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Abstract For the intensively studied vehicle routing problem (VRP), two real-life

restrictions have received only minor attention in the VRP-literature: traffic con-

gestion and driving hours regulations. Traffic congestion causes late arrivals at

customers and long travel times resulting in large transport costs. To account for

traffic congestion, time-dependent travel times should be considered when con-

structing vehicle routes. Next, driving hours regulations, which restrict the available

driving and working times for truck drivers, must be respected. Since violations are

severely fined, also driving hours regulations should be considered when con-

structing vehicle routes, even more in combination with congestion problems. The

objective of this paper is to develop a solution method for the VRP with time

windows (VRPTW), time-dependent travel times, and driving hours regulations.

The major difficulty of this VRPTW extension is to optimize each vehicle’s

departure times to minimize the duty time of each driver. Having compact duty

times leads to cost savings. However, obtaining compact duty times is much harder

when time-dependent travel times and driving hours regulations are considered. We

propose a restricted dynamic programming (DP) heuristic for constructing the

vehicle routes, and an efficient heuristic for optimizing the vehicle’s departure times

for each (partial) vehicle route, such that the complete solution algorithm runs in
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polynomial time. Computational experiments demonstrate the trade-off between

travel distance minimization and duty time minimization, and illustrate the cost

savings of extending the depot opening hours such that traveling before the morning

peak and after the evening peak becomes possible.

Keywords Restricted dynamic programming � Time-dependent travel times �
Driving hours regulations � Vehicle routing problem with time windows �
Duty time minimization

1 Introduction

For companies that practice vehicle routing, realizing compact driver duty times

leads to substantial savings regarding, e.g., truck driver hiring costs, and the time

vehicles are unavailable for other services. Compact duty times are in most

countries even required by law: the European Community (EC) social legislation on

driving and working hours (European Union 2006), for example, limits the daily

driving and duty times of truck drivers.

To obtain compact driver duty times, the departure times within vehicle routes

must be optimized within the applicable regulations. Two real-life restrictions make

departure time optimization within vehicle routes particularly difficult: time-
dependent travel times and driving hours regulations (Kok et al. 2010a). As traffic

congestion typically occurs during peak hours, time-dependent travel times need to

be accounted for to obtain robust vehicle routes. Driving hours regulations require

the scheduling of mandatory breaks and rest periods after a certain amount of

driving time. Therefore, solution approaches for vehicle routing problems and

dedicated decision support systems should account for these real-life restrictions.

The difficulty of selecting feasible departure times under driving hours

regulations is illustrated in the works of Xu et al. (2003), Archetti and Savelsbergh

(2009), and Goel and Kok (2009a, b). Xu et al. (2003) conjecture that finding a

feasible driver schedule for a given visit sequence under the US Federal Motor

Carrier Safety Administration (2008) and multiple time windows is NP-hard.

Archetti and Savelsbergh (2009) show that this problem under single time windows

is polynomially solvable by presenting a cubic time algorithm for this problem.

Goel and Kok (2009b) propose an improved algorithm for the problem considered

in Archetti and Savelsbergh (2009) that runs in quadratic time. Goel and Kok

(2009a) propose a quadratic time algorithm for a similar problem, but under the EC

social legislation with team truck drivers.

The combination of duty time minimization within the construction of vehicle

routes, accounting for time-dependent travel times, and obeying driving hours

regulations is a highly complex problem, which has—to the best of our

knowledge—not been addressed so far. The objective of this paper is to develop

a solution method for the VRPTW with time-dependent travel times and the EC

social legislation on driving and working hours (TDVRP-EC). Since the EC social

legislation is more restrictive than the US Federal Motor Carrier Safety
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Administration (2008), any solution method for the TDVRP-EC can also solve the

TDVRP with the US Hours-Of-Service Regulations.

The VRP has been extensively studied in the literature (for an extensive

overview, see Toth and Vigo 2002). The vehicle routing problem with time-

dependent travel times (TDVRP, Malandraki and Daskin 1992) and the vehicle

routing problem with the EC social legislation on driving and working hours (Goel

2009), however, have drawn only minor attention from scientists. To the best of our

knowledge, this is the first paper that addresses these common timing restrictions

together in one model.

Local search methods have proved to be successful in solving large vehicle

routing and scheduling problems (Funke et al. 2005). However, it is hard to

efficiently incorporate complex timing restrictions in local search methods, since

customer insertions and removals have complex up- and downstream effects on the

routes under consideration. This makes the evaluation of neighborhood solutions

computationally expensive.

For the TDVRP, Ichoua et al. (2003) resolve this problem of computationally

expensive checks by considering soft time windows and an estimation function for

the neighborhood solutions. Only the most promising neighborhood solutions are

evaluated explicitly. This procedure fails in case hard time windows are considered,

since then the feasibility of a neighborhood solution must be evaluated exactly.

Moreover, it is not possible to account for the EC social legislation with this

procedure.

For the VRPTW under the EC social legislation, Goel (2009) proposes a large

neighborhood search heuristic, which is based on successively applying customer

removals and insertions to improve some initial solution. To account for the EC

social legislation, Goel (2009) proposes a labeling algorithm that checks for each

customer insertion and removal whether it is admissible. The solutions obtained by

this method are substantially improved by the restricted DP heuristic of Kok et al.

(2010b). This heuristic is an extension of the DP heuristic proposed by Gromicho

et al. (2008), which is a construction heuristic that sequentially constructs vehicle

routes by adding customers to the end of a partial vehicle route. The EC social

legislation is accounted for by embedding a break scheduling algorithm within the

DP heuristic. This break scheduling algorithm only schedules breaks locally,

avoiding computationally expensive checks upstream in the partial vehicle routes,

and runs in constant time. As a result, the running time complexity of the DP

heuristic for the VRPTW with the EC social legislation is the same as the running

time complexity of the DP heuristic for the traditional VRPTW. Following this

promising result for the VRPTW with the EC social legislation, we propose a

solution method for the TDVRP-EC based on the DP heuristic of Gromicho et al.

(2008).

In the context of time-dependent vehicle routing, Hashimoto et al. (2008) also

consider dynamic programming. However, they apply dynamic programming for

determining the optimal start time of a given vehicle route, whereas we apply it for

constructing the vehicle routes. Related works considering the TDVRP are of

Fleischmann et al. (2004), Van Woensel et al. (2008), and Donati et al. (2008).
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A closely related topic to developing solution methods for the TDVRP is the

topic of how to obtain the time-dependent travel times for real world vehicle routing

problems (see, amongst others, Kolesar et al. 1975; see, amongst others, Ehmke

et al. 2009, 2010). These works discuss data collection and conversion methods,

such that it can be used as input for time-dependent vehicle routing problems.

In the VRPTW literature, heuristic solution methods generally use a lexico-

graphic objective function in which the primary objective is to minimize the number

of vehicles used and the secondary objective is to minimize the total distance

traveled. However, within the VRPTW this secondary objective may lead to large

waiting times, which are costly in practice. Moreover, traffic congestion makes the

duration of travels (and thus also the costs of these travels) depend on the time of the

day, while the distance remains the same. Therefore, a more relevant secondary

objective is to minimize the total duty time (Savelsbergh 1992). We numerically

analyze both travel distance and duty time as the secondary objective. Moreover, we

quantify the impact of extending the depot opening hours, such that traveling before

the morning peak and after the evening peak becomes possible.

This paper is organized as follows. Section 2 formally introduces the TDVRP-EC.

Section 3 discusses some important assumptions considering waiting times at

customers that have a strong impact on the complexity of the departure time

optimization problem. Section 4 proposes a solution approach for the TDVRP-EC,

based on the DP heuristic of Gromicho et al. (2008). In Sect. 5, we report on

computational experiments to analyze the impact of different objective functions

(minimize travel distance vs. minimize duty time) on the overall solution quality, and

the impact of extending the depot opening hours. In Sect. 6, we summarize our main

findings.

2 Problem description of the TDVRP-EC

We consider an extension of the classical VRPTW for which we first introduce

some notation that we require throughout this paper. Within the VRPTW, we are

given a set of vehicles K ¼ f1; . . .;mg and a set of nodes V ¼ f0; . . .; ng in which

node 0 represents the depot. Nodes i [ 0 represent customer requests with demands

qi and service time windows ½ei; li�. The problem is to find a set of routes, each

starting and ending at the depot, such that the total demand along each route does

not exceed the vehicle capacity Q, each service starts in the given time window, and

some objective function is optimized.

We extend the VRPTW by considering time-dependent travel times and driving

hours regulations. We assume that (aggregated) data is available for time-dependent

travel speeds along customer-to-customer routes. In other words, we do not consider

the underlying road network in which (time-dependent) shortest paths should

be determined. The calculation of (time-dependent) shortest paths can be done

in a pre-processing phase and from these paths the required aggregated travel data

for customer-to-customer routes can be obtained, as demonstrated in Kok et al.

(2009). To model the time-dependent travel times, we apply the time-dependent

speed model of Ichoua et al. (2003), which satisfies the non-passing property (the
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non-passing property states that overtaking is not possible). There are two main

reasons for this approach: (1) the non-passing property is a realistic property (2) a

more detailed travel time function (e.g., any differentiable travel time function) is

not realistic to obtain from, e.g., historical travel time data.

In this paper, we consider Regulation (EC) 561/2006 on driving and working hours

(European Union 2006), which is valid for all member countries of the European

Union. Furthermore, we consider one-day planning in which all customer requests are

known in advance and we assume that breaks and rests have to be scheduled at

customer locations. The choice for one-day planning is motivated by practice, since

duty time minimization is applied to one-day schedules because the costs applied for

night rests on duty differ from those for working times. Considering one-day planning,

Regulation (EC) 561/2006 poses the following requirements per driver:

1. A period between two breaks of at least 45 min is called a driving period. The

accumulated driving time in a driving period may not exceed 4.5 h. The break that

ends a driving period may be reduced to 30 min if an additional break of at least 15

min is taken anywhere during that driving period. The driving hours regulations

do not allow service times at customers to be considered as break time.

2. The total accumulated driving time may not exceed 9 h.

3. The total accumulated duty time may not exceed 13 h.

The TDVRP-EC comprises three types of decisions: assigning customers to

vehicles, sequencing customer visits for each vehicle, and selecting departure times

for each vehicle. Departure times need not only be determined for the departure at

the depot, but also at each customer to account for the driving hours regulations and

the time windows. The opportunity to schedule waiting times at customers makes

this departure time scheduling problem particularly difficult, as we shall illustrate in

Sect. 3. Therefore, we discuss in Sect. 3 the scheduling of waiting times and our

underlying assumptions in detail.

3 Waiting time assumptions

In order to construct feasible vehicle routes, we need a method that finds feasible

departure times for these routes. Furthermore, the costs of such routes have to be

determined in terms of duty times. Kok et al. (2010a) propose an ILP model to

optimize vehicle departure times given the customer visit sequence of a vehicle

route. We refer to this problem as the vehicle departure time optimization problem

(VDO). When constructing vehicle routes in the DP heuristic (see Sect. 4), however,

computation times to solve this ILP are too large to apply it for each (partial) vehicle

route that is considered.

A complicating factor for the determination of the minimum duty time is the use

of unforced waiting time. We define unforced waiting time as waiting time that is

not forced by either time windows of customers or by driving hours regulations

induced breaks. For example, if departing at time 0 from the depot leads to an

arrival time of 2 at the first customer, but the earliest feasible time to start service at

this customer is 5, then a waiting time of 3 is introduced. We call this unforced
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waiting time, because it can be avoided by departing at time 3 from the depot

(assuming time-independent travel times in this example). However, if departing

from customer i at its latest feasible departure time (i.e., starting its service at its

deadline li and departing directly after this service) still results in an early arrival at

the next customer j, then we call this forced waiting time. As an illustration of how

to profitably introduce unforced waiting time, suppose that direct continuation from

a customer results in a total driving time of slightly more than 4.5 h, which requires

an additional 45 min break before completing the vehicle route. However, if

postponing the departure time by a small amount of time (unforced waiting) reduces

the total driving time below 4.5 h (e.g., due to less traffic), then no additional break

is required and we end up with an earlier completion.

The problem of exploiting unforced waiting time is that its profitability is

difficult to measure, since it requires for each customer addition (or customer

insertion, customer removal, etc.) a recheck at each visited customer for introducing

unforced waiting time. To keep track of all possibly profitable unforced waiting

times is thus computationally expensive. We consider the variant of the VDO in

which introducing unforced waiting time is not considered. In addition, we choose

to not schedule early breaks (which means that we also not split up breaks in a 15

min part and a 30 min part), even not when there is sufficient forced waiting time. In

Sect. 5, we numerically analyze the effect of not considering unforced waiting time

and early breaks by optimizing each vehicle route with the exact solution approach

of Kok et al. (2010a) as a post-processing step. In the next section, we propose a

solution method for the TDVRP-EC and for the VDO subproblem in which

unforced waiting time and early breaks are not considered.

4 Solution approach

We solve the TDVRP-EC using the restricted dynamic programming framework of

Gromicho et al. (2008). As illustrated by Kok et al. (2010b), this framework is

suitable for incorporating complex timing restrictions such as driving hours

regulations. The DP formulation constructs one tour and is applied to the VRP

through the giant-tour representation (GTR) of vehicle routing solutions (Funke

et al. 2005). The basic DP formulation for routing problems (without time-

dependent travel times) is as follows.

Each state (S, i) represents the minimum cost path of starting in node 0, visiting

all customers in S � Vnf0g, and ending at customer i 2 S. The costs of each state

are represented by C(S, i), and they are calculated by the following recurrence

relation, in which cij represents the (time-independent) travel costs of traveling from

node i to node j:

Sj j ¼ 1 : C if g; ið Þ ¼ c0i 8i 2 Vn0:
Sj j[ 1 : C S; ið Þ ¼ min

j2Sn if g
C Sn if g; jð Þ þ cji

� �
:
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Finally, the costs of the optimal tour are calculated with:

min
j2Vn 0f g

C Vn 0f g; jð Þ þ cj0

� �
:

The giant-tour representation of vehicle routing solutions connects vehicle routes

by ordering the vehicles and introducing start- and end-nodes for each vehicle route.

Next, successive vehicles are connected by connecting the corresponding end- and

start-node (i.e., we introduce precedence relations for the start- and end-nodes of the

vehicles). Figure 1 presents an example of a VRP solution with three vehicles, two

depots (A and B) and nine customers. Vehicle 1 starts at depot A and ends at depot

B, vehicle 2 starts and ends at depot B, and vehicle 3 starts and ends at depot A.

Figure 2 presents the same solution with its corresponding giant-tour representation.

To solve vehicle routing problems with the DP formulation, we apply it to the

extended node set concerned with the giant-tour representation of vehicle routing

solutions. When a state is expanded with a vehicle route-end node (e.g., node d1 in

Fig. 2), then the associated vehicle route is completed. In the next stage, we

consider the route-start node of the successive vehicle (o2 in this case) as the only

feasible expansion, such that a new vehicle route is started. In order to obtain

feasible vehicle routes, we add state dimensions that indicate, e.g., the remaining

capacity of a vehicle, the current time (which is needed to determine the right travel

times), the remaining travel time until a break must be scheduled. When we expand

a state, we perform feasibility checks to ensure that vehicle capacities are not

exceeded, time windows are not violated, etc. This implies that, for example, when a

state is expanded by a vehicle end-node, then all state dimensions are set to the

initial conditions of the next vehicle (remaining capacity is set to the vehicle’s

capacity, current time is set to 0, etc.).

All states with the same cardinality of S form a stage. The so-called stage width

equals the total number of states in that stage. To obtain practical computation

times, we bound the stage width with a value H, such that only the H lowest cost

Fig. 1 Example of a solution to
a VRP with three vehicles

Fig. 2 The giant-tour
representation of a solution to
the VRP of Fig. 1
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states in each stage are expanded. Since all states belonging to the same stage

correspond to partial VRP solutions in which the same number of nodes are visited,

low cost states are most likely to lead to good overall VRP solutions. The costs of

each state are based on the partial VRP solution it represents.

To account for lexicographic objective functions, such as minimizing the number

of vehicles used as the primary objective and minimizing the total duty time as the

secondary objective, we define the cost of each state C(S, i) as a tuple (number of

vehicles used, total duty time). As a consequence, states are only compared with

respect to their secondary criterion if they are equal with respect to their first

criterion. Note that for each state the first criterion ‘number of vehicles used’ is only

increased when a route-end node is added and the previously added node was not
the route-start node (otherwise, we would count an empty route). Since this may

imply that constructing empty routes is free with respect to the objective function

(e.g., when the vehicle starts and returns at the same location), we forbid

constructing empty routes when there are still customer nodes to be added.

In order to apply the DP heuristic to our problem, we need a method that

checks for each state expansion whether there exists a feasible departure schedule

for the corresponding partial vehicle route. Furthermore, the costs of such an

expansion have to be determined in terms of duty times. In the remainder of this

section, we propose a polynomial time algorithm for the VDO without unforced

waiting time and early breaks. This VDO algorithm develops a time-dependent

duty time function for the entire vehicle route under consideration. We describe

how a duty time function based on time-dependent driving speeds can be

represented in a duty time record with O(p) elements, with p the maximum

number of times the speed changes on a route. Section 4.1 describes how to

update the duty time record each time a node is added to a partial vehicle route.

We show that each such node addition introduces at most O(p) new elements,

resulting in O(np) elements for the duty time record of the composite duty time

function of an entire route. For simplicity, we first assume that service times are

zero, no service time windows are given, and no driving hours regulations are

present. Sections 4.2 and 4.3 then describe how service times and time windows

can be incorporated, respectively, whilst maintaining the O(np) running time

complexity. Section 4.4 describes how breaks can be incorporated in order to

respect the driving hours regulations. Section 5 derives the resulting running time

complexity of the VDO algorithm.

4.1 Adding a node to a partial vehicle route

For simplicity reasons, we assume in this section that service times are zero, and

time windows and driving hours regulations do not exist, which implies that driving

times equal duty times. However, for reasons of generality, we set up an algorithm

at the end of this section that remains valid when time windows are present.

Suppose that the number of speed changes on each route between two nodes is

limited by p. These speed changes result in a piecewise linear duty time function.

Figure 3a presents such a speed step function for a route 0! i with distance 2, and
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Fig. 3b presents the resulting duty time function for that route as a function of the

departure time. Each speed change causes the slope of the duty time function to

change at most two times: (1) when the arrival time at node i equals the moment that

the speed changes (2) when the departure time from node 0 equals the moment that

the speed changes. For example, the speed change at time 4 causes the slope of the

duty time function to change at departure times 3 and 4. Therefore, the number of

linear pieces of the duty time function is O(p).

(a)

(b)

(c)

(d)

(e)

Fig. 3 a Speeds route 0! i, b duty times route 0! i, c speeds route i! j, d duty times route i! j,
e duty times route 0! i! j
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Each duty time function of a route z can be represented by a duty time record

rz ¼ rz
1; . . .; rz

Uz

� �
of O(p) elements. Each record entry rz

u ¼ ðdz
u; t

z
uÞ contains two

elements: the start time du
z of the u-th linear piece of the duty time function and

initial height of this piece (i.e., the duty time tu
z required to (completely) travel route

z when departing at time du
z from the first node in route z). We assume that for each

route i! j, the travel speeds are given for the entire planning horizon, i.e., for the

depot opening hours ½e0; l0�. Therefore, for each route i! j we have di!j
0 ¼ e0 and

di!j
Ui!j þ ti!j

Ui!j ¼ l0. This allows us to construct the duty time records for each route

i! j in a pre-processing step without knowing the actual nodes that will be visited

before arriving at node i in a solution. Note that when time windows are present,

departing at e0 from node i may not make sense, even when we do not consider the

nodes that may be visited before node i in a solution. Section 4.3 describes how to

include time windows at customers in the construction of the duty time records

during the pre-processing step, which may then result in di!j
0 [ e0 and di!j

Ui!j þ
ti!j
Ui!j\l0 for certain routes.

The duty time record for the duty time function in Fig. 3b is:

r0!i ¼ 0; 1ð Þ; 3; 1ð Þ; 4; 2ð Þ; 5; 2ð Þ; 7; 1ð Þ; 9; 1ð Þð Þ:

The minimum duty time equals the minimum of all duty time entries. The duty time

for a given departure time can be calculated by interpolation. We define the function

Tz(d) as the function that gives the duty time needed to travel route z for a given

departure time d from the first node in route z.

The duty time for a given arrival time a at the last node in route z can also be

calculated using the duty time record rz. Each departure time dz
u from the first node

in route z results in an arrival time of az
u ¼ dz

u þ tz
u at the last node in route z. This

arrival time az
u corresponds to a duty time of tz

u. We can determine the duty time for

a given arrival time a at the last visited node in route z by interpolation. We define

the function Fz(a) as the function that gives the departure time d from the first node

in route z that exactly results in an arrival time of a at the last node in route z (i.e.,

the difference between arrival time a at the last node in route z and the

corresponding duty time). A call to this function requires a run through the duty

time record. However, the calls we make in Algorithm 1 are with non-decreasing

arrival times a. Therefore, we only require one run through the duty time record for

all calls to Fz(a) in Algorithm 1. We can do this by storing for each call the required

positions in the duty time record to calculate Fz(a), and to continue the search from

these positions for the successive call.

We now describe how to derive a new duty time record when a node is added to the

end of a partial vehicle route. Suppose that we add a node j to the end of a partial vehicle

route corresponding to a state (S, i), i.e., route i! j is added to the partial vehicle

route. Then, we need to determine the duty time record rnew of the new partial vehicle

route, which is the composite record of the duty time record rold of the old partial

vehicle route from node 0 to node i and the duty time record radd of route i! j. The

duty time function of the new route is the composite function of two piecewise linear

functions, which in our case is again a piecewise linear function.
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Suppose that rold is the duty time record of the duty time function in Fig. 3b (i.e.,

the old partial vehicle route is route 0! i). Furthermore, suppose that the distance

of route i! j is 2.5 with a speed step function as in Fig. 3c, and resulting duty times

as in Fig. 3d. Then we get:

Algorithm 1 VDO algorithm

// Initialization

1: if dold
0 þ told

0 [ dadd
Uadd then

2: STOP

3: end if

4: if dold
Uold þ told

Uold \dadd
0 then

5: dnew
0 ( dold

Uold

6: tnew
0 ( dadd

0 þ tadd
0 � dold

Uold

7: STOP

8: end if

9: if dold
0 þ told

0 � dadd
0 then

10: dnew
0 ( dold

0

11: else

12: dnew
0 ( Fold dadd

0

� �

13: end if

14: tnew
0 ( Told dnew

0

� �
þ Tadd dnew

0 þ Told dnew
0

� �� �

15: if dold
Uold þ told

Uold � dadd
Uadd then

16: dnew
max ( dold

Uold

17: else

18: dnew
max ( Fold dadd

Uadd

� �

19: end if

20: v( 0

21: uadd ( 0

// Main procedure

22: while dnew
v \dnew

max do

23: uold ( arg minu dold
u jdold

u [ dnew
v

� �

24: while dadd
uadd � dnew

v þ Told dnew
v

� �
do

25: uadd ( uadd þ 1

26: end while

27: v( vþ 1

28: if dnew
max þ Told dnew

max

� �
� dadd

uadd then

29: dnew
v ( min dold

uold ;F
old dadd

uadd

� �� �

30: else

31: dnew
v ( dold

uold

32: end if

33: tnew
v ( Told dnew

v

� �
þ Tadd dnew

v þ Told dnew
v

� �� �

34: end while
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rold ¼ 0; 1ð Þ; 3; 1ð Þ; 4; 2ð Þ; 5; 2ð Þ; 7; 1ð Þ; 9; 1ð Þð Þ:
radd ¼ 0; 1ð Þ; 2; 1ð Þ; 3; 2:5ð Þ; 4; 2:5ð Þ; 6:5; 1ð Þ; 9; 1ð Þð Þ:

The earliest feasible departure time from the first node in the new route 0!
i! j equals d0

old (an earlier departure is not possible and departing at this time does

not lead to any waiting time at node i). Therefore, dnew
0 :¼ dold

0 ¼ 0. This departure

time from node 0 results in an arrival time of 1 at node i. Then, departing at node

i at time 1 results in an additional duty time of 1 for traveling from node i to node

j (since dadd
0 ¼ 0; dadd

1 ¼ 2, and tadd
0 ¼ tadd

1 ¼ 1), which results in a total duty time

for route 0! i! j of t0
new : = 2. Next, we need to determine the first departure

time from node 0 after d0
new at which the slope of the duty time function of the new

route changes. This happens at min dold
1 ;Fold dadd

1

� �� �
. We have d1

old = 3 and

Fold dadd
1

� �
¼ Fold 2ð Þ ¼ 1. Therefore, d1

new : = 1 with corresponding duty time

t1
new : = 2.

We continue this process, each time determining which departure time is the first

to change the slope of the duty time function and calculating the corresponding duty

time. This process continues until either dold
Uold or Fold dadd

Uadd

� �
has been added. This

leads to:

rnew ¼ 0; 2ð Þ; 1; 2ð Þ; 2; 3:5ð Þ; 3; 3:5ð Þ; 4; 3:3ð Þ; 4:5; 3ð Þ; 5; 3ð Þ; 7; 2ð Þ; 8; 2ð Þð Þ:

Figure 3e presents the duty time function of the new route.

Algorithm 1 describes a general procedure for determining the composite duty

time record rnew of the duty time records of the old route rold and the route to be

added radd. Recall that when time windows are present, d0
add does not need to be

equal to 0. We already account for such cases in Algorithm 1. Note that Fold(a) is

only defined for the interval dold
0 þ told

0 ; dold
Uold þ told

Uold

� �
. We now describe the steps of

the algorithm.

In the initialization, we abort if no feasible departure time from the first node in

the new route exists (Line 1–3). Next, we check whether departing at the latest

feasible departure time from the first node in the old route, i.e. dold
Uold , still results in

an early arrival at the first node of the route to be added (Line 4). If this is the case,

then the only feasible departure time from the first node in the new route without

unforced waiting time is dold
Uold . The duty time is then the difference between the

earliest completion time at the last node in the new route (which equals dadd
0 þ tadd

0 )

and the latest feasible departure time from the first node in the new route (Line 5 and

6). For the remainder, we know that there are multiple feasible departure times

without unforced waiting time from the first node in the new route. The earliest of

such departure times is either d0
old or Fold dadd

0

� �
(Line 9–13). Note that we cannot

use Fold dadd
0

� �
in the check in Line 9, since it is not defined when dold

0 þ told
0 [ dadd

0 .

The duty time t0
new is equal to the sum of the duty time needed for visiting the nodes

in the old route and the duty time needed for visiting the nodes in the route to be

added (Line 14). The next step is to determine the latest feasible departure time

from the first node in the new route (Line 15–19). This departure time equals either

dold
Uold or Fold dadd

Uadd

� �
. The final step in the initialization is to initialize v and uadd (Line
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21 and 22). Index v represents the index of the current entry in rnew. Index uadd is the

index of the entry in radd that contains the earliest departure time from the first node

in the route to be added that requires a new record entry for rnew (i.e., when

departing later than dv
new from the first node in the new route, arrival time dadd

uadd at the

first node in the route to be added is the earliest arrival time at this node that changes

the slope of the duty time function of the new route).

The main procedure adds record entries to rnew for each change in the slope of the

duty time function of the new route until an entry with departure time dv
new is added.

A later departure time than dv
new may cause a change in the slope of the duty time

function of the new route both because of a change in the slope of the duty time

function of the ‘old’ part of the new route and because of a change in the slope of

the duty time function of the ‘added’ part of the new route. Therefore, we determine

the earliest departure time from the first node in the old route later than dv
new that

changes the slope of the duty time function of the old route (Line 23) and we

determine uadd (Line 24–26). Next, we increase index v (Line 27), and we determine

dv
new (Line 28–32). Note that we have to be careful again with the usage of Fold (a).

If dnew
max þ Told dnew

max

� �
\dadd

uadd , then Fold dadd
uadd

� �
is not defined. When this situation

appears, only departure times corresponding to dold
uold will be added until uold ¼ Uold.

4.2 Incorporating service times

Service times can be incorporated by adding them to the driving times. Since service

times are constant, they do not affect any of the calculations described before. What

typically happens is that the duty time function for a route i! j is shifted up and to

the left by the service time at node i. By doing this, the duty times include both

driving times and service times.

4.3 Incorporating time windows

Suppose we have a route i! j with corresponding duty time function (e.g., as in

Fig. 3d), and given time windows ½ei; li� and ½ej; lj� for starting service at node i and

node j, respectively. For ease of explanation, we again assume that service times are

zero. Then, three cases may appear.

Case 1 is when ei þ Ti!j eið Þ[ lj. In that case, the route i! j is infeasible, since

the earliest feasible time to start service at node i is already too late to arrive

ultimately at lj at node j.

Case 2 is when li þ Ti!j lið Þ\ej. This means that, even if we start service at node

i as late as possible, we arrive before the earliest feasible time to start service at

node j. In this case, the only way to avoid introducing unforced waiting time is to

start serving node i as late as possible, implying one feasible departure time from

node i: li. The corresponding duty time is equal to the travel time plus the forced

waiting time: Ti!j lið Þ þ ej � li þ Ti!j lið Þð Þ
� �

¼ ej � li.

Case 3 is the remaining case, i.e., the interval of possible arrival times at node

j intersects with ½ej; lj�. We then restrict the feasible departure times from node i to

the interval in which we arrive in time at node j (i.e., before or at lj) and we do not
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introduce unforced waiting time (i.e., we do not arrive before ej). This implies that

for the earliest feasible departure time from node i without unforced waiting time at

node j we get di!j
0 :¼ ei if ei þ Ti!j eið Þ� ej, and di!j

0 :¼ Fi!j ej

� �
otherwise.

Furthermore, we get di!j
Ui!j :¼ li if li þ Ti!j lið Þ� lj, and di!j

Ui!j :¼ Fi!j lj

� �
otherwise.

Suppose in our example node i has a time window [2, 9] and node j has a time

window [6, 10]. Furthermore, Fig. 3d presents the duty time record without time

windows:

ri!j ¼ 0; 1ð Þ; 2; 1ð Þ; 3; 2:5ð Þ; 4; 2:5ð Þ; 6:5; 1ð Þ; 9; 1ð Þð Þ:

The time window at node i causes the feasible departure time interval to be

restricted to [2, 9], such that:

ri!j :¼ 2; 1ð Þ; 3; 2:5ð Þ; 4; 2:5ð Þ; 6:5; 1ð Þ; 9; 1ð Þð Þ:

Next, the time window at node j causes that departing from node i earlier than time

3.5 will result in unforced waiting time at node j, resulting in:

ri!j :¼ 3:5; 2:5ð Þ; 4; 2:5ð Þ; 6:5; 1ð Þ; 9; 1ð Þð Þ:

Figure 4a presents the resulting duty time function.

We construct the duty time records for each route between two nodes in this way

during the pre-processing step. Then, we apply Algorithm 1 again to obtain the duty

time records for the (partial) vehicle routes. Note that the time windows may

substantially reduce the number of record entries. In the extreme case, only one

feasible departure time remains, which implies that there is forced waiting time on

the route and continuing ASAP is the best we can do in the remainder. Figure 4b

(a)

(b)

Fig. 4 Duty time records with time windows: a duty times route i! j, b duty times route 0! i! j
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presents the duty time function of the new route in our example. The number of

record entries reduces from 9 to 7.

4.4 Scheduling breaks

To comply with the EC social legislation, we schedule a 45 min break whenever the

accumulated driving time of a partial vehicle route is about to exceed 4.5 h. To

account for the accumulated driving time, we add an element tau
z to each duty time

record entry ru
z , indicating the total accumulated driving time in route z since the last

break taken at a customer. Note that the accumulated driving time depends on the

chosen departure time du
z from the first node in route z. Therefore, we have to

account for the accumulated driving time tau
z for each departure time du

z from the

first node in route z. Since we only schedule breaks at customer sites, the values of

tau
z for the duty time records of each route i! j, which are constructed in the pre-

processing step, equal the driving time from node i to node j for departure time di!j
u

from node i. For simplicity reasons, we again assume all service times to be zero.

We assume that driving times between node pairs do not exceed 4.5 h. In case a

route i! j has a departure time that results in more than 4.5 h of driving time, we

assume this route is infeasible. Note that such a route is very unlikely to be selected

in a good VRP solution, since the shortest vehicle route in such a solution would be

the tour depot ! i! j! depot and the total driving time in this tour is likely to

exceed its maximum of 9 h. Within the problem instances used for the

computational experiments in Sect. 5, the driving time between each pair of nodes

and for each departure time does not exceed 4.5 h. If VRPs with a long time horizon

are considered, or VRPs with only few customers per vehicle, then it might become

necessary to include also routes between two nodes exceeding 4.5 h of driving time.

This can be done by, e.g., modeling parking lots along such routes, or by assuming

that breaks can be taken anywhere along the routes. These model assumptions do

not affect the algorithmic framework, they only affect the calculation of the duty

time records.

Now, suppose we add a node j to a partial vehicle route represented by a state

(S, i), again with duty time records rold; radd, and rnew for the duty time functions of

the old route, the route to be added, and the new route, respectively. We define ~rnew

to be the duty time record of the new route in which we ignore that a break may

have to be scheduled at node i. We use ~rnew to derive for which departure times we

do have to schedule a break at node i. Each record entry ~rnew
u contains a departure

time ~dnew
u , a corresponding duty time ~tnew

u , and a corresponding accumulated driving

time ~tanew
u since the last break without a possibly needed break at node i. We can

derive ~rnew by applying Algorithm 1 in which we can calculate each ~tanew
u in a

similar way as how we calculate each ~tnew
u . Then, three cases may appear:

1. After adding route i! j; ~tanew
u � 4:5 for all u ¼ 0; . . .;Unew.

2. After adding route i! j; ~tanew
u [ 4:5 for all u ¼ 0; . . .;Unew.

3. After adding route i! j; ~tanew
u [ 4:5 for some, but not all u ¼ 0; . . .;Unew.
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In Case 1, we do not need to schedule a break for any feasible departure time and

we get rnew ¼ ~rnew. We describe the other two cases in detail.

In Case 2, a break is required at node i regardless of the departure time from the

first node in the old route, since we assume that breaks are only taken at customers.

With this break, the departure time from node i is delayed by 45 min. The same

procedure as in Algorithm 1 can be applied to determine the duty times of the new

route, but with 45 min added to all duty times in rold. Since a break is taken at node

i, such that the accumulated driving time is reset to 0 when departing from node i,

all tau
new are set to ti!j

u .

In Case 3, we have to split the new duty time record, such that for each partial

duty time record either a break is scheduled at node i for each departure time, or no

break is scheduled for any departure time. Therefore, we first determine the series of

departure times dw at which the new duty time record should be split. This is the

case if departure time dw results in exactly 4.5 h of accumulated driving time (when

no break is scheduled at node i), while departing directly before or directly after dw

results in more than 4.5 h of accumulated driving time (both is also possible).

Suppose that uw is such that ~dnew
uw

is the earliest departure time in duty time record

~rnew larger than dw (if dw ¼ ~dnew
Unew , we set ~dnew

uw
:¼ dw). Then, each departure time dw

results in exactly 4.5 h of accumulated driving time, while ~tanew
uw�1 [ 4:5 or

~tanew
uw

[ 4:5. This leads to a series of strictly increasing departure times

d1; . . .; dWnewf g at which the new duty time record should be split. Let’s set d0 :¼
~dnew

0 and dWnewþ1 :¼ ~dnew
Unew . Then, we split the duty time record of the new route in

duty time records rneww ;w ¼ 0; . . .;Wnew with earliest and latest departure times dw

and dw?1, respectively. Now, for each duty time record rneww either Case 1 applies,

such that we follow the procedure described in Case 1 for this duty time record, or

we follow the procedure described in Case 2. There is one exception: when
~tanew

uw�1 [ 4:5 and ~tanew
uw

[ 4:5. In that situation, we apply the procedure described in

Case 2 to the departure intervals ½dw�1; dw� and ½dw; dwþ1�. However, we also have to

consider departing exactly at dw without scheduling a break at node i. We resolve

this by creating an additional duty time record with only one feasible departure time

(dw) for which Case 1 applies.

For example, suppose a node k is added to the route 0! i! j presented in

Fig. 4b. Furthermore, suppose that all service times are 0 such that the duty times in

Fig. 4b equal the accumulated driving times. Finally, suppose that the travel time

from node j to node k is 1.5 h, independent of the time of departure. Then, for

departure times 2.5 until 4.5 from node 0, the accumulated driving times exceed 4.5

h. This results in 2 duty time records with departure intervals [2.5, 4.5] and [4.5, 8],

respectively. For the first interval we have to apply the procedure described in Case

2, for the second interval we have to apply the procedure described in Case 1.

Figure 5a and b present the resulting duty times and accumulated driving times,

respectively.

Note that, for example, departing at time 4 from node 0 leads to a later arrival

time at node k than departing at time 4.5. Time windows might allow departure at
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time 4.5, but not at time 4. Therefore, there might be gaps between succeeding

feasible departure intervals.

To account for the total driving time available for each day, we add an element to

each duty time record entry accounting for the total accumulated driving time over

the entire route. If this element exceeds the total available driving time of 9 h for a

certain departure time, then we determine a similar series of departure times as

described in Case 3 above. However, the intervals corresponding to total

accumulated driving times exceeding 9 h are left out of consideration, thereby

possibly introducing gaps between departure intervals. We follow a similar strategy

for the total duty times, such that non-feasible departure times are left out of

consideration.

4.5 Running time complexity

The procedure for adding the breaks increases the running time complexity of the

VDO algorithm. To derive this complexity, it is crucial to know how many breaks

could maximally be scheduled in a route for a certain departure time from the first

(a)

(b)

Fig. 5 Duty time records with time windows and breaks: a duty times route 0! i! j! k,
b accumulated driving times route 0! i! j! k

A dynamic programming heuristic for vehicle routing 99

123



node in that route. In Appendix A, we derive that this number equals 4, given the

total daily driving time of 9 h. We now derive how many additional duty time

record entries each break might introduce.

Suppose that after adding a route i! j to a partial solution we would have
~tanew

u \4:5 for some entry ~rnew
u and ~tanew

uþ1 [ 4:5 for the next entry ~rnew
uþ1. Then, the

break requirement introduces two duty time record entries ðrneww
Uneww ; r

newwþ1

0 Þ for two

successive duty time records rneww and rnewwþ1 ; both with the same departure time,

but with different duty times and accumulated driving times. The first entry rneww

Uneww

represents the case where no break is scheduled at node i, while the second entry

rnewwþ1

0 represents the case where a break is scheduled at node i. Suppose next that
~tanew

uþ2\4:5. Then, again the break requirement introduces two duty time record

entries: rnewwþ1

Unewwþ1 and rnewwþ2

0 . When another node is added to the route, a similar

procedure may apply to the successive record entries rneww

Uneww�1; r
neww
Uneww

� �
and the

successive record entries rnewwþ2

0 ; rnewwþ2

1

� �
. In the worst case, each node addition

results in four new duty time record entries caused by the break requirement for the

original duty time record entries ~rnew
u and ~rnew

uþ1, because of ascending (descending)

~tanew
u that cross the 4.5 h driving limit. Since there are at most n ? 1 node additions

per vehicle route, this leads to at most 2(n ? 1) additional entries for the original

entry ~rnew
u (and 2(n ? 1) additional entries for the original entry ~rnew

uþ1).

Since the number of existing entries without considering breaks is O(np), the

total number of entries with at most one break scheduled is O(n2p). The same

procedure applies for each additional break, i.e., introducing at most 2n entries for

each existing entry. Therefore, given that at most 4 breaks will be scheduled for

each departure time, the running time complexity of the algorithm with scheduling

breaks is O(n5p).

5 Computational experiments

In this section, we test the solution approach described in Sect. 4. We ran our

experiments on a PC with a Core 2 Quad, 2.83 GHz CPU and 4 GB of RAM.

Section 5.1 describes our test instances, Sect. 5.2 describes our test approach, and

Sect. 5.3 presents the results.

5.1 Test instances

To test our heuristic, we use a modification of the set of benchmark instances for the

VRPTW with time-dependent travel times proposed by Figliozzi (2009). These

Figliozzi benchmark instances are themselves modifications of the well-known

Solomon (1987) benchmark instances for the VRPTW. We selected these instances,

because the Solomon benchmarks are standard reference in the VRP literature and

they represent an extensive set of VRPTW instances with various characteristics.

Moreover, Figliozzi’s modification of the Solomon instances for the VRPTW with

time-dependent travel times is—to the best of our knowledge—the only set of

benchmark instances available in the literature for this type of problem. Below we

100 A. L. Kok et al.

123



explain both (Figliozzi’s and our) modifications with respect to the Solomon

instances.

Figliozzi proposed the following modification of the Solomon instances to make

them applicable to the VRPTW with time-dependent travel times. The opening

hours of the depot ð½e0; l0�Þ are divided in 5 equally spread time intervals. The first

and the last time interval correspond to the morning and evening peak with a

reference speed of 1.00. In the remaining intervals, the speeds are higher. Figliozzi

proposed the following three speed patterns, representing traffic congestion during

the peak hours to an increasing extent:

TD1 ¼ 1:00; 1:60; 1:05; 1:60; 1:00½ �
TD2 ¼ 1:00; 2:00; 1:50; 2:00; 1:00½ �
TD3 ¼ 1:00; 2:50; 1:75; 2:50; 1:00½ �

We add one speed pattern (TD0) in which speeds are constant (1.00) over the day.

Since these benchmarks do not include driving hours regulations, we modify

them for the TDVRP-EC as follows. We assume that the opening hours of the depot

correspond to a working day of 12 h: from 7 AM until 7 PM. With Figliozzi’s speed

patterns, this implies that the morning and evening peak last from 7 AM until 9:24

AM and from 4:36 PM until 7 PM, respectively, which is similar to the observations

of the Dutch Motorists’ Organization ANWB of the traffic peak periods in the

Netherlands (ANWB Reisinformatie 2010). To obtain these depot opening hours,

we scale the time windows and travel distances in each problem instance. In

summary, the resulting problem instances for the TDVRP-EC consist of the scaled

modified Solomon instances with the speed patterns proposed by Figliozzi, and the

EC social legislation on driving and working hours. We refer to this test set as Set 1.

The speed patterns in Set 1 do not allow driving before the morning peak or after

the evening peak. Moreover, since the depot is open for 12 h, the EC regulation on

daily duty times—which restricts daily duty times to 13 h—is always satisfied. In

order to quantify the benefits of allowing travels before the morning peak and after

the evening peak, we propose a second test set in which driving before and after the

morning peak is possible, and for which the EC regulation on daily duty times can

be restrictive. For this purpose, we introduce Set 2 in which we extend the depot

opening hours to 16 by advancing the opening time by 2 h and by postponing the

closing time by 2 h. The speeds during these new periods represent free-flow speeds

before the morning peak and after the evening peak, respectively. Therefore, we set

the speed during these periods to the maximum speed for each speed pattern, i.e., we

get the following speed patterns:

TD00 ¼ 1:00; 1:00; 1:00; 1:00; 1:00; 1:00; 1:00½ �
TD10 ¼ 1:60; 1:00; 1:60; 1:05; 1:60; 1:00; 1:60½ �
TD20 ¼ 2:00; 1:00; 2:00; 1:50; 2:00; 1:00; 2:00½ �
TD30 ¼ 2:50; 1:00; 2:50; 1:75; 2:50; 1:00; 2:50½ �

Note that the first and the last speed last for 2 h, while the other speeds last for 2.4 h.
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In addition to these extra depot opening hours, we adjust a selection of the customer

service time windows in Set 2. If the opening (closing) time of a time window is non-

restrictive in the original Solomon instance, then we make it also non-restrictive in the

new problem instance. This implies that if the opening time in the original Solomon

instance equals the opening time of the depot, then we set this opening time

accordingly in Set 2. The closing times in the original Solomon instances are integer

and they are constructed such that they always allow a direct return to the depot after

starting service at this closing time. Therefore, we consider closing times non-

restrictive if starting service at this closing time and directly returning to the depot

results in an arrival time (after rounding up) equal to the closing time of the depot. In

our new test set, we set such closing times equal to the closing time of the depot. We

refer to this test set as Set 2. Note that Set 2 is less restrictive than Set 1, since some time

windows are increased and the average travel speed is increased (every feasible

solution in Set 1 is also a feasible solution in Set 2). However, the EC regulation on

daily duty times can be restrictive in Set 2 as opposed to Set 1.

5.2 Test approach

Our test approach is as follows. We solve all problem instances twice. Both times,

we use a lexicographic objective function in which we set the primary objective to

minimize the number of vehicles used. The first time, we set the secondary objective

to minimize the total travel distance, the second time to minimize the total duty

time. In the remainder, we refer to the DP heuristic with minimizing travel distance

as secondary objective as DPdist, and we refer to the DP heuristic with minimizing

duty time as secondary objective as DPduty. We compare the results of these two

heuristics in terms of all relevant cost factors (number of vehicles, travel distance,

duty time).

For both DP heuristics we set H = 10,000, which means that in each stage in the

DP heuristic only the 10,000 best states are selected to be expanded in the next

stage. For this selection procedure, we use the following hierarchical criteria: (1)

number of vehicles used (2) earliest completion time of vehicle route being

constructed (3) secondary objective. We added the secondary cost criterion ‘earliest

completion time’, because preliminary tests showed that this criterion has a positive

impact on minimizing the number of vehicles used. Within the DP heuristic, the

primary criterion ‘number of vehicles used’ starts to play a role when a node

representing the depot is about to be added to a state. However, when a customer

with a late window opening time is selected, then there is little room for adding

customers to the end of this partial vehicle route, such that extra vehicles are needed

in the complete solution. Setting the secondary selection criterion to ‘earliest

completion time of the partial vehicle route being constructed’ increases the room

for adding customers such that less vehicles are needed in the complete solution.

5.3 Test results

Table 1 presents the results for the two heuristics on Set 1 in terms of number of

vehicles used, total travel distance, total duty time, and the required cpu time (in
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seconds). DPdist leads to better results than DPduty in terms of travel distance

(-4.1%, on average), and in terms of number of vehicles used (-5.7%, on average).

The latter result can be explained as follows. If the secondary objective is set to

minimize the total duty time, then routes that start late and complete early are

preferable. Therefore, customers with either an early or late time window are not

preferable with this objective. The first two criteria (number of vehicles used and

earliest completion time of the route being constructed) for selecting the H best

states in each stage try to avoid missing such customers, but only for the route that is

being constructed. These criteria do not have any effect on the routes that have

already been completed in the partial solution. Therefore, for those completed routes

only the tertiary criterion plays a role. Since for DPduty this criterion is ‘total duty

time’, it is likely that only a few customers with either an early or a late time

window are in the completed routes in a partial solution. Therefore, such customers

have to be selected at a later stage in which they may not combine well and extra

vehicles are needed.

The duty times are substantially smaller with DPduty than with DPdist (-3.5%, on

average). This is of particular interest, since the total duty time defines the total

amount of vehicle hours that is needed to serve all customers. Since transport costs

are directly related to this amount of vehicle hours, any reduction in duty time leads

to cost savings. Note that the computation times are much smaller for the TD0 speed

pattern, since speeds are constant with this speed pattern, such that the number of

duty time record entries is substantially smaller with this speed pattern (specifically,

this number is either 1 in case there is forced waiting time along the route, or 2: the

earliest and latest feasible departure time without introducing unforced waiting

time).

Table 2 presents the results for Set 2. Allowing travels before the morning peak

and after the evening peak substantially reduces the number of vehicles needed

(-4.4% and -3.1% for DPdist and DPduty, respectively). The total travel distance

(2.5 and 3.5%, respectively) and total duty time (2.0 and 0.8%, respectively),

however, increase.

Computation times are a bit larger for Set 2 than for Set 1. This difference can be

explained by the average number of duty time record entries, which is larger for Set

2 than for Set 1. The longer planning horizon in Set 2 allows for more possible

Table 1 Results set 1

Speed pattern DPdist DPduty

# Veh Dist Duty Cpu(s) # Veh Dist Duty Cpu(s)

TD0 9.18 1,294 4,992 148 9.34 1,314 4,860 148

TD1 8.23 1,261 4,730 397 8.82 1,318 4,540 397

TD2 7.75 1,265 4,501 407 8.18 1,326 4,352 408

TD3 7.48 1,258 4,413 415 8.18 1,330 4,228 415

Average 8.16 1,269 4,659 342 8.63 1,322 4,495 342
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departure times for each partial vehicle route. In addition, longer routes are allowed,

such that more breaks have to be scheduled.

We also tested the quality of the VDO algorithm, which does not consider

unforced waiting time and early breaks, by optimizing the departure times of the

vehicle routes in the VRP solutions of Set 2 using the ILP model of Kok et al.

(2010a), which includes unforced waiting times and early breaks. We solved the ILP

model with CPLEX 11.0 for each vehicle route and compared the minimum duty

times with the duty times found by our VDO algorithm. Table 3 presents the

average optimality gaps in duty time.

We observe that the optimality gaps are very small (smaller than 0.5%, on

average). The optimality gaps are slightly larger for DPdist. This can be explained by

less tight routes when travel distance is the secondary objective than routes when

duty time is the secondary objective. For less tight routes it is more likely that there

is room for improvement by introducing unforced waiting time. Although the

optimality gaps are small on average, there are problem instances for which the

average optimality gap over all routes is more than 3.7%. Therefore, optimizing

departure times with the exact approach for the VDO of Kok et al. (2010a) as a

post-processing step of solving a TDVRP-EC may lead to substantial cost savings.

6 Conclusions

We proposed a DP heuristic for the TDVRP-EC. To the best of our knowledge,

this is the first solution approach that considers both time-dependent travel times

and driving hours regulations within one vehicle routing model. Since the US

Table 2 Results Set 2

Speed pattern DPdist DPduty

# Veh Dist Duty Cpu(s) # Veh Dist Duty Cpu(s)

TD0 8.68 1,297 5,096 161 9.00 1,340 4,902 160

TD1 7.96 1,304 4,847 645 8.55 1,369 4,575 582

TD2 7.45 1,298 4,556 584 8.11 1,370 4,389 592

TD3 7.13 1,304 4,515 612 7.79 1,394 4,261 618

Average 7.80 1,301 4,753 500 8.36 1,368 4,532 488

Table 3 Optimality gaps VDO
Speed pattern DPdist DPduty

TD0 0.29% 0.11%

TD1 0.50% 0.43%

TD2 0.61% 0.34%

TD3 0.28% 0.19%

Average 0.42% 0.27%
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Hours-Of-Service Regulations are less restrictive than the EC social legislation,

our DP heuristic can also solve the TDVRP with the US Hours-Of-Service

Regulations.

We proposed a heuristic for the VDO to estimate the minimum duty time of

partial vehicle routes. This heuristic is an efficient exact approach for the VDO

without unforced waiting time and early breaks. Computational results show that

this heuristic finds close to optimal solutions for the VDO.

The DP heuristic is flexible with respect to various extensions of the VRP.

Therefore, the solution approach proposed in this paper can also be applied to those

extensions of the VRP. The DP heuristic is also flexible with respect to different

objective functions, as demonstrated with the computational experiments in which

duty time minimization as the secondary objective, which is often considered in

practice, is compared with travel distance minimization as the secondary objective,

which is often considered in the VRP literature. Therefore, this solution approach is

very promising for real-life vehicle routing problems.

The computational results show that duty time minimization as the secondary

objective leads to substantial reductions of duty times, but at the cost of more

vehicle routes and longer travel distances. Moreover, the results show that extending

the depot opening hours, such that traveling before the morning peak and after the

evening peak becomes possible, may result in substantial cost savings.
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Appendix A

In this appendix, we show that the maximum number of breaks required for a certain

departure time for one vehicle route and one-day planning equals 4. We first

construct an example where exactly 4 breaks are required and next, we show that

there cannot exist departure times which require more than 4 breaks.

Suppose that the first break, say at customer i, must be scheduled after a very

small amount of accumulated driving time, say �[ 0. This happens if the driving

time to the next customer j equals 4.5 (see Fig. 6a). Next, assume that the driving

time from i to j reduces to 3:75þ � if a break of 0.75 is taken at customer i (see

Fig. 6b). This is possible under the non-passing property. Then, after 3:75þ 2� of

total driving time, and 3:75þ � of accumulated driving time since the last break, we

are at customer j. If the driving time to the next customer k equals 0.75, then we also

have to schedule a break at customer j. Under the non-passing property, it is possible

that after the break of 0.75, the driving time to customer k has reduced to � (see

Fig. 6c). Therefore, when arriving at customer k; 3:75þ 3� of total driving time has

passed. Furthermore, the accumulated driving time is �, which is the same as at
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customer i. Next, we repeat the procedure to schedule two other breaks. By making

� arbitrarily small, the fourth break is required after 7.5 of total driving time.

A fifth break is never required because of the following. Observe that when the

second break is scheduled, at least 3.75 of total accumulated driving time must have

passed. This is, because the accumulated driving time before scheduling the first

break at customer i, added to the driving time of the next travel, say to customer j,
must exceed 4.5 (otherwise no break would be required). The non-passing property

allows this total driving time to reduce by at most 0.75 during the first break.

Therefore, before the second break is scheduled, at least 3.75 of total driving time

must have passed. Next, after the second break is scheduled, the accumulated

driving time is 0 again. With the same reasoning, we can derive that before the

fourth break is scheduled, at least 7.5 of total driving time must have passed. Since

the total driving time per day may not exceed 9 h, the remaining driving time after

the fourth break is 1.5, while the accumulated driving time directly after the fourth

break is 0. Therefore, a fifth break is never required.
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