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1 Introduction

In recent years the AdS/CFT correspondence [1–3] has found numerous applications in the

study of condensed matter systems — see [4, 5] for a review and [6] for a more recent text-

book treatment. The correspondence, in fact, provides a powerful tool to study strongly

coupled systems using well-established high energy theory techniques. Such strongly cou-

pled systems not only are ubiquitous in nature but they can also be engineered and studied

in the laboratory.

Particularly interesting is the use of such gauge/gravity duality to study systems in

a phase of spontaneously broken symmetry. Arguably one of the simplest systems of this

sort is the zero temperature s-wave superfluid, where a spontaneously broken U(1) charge

is at finite density [7]. At low energies, such system is described by a single real scalar

field, φ, that shifts under U(1) and acquires a time-dependent expectation value 〈φ〉 = µt,

with µ the chemical potential for the U(1) charge. This expectation value spontaneously

breaks boosts, as well as U(1) and time translations down to the diagonal subgroup [8].

Nevertheless, this system admits a single Goldstone boson — the phonon — associated

with fluctuations of φ around its background, φ = µt + π. In the relativistic case, the

low-energy action for phonons can be written as [9]

S =

∫
dDxP (X), with X = −∂µφ∂µφ. (1.1)

The functional form of P (X) determines (implicitly) the superfluid equation of state.

The same model of superfluidity can also be derived by interpreting φ as the phase of a

complex field Φ charged under U(1), with time derivatives shifted by the chemical potential:

Φ(x) = eiφ(x), ∂t → ∂t − iµ. (1.2)

In this language 〈φ〉 = 0 and µ can be thought of as the expectation value of the tem-

poral component of a gauge field. It should be easy to convince oneself that these two
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viewpoints are completely equivalent, albeit the latter one is perhaps more common in the

holographic literature.

From eq. (1.1), we obtain the general expression for the stress-energy tensor of a

superfluid at zero temperature:

Tµν = − 2√
−g

δS

δgµν
= 2PX∂µφ∂νφ+ ηµνP, (1.3)

where PX stands for the derivative of P with respect to X. In this paper we will be

particularly interested in conformal superfluids. In this case, the traceless condition Tµµ = 0

completely fixes the action up to an overall normalization factor: P (X) ∝ XD/2. This also

determines the phonon sound speed, which can be shown to be [10]

c2
s =

PX
PX + 2XPXX

=
1

D − 1
. (1.4)

Conformal s-wave superfluids admit a simple dual gravitational description: scalar

QED on an asymptotically AdS spacetime [11]. Based on the standard holographic dictio-

nary, the U(1) gauge symmetry in the bulk of AdS is the counterpart of the global U(1)

symmetry on the boundary. The latter is spontaneously broken because the charged bound-

ary operator dual to the bulk scalar field acquires a vacuum expectation value (VEV), and

it is at finite density because the VEV of the t-component of the gauge field acts as a source

for the charge density. These are indeed the defining features of a superfluid.

Note that scalar QED can also be regarded as a model for superconductivity [12, 13]

by virtue of the fact that the charge response of a superconductor is described by super-

fluid hydrodynamics. However, when it comes to the low-energy spectrum of excitations

the distinction between superfluids and superconductors is important: superfluids have a

gapless Goldstone mode (the phonon), whereas superconductors do not (since the would-be

Goldstone is “eaten” via the usual Higgs mechanism). As we will see, the boundary theory

that is dual to an abelian Higgs model in the bulk has in fact a gapless mode.

The identification of scalar QED with a superfluid on the boundary has so far — to

the best of our knowledge — been established based on results that are partly numerical.

Specifically, studies of first, second and fourth sound in holographic superfluids have been

performed in [11, 14, 15]. In the present paper we would like to further address this by

providing an analytic derivation of the quadratic effective action at the boundary. To this

end, we will first use a simple scaling argument, valid on a fixed AdS background, to show

how the background boundary action depends on the chemical potential µ. Next we will

employ similar techniques to those developed in [16–20] to derive the quadratic action for

the phonons on the boundary. We will show in particular that one recovers the correct

dispersion relation for the first sound of a conformal superfluid.

Conventions: throughout this paper, we will work in units such that ~ = c = L = 1,

(where L is the AdS radius) and we will adopt a “mostly plus” metric signature. D is the

spacetime dimension of the boundary theory. We will use capital latin letters M,N, . . . for

the bulk indices, which are contracted with the AdS metric, and greek indices µ, ν, . . . for

the boundary indices, which are contracted with the Minkowski metric.
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2 Background boundary action

2.1 Set-up

The gravity dual of a superfluid is described by the following Maxwell-scalar field action:

S = −
∫
dD+1x

√
−g
[
|∂Φ− iqAΦ|2 + V

(
|Φ|2

)
+

1

4
FMNF

MN

]
+ Sc.t.. (2.1)

Without a string theory embedding there are no constraints on the form of the potential

V , and as such it should be regarded as a phenomenological quantity. Throughout the

paper we will keep it completely general, assuming that it is of the form

V
(
|Φ|2

)
= m2|Φ|2 + interaction terms. (2.2)

Since we wish to work at zero temperature, we will start with a pure AdSD+1 metric in

Poincaré coordinates:

ds2 =
dxµdxµ + du2

u2
. (2.3)

In these coordinates the AdS boundary is located at u = 0 while the horizon is at u =∞.

In the rest of the paper we will neglect the gravitational backreaction and take the AdS

background as fixed. Neglecting the backreaction of the fields on the spacetime geometry

can be formally achieved by taking the charge q to infinity, the so-called “probe limit” [15].

It is important to remark, however, that the metric (2.3) does not always provide the

correct description for the geometry of the ground state holographic superfluid. For many

different choices of the potential V (|Φ|2) the metric does not exhibit conformal symmetry

in the infrared [21, 22], and hence our approximation would be incorrect.1 Nevertheless,

there exist specific theories for which the background fields stay finite and the metric is

AdS both near u = 0 and near u =∞. This is in fact what occurs, for example, for a free

massless scalar field [21], or for a W-shaped potential of the kind [22, 23]

V
(
|Φ|2

)
= m2|Φ|2 +

λ

2
|Φ|4, (2.4)

assuming m2 < 0, λ > 0 and large charge q. For these theories our ansatz (2.3) and the

non-backreaction approximation are consistent, and so we will assume from now on that

we are working with such potentials.

The plane symmetric ansatz for the background fields is

Φ ≡ ρ(u), AM ≡
√

2
ψ(u)

u
δ0
M , (2.5)

and the expression for the gauge field is chosen for later convenience. The near-boundary

behavior of the fields is

ρ = ρ(1)u
D−∆ + ρ(2)u

∆ + · · · , (2.6a)

ψ =
µ√
2
u− ε√

2
uD−1 + · · · , (2.6b)

1We thank C. Herzog and A. Yarom for bringing this point and the relevant references to our attention.
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where ∆ > 0 is the larger of the two solutions of ∆(∆ − D) = m2. The falloffs of the

gauge field µ and ε are respectively the chemical potential and the charge density of the

dual theory.

From now on we will impose the ρ(1) = 0 boundary condition, which ensures that

the background field is normalizable in the case m2 ≥ −D2/4 + 1. In addition, to fix the

variational problem we further need to include a counterterm action as in (2.1). A general

expression for such action in an arbitrary number of dimensions is not available. Never-

theless, as we will show in section 3, its detailed knowledge is not needed for our analysis.

Notice that the choice ρ(1) = 0 also implies that the boundary operator dual to the

scalar field have a nonzero VEV but no source, so that the U(1) symmetry is broken

spontaneously.

2.2 On-shell action

The equations of motion for the background fields read

ρ′′ − D − 1

u
ρ′ − 1

u2
V ′
(
ρ2
)
ρ+ 2q2ψ

2

u2
ρ = 0, (2.7a)

ψ′′ − D − 1

u
ψ′ +

D − 1

u2
ψ − 2q2 ρ

2

u2
ψ = 0, (2.7b)

where primes on the fields represent derivatives with respect to the radial coordinate u.

They should not be confused with V ′, the derivative of the potential with respect to its

argument.

Let us now consider a particular solution to the previous equations with µ = 1 and

let us denote such fields as ρ̂(u) and ψ̂(u). Since the equations (2.7) are invariant under

rescaling of the u coordinate, it follows that the general solution with chemical potential

µ can be obtained from the one with µ = 1 by replacing u→ µu. In other words, we have

ρ(u) = ρ̂(µu) and ψ(u) = ψ̂(µu).

With this in mind we can now calculate how the boundary action evaluated on the back-

ground depends on the chemical potential µ. The background on-shell action is given by

Sbkg = −
∫
du dDx

uD+1

[
u2(ρ′)2 + V

(
ρ2
)

+ 2q2ψ2ρ2 +
u4

2

(
ψ′

u
− ψ

u2

)2 ]
≡ N

∫
dDxµD,

(2.8)

where, in the last step, we have performed the integral over u by introducing the rescaled

variable y = µu, and we have defined the overall constant

N ≡ −
∫

dy

yD+1

[
y2(ρ̂′)2 + V

(
ρ̂2
)
− 2q2ψ̂2ρ̂2 − y4

2

(
ψ̂′

y
− ψ̂

y2

)2 ]
. (2.9)

It is important to stress that the chemical potential µ does not appear anywhere in the

definition of the constant N . Therefore, the bulk Lagrangian evaluated on the background

scales like µD, which suggests the XD/2 behavior of a conformal superfluid — see eq. (1.1).

We remark, however, that this is a consequence of simple dimensional analysis and does
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not provide by itself a proof that we are indeed dealing with a superfluid, since it does not

give the dependence of the action on the phonon field. To this end we now turn to study

perturbations around the background configurations (2.5).

3 Quadratic action for phonons

Although an analytic solution to eqs. (2.7) is not available, we will now show that the

low energy effective action for the boundary Goldstone modes can nevertheless be calcu-

lated explicitly.

In order to do that, we introduce the fluctuations of the scalar and gauge field via

Φ = (ρ+ σ)eiπ, AM = ĀM + αM , (3.1)

where we defined ĀM = (
√

2ψ/u)δ0
M . The quadratic bulk action for the fluctuations

then reads:

S(2) =−
∫
dD+1x

√
−g
[
∂Mσ∂

Mσ + ρ2∂Mπ∂
Mπ − 4qĀMρ ∂Mπ σ

− 2qρ2αM∂Mπ + q2ĀM ĀMσ
2 + 4q2ρĀMα

Mσ + q2ρ2αMα
M

+
(
V ′ + 2ρ2V ′′

)
σ2 +

1

4
fMNf

MN

]
+ S

(2)
c.t. , (3.2)

where fMN = ∂MαN − ∂NαM and S
(2)
c.t. is the part of the counterterm action quadratic in

the fluctuations. From now on V ≡ V
(
ρ2
)

is the potential computed on the background.

The plan of action is now similar to the one presented in [17]: we will solve the linearized

equations of motion for all the fluctuations but π to lowest order in boundary derivatives,

and then plug the solutions back into the original action to obtain the action for the

Goldstone bosons at the boundary. We will be able to carry out this procedure without

fixing any gauge [16, 17].

Since the phase π always appears with a boundary derivative (except for eq. (3.3d)

below, which plays a special role), to implement the low energy expansion of the bulk

theory we will assume the following scaling rules [17]:

σ, αµ, ∂u ∼ O(1), ∂µ ∼ O(ε), π, αu ∼ O(1/ε),

where the scaling of αu follows from consistency with the equations of motion, which at

lowest order in ε are

σ′′ − (D − 1)

u
σ′ − 1

u2

(
V ′ + 2ρ2V ′′

)
σ + 2

√
2
qρψ

u
(qα0 − ∂0π) +

2q2ψ2

u2
σ = 0 , (3.3a)

(qα0 − ∂0π)′′ − (D − 3)

u
(qα0 − ∂0π)′ − 2

q2ρ2

u2
(qα0 − ∂0π)− 4

√
2
q3ρψ

u3
σ = 0 , (3.3b)

(qαi − ∂iπ)′′ − (D − 3)

u
(qαi − ∂iπ)′ − 2

q2ρ2

u2
(qαi − ∂iπ) = 0 , (3.3c)

π′ − qαu = 0 . (3.3d)
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The equations for σ and the gauge-invariant combination qαµ − ∂µπ are of second order,

but the one for π is only of first order. As a result, we need two boundary conditions for σ

and αµ, but only one for π. We will choose Dirichlet boundary conditions for all the fields.

In particular, we require for π to vanish at u =∞,2 so that eq. (3.3d) immediately gives

π = −q
∫ ∞
u

dw αu(w) . (3.4)

We will see below that the Goldstone field is identified with the boundary value of the

scalar π, i.e. πB(xµ) ≡ π(u = 0, xµ). This is why we will use all the equations of motion

but the one for π. On the other hand we will impose for σ and αµ to vanish both at u = 0

and u =∞.

Before proceeding, though, it is worth addressing at this point a subtlety hidden in

eqs. (3.3). The low energy expansion is not, strictly speaking, appropriate for every value

of u, since in a region close to the center of the AdS spacetime (large u) the O(ε2) terms

cannot be neglected anymore. This poses an issue regarding the order in which we choose

to take the two limits: the low energy limit and the u → ∞ limit. The rigorous way to

treat this problem would be to first introduce an IR cutoff at some large u = Λ. For each

value of the cutoff it is safe to take the low energy limit, solve the equations of motion and

find the boundary action. Then, at the very end, one should remove the cutoff by sending

Λ → ∞. This procedure is rather long and cumbersome and we will therefore be slightly

cavalier about it. It can be checked however that the final result is not affected by which

limit is taken first.

To solve the remaining equations in (3.3), consider first the change of variable

qαi − ∂iπ ≡
βi(u)

u
. (3.5)

Substituting this in (3.3c) yields

β′′i −
D − 1

u
β′i +

D − 1

u2
βi − 2

q2ρ2

u2
βi = 0 , (3.6)

which is precisely the equation satisfied by the background function ψ(u) (see (2.7b)), and

therefore a regular solution is simply βi = bi(x
µ)ψ(u). By imposing vanishing Dirichlet

boundary conditions on αi we can determine bi(x
µ) and finally arrive at

αi =
1

q

(
∂iπ −

√
2ψ

µu
∂iπB

)
. (3.7)

We can similarly solve for σ and α0 in terms of ψ and ρ by defining

σ ≡ uγ′(u) , qα0 − ∂0π ≡ q
√

2 δ′(u) . (3.8)

2This is the correct boundary condition for π only if we do not fix any gauge. If for instance we worked

in a gauge where αu = 0, then we would need to impose π = πB(xµ) at u =∞ [16, 17].
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From eqs. (3.3a) and (3.3b) we then obtain

γ′′′ − (D − 3)

u
γ′′ −

(
D − 1 + V ′ + 2ρ2V ′′

)
u2

γ′ + 4
q2ρψ

u2
δ′ + 2

q2ψ2

u2
γ′ = 0 , (3.9a)

δ′′′ − (D − 3)

u
δ′′ − 4

q2ρψ

u2
γ′ − 2

q2ρ2

u2
δ′ = 0 . (3.9b)

If we replace γ, δ in these equations with ρ, ψ respectively, we recover the derivative of the

background equations (2.7). This suggests that regular solutions to eqs. (3.9) are given by

γ = c(xµ)ρ(u) and δ = c(xµ)ψ(u) (up to an irrelevant integration function independent of

u). Notice incidentally that the proportionality function c must be the same in γ and δ,

as one can verify using the above equations. Imposing again vanishing Dirichlet boundary

conditions for σ and α0 produces the results

σ = − ρ
′

qµ
u∂0πB, α0 =

1

q

(
∂0π −

√
2ψ′

µ
∂0πB

)
. (3.10)

These solutions correctly vanish in the IR limit if the background fields ψ and ρ are regular,

i.e. if they behave as ψ, ρ ∼ constant + u−ν as u→∞, with ν large enough. For example,

this is what was found in [21] for the case of a free massless field and in [23] for the

potential (2.4).

Eqs. (3.7) and (3.10) contain the solutions for the perturbation fields αµ and σ in terms

of π and the fixed background functions ψ and ρ. We now want to plug these solutions

into eq. (3.2) to obtain a partially on-shell action. After integrating by parts and using

the background equations of motion, the resulting low-energy action is found to be

S(2) =−
√

2

2q2µ

∫
dD+1x

[
− 4q2 ψρρ

′

uD−1
∂0πB∂0π − 2q2 ρ2ψ′

uD−1
∂0πB∂0π

+ 2q2 ψρ
2

uD
∂iπB∂iπ −

ψ′′

uD−3
∂0πB∂0π

′ +
(ψ/u)′

uD−3
∂iπB∂iπ

′
]

+ S
(2)
c.t. . (3.11)

Interestingly, the above action does not depend on the scalar field potential. All the

boundary terms up to this point vanish because they are subleading as u → 0 and/or of

higher order in ε.

Moreover, we will now show in general that the counterterm S
(2)
c.t. does not contribute

to the quadratic phonon action either. The general expression for this term, at lowest order

in boundary derivatives, is

Sc.t. =

∫
dDx
√
−γ Lc.t.(Φ, DMΦ, FMN ), (3.12)

where Lc.t. is an analytic function of gauge and diffeomorphism invariant combinations of

its arguments and their derivatives. When expanded in small fluctuations of the fields, it

will have the schematic form

Lc.t. ∼ L(0)
c.t. + L(1)

c.t.δΨ + L(2)
c.t.δΨ

2 + . . . (3.13)
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where we have collectively denoted the fluctuations by δΨ. Moreover, since the background

bulk action is finite when ρ(1) = 0, the L(n)
c.t. terms must be either finite or log divergent in

the u→ 0 limit — see e.g. [24]. This ensures that Lc.t. will vanish if all possible fluctuations

δΨ scale as some positive powers of u. We will now argue that this is indeed the case.

To this end, let us perform a power counting in u ∼ 0. Note first that pairs of indices

can be contracted with the metric, gMN ∼ u2, while a single radial index could also be

contracted with the vector normal to the boundary nM ∼ u. It follows that each free

covariant index carries a factor of u. But then, from eqs. (2.6a), (3.7) and (3.10), it is easy

to derive the following scalings

Φ ∼ u∆, DuΦ ∼ u∆, (3.14a)

DµΦ ∼ u∆+1, Fuµ ∼ uD−1, (3.14b)

while Fµν is of higher order in boundary derivatives. The above behaviors are true both

for the background and for the fluctuations. Indeed, based on the solutions in eq. (3.10),

we see that σ ∼ uρ′ ∼ ρ, fu0 ∼ ψ′′ ∼ (ψ/u)′ ∼ F̄u0 and Fui = fui.

A generic gauge and diffeomorphism invariant term will then look schematically like
√
−γ Φn(DMΦ)m(FMN )` ∼ u−D+(n+m)∆+`(D−1), (3.15)

where the covariant indices should be thought of as contracted either with gMN or with

nM . Gauge invariance requires each operator to be neutral, and hence to include as many

factors of Φ as of Φ∗. This implies that n + m must be an even nonnegative integer and

therefore eq. (3.15) always goes to zero as a positive power of u. To see this explicitly, note

that given the definition of ∆ presented below eqs. (2.6), it must be that ∆ > D/2. Thus

if n+m ≥ 2 one has

−D + (n+m)∆ + `(D − 1) > (n+m− 2)∆ + `(D − 1) ≥ 0 .

If instead n+m = 0, diffeomorphism invariance implies ` ≥ 2 and hence −D+`(D−1) > 0,

again for D > 2. This ensures that the counterterm does not contribute to the on-shell

quadratic action.

Now, recalling the near boundary behavior of ψ(u) given in eq. (2.6b), integrating by

parts eq. (3.11) and using the equations of motion for the background gauge field, the

quadratic action reduces to a purely boundary term:

S(2) =
ε(D − 1)(D − 2)

2q2µ

∫
dDx

[
π̇2
B −

∂iπB∂
iπB

(D − 1)

]
. (3.16)

This is indeed the right action for free phonons in a conformal superfluid, with c2
s =

1/(D− 1). The overall coefficient in (3.16) is positive for D > 2 because ε/µ > 0 with our

conventions, thus ensuring that πB is not ghost-like. Our argument does not apply to the

D = 2 case since the asymptotic behavior of the fields is not regular anymore. However

in this case we do not expect Goldstone modes because of Coleman’s theorem [25, 26].

Finally, it is interesting to note how the boundary Goldstone boson πB turns out to be the

Wilson line of the radial component of the bulk gauge field — see eq. (3.4). This is the

same result found in [17] for ordinary fluids and in [16] for a Maxwell-Einstein theory, and

it also resembles the results found for pions in models of holographic QCD [27].
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4 Discussion

Holographic superfluids at zero temperature provide a simple context in which to illustrate

the techniques developed in [16–18]. At the same time, in this paper we further extended

the reach of these methods and showed that an explicit expression for the background fields

is not needed in order to derive the boundary action for the Goldstones. This paves the

way for the application of these methods to other condensed matter systems [28].

It would be interesting to see if the boundary Goldstone action can be derived, using

the same procedure, when including the backreaction of the fields on the geometry. In

particular, the value of the superfluid speed of sound could in general be model dependent,

i.e. depend on the specific scalar field potential, since the boundary terms arising from

integrating the action by parts may in principle give contributions that differ from the

ones found in the probe approximation. One compelling case to study is the W-shaped

potential analyzed in [22, 23, 29]. There the bulk geometry is found to exhibit (for a

charge q greater than some critical value) a domain wall that interpolates between an IR

and a UV AdS regions with different curvature radii. Thus we expect that, in this setting,

the asymptotic behavior of the fields be essentially equivalent to those in the absence of

backreaction, and hence that our final results should not change. This makes this model

particularly appealing for testing our analytical method beyond the probe limit.

As another further development of the techniques we have presented, it would be

interesting to find a holographic derivation of the effective action for superfluids at finite

temperatures [10]. Previous holographic models of finite temperature superfluids were

found not to reproduce Landau’s prediction for the relation between second and first sound

at low temperature [14]. As pointed out by the same authors, this might be due to the

presence of additional degrees of freedom. Our approach might be able to explicitly isolate

these degrees of freedom and hence shed more light on this issue. We leave these interesting

research questions for future work.
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