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Influences of Venus’ topography on fully developed superrotation
and near-surface flow
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We investigate the influence of topography on Venus’ atmospheric general circulation. Based on comparative
simulations with and without the Venusian topography, we elucidate the role of the topography in the fully
developed superrotation. Orographically forced stationary waves are predominant over Mt. Maxwell: slightly
weakening the superrotation near the cloud top. Differently from previous GCM results, the orographically forced
waves do not produce significant asymmetry between the northern and southern hemispheric superrotations in the
present model. Weak surface flows from mountains to lowlands are caused by the pressure dependence of the
Newtonian cooling. The pattern and magnitude of the near-surface flow are largely different from those simulated
in the Herrnstein and Dowling (2007) model. This implies that the parameterizations of physical processes
(such as Newtonian cooling, turbulence, diffusion, and surface drag) and the model resolution could significantly
influence the pattern and magnitude of the near-surface flow and the orographical forcing of planetary-scale
stationary waves.
Key words: Venus, topography, general circulation, superrotation, orographically-forced wave.

1. Introduction
Venus’ atmospheric environment, consisting of dense

CO2, is largely different from that on the Earth, a planet
which has almost the same size. The surface atmospheric
temperature and pressure have high values of 730 K and
92 bar, respectively. Optically thick clouds of sulfuric acid
globally cover the planet in a height range of 50–70 km.
Short-wave radiative heating by the cloud layer is one of
driving forces of the atmospheric circulation of Venus. The
solid part of Venus slowly rotates with a period of 243 days
(Earth days) in an inertial frame, while the atmosphere near
the cloud top (65–70 km) rapidly rotates with periods of
∼4 days. Atmospheric rotation with an angular velocity
faster than the planetary rotation is termed “superrotation”.
The cloud-top wind speed is approximately 100 m s−1,
which is 60 times faster than the planetary rotation.
Although Atmospheric General Circulation Models

(AGCMs) of the Venus atmosphere have been developed,
it is difficult to incorporate the physical processes in
AGCMs because of many uncertainties. Recently, Venus-
like AGCMs simplifying the physical processes used for in-
vestigating Venus superrotation (Yamamoto and Takahashi,
2003; Lee et al., 2005; Hollingsworth et al., 2007;
Herrnstein and Dowling, 2007). The formation and main-
tenance mechanisms of the superrotation are proposed on
the basis of analyzing the simulated atmospheric circula-
tion and waves. Their simulated superrotations are main-
tained by the Gierasch mechanism (Gierasch, 1975), in
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which the meridional circulation pumps up the angular mo-
mentum required to maintain the superrotation with the
help of waves with equatorward momentum fluxes (e.g.,
Rossow and Williams, 1979). According to Yamamoto and
Takahashi (2004, 2006a), thermal tides are forced by solar
heating with a period of a Venusian day (117 Earth days)
near the cloud top, contributing to the Gierasch mecha-
nism through the equatorial acceleration of mean zonal flow
(e.g., Newman and Leovy, 1992). Kelvin and Rossby waves
are generated by horizontal shear instability (e.g., Iga and
Matsuda, 2005) in the lower atmosphere, also contributing
to the Gierasch mechanism. Although only a simulation
with topography was reported in Yamamoto and Takahashi
(2006b), the comparative simulations with and without to-
pography were not conducted under the same physical con-
dition in our General Circulation Model (GCM). We have
conducted numerical experiments with and without topog-
raphy in order to evaluate topographical effects on the GCM
simulation. We have elucidated the influences of the to-
pography on fully developed superrotation and near-surface
flow by comparing the results of our two experiments and
by also comparing these with recent other GCM studies
(Lee, 2006; Herrnstein and Dowling, 2007).

2. Model
The model used is based on the version 5.6 of

the AGCM developed at the Center for Climate Sys-
tem Research/National Institute for Environmental Study
(Numaguti et al., 1997) and is similar to the model of
Yamamoto and Takahashi (2004, 2006a) (Exp. YT04). The
dynamical process is calculated in the spectral space, while
the physical process is calculated in the grid space of
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Fig. 1. Longitude-latitude distributions of ground surface elevation (m)
obtained from Magellan topography data. The surface moves from left
to right in the panel.

Table 1. Model parameters. r indicates the planetary radius.

Exp. T NT YT04

Topography Yes No No

r (km) 6049.358 6049.358 6050

τH (h) 60 60 96

Surface drag CD(4 × 103) CD(4 × 103) τdrag (3 days)

64×32. The truncation wavenumber of spherical harmonic
function is 21, and the vertical domain between 0 and 90 km
has 52 sigma levels. The radiative processes are simpli-
fied by the 3D solar heating and the Newtonian cooling
for long-wave radiation, of which the rates are the same
as those in Exp. YT04. The maximum solar heating rate
given in this model is 30 K day−1 at the subsolar point
and 65-km altitude. The zenith-angle (λ) dependence of
the solar heating is cos1.4 λ. The equator-pole contrast of
the surface potential temperature is set at 10 K. Although
both the heating rate below 55 km and surface temperature
contrast are unrealistically large (figure 1 in Yamamoto and
Takahashi, 2006a), the large rate and contrast are needed
to reproduce fully developed superrotation. In the present
work, the Magellan topography data (Ford and Pettengill,
1992) shown in Fig. 1 are given at the bottom boundary for
Exp. T, but not for Exp. NT. The differences in model setup
with respect to Exp. YT04 are listed in Table 1, and sum-
marized as follows.
In Exp. T and Exp. NT, we set the drag coefficient CD

of 4×103 for temperature and horizontal flow (Del Genio et
al., 1993) in order to introduce the effect of the wind speed
on the surface drag. The 4th order horizontal diffusion of
the e-folding time τH of 60 h at the maximum wavenumber
is set in order to reduce the grid-scale eddies, which might
be forced by topography and inertial instability. The diffu-
sion is 1.6-fold larger than that in Exp. YT04. The initial
surface pressure is obtained from the elevation by assuming
the hydrostatic equation. In addition, the vertical profiles
of the solar heating, Newtonian cooling, and reference at-
mospheric temperature (Fig. 2) are given as a function of
pressure in Exp. T and Exp. NT, while they are given as
a function of sigma in Exp. YT04. Although the surface
temperature changes with changes in topography elevation
in Exp. T, the surface potential temperature is the same in
Exp. NT and Exp. TY04.

Fig. 2. Vertical distributions of a reference temperature Tref(p) (solid
curve) and time constant of Newtonian cooling τN(p) (dashed curve),
which are functions of atmospheric pressure p.

3. Results
The zonal mean and eddy fields were investigated using

the data sampled over 3072 h with a 3-h interval on Day
101,205. Figures 3(a) and (b) show longitude-latitude dis-
tributions of eddy temperature and horizontal flow averaged
over a Venusian day at the undermost layer in Exp. T and
Exp. NT. The eddy temperature and zonal-flow components
of ω = 0 for a sampling period of 117 days (where ω is fre-
quency) correspond to that of stationary waves. The eddy
temperature decreases with elevation in Exp. T, but not in
Exp. NT. The Newtonian cooling (which is a function of
pressure) is larger with elevation, and thus air parcels near
the surface become cooler at the top of mountain, compared
with lowland areas. In this situation, the horizontal winds
with speeds of 1–3 m s−1 flow from the mountains to the
lowlands. On the other hand, the stationary eddy compo-
nents of horizontal wind and temperature have small values
of <1 m s−1 and <0.15 K, respectively, in Exp. NT. The
pressure dependence of the Newtonian cooling induces the
surface winds flowing from the mountains to the lowlands.
Figure 4(a) shows longitude-height distributions of eddy

zonal flows averaged over a Venusian day (117 days) at
2.7◦ latitude over the Aphrodite Terra around 120◦ lon-
gitude. We can find stationary waves with high zonal-
wavenumber and amplitude of 10 m s−1 in Exp. T. The
stationary waves propagate vertically in the upper regions
above 65 km (where the atmosphere is highly stable) and
have standing phase structures and an amplitude of about
3 m s−1 in the lower atmosphere below 65 km (where the
atmospheric stability is low). Since the lower atmospheric
waves have amplitudes of 5 m s−1 over the high mountain
areas (around 30◦ and 120◦ longitudes), they are orograph-
ically forced. On the other hand, stationary waves are not
generated in the equatorial region for Exp. NT.
Figure 4(b) shows longitude-height distributions of eddy

zonal flows averaged over a Venusian day (117 days) at
−69.2◦ latitude. Planetary-scale stationary waves are oro-
graphically forced over Mt. Maxwell around 240◦ longi-
tude, as shown in Exp. T. The orographically forced waves
have standing phase structures below 50 km and propagate
vertically above 50 km. On the other hand, planetary-scale
waves with an amplitude of >10 m s−1 are found above
40 km in Exp. NT. They are not orographically forced,
but are probably generated by horizontal shear instability.
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Fig. 3. Longitude-latitude distributions of eddy temperatures (K) averaged
over a Venusian day in the undermost layer of σ = 0.995 for (a) Exp. T
and (b) Exp. NT. The arrow in the lower of the panel indicates the unit
vector of eddy horizontal flow (m s−1). The superrotation flows from
left to right in these panels.

Instead of orographically forced waves, the planetary-scale
waves resulting from shear instability play an important role
in the vertical transport of angular momentum at high lati-
tudes (Yamamoto and Takahashi, 2006a).
The upper panels of Fig. 5 show latitude-height distribu-

tions of zonal mean flows in Exp. T and Exp. NT. The su-
perrotation exceeding 140 m s−1 is seen near the cloud top.
The wind speed is fairly fast in comparison with Exp. TY04.
The faster superrotation is caused by changing the model
setup. The horizontal diffusion is enhanced by 1.6 times
because of reducing grid-scale noise due to topography and
inertial instability, and the surface drag is changed from the
Rayleigh friction formula to the bulk formula in the our
study (Section 2 and Table 1). These changes unexpectedly
lead to an extremely large superrotation of >140 m s−1, al-
though the zonal-wind acceleration/deceleration due to the
horizontal diffusion is much smaller than that due to simu-
lated waves. Around 85 km, the zonal flow is decelerated
by thermal tides and slowly propagating waves. The magni-
tude of the zonal flow for Exp. T is somewhat smaller than
that for Exp. NT. Thus, the topographical effect on the su-
perrotation is small in the present experiment, though the
wave structures and near-surface flows (Figs. 3 and 4) are
considerably different between Exp. T and Exp. NT. This
finding is a significant feature of fully developed superrota-
tion, as will be discussed in Section 4.
The lower panels of Fig. 5 show time series of the cloud-

Fig. 4. Longitude-height distributions of eddy zonal flows (m s−1) aver-
aged over a Venusian day at (a) 2.7◦ and (b) −69.2◦ latitudes.

Fig. 5. Latitude-height distributions of longitudinal averaged zonal flows
(m s−1) and time series of the zonal wind speed at 69 km.

top zonal mean flows in Exp. T and Exp. NT. The cloud-
top wind in Exp. NT hardly spins up until 25,000 days.
After this, the wind speed rapidly increases to 150 m s−1.
The rapid increase of the zonal wind occurs under the flat
surface condition, when the angular momentum of dense
lower atmosphere reaches the cloud top. On the other hand,
the cloud-top wind in Exp. T gradually increases with time
and reaches an equilibrium state around 60,000 days. In
the presence of topography, the angular momentum of the
dense lower atmosphere is gradually transported toward the
middle atmosphere.
The meridional circulation is driven by the differential

heating and the dissipation of vertically propagating waves
in the same manner as our previous GCMs (Exp. YT04).
The single cell of the meridional circulation is predominant
in the height range from 0 to 80 km, where the vertical flow
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is upward (downward) at the equator (the poles). Thermal
tides maintain the equatorial superrotation in the middle at-
mosphere, together with the advection due to meridional
circulation. This supports the thermal tide mechanism near
the cloud top. On the other hand, horizontal shear instability
plays an important role in the lower atmospheric superrota-
tion. The equatorward eddy momentum fluxes caused by
the thermal tides and shear instability (which generates 9.8-
day wave) deposit the angular momentum into the upward
branch of the meridional circulation, in which the upward
flow efficiently pumps up the angular momentum. This cor-
responds to the Gierasch mechanism.

4. Summary and Discussions
The superrotation is maintained by the Gierasch mecha-

nism under the condition that thermal and topographic forc-
ings are given in a Venus-like GCM. The difference be-
tween simulations with and without topography is small for
the zonal mean field, though the superrotation in Exp. NT
is somewhat stronger than that in Exp. T. This is largely
different from Herrnstein and Dowling (2007), in which
the superrotation with topography is 50% weaker than that
without topography. The lowermost-level flow has a maxi-
mum velocity of ∼27 m s−1 in Herrnstein and Dowling’s
model with low vertical resolution, to which the sophis-
ticated Planetary Boundary Layer (PBL) model using a
Spalart-Allmaras scheme (Dowling et al., 2006) is applied.
On the other hand, the lowermost-level flow is sufficiently
decelerated by the surface drag in the thin layer between
σ = 1 and 0.99 (∼100 m) in the present study. In
Herrnstein and Dowling, the orographically forced waves
are likely to be generated because of large zonal surface
flow; they decelerate the cloud-top superrotation because
of large dissipation due to small Doppler shift velocities.
Thus, significant asymmetry between northern and south-
ern hemispheric superrotations is formed in their model.
Such an asymmetry is also seen in Lee (2006). On the
other hand, in the present simulation, since the orographi-
cally forced waves are weak, the topographical effect is not
essential to the formation of the fully-developed superrota-
tion. For small-scale mountains, the pressure gradient error
and its related spurious winds are caused by spectral trun-
cation and the sigma coordinate (e.g., Janjic, 1989). In our
model, the small-scale (high-wavenumber) artificial distur-
bances are strongly dissipated by the 4th order diffusion,
of which the time constant is sufficiently shorter than the
radiative relaxation time near the surface. We need to eval-
uate the effect of the sigma coordinate on the spectral Venus
model with topography.
For the stationary fields, the differences between simu-

lations with and without topography are significant. The
small-scale stationary eddies are found over the Aphrodite
Terra, while the planetary-scale stationary eddies are found
over Mt. Maxwell. Since the elevation of the ground surface
largely changes from 0 to ∼10,000 m, the thermal param-
eters (such as the Newtonian cooling) also largely change
with elevation. Thus, weak near-surface horizontal winds
flow from the mountains to the lowlands. This near-surface
flow is not seen in Herrnstein and Dowling (2007), in which
zonal flow and vortices are predominant. The comparison

between these GCMs suggests that the near-surface flow is
sensitive to model setups. In particular, the PBL param-
eterization (such as resolution, diffusion, and surface drag)
and the pressure dependence of the thermal parameters near
the surface may highly influence the pattern of the surface
flow and the orographical forcing of planetary-scale station-
ary waves. In addition, differences with respect to the nu-
merical methods and the coordinate system utilized in their
model may be important. Thus, the sensitivities to model
parameter and setup should be investigated in future stud-
ies.
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