is corresponds to a range of ½kmin; kmax�.
7. Wavelength (or frequency) range can be adjusted and

the largest wavelength (or frequency) should be

selected to suit the size of the domain of the considered

problem, and then toning down to smaller ranges.

8. Assume f 2 ½0; 1� even though higher frequencies have

short wavelengths and travel a shorter distance.

9. The rate of sound pulse emission was in the range

[0, 1] where 0 means no pulses at all and 1 means the

maximum rate of pulse emission.

The developed BA is pictured in pseudo code as in Algorithm

1. In this algorithm, [27] updated the velocity vi and position xi
of bats’ movement in a d-dimensional search space as Eq. 1:

fi ¼ fmin þ ðfmax � fminÞb

vti ¼ vt�1
i þ ðxti � x�Þfi

xti ¼ xt�1
i þ vti

ð1Þ

where

xti is new solution of position at time step t

vti is new solution of velocity at time step t

b 2 ½0; 1� is random value

x� is the recent global best solution which is derived

after examining every solutions among n bats

To update the velocity of the new solution, either fi or ki could
be usedwhile fixing the other factor as velocity increment as a

product ofkifi. The value of fi (or ki) is important to control the

pace and range of themovement of the bats [27]. In other hand,

values of fmax and fmim have been fixed as fmin ¼ 0 and fmax ¼
100 where each bat has its random frequency that allocate

uniformly around the fixed above values. However, the values

have relied on the problem domain size.

According to [27], a new position for every bat is pro-

duced using random walk after a solution is chosen among

the current best positions as Eq. 2:

xnew ¼ xold þ eAt ð2Þ

where

e 2 ½�1; 1� is a random number

At ¼ At
i

� �
is the average loudness of all the bats at this

time step.

Usually, when a bat approaches its prey, the loudness (Ai)

will decrease but the rate of pulse emission ri increases.

Initially, every bat owns dissimilar random loudness values

and pulse emission rate. So, as iteration proceeds and the

new solutions are better, these two parameters have to be

updated respectively [27]. For example, this algorithm used

A0 ¼ 1 and assuming Amin ¼ 0 where a bat is moving to the

prey and momentarily stop producing any sound. In con-

trasts, the algorithm used r0 ¼ 0 and assuming rmax ¼ 1

where a bat increases its pulse emission rate once

approaching the prey. So Eq. 3 is derived as:

Atþ1
i ¼aAt

i

rtþ1
i ¼r0i ½1� expð�ctÞ�

ð3Þ

where

a ¼ c ¼ 0:9

The BA method has been implemented on various test

functions including Rosebrock’s function, the egg crate

function, De Jong’s standard sphere function, Ackley’s

function and Michalewicz’s test function. In all imple-

mentation, the numbers of bats (n) used were 25 to 50. The

BA has been compared with standard GA and PSO algo-

rithms in terms of the number of function evaluations for a

fixed tolerance to show the better performance of BA. The

fixed tolerance was set up at e� 10�5 and ran for 100

iterations. According to the results, the BA is more accu-

rate and efficient compared to GA and PSO algorithms.

3.2 Bats sonar algorithm

The bats sonar algorithm or (BSA) by [21] is developed

based on echolocation process of a colony of bats to find

food or prey. During echolocation, bats can figure out the

size, distance, velocity, azimuth and elevation of the target

by using the sonar. The BSA models the principles of bat

sonar used in echolocation to search the optimum solution

for a specific problem. Each point (prey location detected)

in the search space (specific confined area) represents one

possible solution. A bat is labelled as one sonar unit.

Tawfeeq [21] starts the BSA by setting the solution

range or the minimum and maximum values of the search

space. Then, the beam length (L) is initialise as in Eq. 4:

L�Rand � Solution range

2
ð4Þ
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At every iteration, [21] has selected random starting angle

(hm) as well as used one of two angle between beams;

either Fixedh which randomly select a small fixed value h
between any two successive beams or Randh which ran-

domly select a different angle hi between any two suc-

cessive beams.

Tawfeeq [21] mentioned that the sonar unit will transmit

a number of sonar signals or number of beams (N) with L

length from the designated starting point (poss) to several

different directions. The poss also evaluates the value of

starting point fitness function (Fs). Every beam’s end point

position (posi) is calculated as Eq. 5:

posi ¼ poss þ L cosðhm þ ði� 1ÞÞh ð5Þ

Then, the posi is evaluated for the value of end point fitness

function (Fi). The value of Fi and Fs is compared with each

other to determine the optimum one. If the optimum value

belongs to one of the Fi, the sonar unit (the bat) will fly to

its posi and set the point as a new poss. Then, the new

number of N beams will be transmitted from this point to

search for better optimum solution. Otherwise, the bat will

stay at the original poss and retransmit the N beams to

different direction. The process keeps on repeating and

stops once the algorithm arrives at the maximum iteration

(or finds the best fitness function). Algorithm 2 pictured the

pseudo code of the developed BSA. The BSA is a parallel

search type where several solutions are checked simulta-

neously. Over iterations, only the best fitness of each bat

will survive and the best fitness among the best bats’ fitness

will become the global best fitness [21]. Using this way, the

proposed algorithm will converge to the optimum best

fitness faster.

This algorithm started with the single sonar unit (SSU).

Then, the development of the proposed algorithm was

expanded to another two efficient search approaches [21].

If only SSU approach was being used, the result is not

guaranteed to obtain the global best fitness even it

converges toward the minimum or maximum fitness

especially in complex problems with wide state space. The

two approaches mentioned were multi sonar search unit

(MSU) and single sonar unit with a momentum (SSM). In

multi sonar unit (MSU), a colony of bats will search for the

optimum solution(s) at the same time where each bat (sonar

unit) will be assigned with different starting point in the

same search space. Meanwhile, a single sonar unit with a

momentum (SSM) introduced a momentum term (l)
attached to the length of the transmitted beams so that new

beam length becomes as Eq. 6:

Lnew ¼ Loldð1� lÞ ð6Þ

where

0\l\1

Nonetheless, both approaches still use SSU algorithm as

the algorithm framework [21].

To demonstrate the performance of the developed

algorithm, the BSA were tested and evaluated on different

types of fitness functions [21]. The initial parameters set to

be the same for all tests included N ¼ 5; Fixedh ¼ p=12
and 100 maximum iterations. The performances of BSA

were measured by the degree on how much the obtained

solution meets the goal where the goal is assumed to be

equal or approximately equal to the optimum solution.

Comparison of the developed algorithm with a genetic

algorithm on the same fitness functions has been made. The

comparison involves the value of obtained fitness functions

and the execution time required to attain each function. The

results concluded the bats sonar algorithm performed rea-

sonable efficiency to achieve all the optimum values.

As a matter of fact, the BSA is only tested on single

objective optimisation problems. Till today, no extended

version of the algorithm, neither the modification to the

original algorithm, hybridisation with another technique

nor application to any optimisation area was reported.

Algorithm 2 Bats sonar algorithm
1: Objective function F(x), x = (x1, . . . ,xd )T
2: Initialise Solution range, L (Equation 4), N, random poss and angle between beams
3: Evaluate Fs for poss
4: while t ≤ Maximum number of iterations do
5: Select random θm
6: Transmit N beams from poss with θm and angle between beams
7: Determine the coordinates of the every beams’ end point (posi for each transmitted beam (Equation 5)
8: Evaluate the Fi for each posi
9: if Fi ≤ Fs then
10: Substitute the coordinates of poss with the coordinates of posi
11: Replace Fs with the optimum Fi
12: end if
13: end while
14: Declare the best Fi as optimum fitness evaluated and its posi as optimum value(s)
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3.3 Several problems existed in bats sonar

algorithm

There are some drawbacks associated with the BSA

introduced by [21]. There is no communication between

bats in a colony to exchange information on current loca-

tion or the best locations of individual bats during

echolocation process. This lack makes the algorithm as a

parallel search technique. The number of bats used in the

algorithm is too small and not portraying the normal pop-

ulation size of a colony of bats (normally in the order of

hundreds) when searching for prey. The small population

does not make the exploration and exploitation for the best

fitness value optimum in the search space.

Furthermore, it is highly possible that the N beams will

be transmitted in the same direction and location. This

problem happens because the main transmit angle is fixed

as well as roughly set up of random values of the angle

between beams. These drawbacks will lead to premature

convergence as the algorithm will diverge from the global

best position but converge to local best location. Thus, the

algorithm does not perform well to achieve the best accu-

racy while maintaining good precision and fast conver-

gence to the optimum solution.

BSA also fail to capitalise several good characteristics in

the real behaviour of bats echolocation into the algorithm.

This failure makes BSA unable to operate like the real

process of echolocation of a colony of bats. BSA is not

considered the issues such as there are three phases lead to

catching the prey, as well as the reciprocal altruism model

of food sharing between a colony of bats.

4 Adaptive bats sonar algorithm

An adaptive bats sonar algorithm (ABSA) is proposed as an

improved version of original bats sonar algorithm (BSA)

by [21]. The purpose of ABSA is to solve single objective

optimisation problems. Overall, the ABSA has more steps

than the original bats sonar algorithm BSA introduced by

[21].

However, the number of iterations (MaxIter) or gener-

ations used in ABSA is kept at 100, it is the same number

used in the original algorithm by [21]. 100 generations are

favourably enough for the bats to explore fully the d

numbers of search space dimension (Dim) for the best prey

or global best fitness, (FGB). The chosen value is in line

with maximum MaxIter which was used in the particle

swarm optimisation (PSO) algorithm when the algorithm

was first introduced by [10].

Inspired by a description of the number of bats in a

colony by biologists, the number of bats (Bats) or

population in ABSA was selected in the range 700–1000

bats. The new population was higher by only three bats that

was used in the BSA [21]. By having a larger number of

bats, a discovery of the FGB value becomes more

resourceful such that there will be a pool of solutions (prey)

that can be evaluated to obtain the best ones.

In the original BSA by [21], the beam length (L) is

initialised as a random value but not more than half of the

solution range (SSsize). The solution range is the value

between the upper search space (SSMax) limit and the lower

search space (SSMin) limit as Eq. 7:

SSsize ¼ SSMax � SSMin ð7Þ

The value of L is constant throughout the iterations. This

fixation pushes every bat to search in larger perimeter each

time without the opportunity to diversify the search tactic

during iterations and thus may miss the FGB that may be

near to them. To resolve such weaknesses, the ABSA sets

the L in relation to SSsize as Eq. 8:

L�Rand � SSsize

10%� Bats

� �
ð8Þ

The solution range is divided into micron scale, such as

10 % of the overall population of bats in the search space.

The percentage is marked as possible search space size of

each bat to emit sound without colliding with one another.

The value of L is different for every iteration. A momentum

term (l) is used in ABSA as Eq. 9:

Lnew ¼ Loldð1� lÞ ð9Þ

where

0\l\1

The above has been introduced by [21] to control the risk

of convergence to a local optimum.

Tawfeeq [21] has fixed the number of beams (NBeam)

emitted by each bat at each iteration to five. This value is

too small and obviously only a part of the bat’s surrounding

is covered by the pulses and thus the exploitation of local

best fitness (FLB) and exploration of FGB do not occur. Such

a small value also does not illustrate the real echolocation

of bats. Altringham et al. [3] and Suga [20] have reported

that the pulse emission rate grows bit by bit up to 200 per

second as the bat keeps updating the location of the object

until it catches the prey. This phenomenon is incorporated

into the ABSA approach as beam number increment (BNI).

The BNI is defined in terms of the maximum number of

beams (NBeamMax) and minimum number of beams

(NBeamMin) as Eq. 10:

BNI ¼ NBeamMax � NBeamMin

MaxIter

� �
� iter ð10Þ
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where

NBeamMax ¼ 200

NBeamMin ¼ 20

Thus, NBeam is defined as Eq. 11:

NBeam ¼ NBeamMin þ BNI ð11Þ

The BNI method mimics the original pulse rate emitted by

the bat as it increases gradually toward the end of the

search. As a result, BNI will provide a balance between

global exploration and local exploitation thus requiring less

iteration on average to find a sufficiently optimum solution.

Each NBeam with L is emitted from the starting position

(posSP) with specific angle location. Tawfeeq [21] has

selected random starting angle (hm) at every iteration, see

Fig. 2. For the angle between beams, the algorithm’s ini-

tiator uses one of the following:

1. Fixedh: randomly select a small fixed value h between

any two successive beams.

2. Randh: randomly select a different angle hi between
any two successive beams.

In this manner, the beam transmitted will sweep at random

angles at each iteration. However, the bats fail to verify

that the sounds have spread to every corner of their sur-

roundings and it is possible that the beam will be trans-

mitted to the same point(s) at different iterations. As a

consequence, the algorithm will get trapped at FLB and will

be unable to find the FGB. To resolve this problem, ABSA

limits the first beam to have hm not more than 45	 from

horizontal axis and the angle between beams (hi) is set as
Eq. 12 follows:

hi ¼
ð2p� hmÞ
NBeam

ð12Þ

where

hm ¼ rand� 0:7854

By setting hi as such, the beams will sweep at random 360	

around the bats through iterations in such a way that the

searching process will neither be too aggressive (overlay a

circle) nor too slow (underlay a circle).

The end point position (posi) for each transmitted beam

in ABSA is calculated the same way as in [21] as Eq. 13:

posi ¼ posSP þ L cos½hm þ ði� 1Þh� ð13Þ

where

i ¼ 1; . . .;N

The BSA declares a fitness at that position as the optimum

fitness function once the algorithm has reached either the

end of a fixed number of iterations or all solutions have

converged to the same value [21]. The one level declara-

tion of best solution is consistent with the nature of the

algorithm as a parallel search method where the algorithm

checks for the solutions at once. Nonetheless, the level of

best fitness solution found in the algorithm has been raised

up to four stages in the developed ABSA. The duo are

mentioned before; FLB and FGB, while another two levels

are starting position fitness (FSP) and regional best fitness

(FRB).

During the first iteration of ABSA, posSP of FSP for each

bat to transmit the NBeam is randomly selected within the

designated search space. Next, the posi for each transmitted

beam from posSP of each bat will be evaluate to produce

end point fitness (Fi) where the best Fi is declare as FLB and

its position as local best position (posLB) of each bat. Later,

the FSP and FLB of each bat is compared where the best will

be FRB and its position as regional best position (posRB).

Finally, the best of the FRB will be declared as FGB and its

position as global best position (posGB). According to [6],

there are three levels of best solution found by the algo-

rithm in PSO. The levels are personal best (pb) which is the

best solution for every particle, local best (lb) which is the

neighbourhoods best solution and global best (gb) is the

global best solution of among the pb. These three levels are

similar to FLB, FRB and FGB of ABSA respectively.

In PSO, the lb improve the overall performance of

algorithm where the individual lb influenced the perfor-

mance of immediate neighbours [9, 11]. Ultimately, the

neighbourhoods preserve swarm diversity by hindering the

flow of information through the network [15]. This move

prevents the particles from reaching the global best particle

immediately or getting trap in a local optimum but allows

them to explore larger search space [11, 15]. This benefi-

cial element inspired the existence of FRB which is func-

tioning as neighbourhoods best solution-ABSA version. In

addition, FRB also forms the main link between FLB and

FGB values. So FRB acts as a leverage instrument to balanceFig. 2 Single batch of beams transmitted by a bat [21]
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finely between exploration (diversification) and exploita-

tion (intensification) processes of the algorithm and so to

help the algorithm escape from premature convergence.

The initialisation of these levels will help the ABSA to

refine the search for the best solution by a colony of bats in

the search space in each step and leave out bad solutions

immediately. As a result, the algorithm takes less time to

converge to the optimum solution. In point of fact, [9]

mentioned that many types of research show that com-

munication between individuals within a group is impor-

tant where the overall performance of the group is affected

by the structure of the social network. Besides, [11] argued

that the distribution of information via distant acquain-

tances is crucial, such that it possesses information that a

colleague might not. In conjunction to that, the four levels

of the best solution created in ABSA ideally match with the

information transfer mechanisms practised by a colony of

bats as explored by [3]. These are intentional signalling

match to FSP, local enhancement match to FLB, social

facilitation match to FRB and imitative learning match to

FGB.

The reciprocal altruism characteristic has further been

incorporated into ABSA to strengthen the procedure of

colony searching for the best solution. This reciprocal

altruism behaviour widely runs through a colony of bats as

reported by many researchers in bats ecology [3, 5, 24]. By

inserting this behaviour into the algorithm, a member of the

colony will disseminate and share the location of the best

fitness found so far to other bats. As a result, all bats will

fly to the best prey ever found when the search process

comes to an end. The adoption of this real prey hunting

behaviour of the colony of bats into the algorithm is

symbolised by two levels of arithmetic mean.

For every bat, the arithmetic mean evaluates the bal-

ancing point between posSP, posLB and posRB in current

iteration (t) with posGB of the latest FGB to be appoint as a

new posSP for next iteration (t?1). The first level of

arithmetic mean involves measuring of central tendency

between posSP, posLB and posRB of each bat for current

iteration only. Next, the second level of arithmetic mean

finds the central tendency between the position value

resulted from the first level of arithmetic mean and posGB.

As a result, during new iteration, every bat will start to

transmit a set of new beams from the posSP which has been

specified after considering (or sharing) the balancing point

of the positions of all four level of best fitness solutions;

FSP, FLB, FRB and FGB. The two levels of arithmetic mean

is expressed as Eq. 14 follows:

posSPðt þ 1Þ ¼
posSPðtÞþposLBðtÞþposRBðtÞ

3
þ posGB

2
ð14Þ

Based on these modifications, the basic steps of the ABSA

are represented as the pseudo code in Algorithm 3.

5 Effects of number of bats and number
of iterations to the performances of ABSA

Any swarm intelligence algorithm requires setting the

values of several algorithm parameters correctly because

these parameter values have a significant impact on the

performance and efficiency of the algorithm [19]. The size

of population and number of iterations used are the main

parameters in most of the swarm intelligence algorithms. In

BSA and ABSA algorithms, the size of a population is

referred to the number of bats (Bats). However, BSA by

[21] applied three bats only while in ABSA the number of

bats used are between 700 and 1000 bats, as motivated by

the study reported by [17] and [22].

On the other hand, the number of iterations (MaxIter)

used in both algorithms has been set to 100. This value is

favourably enough for the bats to explore fully the search

space for the best prey (best fitness value). The chosen

value is twice the maximum of what MaxIter used in PSO

when the algorithm was first introduced in 1995 [10]. The

overall performance of ABSA is better than BSA not

because of the large difference Bats used at various number

of iterations only, but due to the improvement and modi-

fications made to the original BSA. To demonstrate this,

both BSA and ABSA are tested with two different

benchmark functions as follows:

Algorithm 3 Adaptive bats sonar algorithm
1: Objective function F(x), x = (x1, . . . ,xd )T
2: Initialise: Bats,MaxIter, Dim, SSSize, NBeamMAX and NBeamMIN
3: for n ← 1 to Bats do
4: for d ← 1 to Dim do
5: Generate random posSP
6: Evaluate FSP value for F(posSP)
7: end for
8: end for
9: Assign the most optimum value as FGB and its position as posGB
10: while t ≤ MaxIter do
11: Define NBeam to transmit by using BNI (Equation 10 and Equation 11)
12: Set L and limit μ (Equation 8 and Equation 9)
13: Generate random θm and θ (Equation 12)
14: for n ← 1 to Bats do
15: Transmit NBeam starting from posSP
16: for N ← 1 to NBeam do
17: for d ← 1 to Dim do
18: Determine posi for each transmitted beam (Equation 13)
19: end for
20: Evaluate Fi value for F(posi)
21: end for
22: Assign the optimum value of Fi as FLB and its position as posLB
23: if FLB ≤ FSP then
24: Assign FLB as FRB and posLB as posRB
25: else
26: Assign FSP as FRB and posSP as posRB
27: end if
28: end for
29: Select the optimum value among FRB as current FGB and its posRB as current posGB
30: if current FGB ≤ previous FGB then
31: Update current FGB as new FGB and current posGB as new posGB
32: else
33: Retain previous FGB and posGB
34: end if
35: for n ← 1 to Bats do
36: Determine new posSP using (Equation 14)
37: Evaluate new FSP value for F(x)
38: end for
39: end while
40: Declare FGB as optimum fitness evaluated and posGB as its optimum value(s)
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a. McCormick function This function as in Fig. 3a is

unimodal test function and is defined as Eq. 15:

FðxÞ ¼ sinðx1 þ x2Þ þ ðx1 � x2Þ2 � 1:5x1 þ 2:5x2 þ 1

ð15Þ

where

x1 2 ½�1:5; 4:0�
x2 2 ½�3:0; 4:0�

The global minimum is Fðx�Þ ¼ �1:9132 at

x� ¼ ð�0:54719;�1:54719Þ.
b. Rastrigin function This function is a multimodal test

function with several regularly distributed local min-

imum. This function as plot in Fig. 3b is defined as

Eq. 16:

FðxÞ ¼ 10d þ
Xd

i¼1

x2i � 10 cosð2pxiÞ
� �

ð16Þ

where

xi 2 ½�5:12; 5:12�; i ¼ 1; . . .;N

The global minimum at Fðx�Þ ¼ 0 at x� ¼ ð0; . . .; 0Þ:
The test of this function used d ¼ 3.

In both cases, the number of Bats used were 3, 100 and 700

while the MaxIter is fixed to 25 and 100. So, number of

function evaluations (NFEs) defined as Eq. 17:

NFE ¼ Bats�MaxIter ð17Þ

for each BSA and ABSA are 75, 300, 2500, 10,000, 17,500

and 70,000.

Table 1 and Fig. 4 depict the best results obtained by the

BSA and ABSA in optimising the McCormick function. It

is noted that the developed ABSA outperformed the orig-

inal BSA at various Bats used with different MaxIter to

accelerate the convergence rate to accurate known global

optimum.

As evident from Table 2 and Fig. 5, ABSA further

showed promising results as compared to the original BSA

method. The obtained results in optimising the Rastrigin

function suggested that the ABSA succeeded to converge

faster and near accurate to the best known global optimum

Fig. 3 Functions used to evaluate the effects of Bats and MaxIter on the performances of BSA and ABSA. a McCormick function. b Rastrigin

function

Table 1 Best global optimum

value achieved by BSA and

ABSA for McCormick function

with different Bats over

different MaxIter

Bats MaxIter Optimum value of F(x) BSA ABSA NFEs

3 25 -1.9132 -1.8464 -1.9132 75

100 -1.9130 -1.9127 300

100 25 -1.9130 -1.9132 2500

100 -1.9123 -1.9132 10,000

700 25 -1.9126 -1.9132 17,500

100 -1.9132 -1.9132 70,000
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Fig. 4 McCormick functions: comparison of performance of the original BSA and the developed ABSA. a 3 bats and 25 iterations. b 3 bats and

100 iterations. c 100 bats and 25 iterations. d 100 bats and 100 iterations. e 700 bats and 25 iterations. f 700 bats and 100 iterations
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at various numbers of bats used with different numbers of

iterations as compared to original BSA.

At this point, the preliminary conclusion drawn about

the ABSA as compared to original BSA is that ABSA has

successfully converged faster with better accuracy to the

known global optimum when compared with BSA without

it being affected by a large difference in the number of bats

used at various numbers of iterations.

6 Performance of adaptive bats sonar algorithm
on established single objective optimisation
benchmark test functions

There are many benchmark test functions that can be used

for testing and validating the developed algorithm. Ten

single objective optimisation benchmark test functions, as

summarised in Table 3 are used to show the efficiency of

ABSA. The first three test functions (FN01, FN02 and

FN03) have previously been used by [21] to demonstrate

the performance of the original BSA. All the three test

functions have maximum values at their optimum. The

remaining test functions have minimum values as their

optimum [14]. In this validation, the functions FN04,

FN05, FN06 and FN07 were run in three different

dimensions, namely three dimensions (FN0*a), five

dimensions (FN0*b) and ten dimensions (FN0*c).

Two other algorithms are also tested on the same 10 test

functions as in Table 3 to verify the performance of ABSA

on a comparative basis. The algorithms are bats sonar

algorithm (BSA) by [21] and bat algorithm (BA) by [27].

The parameters used for the BSA are the same as originally

used by [21]. These were three bats, five beams (N) in each

transmitted signal and the angle between any two succes-

sive beams was fixed at p n 12. Similarly, the standard

algorithm parameters are used with BA. These were pop-

ulation size of 50, pulse rate (r) equal to 0.5, loudness (A)

fixed at 0.25 and random number less than 1 for beta (b).
Each algorithm was run 30 times to allow it to carry out

meaningful statistical analysis. The maximum number of

iterations for each run was set to 100. All three algorithms

on the ten function evaluations obtained the result of best,

mean, worst and standard deviation values. To evaluate the

statistical significance of the ABSA, one-way analysis of

variance (ANOVA) with post-test (Dunnett’s test type) was

applied, and the null hypothesis was rejected at the confi-

dence level of 5 %.

Figure 6a–d shows the search patterns of 1000 bats

positions using ABSA for 2 dimension De Jong function.

Its global minimum FðxÞ ¼ 0 was obtainable for xi ¼ 0,

i ¼ 1; . . .;N. In iteration 1, 1000 bats scattered at various

locations in the designated search space. Bats started to

converge to the final value of xi as the iteration increased.

At iteration 50, all 1000 bats settled to the optimum values

of x1 ¼ 0 and x2 ¼ 0.

The results of the computer simulations for ABSA

algorithm are given in Table 4. As noted, the algorithm

achieved the global optimum value with zero or very small

standard deviation. Comparative results of the best, worst

and mean solutions with standard deviation values of the

investigated algorithms are shown in Tables 5, 6, 7 and 8

respectively.

As seen in Table 5, the ABSA approach found the exact

or close global optimum value of thirteen out of the eigh-

teen functions (FN02, FN04a-c, FN05a-c, FN06a-c and

FN07a-c) through 30 runs. From one function (FN01),

ABSA produced results similar to both BA and BSA.

Moreover, ABSA achieved similar best value with BSA on

FN03, with BA in three functions, namely FN08, FN09 and

FN10. Overall, as noted, the ABSA best results were

superior to those achieved with BSA and BA.

As noted in the worst solution results given in Table 6,

ABSA outperformed BA and BSA in all eighteen functions

tested. Even for the worst results, ABSA successfully

achieved accurate or very near accurate results to global

optimum points. Similarly, on the mean solutions as shown

in Table 7, ABSA achieved accurate performance as

compared to BA and BSA for seventeen out of the eighteen

function evaluations. Even though for the FN04c the BA

Table 2 Best global optimum

value achieved by BSA and

ABSA for Rastrigin function

with different Bats over

different MaxIter

Bats MaxIter Optimum value of F(x) BSA ABSA NFEs

3 25 0.0000 3.6481 0.7116 75

100 1.2568 1.2740E-1 300

100 25 0.9951 3.8270E-6 2500

100 5.1865E-1 5.8799E-7 10,000

700 25 2.1431E-1 3.2585E-8 17,500

100 7.0612E-2 4.9231E-10 70,000
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achieved better optimum solution compared to ABSA, the

gap between them was small.

As far as standard deviation is concerned, the results in

Table 8 show the best precision exhibited by ABSA. Less

variation (some functions, no variation) of optimum solu-

tion from the mean values was produced by implementing

ABSA on all test functions except FN04c. For FN04c, BA

was able to achieve smaller standard deviation value

compared to that achieved with ABSA but the difference

was not significant.

Table 9 shows a comparison of the performance of

ABSA with BA and BSA using one-way analysis of vari-

ance (ANOVA) on the mean value � standard deviation of

the global optimum. It is noted that at 95 % confident

interval, ABSA was statistically significant to achieve

better global optimum solution ahead of BA and BSA.

Overall, it can be concluded that ABSA outperforms BA

and BSA for accuracy and precision to search for a global

optimum solution either in maximisation or minimisation

problems.

Figure 7 shows convergence to global best fitness

function value achieved by the ABSA as compared to BSA

for selected single objective optimisation benchmark test

functions. However, these do not account for differing

computational costs, as in reality, ABSA has taken longer

time than BSA to arrive at a maximum number of iteration.

This is due to the new structure and additional steps

incorporated into the original BSA to arrive at the devel-

oped ABSA. The graphical results show that ABSA was

able to converge to global best fitness for each function in a

smaller number of iterations compared to BSA. Moreover,

with several random approaches introduced to locate the

starting positions in ABSA, the algorithm is potentially

able to start the search process at locations close to the

optimum point and promptly move to the absolute global

best point.

Table 10 presents the results of one-way analysis of

variance (ANOVA) on the mean iteration value � standard

deviation of iteration number to arrive at a global optimum

solution. The results show that at the 95 % confident

interval, ABSA significantly performed better than BA and

BSA to converge to the global optimum solution faster.

According to Fig. 8, on average, in 100 iterations, the

ABSA needed around 12–37 % iterations to reach the

global optimum solution. The algorithm outperformed BA

bFig. 5 Rastrigin functions: comparison of performance of the original

BSA and the developed ABSA. a 3 bats and 25 iterations. b 3 bats and

100 iterations. c 100 bats and 25 iterations. d 100 bats and 100

iterations. e 700 bats and 25 iterations. f 700 bats and 100 iterations

Table 3 Benchmark functions used to validate the performance of ABSA

Label Function name (type) Function Optimum

value of

F(x)

Range of solution space

FN01 Third-order polynomial

with a single variable

(Max)

FðxÞ ¼ x3 � 5x2 � 20x 15.4564 �65:12� x� 65:12

FN02 Polynomial with two

variables (Max)
Fðx1; x2Þ ¼ x31 � 5x21 � 2:04x22 þ 4x2 1.9608 �3�ðx1; x2Þ� 3

FN03 Exponential with two

variables (Max)
Fðx1; x2Þ ¼ x1 exp

ð�x2
1
�x2

2
Þ 0.4289 �2�ðx1; x2Þ� 2

FN04 De Jong’s (Min) FðxÞ ¼
Pn

i¼1 x
2
i

0.0000 �5:12� xi � 5:12; i ¼ 1; . . .;N

FN05 Weighted sphere model

(Min)
FðxÞ ¼

Pn
i¼1ði � x2i Þ 0.0000 �5:12� xi � 5:12; i ¼ 1; . . .;N

FN06 Shwefel’s (Min) FðxÞ ¼
Pn

i¼1ði � x2i Þ 0.0000 �65:536� xi � 65:536; i ¼ 1; . . .;N

FN07 Rosenbrock’s valley

(Min)
FðxÞ ¼

Pn
i¼1½100ðxiþ1 � x2i Þ

2Þ þ ð1� xiÞ2� 0.0000 �2:048� xi � 2:048; i ¼ 1; . . .;N

FN08 Easom’s (Min) Fðx1; x2Þ ¼ � cos x1 cos x2 expð�ðx1 � pÞ2 � ðx2 � pÞ2Þ -1.0000 �100�ðx1; x2Þ� 100

FN09 Goldstein-Price’s (Min) Fðx1; x2Þ ¼ ð1þ ðx1 þ x2 þ 1Þ2

ð19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22ÞÞ
ð30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x21

þ 48x2 � 36x1x2 þ 27x22ÞÞ

3.0000 �2�ðx1; x2Þ� 2

FN10 Booth’s (Min) Fðx1; x2Þ ¼ ðx1 þ 2x2 � 7Þ2 þ ð2x1 þ x2 � 5Þ2 0.0000 �10�ðx1; x2Þ� 10
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and BSA, which took 24–49 and 35–58 % iterations

respectively. This implies that ABSA has faster conver-

gence ability to a global optimum solution either for

maximisation or minimisation problems as compared to

BA and BSA.

7 Conclusion

With the aim of improving accuracy, precision and con-

vergence rate of the original bats sonar algorithm (BSA),

an improved algorithm by altering and incorporating new

characteristics into the algorithm has been proposed. This

is referred to as an adaptive bats sonar algorithm (ABSA).

This includes modification of the number of bats, number

of beams and their lengths, starting angle and introduction

of new techniques comprising beam number increment

(BNI), four levels of best solution and reciprocal altruism

behaviour of real bats. Numerical simulations with single

objective optimisation benchmark test functions have

demonstrated the efficiency of the ABSA toward the stated

aims and its superior performance in comparison to BSA

and bat algorithm (BA). Future work will look at appli-

cation and assessment of performance of the ABSA in
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Fig. 6 Locations of 1000 bats using ABSA for 2 dimensional De Jong function. a Iteration 1. b Iteration 5. c Iteration 20. d Iteration 50
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Table 4 Statistical results

obtained for ABSA with 10 test

functions of different

dimensions over 30 independent

runs of 100 iterations each

Function number Dim Optimum F(x) Best Mean Worst SD

FN01 1 15.4564 15.4564 15.4564 15.4564 0.0000

FN02 2 1.9608 1.9608 1.9608 1.9608 0.0000

FN03 2 0.4289 0.4289 0.4289 0.4289 0.0000

FN04a 3 0.0000 2.2810E-13 1.2374E-9 9.6814E-9 2.4540E-9

FN04b 5 0.0000 1.2726E-11 2.1789E-8 2.3951E-7 5.2963E-8

FN04c 10 0.0000 1.3720E-4 5.4975E-2 3.9510E-1 1.0842E-1

FN05a 3 0.0000 4.8111E-12 4.0332E-10 1.5621E-9 4.5575E-10

FN05b 5 0.0000 4.4514E-11 1.1890E-8 6.3666E-8 1.5027E-8

FN05c 10 0.0000 2.6957E-4 2.5186E-2 6.6100E-2 1.7923E-2

FN06a 3 0.0000 1.1643E-11 2.0870E-9 7.3697E-9 2.1982E-9

FN06b 5 0.0000 5.2555E-10 5.4807E-8 4.2394E-7 1.0912E-7

FN06c 10 0.0000 6.2212E-5 5.6951E-3 2.3500E-2 7.7790E-3

FN07a 3 0.0000 1.8990E-12 2.9536E-9 1.8916E-8 4.3566E-9

FN07b 5 0.0000 3.3335E-11 1.6080E-7 4.6234E-6 8.4319E-7

FN07c 10 0.0000 2.3001E-12 3.9551E-9 3.0717E-8 7.6405E-9

FN08 2 -1.0000 -1.0000 -1.0000 -1.0000 0.0000

FN09 2 3.0000 3.0000 3.0000 3.0000 0.0000

FN10 2 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5 The best solution

obtained by BA, BSA and

ABSA with 10 test functions of

different dimensions over 30

independent runs of 100

iterations each

Function number Dim Optimum F(x) BA BSA ABSA

FN01 1 15.4564 15.4564 15.4564 15.4564

FN02 2 1.9608 1.9832 1.9606 1.9608

FN03 2 0.4289 0.4280 0.4289 0.4289

FN04a 3 0.0000 1.1985E-7 1.8211E-5 2.2810E-13

FN04b 5 0.0000 1.0854E-6 3.9700E-2 1.2726E-11

FN04c 10 0.0000 1.2000E-3 8.0770E-1 1.3720E-4

FN05a 3 0.0000 2.5850E-7 1.4324E-9 4.8111E-12

FN05b 5 0.0000 1.1000E-3 5.7284E-5 4.4514E-11

FN05c 10 0.0000 4.6000E-3 8.6000E-3 2.6957E-4

FN06a 3 0.0000 7.5661E-8 1.7246E-9 1.1643E-11

FN06b 5 0.0000 1.0000E-3 3.3504E-4 5.2555E-10

FN06c 10 0.0000 2.3800E-2 4.5000E-3 6.2212E-5

FN07a 3 0.0000 3.4954E-9 3.5720E-7 1.8990E-12

FN07b 5 0.0000 2.1000E-3 1.3993E-4 3.3335E-11

FN07c 10 0.0000 8.6000E-3 2.7000E-3 2.3001E-12

FN08 2 -1.0000 -1.0000 -0.9999 -1.0000

FN09 2 3.0000 3.0000 3.0060 3.0000

FN10 2 0.0000 0.0000 0.0001 0.0000
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Table 6 The worst solution

obtained by BA, BSA and

ABSA with 10 test functions of

different dimensions over 30

independent runs of 100

iterations each

Function number Dim Optimum F(x) BA BSA ABSA

FN01 1 15.4564 15.3302 15.4175 15.4564

FN02 2 1.9608 1.9006 1.9032 1.9608

FN03 2 0.4289 0.4024 0.4221 0.4289

FN04a 3 0.0000 9.8722E-5 8.5000E-3 9.6814E-9

FN04b 5 0.0000 6.7300E-2 6.9350E-1 2.3951E-7

FN04c 10 0.0000 1.1070E-1 1.8506 3.9510E-1

FN05a 3 0.0000 8.6962E-4 1.4619E-5 1.5621E-9

FN05b 5 0.0000 5.1300E-2 9.5000E-3 6.3666E-8

FN05c 10 0.0000 8.8270E-1 9.8190E-1 6.6100E-2

FN06a 3 0.0000 8.2515E-4 3.9698E-5 7.3697E-9

FN06b 5 0.0000 8.9700E-2 9.4000E-2 4.2394E-7

FN06c 10 0.0000 4.9420E-1 9.0690E-1 2.3500E-2

FN07a 3 0.0000 9.4882E-4 8.5589E-4 1.8916E-8

FN07b 5 0.0000 9.9000E-2 1.4600E-2 4.6234E-6

FN07c 10 0.0000 8.7030E-1 9.3110E-1 3.0717E-8

FN08 2 -1.0000 -1.4070 -0.8110 -1.0000

FN09 2 3.0000 3.4618 3.8640 3.0000

FN10 2 0.0000 0.3314 0.1215 0.0000

Table 7 The mean solution

obtained by BA, BSA and

ABSA with 10 test functions of

different dimensions over 30

independent runs of 100

iterations each

Function number Dim Optimum F(x) BA BSA ABSA

FN01 1 15.4564 15.4458 15.4438 15.4564

FN02 2 1.9608 1.9308 1.9401 1.9608

FN03 2 0.4289 0.4177 0.4262 0.4289

FN04a 3 0.0000 3.6929E-5 2.6683E-3 1.2374E-9

FN04b 5 0.0000 5.1481E-3 4.1950E-1 2.1789E-8

FN04c 10 0.0000 2.6150E-2 1.4665 5.4975E-2

FN05a 3 0.0000 8.0776E-5 1.1634E-6 4.0332E-10

FN05b 5 0.0000 1.4917E-2 3.6329E-3 1.1890E-8

FN05c 10 0.0000 3.4812E-1 4.1136E-1 2.5186E-2

FN06a 3 0.0000 8.6964E-5 3.2073E-6 2.08470E-9

FN06b 5 0.0000 2.4963E-2 3.0683E-2 5.4807E-8

FN06c 10 0.0000 1.5900E-1 3.4829E-1 5.6951E-3

FN07a 3 0.0000 5.9211E-4 3.7671E-4 2.9536E-9

FN07b 5 0.0000 3.5097E-2 4.5607E-3 1.6080E-7

FN07c 10 0.0000 3.9344E-1 1.9216E-1 3.9551E-9

FN08 2 -1.0000 -1.2144 -0.9554 -1.0000

FN09 2 3.0000 3.0938 3.3215 3.0000

FN10 2 0.0000 0.0869 0.0331 0.0000

16 Evol. Intel. (2016) 9:1–20

123



Table 8 The standard

deviation obtained by BA, BSA

and ABSA with 10 test

functions of different

dimensions over 30 independent

runs of 100 iterations each

Function number Dim Optimum F(x) BA BSA ABSA

FN01 1 15.4564 0.0278 0.0095 0.0000

FN02 2 1.9608 0.0188 0.0184 0.0000

FN03 2 0.4289 0.0081 0.0025 0.0000

FN04a 3 0.0000 3.2411E-5 2.3319E-3 2.4540E-9

FN04b 5 0.0000 1.2468E-2 1.7864E-1 5.2963E-8

FN04c 10 0.0000 2.4978E-2 3.3193E-1 1.0842E-1

FN05a 3 0.0000 1.9681E-4 2.7481E-6 4.5575E-10

FN05b 5 0.0000 1.2349E-2 3.0154E-3 1.5027E-8

FN05c 10 0.0000 2.5533E-1 3.0597E-1 1.7923E-2

FN06a 3 0.0000 1.9133E-4 8.3095E-6 2.1982E-9

FN06b 5 0.0000 1.8628E-2 3.4283E-2 1.0912E-7

FN06c 10 0.0000 1.0826E-1 2.5159E-1 7.7790E-3

FN07a 3 0.0000 2.5279E-4 2.8526E-4 4.3566E-9

FN07b 5 0.0000 3.5821E-2 4.2380E-3 8.4319E-7

FN07c 10 0.0000 2.7202E-1 2.7346E-1 7.6405E-9

FN08 2 -1.0000 0.1308 0.0438 0.0000

FN09 2 3.0000 0.2003 0.3021 0.0000

FN10 2 0.0000 0.0818 0.0356 0.0000

Table 9 Performance comparison using one-way analysis of variance (ANOVA) between BA, BSA and ABSA with 10 test functions of

different dimensions over 30 independent runs of 100 iterations each

FN No. BA BSA ABSA Significantly

FN01 15.4564 ± 0.0278 15.4538 ± 0.0095 15.4564 ± 0.0000 Yes

FN02 1.9308 ± 0.0188 1.9401 ± 0.0184 1.9608 ± 0.0000 Yes

FN03 0.4177 ± 0.0081 0.4262 ± 0.0025 0.4289 ± 0.0000 Yes

FN04a 3.6929E-5 ± 3.2411E-5 2.6683E-3 ± 2.3319E-3 1.2374E-9 ± 2.4540E-9 Yes

FN04b 5.1481E-3 ± 1.2468E-2 4.1950E-1 ± 1.7864E-1 2.1789E-8 ± 5.2963E-8 Yes

FN04c 2.6150E-2 ± 2.4978E-2 1.4665 ± 3.3193E-1 5.4975E-2 ± 1.0842E-1 Yes

FN05a 8.0776E-5 ± 1.9681E-4 1.1634E-6 ± 2.7481E-6 4.0332E-10 ± 4.5575E-10 Yes

FN05b 1.4917E-2 ± 1.2349E-2 3.6329E-3 ± 3.0154E-3 1.1890E-8 ± 1.5027E-8 Yes

FN05c 3.4812E-1 ± 2.5533E-1 4.1136E-1 ± 3.0597E-1 2.5186E-2 ± 1.7923E-2 Yes

FN06a 8.6964E-5 ± 1.9133E-4 3.2073E-6 ± 8.3095E-6 2.0870E-9 ± 2.1982E-9 Yes

FN06b 2.4963E-2 ± 1.8628E-2 3.0683E-2 ± 3.4283E-2 5.4807E-8 ± 1.0912E-7 Yes

FN06c 1.5900E- ± 1.0826E-1 3.4829E-1 ± 2.5159E-1 5.6951E-3 ± 7.7790E-3 Yes

FN07a 5.9211E-4 ± 2.5279E-4 3.7671E-4 ± 2.8526E-4 2.9536E-9 ± 4.3566E-9 Yes

FN07b 3.5097E-2 ± 3.5821E-2 4.5607E-3 ± 4.2380E-3 1.6080E-7 ± 8.4319E-7 Yes

FN07c 3.9344E-1 ± 2.7202E-1 1.9216E-1 ± 2.7346E-1 3.9551E-9 ± 7.6405E-9 Yes

FN08 -1.2144 ± 0.1308 -0.9554 ± 0.0438 -1.0000 ± 0.0000 Yes

FN09 3.0938 ± 0.2003 3.3215 ± 0.3021 3.0000 ± 0.0000 Yes

FN10 0.0869 ± 0.0818 0.0331 ± 0.0356 0.0000 ± 0.0000 Yes
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Fig. 7 Convergence to global best fitness function achieved by ABSA and BSA for selected test functions. a Third-order polynomial with single

variable. b Easom’s function. c Goldstein–Price’s function

Table 10 Performance

comparison in terms of faster

convergence to global optimum

in 100 iterations using one-way

analysis of variance (ANOVA)

between BA, BSA and ABSA

with 10 test functions of

different dimensions over 30

independent runs

FN No. BA BSA ABSA Significantly

FN01 24.70 ± 15.12 52.13 ± 29.63 21.40 ± 8.79 Yes

FN02 47.77 ± 2.60 46.80 ± 29.51 28.67 ± 13.50 Yes

FN03 31.93 ± 12.60 51.23 ± 34.23 29.43 ± 13.88 Yes

FN04a 24.87 ± 16.87 55.37 ± 29.05 33.83 ± 11.11 Yes

FN04b 23.17 ± 13.98 48.17 ± 31.09 34.83 ± 11.11 Yes

FN04c 27.53 ± 14.49 42.77 ± 30.03 37.27 ± 8.79 Yes

FN05a 33.43 ± 10.25 56.83 ± 30.30 33.47 ± 11.75 Yes

FN05b 28.57 ± 15.93 49.03 ± 32.18 36.30 ± 9.55 Yes

FN05c 25.07 ± 12.65 58.53 ± 35.15 37.43 ± 9.26 Yes

FN06a 38.47 ± 9.78 54.30 ± 28.75 30.77 ± 12.14 Yes

FN06b 37.10 ± 7.44 44.70 ± 30.50 36.43 ± 10.81 Yes

FN06c 49.33 ± 7.37 35.67 ± 29.38 34.67 ± 11.56 Yes

FN07a 26.70 ± 15.62 51.63 ± 27.50 15.17 ± 10.02 Yes

FN07b 25.70 ± 11.76 56.47 ± 29.83 12.10 ± 5.84 Yes

FN07c 29.37 ± 11.94 55.87 ± 28.33 12.03 ± 3.37 Yes

FN08 28.20 ± 13.65 50.63 ± 29.89 24.57 ± 14.07 Yes

FN09 29.67 ± 16.58 51.00 ± 27.67 26.87 ± 14.21 Yes

FN10 25.23 ± 15.02 49.33 ± 26.75 21.90 ± 14.39 Yes
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engineering problems and in comparison to other algo-

rithms. Moreover, the extension of the algorithm to solve

constrained optimisation problems as well as multi objec-

tive optimisation problems will be considered later.
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Nature and biologically inspired computing (NaBIC), proceed-

ings of the 2009 World congress on. Coimbatore, India.

pp 210–214

29. Yang X-S, Deb S (2014) Cuckoo search: recent advances and

applications. Neural Comput Appl 24(1):169–174

20 Evol. Intel. (2016) 9:1–20

123

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

	A new bats echolocation-based algorithm for single objective optimisation
	Abstract
	Introduction
	Bats echolocation
	Bat algorithm and bats sonar algorithm
	Bat algorithm
	Bats sonar algorithm
	Several problems existed in bats sonar algorithm

	Adaptive bats sonar algorithm
	Effects of number of bats and number of iterations to the performances of ABSA
	Performance of adaptive bats sonar algorithm on established single objective optimisation benchmark test functions
	Conclusion
	Open Access
	References




