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Abstract

Background: Protein pairs that have the same secondary structure packing arrangement but have different
topologies have attracted much attention in terms of both evolution and physical chemistry of protein structures.
Further investigation of such protein relationships would give us a hint as to how proteins can change their fold in the
course of evolution, as well as a insight into physico-chemical properties of secondary structure packing. For this
purpose, highly accurate sequence order independent structure comparison methods are needed.

Results: We have developed a novel protein structure alignment algorithm, MICAN (a structure alignment algorithm
that can handle Multiple-chain complexes, Inverse direction of secondary structures, Cy only models, Alternative
alignments, and Non-sequential alignments). The algorithm was designed so as to identify the best structural
alignment between protein pairs by disregarding the connectivity between secondary structure elements (SSE). One
of the key feature of the algorithm is utilizing the multiple vector representation for each SSE, which enables us to
correctly treat bent or twisted nature of long SSE. We compared MICAN with other 9 publicly available structure
alignment programs, using both reference-dependent and reference-independent evaluation methods on a variety
of benchmark test sets which include both sequential and non-sequential alignments. We show that MICAN
outperforms the other existing methods for reproducing reference alignments of non-sequential test sets. Further,
although MICAN does not specialize in sequential structure alignment, it showed the top level performance on the
sequential test sets. We also show that MICAN program is the fastest non-sequential structure alignment program
among all the programs we examined here.

Conclusions: MICAN is the fastest and the most accurate program among non-sequential alignment programs we
examined here. These results suggest that MICAN is a highly effective tool for automatically detecting non-trivial
structural relationships of proteins, such as circular permutations and segment-swapping, many of which have been
identified manually by human experts so far. The source code of MICAN is freely download-able at
http://www.tbp.cse.nagoya-u.ac.jp/MICAN.
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Background

Protein structure comparison techniques are of great
importance for inferring distant evolutionary relation-
ships that cannot be suggested from sequence similarity
alone [1,2], and finding recurrent structural motifs in pro-
teins [3]. Because of its importance, many structural align-
ment algorithms have been developed [4-6]. Although
there are a variety of structure alignment algorithm, most
of them follow a simple sequential rule, that is, two
proteins are aligned only in sequential order. Recently,
however, a number of interesting examples that show
non-sequential structure similarity have been reported,
where non-sequential structural similarity is the struc-
tural similarity in which structurally equivalent regions
are aligned in different order in the sequence of the
compared proteins. The most populated class of non-
sequential structural similarity is circular permutation
[7-9]. Although not as many as that of circularly permu-
tation, the number of examples that show non-sequential
similarity beyond circular permutation proved to be also
significant [10]. Further, Ilyin et al. found that non-
sequential structural alignments between proteins are not
limited to proteins of any particular fold, and they are
systematic and widespread across the protein universe,
suggesting generality and importance of non-sequential
structural relationship [10].

Non-sequential structural similarities are intriguing in
terms of evolution. Currently, some examples of protein
pairs with evidence for evolutionary relationships that fold
into topologically different but share the same secondary
structure packing arrangement have been known. One
of the most interesting examples of such protein pairs is
that of KH domains of hnRNP K (PDB entry 1IKHM) and
ribosomal protein S3 (PDB entry 1J5E) [11]. They show
statistically significant sequence similarity (38% sequence
identity) implying homology. Their structures, however,
are quite different in topology while converging to the
same architecture. Another example is a pair of Carboxylic
esterase (PDB entry 1YAS) and Hydroxynitrile lyase (PDB
entry 1QLW) [10]. Both belong to the same superfam-
ily (alpha/beta-Hydrolases superfamily) defined in SCOP
database [12], suggesting that they share a common evo-
lutionary ancestor. However, structure alignment revealed
that the sequence order of the long structurally equiva-
lent region is swapped [10]. These examples suggest that
some proteins have changed their folds by segment shuf-
fling or rearrangement events while conserving the same
core packing arrangements. Further investigation of such
protein pairs would give us a hint as to how proteins can
change their fold in the course of evolution.

Although some non-sequential structure alignment
methods have been developed [13-22], there is still
much room for improvement in non-sequential struc-
ture alignment algorithm. Indeed, we have tested all of
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the publicly available non-sequential structure alignment
programs, and found out some problems of currently
existing methods which is specific to non-sequential
structure alignment. One of the problems is that some
non-sequential structure alignment algorithms which uti-
lize a single vector representation of each SSE tend to
fail in aligning residues which belong to long SSEs. Such
a simplified protein representation is crucial especially
for non-sequential alignment, because search space for
non-sequential alignment is much larger than that for
sequential alignments. However, such an approach is not
suitable for describing bent or twisted nature of long
SSEs, which makes it difficult to correctly align long
SSE regions. Also, it may be difficult to correctly align
a short SSE in a long one by the single vector represen-
tation, even if the long SSE is not bent or twisted. On
the other hand, another kind of the non-sequential struc-
ture alignment method which employ a C, representation
of protein structures has another kind of problem. For
instance, alignments generated by SAMO [18], which tries
to maximize the number of matching C, atoms and min-
imize their root mean square distance, frequently show
over-fragmentation; there is no long continuous align-
ment region, although the number of matching residue is
large and RMSD of aligned residues is small. An exam-
ple of such alignment is shown in Figure 1 for arylamine
N-acetyltransferase and epididymal retinoic acid-binding
protein. These two structures are very similar, as is sug-
gested by the reference alignment which is taken from
MALISAM database [23], a manually curated database of
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Figure 1 The illustrative example of ‘over-fragmentation’ in
alignment. The comparison of a manually curated structure
alignment with an automatically generated alignment by a
non-sequential structure alignment program, SAMO. (a) The
structures of arylamine N-acetyltransferase (SCOP-ID d1gx3a-, shown
on upper part) and epididymal retinoic acid-binding protein (SCOP-ID
dlepaa_, shown on lower part). This pair is taken from MALISAM
database. (b) displays the alignment plot of the pair. Black points
indicate the reference alignment and red indicate alignment by
SAMO. The reference alignment shows RMSD of 4.4 A over 77
residues, while the alignment by SAMO gives 3.4 A over 91 residues.
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structurally analogous pairs. For the same protein pair,
SAMO generates a totally different alignment. The refer-
ence alignment has RMSD of 4.4 A over 77 residues, while
the alignment by SAMO gives 3.4 A over 91 residues,
suggesting alignment by SAMO is better than reference
just in terms of these values. However, it is questionable
whether such a highly scattered and fragmented align-
ment is evolutionary or physically meaningful.

In this paper, we introduce a novel non-sequential struc-
ture alignment method called “MICAN” that overcomes
above-mentioned problems. MICAN is designed so as
to find the rotational matrix that maximize a structural
similarity score of SSE region, regardless of chain connec-
tivity. Since MICAN utilizes an SSE as a structure unit in
structure comparison, it is free from over-fragmentation
problem, or noisy alignments which mostly consist of
relatively short segments or single residues. The search
scheme of MICAN is based on the geometric hashing
paradigm. It was originally developed for model-based
object recognition problems in the area of computer
vision, and has been widely applied to protein structure
comparison studies [13,24-27]. Geometric hashing has the
property that it does not use the sequential order of the
points to be compared. Therefore, it is highly suitable
for structure comparison in cases where the sequential
order should be ignored. One of the key feature of the
algorithm is utilizing the multiple vector representation
for each SSE. This feature enables us to correctly treat
bent or twisted long SSEs. Another feature is a building
way of reference frame in the geometric hashing tech-
nique, in which one reference frame is defined per point
to be compared, not defined per pair or per triplet of
points. By virtue of this technique, we can reduce the
number of reference frame systems to be compared to
O(n), while that of the cases in which one reference
frame is defined per triplet is O(#%), where n is the
number of points to be compared. As a result, MICAN
algorithm is very fast; it is the fastest non-sequential
structure alignment program among all the programs we
examined here.

In order to assess the performance of the algo-
rithm, we compare MICAN with other publicly avail-
able non-sequential alignment programs: DEDAL, SNAP,
GANGSTA+, SCALI, MASS, and SAMO, as well as
sequential ones: DaliLite, CE, and TM-align. We eval-
uate those programs using both reference-dependent
and reference-independent evaluation methods on both
sequential and non-sequential benchmark test sets.
We show that MICAN outperforms the other existing
methods for reproducing reference alignments of non-
sequential test sets. Furthermore, although MICAN does
not specialize in sequential structure alignment, it shows
the top level performance on the sequential test sets for
both reference-dependent/independent measure.
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The source code of MICAN is freely download-able at
http://www.tbp.cse.nagoya-u.ac.jp/MICAN.

Results and discussion

Evaluation

In order to assess the performance of alignment
methods as objectively as possible, we use both
reference-dependent and reference-independent evalua-
tion methods.

Reference-dependent evaluation is based on pre-
computed gold standard of reference alignments. Refer-
ence alignments are often carefully inspected, or manually
curated to ensure good alignment quality. They are con-
sidered to be, for the most part, biologically or physically
meaningful, although they may not be necessarily perfect.
The reference-dependent alignment accuracy is calcu-
lated as the number of correctly aligned residue pairs in
a test alignment divided by the total number of aligned
residue pairs in a reference alignment. Because of its
biological or physical relevance, as well as simplicity of
the evaluation, reference-dependent evaluation has been
widely used [28-32]. However, some aspects of the method
have been criticized; it relies heavily on the correctness of
the reference alignment and it is unclear how the quality of
reference alignment influence the evaluation of alignment
programs [6,31,33].

On the other hand, reference-independent method does
not require reference alignments. It evaluates purely
geometric measure, such as number of aligned residue
pairs, their RMSD, number of gap, or their combina-
tions. Thus, reference-independent method is free from
problems associated with reference-dependent evalua-
tion. Comparing these geometric measure is particularly
useful for identifying characteristic feature of several
alignment programs. However, these similarity measures
may not necessarily reflect the biologically or physically-
meaningful similarity [34]. This situation is particularly
serious, especially for non-sequential structure alignment.
For instance, as shown in Figure 1, an alignment by SAMO
shows larger number of aligned residue pairs and lower
RMSD than those of the reference alignment. However,
its alignment seems to be not physically relevant because
there are too many gaps and too many short segments that
are likely to be spurious matches in the alignment.

As mentioned above, both reference-dependent and
reference-independent method have their own advantages
and weaknesses. The use of both two evaluation meth-
ods would provide more objective view on the results of
the benchmark test, highlighting different aspects of the
algorithm.

Datasets
What kind of datasets should we use for the evalua-
tion of non-sequential structural alignment programs?
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Obviously, many protein pairs of which the ‘correct’ align-
ments is known to be non-sequential are needed. We
refer to such test sets as ‘non-sequential test sets’ In addi-
tion to that, ‘sequential test sets; a collection of protein
pairs of which the ‘correct’ alignment is sequential, are
also needed. That is because ideally, if the correct align-
ment is sequential, non-sequential alignment programs
should generate a sequential alignment. Sequential test
sets enable us to assess such an ability of non-sequential
programs. Thus, we have used both sequential and non-
sequential test sets for the evaluation of different struc-
tural alignment programs.

As sequential test sets, we chose MALIDUP [35] and
MALISAM [23], which contains manually curated struc-
tural alignments with non-trivial homology (MALIDUP)
or structural analogy (MALISAM). We call these
benchmark sets as “MALIDUP-sq” and “MALISAM-sq’,
hereafter.

We must construct non-sequential test sets for evalua-
tion of non-sequential alignment, because of the absence
of gold standard of non-sequential structural alignment
databases. Here, we create artificial non-sequential test
sets “MALIDUP-ns” and “MALISAM-ns” based on the
sequential test sets, rather than collecting naturally occur-
ring non-sequential alignments, because the number of
currently known naturally occurring protein pairs that
show non-sequential structural similarity is limited. The
detailed description of how to create artificial non-
sequential test sets is given in the Methods section.

Comparison to other alignment programs
We compared the alignments of MICAN with those
of other structure alignment programs. They are three
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sequential alignment programs: DaliLite [36], TM-align
[37], and CE [38], and six non-sequential alignment pro-
grams: DEDAL [33], SNAP [22], GANGSTA+ [21], MASS
[13], SCALI [16], and SAMO [18]. We selected DaliLite,
TM-align and CE as representative of sequential align-
ment programs, because they have been known to be one
of the best structure alignment programs [4,6,29]. The
choice of above-mentioned non-sequential programs was
based on the availability of stand-alone programs. All of
the programs were downloaded and executed locally on
a Linux platform. If the source code of the program was
available, we compiled it with GNU Compiler 4.5.5 on the
computer. To our knowledge, this is currently the largest
and most comprehensive comparison of non-sequential
structural alignment programs.

Benchmark test with reference-dependent evaluation
Results of sequential alignment test

In order to assess alignment accuracy of several method
on sequential test sets, we compared the alignments
generated by the ten methods with all of the reference
alignment of MALIDUP-sq and MALISAM-sq, and com-
puted percentage of agreement, Q-score. Here, Q-score is
defined as the number of correctly aligned residue pairs
in a test alignment divided by the total number of aligned
residue pairs in a reference alignment. The corresponding
box-and-whisker plots are shown in Figure 2, and mean
Q-score are listed in Table 1. We also present the scatter
plots of Q-score for all pairs of the compared methods in
Figure 3. For MALIDUP-sq test set, the largest mean Q-
score was achieved by MICAN with 85.8% (median 94.9%)
and the second largest mean was 85.3% (median 94.3%)
by DaliLite. On the other hand, for MALISAM-sq test

MALIDUP-sq
100_5 EE ll_
Q 60| — .
o]
(6]
w
G 40 .
20 | |
S O A T L]
T T T T T T -Ii- T T T
[0} c w - o = (7]
2586 % =253 8¢
o = = 0 a6 @ 2
= =
<
1)

Figure 2 The results of reference-dependent assessment with sequential test sets. The box-and-whisker plot of the distribution of the Q-score
obtained for three sequential (white boxes) and seven non-sequential methods (gray boxes). The left (right) plot represents the result for the test

with MALIDUP-sq (MALISAM-sq) set.

MALISAM-sq
100 [ T ]
s =l I .
Q 60 -
o
(&) =
P
& 40 = .
20 .
ol I N i Sy -
T T T T T T -Il- T T T
! I
£ 58 % x %32 3 ¢
5 8 S 3 5 8 g 3 %
8 = S 0 ® ¢ ® =2 o
= =2
<
R




Table 1 Average Q-scores by ten different algorithms

Dataset DaliLite TM-align CE MICAN DEDAL SNAP GANGSTA+ SCALI MASS SAMO
MALIDUP-sq 85.3 81.0 62.3 85.8 834 70.8 64.4 56.2 504 428
MALISAM-sq 67.3 537 212 65.5 56.2 434 36.0 358 213 17.0
MALIDUP-ns 379 43.0 — 85.6 814 713 63.3 542 515 19.0
MALISAM-ns 21.7 22.5 — 67.6 56.1 43.6 299 375 204 8.5
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Figure 3 The scatter plots of Q-score for all pairs of the compared methods for the sequential test sets. Comparison of the Q-score for all
pairs of the compared methods for the sequential test sets. Upper right diagonal shows the scatter plots of MALIDUP-sq set. Lower left shows those

set, the best algorithm was DaliLite and the second best
was MICAN. Its mean Q-score was 67.3% (median 80.7%)
by DaliLite and 65.5% (median 85.9%) by MICAN. The
alignment accuracy by DaliLite and MICAN are statisti-
cally indistinguishable; According to the Wilcoxon signed
rank test, p-value is 0.602 and 0.937 on MALIDUP-sq and
on MALISAM-sq, respectively. These two programs are
the leading methods in the comparison, because the dif-
ference between these two and the others are statistically

significant with P < 0.01. For example, the alignment
accuracy by MICAN and DEDAL is statistically distin-
guishable; p-value is 9.7 x 1075 and 2.7 x 1073 on
MALIDUP-sq and on MALISAM-sq, respectively. The
scatter plots of Q-score shown in Figure 3 also show
superiority of the two programs. From these results,
it can be concluded that MICAN and DaliLite showed
the best performance at least for reference-dependent
evaluation on MALIDUP-sq/MALISAM-sq test sets. It
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should be noted that although MICAN does not special-
ize in sequential structure alignment, the performance
of MICAN is comparable with that of DaliLite, which
is known to be one of the best sequential alignment
program.

Results of non-sequential alignment test

To examine the ability of reproducing non-sequential
reference alignments, we performed the benchmark
test on the non-sequential test sets, MALIDUP-ns and
MALISAM-ns test set. As far as we tested, CE pro-
gram did not work for protein pairs in the non-sequential
test sets. That is because artificially generated protein
structures included in the test sets have chain break.
Accordingly, data of CE algorithm is not shown for the
test sets. The results of the non-sequential benchmark
tests are shown in Figure 4, Figure 5, and Table 1.
As we expected, the performance of sequential align-
ment programs, DaliLite and TM-align, were signifi-
cantly decreased on non-sequential test sets, compared
with their results on sequential test sets. For example,
the mean Q-score obtained by DaliLite has dropped
from 85.3% (MALIDUP-sq test) to 37.9% (MALIDUP-
ns test). This result is a natural consequence, because
these sequential alignment programs were not designed
so as to align protein structures in non-sequential manner.
On the other hand, the performance of non-sequential
alignment programs are robust against changes of test
sets from sequential to non-sequential. Among them,
MICAN shows outstanding performance on the test sets.
It achieves the highest median and mean Q-score on
both non-sequential test sets (See Figure 4, Figure 5 and
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Table 1). Especially, the result on MALISAM-ns test,
which is the harder one, is significant; the mean Q-score
obtained by MICAN with 67.6% is as many as 11% higher
than that by DEDAL, which shows the second highest
mean Q-score (See Table 1). In addition, the difference
between MICAN and DEDAL is statistically significant:
p-value is 1.7 x 10~ (See also Figure 4). Taken together
with the results on sequential and non-sequential test set,
MICAN can be considered as the outstanding program
for generating alignments consistent with reference align-
ments regardless of whether the reference alignment is
sequential or not, at least for the test sets we used here.

An example of one of the most difficult alignment
taken from MALISAM-ns test set is shown in Figure 6.
One of the pair is the structure of Formiminotransferase
domain of formiminotransferase-cyclodeaminase (shown
in Figure 6a left). The other is the permuted structure of
FAD-binding domain (Figure 6a right), which is gener-
ated by randomly permuting sequential order of SSEs of
FAD-binding domain.

The alignment plot of the reference alignment and those
of nine alignment methods are also shown in Figure 6b
and c. The structure alignment of the reference consists
of five fragments, and each fragment contains a single SSE
and loops attached to the SSE. The orders of SSEs in the
polypeptide chains are completely different, which makes
alignments quite complex, as shown in Figure 6b. Five
non-sequential methods (SNAP, GANGSTA+, SCALI,
MASS, and SAMO) returned zero agreement with the ref-
erence alignment, suggesting difficulty of reproducing the
reference alignment of this pair. DaliLite, TM-align, and
DEDAL returned partial agreement with the reference.
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Figure 4 The results of reference-dependent assessment with non-sequential test sets. The box-and-whisker plot of the distribution of the
Q-score obtained for three sequential (white boxes) and seven non-sequential methods (gray boxes). The left (right) plot represents the result of the

test with MALIDUP-ns (MALISAM-ns) set.
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Figure 5 The scatter plots of Q-score for all pairs of the compared methods for the non-sequential test set. Comparison of the Q-score for all
pairs of the compared methods for the non-sequential test sets. Upper right diagonal shows the scatter plots of MALIDUP-ns set. Lower left shows
those of MALISAM-ns set.

All these three method correctly aligned o 2 to o 2,
but only DaliLite did « 1 to & 1. All the method except
MICAN failed to correctly align any g strands pairs. On
the other hand, only MICAN correctly align all of the
secondary structure pairs, completely reproducing the
reference alignment (Q-score = 100%).

Although MICAN is the best aligner in terms of
reference-dependent evaluation, there are still some fail-
ures. For example, as depicted in Figure 3 and 5,
MICAN generates some alignments with Q-score = 0%.

Manual investigation revealed that majority of such failed
alignments had a common feature; They had 1-4 residue
shift of an alignment with respect to the reference align-
ments. Shown in Figure 7 is a typical failed example of
MICAN. Although the alignment plot by MICAN is simi-
lar to that of the reference, there is no overlap with the ref-
erence alignment. TM-score of the alignment by MICAN
(0.503) is slightly larger than that of the reference (0.498),
indicating that optimizing TM-score does not always lead
to the manual alignment. This observation suggest that
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Figure 6 The example of difficult non-sequential alignment taken from MALISAM-ns set. (a) The structure of Formiminotransferase domain
of formiminotransferase-cyclodeaminase (SCOP-ID d1qd1b1, B2083-B2180) and the permuted structure of FAD-binding domain (SCOP-ID d1n62c2,
C1-C61). (b) The alignment plot of the reference alignment. The horizontal axis and the vertical axis correspond to residue positions of d1qd1b1 and

those of permuted d1n62c2, respectively. Positions of « -helices and g -strands in the native structure are also indicated by red and blue bars.
(€) Comparison of the agreement between the reference alignment and nine alignment methods we tested here. The name of method and its
Q-score for the protein pair is shown on each the alignment plot. The reference alignment pairs are shown in black circles. Alignment pairs
generated by each methods are shown in red circles.




Minami et al. BMC Bioinformatics 2013, 14:24
http://www.biomedcentral.com/1471-2105/14/24

QO

T
Reference @
80 - MICAN e

Permuted d1914a2
3
T

b - T
Figure 7 The example of failed alignment of MICAN.

(@) Comparison with the reference alignment (black) and MICAN
(red). This protein pair (d1ovmal and permuted d1914a2) was taken
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d1914a2 is colored in red and pink. Blue and red regions indicate
aligned residues, and cyan and pink represent unaligned residues.
(€) The superimposition based on the alignment by MICAN.
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one possible improvement is to develop a scoring function
that is more consistent with human expert knowledge.

Benchmark test with reference-independent evaluation

To identify characteristic feature of several alignment
programs, we calculated several standard geometric mea-
sures, the number of aligned residue pairs (Nyj;), the cor-
responding root mean square deviation (RMSD) of the C,
atoms, and the number of gap opening (Ngyp), for all the
alignments generated by all the methods, for all the pairs
provided in MALIDUP-sq, MALISAM-sq, MALIDUP-ns
and MALISAM-ns test sets. Here, Nyj; is defined as the
number of aligned residue pairs divided by the size of
the smaller protein of the protein pair. Their average val-
ues for MALIDUP-sq, MALISAM-sq, MALIDUP-ns and
MALISAM-ns test sets are listed in Table 2. To visual-
ize the data, average Ny and RMSD obtained by each
method is plotted on (Ngj;, RMSD) plane in Figure 8. On
this plane, better performance corresponds to larger val-
ues along the horizontal axis with smaller values along the
vertical axis.

Shown in Figure 8a are results for MALIDUP-sq and
MALISAM-sq test sets. Each method locates in various
positions of the plane, which reflect the feature of objec-
tive function of each method. Among them, DaliLite,
TM-align, MICAN, and SAMO show similar feature of
the alignments; they are located on a similar position.
These four algorithms are seated on the upper right part
of the graph, suggesting that they prefer larger num-
ber of aligned residue pairs with larger RMSD (about
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3 A). Although their average RMSD values are rela-
tively large compared with the other programs, these
values can be considered as biologically relevant, because
they are comparable to typical RMSDs for homologous
proteins [39]. In contrast, alignments by MASS shows
shorter alignment with the smallest RMSD of all the algo-
rithm. The other programs lie between the two extreme
cases.

Figure 8b shows results on MALIDUP-ns and
MALISAM-ns test sets. Compared with Figure 8a, as
we expected, Nyj; of sequential algorithms significantly
decreased. On the other hand, the positions of all of the
non-sequential algorithms on the plain are not affected by
the change of test sets from sequential to non-sequential
test sets, compared with those of sequential algorithms.
Especially, MICAN, DEDAL, SNAP and MASS are shown
to be highly robust against shuffling of sequence order.
Their change in the Ny; and RMSD are less than 2%.

According to Figure 8a and b, MICAN and SAMO show
similar behavior; They prefer large number of aligned
residue pairs with larger RMSD, regardless of whether
the reference alignment is sequential or not. However,
they showed totally different behavior in the reference-
dependent assessment, as shown in Figure 2 and Figure 4.
Where does the discrepancy come from? One possible
explanation is that the large number of aligned residue
pairs by SAMO is mainly attributed to contribution of
short segments that are likely to be spurious matches.
In fact, Table 2 shows that the number of gap opening
is different between the two algorithms. The number of
gap opening by SAMO is about 9 times larger than that
by MICAN, suggesting that alignments by SAMO largely
consist of relatively short segments or single residue pairs.
As pointed out by Abyzov and Ilyin [10] and Teichert
et al. [29], these short aligned segments are considered as
‘noise;, which may likely arise by chance, rather than ’sig-
nal’ of structural similarity, because sequence similarities
based on structure alignments increase by removing short
fragments from the alignments [29]. These noise could be
one of the major factor of overestimation of the structural
similarities [40]. Thus, in order to eliminate contribu-
tion of such noise from Nyj;, we calculated the number of
aligned residue pairs, N, which does not count residues
pairs in fragments shorter than three consecutive residues
pairs.

Average value of N obtained by each method for each
test set are listed in Table 2. Underlined data listed in
Table 2 indicate significant difference (more than 20%)
between Nyj; and N;h. The largest change is observed
for SAMO, which shows 46% decrease between Nyj; and
N, on MALISAM-ns test set by omitting the short frag-
ments, suggesting the large number of aligned residue
pairs by SAMO is enhanced by gathering short (one or
two residues) fragments. On the other hand, N,; and



Table 2 Quality assessment by 3 reference-independent measures

Dataset Measure DaliLite TM-align CE MICAN DEDAL SNAP GANGSTA+ SCALI MASS SAMO
Nai 835 85.1 765 829 74 733 787 630 674 818
MALIDUP-sq N, 835 805 762 829 74.1 733 787 630 539 579
RMSD 273 261 2.87 2.60 246 2.05 265 235 1.65 2.55
Ngap 55 838 39 4. 40 50 32 42 186 325
Nai 804 812 54.1 810 69.7 683 755 580 620 83.2
MALISAM-sq N, 804 730 538 810 69.7 683 755 580 402 417
RMSD 3.12 307 3.09 301 295 232 293 2,60 1.85 293
Ngap 48 95 23 36 38 46 34 35 174 334
Nai 614 605 — 81.6 736 729 733 602 676 775
MALIDUP-ns N, 614 555 — 816 736 729 732 602 538 412
RMSD 273 2,94 — 257 246 201 247 237 1.65 2.84
Ngap 34 76 — 40 40 52 34 4. 189 42.1
Nai 630 632 — 799 69.1 68.2 700 576 617 81.6
MALISAM-ns N, 630 548 — 799 69.1 682 699 576 397 354
RMSD 347 336 — 297 301 232 2.87 264 1.86 2.99
Ngap 35 8.1 — 37 38 47 33 36 175 368
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N, by MICAN are completely the same for all the test
sets, implying that its alignments is mostly composed of
relevant signals of structural similarity.

To visually understand the influence of eliminating short
fragments on all the algorithms, we plotted average N,
and RMSD for each method on (N;, RMSD) plane in
Figure 8c and d for sequential and non-sequential test
sets, respectively. Comparing Figure 8a with c, as well as
Figure 8b with d, we can see that eliminating short con-
tinuous segments bring about drastic changes for some
alignment programs. As pointed out above, SAMO is the
most sensitive to eliminating short fragments, followed by
MASS and TM-align. The others are located at the same
position on the plane, suggesting that their alignments are
free from spurious matches. Among then, alignments by
MICAN shows the largest number of aligned residue pairs
for all the test sets, implying that the characteristic fea-
ture of MICAN is that it prefers large number of aligned
residues with reasonable RMSD and that its alignment is
free from spurious matches.

So far, N,; and RMSD have been evaluated based on
the residues located everywhere in the structure. How-
ever, as pointed out by Gueler and Knapp, comparing the

number of aligned residues or RMSDs should be careful,
because the residue assignment strategies can have a sig-
nificant influence of the results [41]. To elucidate influence
of the residue assignment strategies, we recalculated num-
ber of aligned residue pairs and corresponding RMSDs in
two different strategies. The first strategy is based on the
residues only within secondary structure elements(i.e. « -
helix and B -strand). The second one is based on residues
belonging to the same SSE type. We found that the results
from both strategies were qualitatively the same as the
result we have shown here; alignments by MICAN show
the largest number of aligned residue pairs over all the
test sets for both strategies (data now shown). This result
implies the robustness of the results against the change of
residue assignment strategies.

We have shown that the characteristic features of align-
ments by MICAN are (i) large number of aligned residue
pairs with reasonable RMSD and (ii) its alignment is
free from one or two length short segments. For fur-
ther characterization of the algorithm, we investigate what
length fragments are frequently used in the alignment
of MICAN, and to compare them with those of the
other algorithms. Shown in Figure 9 is the distribution
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Figure 9 The distributions of the length of consecutive aligned
fragments for MALIDUP-sq set. The algorithms are classified into
four groups based on the location of the peak of their distribution,
The first group (a) has a peak at 9 residue length, the second group
(b) a peak at 7, the third group (c) a peak around 3 or 4, and the fourth

group (d) a peak around 1 or 2.

of lengths of continuously aligned fragments in the
alignments produced by each method for MALIDUP-sq
set. According to the location of the peaks of their distri-
bution, the algorithms can be classified into four groups:
The first group has a peak at 9 residue length (shown
in Figure 9a), the second group at 7 (Figure 9b), the
third group around 3 or 4 (Figure 9c), and the fourth
group around 1 or 2 (Figure 9d). MICAN belongs to the
first group; its peak location of the distribution is larger
than any other groups. This result indicates that the large
number of aligned residue pairs by MICAN is mostly
attributed to relatively longer consecutive fragments (typ-
ically longer than 9 residue length). This is contrast to the
distribution of the fourth group; The number of aligned
residue pairs is enhanced by contribution of a large num-
ber of 1 or 2 length short fragments.

Influence of multiple vector representation of protein
structures on the alignment accuracy.

As described in the Methods section, MICAN utilizes
a multiple vector representation for each SSE. Here,
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we discuss how it works on improving performance,
by comparing the performance of MICAN with that of
MASS, which utilizes single vector representation of SSEs.
As pointed out in the introduction, it may be difficult to
correctly align a short SSE in a long one by the single
vector representation. In order to assess whether the mul-
tiple vector representation improve alignment accuracy
over single vector representation methods for such cases,
we examined the dependence of alignment accuracy on
the average difference in residue number between aligned
SSEs in the reference alignment. Shown in Figure 10a is
the relationship between the average difference of aligned
SSE length in the reference alignment and Q-scores of
MICAN and MASS alignments for all the target pairs of
both MALIDUP and MALISAM-sq test set. There is sta-
tistically significant relationship between Q-score and the
average difference of aligned SSE length for MASS. These
two values are correlated with a correlation coefficient
r = —0.34. The p-value associated with this correlation is
extremely small (p = 8.0 x 10712 ). This result indicates
that the larger the average difference of aligned SSE length,
the more MASS fail to align. On the other hand, there
is no correlation between the two values of alignments
by MICAN (r = —0.09, p = 0.10 ), implying that the
performance of MICAN is robust against the difference
of aligned SSE length. These results suggest that multiple
vector representation of protein structures improve align-
ment accuracy for protein pairs that have large difference
of SSE length.

Computational costs

To assess the computation speed of the algorithms we
examined here, we measured computational time per
alignment. Average CPU times required to calculate one
structure alignment for each test sets with the ten algo-
rithms are shown in Table 3. The fastest algorithm
of all the programs is TM-align for all the test sets.
Although, compared with TM-align, MICAN is about
1.2 ~ 2.3 times slower than TM-align, it is the fastest algo-
rithm of all non-sequential programs. Since average CPU
times required for one structure alignment by MICAN
is very fast (0.097 ~ 0.134s ), it is suitable for large-
scale database search. It should be noted that although
MICAN showed the similar behavior to DaliLite in both
reference-dependent/independent evaluation for sequen-
tial test sets, computational speed of MICAN is much
faster (approximately 8 times faster) than that of DaliLite,
which is known to be one of the best structure alignment
program.

Homologous protein pairs that have non-sequential
structural similarity

Recently, some homologous protein pairs that show non-
sequential structure similarity have been reported [10,11].
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superposition

However, it is unclear how abundant such pairs are. In
order to address the issue, we compared homologous pro-
tein structures by MICAN. We considered all the pairs of
SCOP family representatives within the same superfamily
(12,603 pairs). For these 12,603 pairs, pairwise structural

alignments with significantly high structural similarity,
TM-score > 0.5 [42], were collected, resulting in total
of 8,335 structurally similar protein pairs. Among them,
the overall proportion of protein pairs that show non-
sequential alignments was 39% (3,284 pairs). This result

alignments were generated using MICAN. Here, only the  suggests that a large number of proteins have changed

Table 3 Average CPU time* required to calculate one structure alignment of ten different algorithms

Algorithm MALIDUP-sq MALIDUP-ns MALISAM-sq MALISAM-ns
DaliLite 0.910s 1.019s 0.445s 0.539s
TM-align 0.111s 0.087s 0.055s 0.043s
CE 0.152s — 0.055s —
MICAN 0.134s 0.134s 0.098s 0.097s
DEDAL 5.734s 6.000s 0.272s 0.259s
SNAP 1517s 1.743s 0.962s 1.128s
GANGSTA+ 0.270s 0.273s 0.185s 0.190s
SCALI 8.272s 8.153s 2.723s 2.870s
MASS 0.138s 0.136s 0.105s 0.106s
SAMO 0.454s 0.455s 0.166s 0.163s

"CPU times are measured on a PC with Intel Core-i7 2.93 GHz processor.
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their folds by some complex events while conserving the
same core packing arrangements.

One of the interesting example of such a homologous
protein pair is shown in Figure 11 for Ubiquitin C-
terminal hydrolase (SCOP ID d1xd3a.) and Phytochelatin
synthase (SCOP ID d2bu3al). These two proteins belong
to the same superfamily (Cysteine Proteinase superfam-
ily) in the SCOP database [12], suggesting that they share
a common evolutionary ancestor. Although their ligands
are different, the molecular functions are suggested to
be similar; both of them have hydrolase enzymatic activ-
ity and contain the same catalytic residues of cysteine,
histidine, aspartate and glutamine [43,44]. TM-score of
the alignment by MICAN is 0.517 (RMSD of 3.8 A over
70% residues), suggesting significant structural similar-
ity. Figure 11b shows superimposed structures of aligned
region around the catalytic-site. All the side-chain atoms
of the catalytic residues are well superimposed, suggest-
ing the correctness of the alignment. The corresponding
alignment plot (Figure 11c) shows a non-sequential align-
ment; the large portion of structurally equivalent parts
are not in the same order in protein sequences. This
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permutation can not be explained by well-established
mechanism of protein evolution such as “Duplication and
Fusion” It is interesting to investigate how such a fold
change occurred, but left for future studies.

Conclusions
We have developed a new algorithm MICAN to compare
protein structures regardless of the topology. One of the
key of the algorithm is a novel representation of SSEs with
multiple comparing elements of short segments. It enables
us to properly describe bent or twisted nature of long sec-
ondary structure element. In addition, this representation
method also helps speeding up a geometric hashing pro-
cedure. As aresults, MICAN is the fastest program among
non-sequential alignment programs we examined here.
We have presented a comparative analysis of struc-
tural alignments using both reference-dependent and
reference-independent evaluation methods on both
sequential and non-sequential test sets. Reference-
dependent evaluation shows MICAN outperforms the
other existing methods for reproducing reference align-
ments of non-sequential test sets. Further, although

d2bu3at

0 | | | |
0 50 100 150 200 250

dixd3a_

Figure 11 Comparison of UCH-L3 and Phytochelatin synthase. (a) The cartoon models of UCH-L3 (d1xd3a_-) and Phytochelatin synthase
(d2bu3al). The aligned regions are shown in three colors red, blue and yellow corresponding to the colors used in (c). (b) A close view of the
catalytic-site of the superimposed structure by MICAN. The aligned regions of UCH-L3 and Phytochelatin are shown as cartoon models in light blue
and light green, respectively. The ball-and-stick representation indicate sidechain atoms of catalytic-site residues His, Asp, Cys and GIn. White, blue,
red and yellow balls correspond to carbon, nitrogen, oxygen and sulfur atoms. (€) The structural alignment of the two proteins generated by MICAN.
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MICAN does not specialize in sequential structure
alignment, its performance on sequential test sets is
comparable to DaliLite, which is known to be one of the
most accurate sequential alignment program. Reference-
independent evaluation demonstrates that the features of
alignment by MICAN are large number of aligned residue
pairs with reasonable RMSD and that its alignment is
free from short segments that are likely to be spurious
matches. These results suggest that MICAN is highly
effective tool for automatically detecting homologous
protein structures bearing topological irregularities, such
as circular permutations and segment-swapping, many of
which have been identified manually by human experts
so far.

Methods

The general strategy of the algorithm

Assume we have two protein structures, a query and a
model, composed of N and M residues, respectively. The
goal is to find the rotational matrix that maximizes struc-
tural equivalences between the two structures, regardless
of chain connectivity. The search scheme of MICAN
employs a hierarchical alignment algorithm, in which the
SSEs are first aligned, and then a residue level alignment
is iteratively performed.

The SSE level alignment is further divided into four
steps: In the 1st step, secondary structure types are
assigned for each residue of the two structures. In the
2nd part, we define “the Comparing Elements of the Short
Segment (CESS)’, by which we describe the structures to
be compared in the SSE level alignment. The CESS is
a point which is defined per consecutive 3 residues for
strands, and 6 for helices. Accordingly, the number of
CESSs included in each SSE is n — 2 for strands, n — 5
for helices, where 7 is the length of the SSE. Each CESS
has the information of its SSE type, the representative
location of the SSE segment, the direction of the short seg-
ment of SSE from the N-terminus to the C-terminus, and
the perpendicular vector to the SSE direction. Thus, each
CESS has two vectors, which enables us to define a refer-
ence frame on each CESS. In the 3rd step, one reference
frame is defined per CESS by exploiting the two vector
each CESS possesses. In the 4th step, we use geometric
hashing technique to pick up candidates of best rotational
matrix that maximize non-sequential structural similarity
by searching for the best matches of CESSs. Some candi-
dates of best rotational matrix are listed and stored for the
next stage.

The residue level alignment is divided into two steps: In
the 1st step, we generate a residue level alignment based
on the superimposition obtained by SSE level alignment.
Starting from the initial superimposition, we generate
one-to-one mapping of C, atoms in step wise manner,
in which we align residue pairs from pairs superimposed
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with smaller RMSD to larger. In the 2nd step, the refine-
ment of alignment is performed iteratively until the simi-
larity score converges. Finally, the best scoring alignment
is selected based on TM-score like function. The details of
each protocol is described in the following subsections.

The SSE level alignment

The 1st step: SSE assignment

The starting points of MICAN algorithm is secondary
structure assignment for all the residues of both the query
and the model. For a given residue, a secondary struc-
ture type (o -helix, 8 -strand, or coil) is assigned by the
method of Zhang and Skolnick [37], instead of DSSP [45]
or STRIDE [46], because of its speed and applicability to
Cq only models. It was reported that Q3 accuracy of the
method was 85% with respect to the DSSP assignment.
In the SSE level alignment, we use only residues that are
assigned as o -helix or f -strand, and ignore the rest of the
residues. We also ignore helices shorter than 6 residues
and strands shorter than 3.

The 2nd step: defining the comparing elements of the short
segment

In the second step, for both the query and the model,
we define the Comparing Elements of the Short Segment
(CESS), by which we describe the structures to be com-
pared in the SSE level alignment. A CESS is defined per
a Short Segment of SSE (SSSSE), where, SSSSE is defined
as a segments of consecutive 3 residues for strands, and 6
for helices. Accordingly, the number of CESSs, as well as
SSSSEs, included in each SSE is n — 2 for strands, n — 5
for helices, where # is the length of the SSE (see Figure 12a
and b). Each CESS has following four kinds of informa-
tion on the SSSSE. The first one is secondary structure
type (i.e. @ or B ) which was assigned in the first step. We
denote secondary structure type of i-th CESS as s; . The
second one is the coordinate of the representative point of
the SSSSE, which we call “the coordinate of the CESS” We
denote the coordinate of the i-th CESS as riCESS. When a
CESS represents the i-th SSSSE which starts from the k-
th residue (see Figure 12a and b), riCESS is defined as the
middle point of both ends of the SSSSE, i.e.

rlCESS — (ri'nit + r?nd)/z’ (1)

where

(0.74rk + Fie41 + Tiet2
+ 0.74r143)/3.48

(ri +re41)/2

init _
r; =

(for helices)  (2)

(for strands)

(0747412 + Fic43 + Ficta
rend = + 0.747145)/3.48
(i1 +1r42)/2

(for helices)  (3)

(for strands).



Minami et al. BMC Bioinformatics 2013, 14:24
http://www.biomedcentral.com/1471-2105/14/24

Page 17 of 23

Figure 12 The definition of the coordinate of CESS. The definition of coordinate of CESS vP?, and vP€'P for (a) an « helix and (b) a 8 strand are
depicted. In the upper parts, an « helix and a 8 strand are depicted by a ribbon diagram, as well as by a ball-and-stick C, model. Black balls
represents Co atoms of i-th SSSSE that starts from k-th residue. Gray balls represents <55, In the lower parts, v7*'® and v*"" of the CESS are
indicated by dashed arrows colored in blue and red, respectively. (€) An example of schematic representation of a 8 -« -8 motif by a set of CESSs.

Here, ry indicates coordinates of C, atom of k-th
residue. The expressions of r;“it and r?nd are taken from
Ref. [14]. The third kind of information is the direction
of the SSSSE from N- to the C-terminus. The directional

vector of i-th SSSSE (vfara) is defined as

, (4)

which was also used in Ref. [14]. The fourth informa-
tion is the perpendicular vector to vf ¥, The reason why
we introduce this vector is that by introducing the vec-
tor we can define the reference frame per CESS. This
technique enables us to reduce complexity of Geometric
Hashing algorithm to O(#?), while that of the naive geo-
metric hashing, in which reference frame is defined per
triplet of points, is O(n*). The perpendicular vector of
i-th SSSSE, v*“?, is defined as a normal vector of v>*"
that runs through a point rfdef, where rfdef is, roughly
speaking, the location of the SSSSE center, and defined as

Vpara — (r;‘:nd _ r%nit)/ r

end
i rp =

init
i

Jpdef _ (k2 + 7143)/2 (for helices) 5)
P Tiy1 (for strands).

In the same way, we calculate above mentioned quan-
tities for every SSSSE. As a result, whole structures of
both the query and the model are described by a set
of CESSs. An example of schematic representation of a
protein structure by a set of CESSs is shown in Figure 12c.

The 3rd step: defining the reference frame

In this step, we define reference frames for each CESS
of both the query and the model. Reference frames are
coordinate systems, which are used in geometric hashing
technique. As described in the 2nd step, each CESS has
two vectors, which are orthogonal to each other. By the
use of two vectors, a coordinate reference frame for i-th

CESS is defined as follows. The origin of the reference
frame is placed on the coordinate of i-th CESS. The x-axis
is defined by the vector vf’ * and y-axis is le “P. The z-
axis is defined to be perpendicular to the x-y plane and its
direction is determined by the right-handed rule.

The 4th step: identifying candidates of best rotational matrix
by geometric hashing

In order to find candidates of best rotational matrix, which
maximizes coincidences of CESSs of the two structures,
we use geometric hashing technique. Geometric hash-
ing algorithm is composed of two interrelated phases:
preprocessing and recognition.

In the preprocessing phase, we set up hashing table for
the model structure. The preprocessing procedure we use
here is essentially the same as the standard one, except for
a set of descriptions stored in the hash table. For each ref-
erence frame, we define 3D grid. A resolution of the grid is
set to 3.2 A in the algorithm. The cells of the grid make up
a hash table, which we denote as H(a, b, c), where (a, b, ¢)
is an index of 3D cube. First, i-th CESS in the model is
chosen as a basis of the reference frame. Second, the posi-
tion of j-th CESS in the reference frame i, which we call
erESS (i), is calculated according to the formula, erESS (i) =
[ (erESS —rCESS) 4, (erESS —rCESS) 5, (r]cEss _ riCEss) 2],
where &;, §;, and 2; are base vectors for x, y, and z axis of
the reference frame i, and riCESS and r']-CESS are the coordi-
nates of { and j-th CESS in the original coordinate system.
Third, if erESS(i) is found in the cube (4, b, ¢), following
four descriptions of j-th SSSSE are stored in the hash table
H(a, b, c) : these are (i) an identification of its SSE type (s;),
(ii) an identification of the basis (in this case, the CESS
that defines the reference frame i), (iii) the transformed
vector v;P2" (i), which is the vector v#*" calculated in the
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reference frame i, and (iv) the transformed vector v;P*P (i),
This procedure is repeated for all the CESS of all reference
frames.

In the recognition phase, we compare the model and
the query structure. The goal of this step is to find candi-
dates of the rotational matrix that maximizes coincidences
of CESSs of the two structures. The recognition phase of
MICAN is also essentially the same as standard geomet-
ric hashing algorithm, except for a voting score. Let k-th
CESS of the query structure be the selected point which
defines the reference frame. For each of the other CESS
of the query, the coordinates in the frame system defined
by the k-th CESS are computed, as for the model. These
coordinates are used as indexes of 3D cube. If rfESS (k) of
the query is found in the cube (g, b, ¢), and information of
j-th CESS of the frame system i of the model is stored in
the hash table H(a, b, ¢), voting score S(j(i), [(k)) is added
for the pair of reference frames i and k. The function of
the voting score S(j(i), [(k)) is defined as

SG@), 1K) = BOjiy,ix) + Pjay,ickys (6)
where
0 10 > 7/3)
Ojiiky = » _ 7)
cos (9,1(,),1(/()) cos (1/3) (161 < 7/3),
— cos (/3)
0 (I¢| > 7/3)
Pii i = cos (¢ 1) — (8)
i(i),i(k)) — €os (77/3)
L cos G /3) (Il = 7/3).

Here, 0,1k and ¢;(;),ix) are the angle between v}P )
and vfara(k), and that between v**P(i) and vferp(k),
respectively. This procedure is repeated for all the other
CESS of all the reference frames of the query structure. As
a result, all the reference frame pairs between the model
and the query are ranked according to their summation of
the voting score. Top scoring 50 reference frame pairs are
stored for the next step. For each such pairs, we calculate
a rotational matrix by superimposing one reference frame
onto the other. These rotational matrices are used to set
up an initial superimposition of the two structures in the
residue level alignment.

The residue level alignment

The 1st step: one-to-one assignment of C, atoms

In this step, starting from the initial superimposition
obtained by SSE level alignment, we generate one-to-one
mapping of C, atoms in a step wise manner, in which we
align residue pairs from pairs superimposed with smaller
RMSD to larger. In order to identify which residue pairs
are superimposed with given cut off distance dr, we con-
struct an N x M similarity matrix M;;(dgr) based on a
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given superimposition of the query and the model struc-
ture, where N and M denote the number of residues in the
query and the model. The matrix M;;(dr) is defined as

1 80’,'(7/' +w
2,0
1+dj;/d; 1+w

(dij < dp)
M;j(dr) =

0 (otherwise),

)

where dj; is the distance between the C, atom of the i-
th residue of the query and that of the j-th residue of the
model, dj is a scale to normalize the match difference, dp
is cut off distance of R-th step, o; represent the three-states
of secondary structure (helix, strand or coil) of residue i,
and 80105 18 Kronecker’s delta. The scale dj is defined as

do = 1.24JL —15 — 1.8, where L is the length of the
query structure. This formula was originally introduced
by Zhang & Skolnick, to eliminate the inherent protein
size dependence of the score function [47]. The factor
(8s;57 +w)/(1+ w) was introduced so that aligned residues
should belong to the same SSE type. Here, w is a weight
factor and is set to 1.0 in this paper. The cut off values dr
in each step R are set as follows: d; = 3.2 A, dy = 1.5 x 3.2
A, and d3z =25 x 3.2 A.

We consider alignments composed only of continuous
segments with certain length, in order to eliminate short
segments that are likely to be spurious matches. Generally,
a continuous segment of length / is described as a set of
residue pairs; {(«, 8), (+1, B+1), -, (@+I—1, B+I-1)},
where (¢, B) indicates that residue « of the query is paired
with the residue S of the model. Here, given the cut off
value dr, we consider only continuous segments that fulfill
the condition;

My tm,p+m(dr) > 0 for Vm € (0,1,---,1—1). (10)

We refer to such a segment as A;(dr), where ¢ is the
index of the segment. We introduce the similarity score
S[A; (dp)] of the segment A; (dr), which is defined as

-1
S[A (@R =) Masmprm(dr)-

m=0

(11)

The similarity score is used to rank the segments, as well
as to exclude short segments.

First, we align residue pairs that are superimposable
with the smallest cut off value, d;. We calculate M;;(d1)
based on the initial superimposition obtained by SSE level
alignment, and generate alignments based on the matrix.
The goal of this step is to find a set of non-overlapping
continuous segments {A1(d1),A2(d1),- - ,Au(d1)} that
maximizes

Swr(dr) =Y SLAx(d)],
k=1

(12)
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where # is the number of segments in the alignment.
Since the exact solution of this problem is hard to obtain,
our approach is to use greedy-like algorithms to find an
approximate solution. First, the algorithm chooses the
continuous segment that has the highest score of all the
continuous segments on the matrix. We refer to such
a segment as Aj(dy). If S[A1(d1)] satisfies the condi-
tion, S[A1(d1)] > Swin, A1(d1) is recorded as the first
member of the set of best segments, where the cut-
off parameter S,,;, is set to 2.2 in this paper. Then, in
order to choose the next segment, we modify the matrix
M; j(d1) such that matrix elements interfering with A1 (d1)
are set to zero. In other words, if the selected seg-
ments A;(dy) is described as A1(d1) = {(o, 8), (@ + 1,
B+, ,(@d+1—-184+ 1 — 1)}, matrix elements
whose row number is i (¢ < i < a + [ — 1) or whose
column number is j (B8 < j < B 4+ [ — 1) are set
to 0, except for Aj(d;) itself. We also set matrix ele-
ments of the segment A;(d;) to zero so that we won’t
select Aj(d;) as a highest score segment in the follow-
ing steps. Next, we choose the continuous segment that
has the highest score of all the continuous segments
on the modified matrix. We refer to such a segment as
Ao(dy). If S[Ax(d1)] > Swin, Aa(dr) is recorded as the
second member of the set of best segments. Further, we
modify the matrix such that matrix elements interfering
with Ay (d7), as well as those of Ay(d7), are set to zero.
We repeat this procedure until the highest score of all
remaining segments on the modified matrix is smaller
than S,,,;,. As a result, we obtain a set of non-overlapping
segments that approximately maximize the total score
Stot(d1) for given cut off distance d;. We describe such
a set as {A1(d1),A2(d1), -+ , Auay)(d1)}, where n(dy) is
the number of the best segments for the given cut off
value d;.

Second, we extend the alignment with increasing the
cut off value dr from dy to ds in a step wise man-
ner. For each R-th step, as in the case of d;, we cal-
culate the similarity matrix M;;(dr) according to the
equation (9). We modify the matrix M;;(dr) such that
matrix elements interfering with any of the A;(dgr_1) are
set to zero, where A;(dgr_1) is a segment involved in
the best alignment obtained in (R — 1) -th step. This
operation assures that the matrix elements of the best
segments identified in (R — 1) -th step are included
in the best segments of R-th step. Then, the algorithm
chooses the segment that has the highest score of all
the segments on the modified matrix. It is recorded as
the first member of the best segments in R-th step.
We denote such a segment as A;(dr). Next, we further
modify the matrix such that matrix elements interfer-
ing with A;j(dR), as well as those of A;(dg), are set to
zero. We repeat these procedures until the highest score
of all remaining segments on the modified matrix is
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smaller than S,,;,, for given cut off dg. The resultant
best set of non-overlapping segments for dp is described
as {A1(dr),A2(dR), -+ ;Andy) (dr)}, where n(dr) is the
number of the best segments for the given cut off
value dp.

By repeating the same procedure from dy to d3, we
finally obtain the set of non-overlapping segments for d3,
{A1(d3),Az(d3), -+ ,A,(d3)}, which is used as the initial
alignment in the iterative refinement step.

The 2nd step: iterative refinement

The final step of the algorithm is refinement of the align-
ment. It is performed iteratively as follows. First, we super-
impose the structures by minimizing the RMSD of C,
atoms based on the aligned residues identified in the pre-
vious step. Second, based on the superposition, we obtain
a new alignment by the method as was described in the
first step of the residue level alignment. These procedures
are repeated until the score no longer improves. The score
we use here is modified TM-score, which is defined as

1
mTM-score = N %Mij(ds)' (13)

Here, N is the length of the query, and ) (i) indicates
that summation is taken over all of the aligned residue
pairs. Finally, the alignment with the highest mTM-score
is returned. The alignments usually converge in moder-
ate time, although there is a discrepancy in the algorithm;
In superimposing structures, we minimize RMSD rather
than mTM-score, which is the objective function in the
algorithm. As far as we have tested, the score typically
converges by 5-6 iterations, suggesting that the discrep-
ancy is not critical.

Selecting the best alignment

Since the score function used in the SSE level alignment
is different from that in the residue level, the top scoring
superposition obtained in the SSE level alignment may not
always lead to the best scoring alignment in the residue
level. We explored the relationship between the two scor-
ing function and found that although they did not have
perfect linear relationship, there was a strong correlation
between the two. Further, we confirmed that if we started
from each of the top scoring 50 superimposition of the
SSE level alignment, we reached the highest mTM-score in
the residue level alignment in most cases. Thus, in order
to obtain as high scoring an alignment of the residue level
as possible, MICAN performs the residue level alignment
starting from each of the top scoring 50 superposition of
the SSE level alignment. An alignment with the highest
mTM-score among those 50 alignments is returned as the
best alignment. MICAN program can output sub-optimal
alignments, if the user specifies the option of output of
alternative alignments.



Minami et al. BMC Bioinformatics 2013, 14:24
http://www.biomedcentral.com/1471-2105/14/24

90
Seee
85 - e % =
! e
() / .
= s e,
8 80 [~ ",' ‘.‘ _
1 ’ ‘e
! .
o 75 ¢ L} ]
(0] ! "
=] i b
© : \
— H Q
70 -1 LAY -
G>J { ¥ e,
< . %
65 - *‘n‘ —
‘e
60
1 2 3 4 5 6 7 8
Ro
Figure 13 The cutoff distance dependence of the mean Q-score
for the SISY set. The mean Q-score is calculated for several Ry values
on the SISY set. All the other parameters are set to the same values as
those we used in this paper.

Handling reverse alignments
It has been reported that there are many interesting exam-

ples of non-sequential structure alignments that involve
reverse alignments, in which SSEs structurally match each
other but the polypeptide chains go in opposite direc-
tions [10,21]. MICAN can deal with forward and reverse

alignments simultaneously, if needed. In order to allow
reverse alignments, the algorithm should be changed

as follows:
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e The function ® in equation (7) is changed as

0 (01 > 7/3)

| cos (Oj(i),1k))| — cos (1/3)
1 —cos(r/3)

Oy 10y =
i) 1k
(10| < m/3).

¢ In the residue level alignment, we consider not only
forward segments but also reverse ones, which is
described as
{(@,B), (¢ +1,8—1),--+ ,(a+I—1,—1—- D}
This algorithm is implemented in MICAN program.
Users can select either the forward only or for-
ward/reverse mixed mode. All the data shown in this
paper were obtained in forward only mode.

Parameter tuning
There are a number of parameters that need to be opti-

mized in MICAN algorithm, such as w and dr in equation
(9). We determined these parameters by maximizing
agreement with the reference alignments of SISY-pairwise
dataset [30] through try-and-error procedure in a non-
systematic way. The SISY-pairwise was derived from
SISYPHUS database [48], a manually curated multiple
structure alignment database which contains structural
alignments with nontrivial relationships including circular
permutation or segment swap, thus the dataset is suitable
for training of non-sequential alignment. Through train-
ing, we found that some parameters have strong influence
on the performance. One of such parameters is a distance
cutoff value dr used in the residue level alignment.

3) 1234 56789 10111213

A B C

T
B C A

*Reference alignment

modification
CA I /w/~
g/ » /
i/ /
12345 6789 10111213
‘R ) ‘ resid b A C Cc A
eaSS|gnmento resiaue numboer Original Shuffled

Figure 14 The schematic representation of how to create a non-sequential test sets. (1) One protein structure to be permuted is randomly
chosen from each target pair. Original residue numbers are indicated inside circles. The three SSEs (strands) are represented by arrows. (2) The
original chain is splitted into several segments at loop positions. In this example, the chain has been divided into three segments A, Band C. (3) The
segment order is randomly shuffled (e.g. the order A-B-C was shuffled into different order B-C-A). Residue numbers are reassigned according to the
shuffled segment order. (4) The generated structure by the permutation technique. Its residue numbers are also modified according to the
segment order. The reference alignment are modified according to the reassigned residue numbers of the permuted protein. A’, B"and C' represent
segments of the other protein structure which has not been chosen for sequence shuffling. Segments A’, B'and C' correspond structurally to

segments A, B and C respectively.
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In this work, we set dp in each step R as di = Ry,
dy = 15 x Ry and d3 = 2.5 x Ry, where Ry is the
cutoff parameter. Thus, the single parameter Ry deter-
mines the behavior of dg. Figure 13 shows the relationship
between the mean Q-score and R for the SISY test set. We
clearly see that the optimal value is located near Ry = 3
A, and that the mean Q-score sharply drops as Ry value
changes from the optimal point. Another is the voxel size
h used in geometric hashing algorithm. We observed that
the voxel size dependence of the mean Q-score is qual-
itatively similar to the case of Ry. Preliminary numerical
tests on a variety of dr and / values led to the choice of
Ro = 3.2 A and & = 3.2 A. The other parameters seems
to be not critical for the performance. After the train-
ing, MICAN finally achieved high agreement (86.2% on
average) with the reference alignments. This agreement
is better than that of DaliLite (77.4% on average), which
is known to be one of the best structure alignment pro-
gram. We believe that the parameter set we determined
is nearly optimal, although it has not been optimized
systematically.

Datasets

Sequential datasets

As sequential test sets, we chose MALIDUP[35] and
MALISAM [23], which contains manually curated struc-
tural alignments with non-trivial homology (MALIDUP)
or structural analogy (MALISAM). MALIDUP consists
of 241 protein pairs and MALISAM 130 pairs. There
is no overlap between the MALISAM test set and the
SISY training set. On the other hand, the MALIDUP
test set has the same three protein pairs used in the
training set. However, these three pairs constitute only
1.2% of the MALIDUP test set. Thus, the test set
can be considered as almost independent from the
training set.

These two test sets are one of the most challenging
benchmark sets, because they contain more difficult tar-
gets than other databases such as HOMSTRAD [49]; We
performed structural alignment benchmark tests using
DaliLite [36], and found that average values of frac-
tion of correctly aligned residue pairs are 90.1%, 85.3%
and 67.3% for HOMSTRAD, MALIDUP and MALISAM,
respectively.

Non-sequential datasets

We created two artificial non-sequential test sets
“MALIDUP-ns” and “MALISAM-ns” based on the
sequential sets, MALIDUP-sq and MALISAM-sq, by
multiple segment permutations technique. This tech-
nique is also used for production of reasonable decoy
sets of protein structures, conserving natural spacial
arrangement of atoms [50,51]. The creation scheme is
described as follows (See also Figure 14).
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(1) We chose one protein structure randomly from each
target pair, and identified loop regions by DSSP
program [45].

(2) The chain was splitted into several segments at all the
loop regions.

(3) The linear order of these segments was randomly
shuftled, and the residue numbers were reassigned
accordingly. We did not perform loop modeling for
those permuted structures.

(4) Reference alignment of the each target pair was
modified according to the reassigned residue
numbers.

In this way, we generated one non-sequential reference
alignment from each sequential reference alignment. Per-
forming the same procedure for all the sequential test
sets yields 241 and 130 non-sequential alignments from
MALIDUP-sq and MALISAM-sq. The sequential/non-
sequential test sets we used here are available online at
http://www.tbp.cse.nagoya-u.ac.jp/MICAN.
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