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1 Introduction

The vacuum instability in the presence of strong electric field, called Schwinger effect,

was predicted long time ago by Heisenberg and Euler and more formally developed by

Schwinger [1, 2]. As an intuitive picture, if the potential between two plates is above a

critical value then the (QED) vacuum between two conducting plates sparks similar to a

dielectric breakdown in a capacitor. It is well known that the decay rate of the vacuum

can be obtained by Γ = 2=(Leff) [3]. Here, the effective Lagrangian Leff is achieved by

integrating out the fermionic degrees of freedom of a QED theory. The result is called

Euler-Heisenberg Lagrangian and its imaginary part for a constant background electric

field is [2]

=(Leff) =
e2E2

8π3

∞∑
n=1

1

n2
exp

(
−nπm

2

eE

)
, (1.1)

where m is the fermion mass. The above is related to the transition amplitude of the

tunneling though a potential barrier for producing a pair-particle from the vacuum. The

required energy for a pair creation is 2m and it should be supplied by separating the

particles by a distance greater than λc, the Compton’s wavelength, via electric field. Using

this picture, a critical value of the electric field can be simply estimated to be Ecr ∼ m2/e

(~ = c = 1) where the exponential term in (1.1) becomes significantly large. In the QED

theory, the ’t Hooft coupling is λ = g2
YMNc = e2 and therefore Ecr ∼ m2/

√
λ.
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Recall the similarity of Schwinger effect with capacitor breakdown. The atoms of an

insulator are ionized in a strong electric field and the decay rate of a band (and also Mott)

insulator ground-state in a Zener breakdown is similar to the relation (1.1) [4]. Beside

QED, we expect to observe the same phenomenon in the QCD bound states. Due to the

confinement, the perturbation is not applicable in this case and non-perturbative methods

such as lattice QCD or AdS/CFT correspondence are needed to study this effect in the

hadrons dissociation.

In order to deal with such a non-perturbative phenomenon, we will use AdS/CFT

correspondence [5–7]. According to this correspondence, the theory of N = 4 super Yang-

Mills (SYM) is dual to the type IIB string theory on AdS5 × S5. We will use a special

limit of the duality where the number of colors Nc goes to infinity and ’t Hooft coupling is

large. In this limit, the strongly coupled N = 4 SYM theory is dual to the classical type

IIB supergravity on AdS5 × S5. All fields in this case are in the adjoint representation

of the gauge group. We add Nf flavors of “quarks” in the fundamental representation by

introducing Nf D7-branes in the background metric. The result can be considered as a

QCD-like supersymmetric theory where quarks are in a N = 2 hypermultiplet [8–10].

A holographic picture of the Schwinger effect in the limit Nc → ∞ and large ’t Hooft

coupling is proposed in [11] where the pair production of “W bosons” in the N = 4 SYM

field theory has been explored. It has been shown that demanding the reality of Dirac-

Born-Infeld (DBI) action of the probe D3-brane in the AdS5 × S5 background leads to

a critical value for electric field, Ecr = 2πm2/
√
λ. Note that the value of Ecr is similar

to our previous intuitive estimation up to a constant. In the context of AdS/CFT, the

dissociation of the hadrons in external electric field has been studied in [12, 13]. In this

work, the probe D3-branes in [11] are replaced by the D7-branes to add flavor quarks in

the system. In fact, the DBI-action of the D7-branes plays the role of the Euler-Heisenberg

Lagrangian. It is also shown that if we consider the confining force as fermion mass then

the non-trivial sub-leading term in imaginary part of the D7-brane action coincides with

the supersymmetric Schwinger effect. It is worth mentioning that the holographic picture

of Schwinger effect in the different confining backgrounds is also studied in [14].

The meson spectroscopy has been studied in [15] by using the D3/D7 brane holographic

model. This model is dual to the mesons in a plasma with deconfined gluons. According to

this study, the meson mass can be estimated to be proportional to m/
√
λ wherem stands for

the quark mass. At finite temperature, above the critical value Tc ∼ m/
√
λ, the mesons are

melted into the thermal gluonic plasma [16]. The gravity dual picture of the meson melting

is related to the topology of the D7-branes embedding [17–26]. Let us mention that the

meson melting might happen due to the other sources rather than temperature. Specifically,

we are interested in the phase transition in the presence of axial chemical potential in the

present work which has been studied in [24]. Using AdS/CFT correspondence, the decay

width of the heavy quarkonia in a strongly-coupled thermal plasma has been studied by

investigating the imaginary part of the heavy quark potential [27–29].

The aim of this work is to study whether the magnetic field can dissociate mesons

in a chiral supersymmetric plasma. Note that the electric field plays an active role in

the meson dissociation by compensating the confining force between quarks in the meson.

– 2 –
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However, the magnetic field alone does not play such a role in the system. According to the

meson spectroscopy, the mesons mass is changed by the influence of electric and magnetic

field [16, 26, 30–33]. Although the meson spectrum is altered in the background magnetic

field, it can not dissociate the mesons. In fact, there is a critical value for magnetic field

where even at finite temperature there is no melted meson in the system in contrast with

electric field [31, 34–36].

However, we can look at the effect of magnetic field on the plasma differently. Due to

the chiral anomaly, there is an anomalous transport coefficient which leads to the induc-

tion of electrical current along the magnetic field in a fluid with non-zero axial chemical

potential. This effect is called chiral magnetic effect (CME),

~J =
µ5

2π2
e ~B, (1.2)

and has been studied extensively in the literature [37–41]. Here µ5 is the axial chemical

potential. One may wonder whether the CME gives rise to the instability similar to the

confined mesons in the external electric field. In this article, we will see that the same

instability occurs with a different mechanism. Unlike the electric field, the magnetic field

is not destructive here as we expected, but, the internal energy enhancement by increas-

ing the axial chemical potential above a critical value will liberate the confined quarks.

More precisely, an equilibrium state of mesons in the background magnetic field and axial

chemical potential (and temperature) above a critical value decays to a system with non-

zero electric current. The critical values of axial chemical potential and temperature can

be depicted in stable/unstable equilibrium phase diagram which exhibits similar features

compared to the T -µ5 phase diagram. This has already been studied by using Nambu-

Jona-Lasinio model with polyakov loop (PNJL model) [42], linear sigma model coupled

to quarks and the Polyakov loop (PLSMq) [43] and also lattice QCD simulation [44]. It

is worth noting that studying the full time evolution of the equilibrium state to a steady

state with non-zero electric current is beyond the scope of this paper. Instead, the decay

rate of the initial state will be considered here.

The AdS/CFT setup we will use is developed in [24, 25, 36, 45, 46]. In this setup, the

UR(1), the R-symmetry of the N = 2 supersymmetry in the field theory, is assumed as the

axial symmetry and the angular velocity of the rotating D7-branes around the D3-branes

is dual to the axial chemical potential. In [46] this picture is used to investigate the CME

where the UR(1) is broken explicitly by quark mass. The effect of anisotropic plasma on

CME [47] and stringy corrections on the holographic picture of CME [48] are also studied

in this setup. Here, we investigate the decay rate of the plasma instability by studying the

imaginary part of the D7-brane action. It is interpreted as the Euler-Heisenberg Lagrangian

such that the axial chemical potential is encoded in it.

Our paper is organized as follows: in section 2, we review the holographic picture of su-

persymmetric QCD with flavor using D3/D7 brane construction. In section 3, we study the

equilibrium instability for massless quarkonia and also stable/unstable equilibrium phase

and its instability for a gapped system. The instability of gapless mesons in the presence of

electric and magnetic field and axial chemical potential is investigated in section 4. Finally,

in section 5, we summarize the main points of the paper.
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2 A brief review on the holographic picture of supersymmetric QCD

Using D3/D7 branes, a holographic description of a QCD-like field theory has been studied

extensively in the past years [10, 49, 50] (for review see [51, 52]). In this section, we

briefly review the gravity picture of the supersymmetric field theory at finite temperature

and axial chemical potential where the external electric and magnetic field are present.1

After that, we study the response of the system to the electric and magnetic field by using

AdS/CFT dictionary.

Consider Nc stack of D3-branes and Nf stack of the D7-branes embedded in the ten

dimensional space in the following form,

0 1 2 3 4 5 6 7 8 9

D3 × × × ×
D7 × × × × × × × ×

. (2.1)

In the limit Nc → ∞ and for the large ’t Hooft coupling, the D3-branes are replaced by

the background metric AdS5 × S5 and a self dual R-R five form field F5 = dC4. The

background metric is protected against the D7-brane back-reaction since we are in the

probe limit Nf � Nc. The dual field theory of this supergravity picture is the N = 4 super

Yang-Mills (SYM) theory in adjoint representation coupled to a N = 2 hypermultiplet in

the fundamental representation.

In the low energy limit, the action of the D7-brane for a generic background metric

can be written as

SD7 = SDBI + SWZ , (2.2)

where the DBI and Chern-Simons (CS) actions are given by

SDBI = −NfTD7

∫
d8ξ
√
−det(gD7

ab + 2πα′Fab), (2.3a)

SCS = NfTD7

∫
P [ΣC(n)]e2πα′Fab . (2.3b)

In the above, gD7
ab is the induced metric on the D7-brane and TD7 = (2π)−7 g−1

s α′−4 is the

tension of the brane. The symbol P [· · · ] stands for the pullback of the form field C(n).

Moreover, the field strength of the U(1) gauge field living on the brane is shown by Fab.

In the absence of the probe D7-branes, the SO(6) rotational symmetry in the transverse

direction of the D3-branes corresponds to SOR(6), the R-symmetry of the N = 4 SYM.

The D7-branes break SO(6) into a rotational symmetry in the 4567-plane and 89-plane

which is SO(4) × U(1). This isometry corresponds to SUL(2) × SUR(2) × UR(1) where

SUL(2) is a global symmetry and SUR(2) × UR(1) is the N = 2 R-symmetry. For the

separated D3- and D7-branes, the rotation in 89-plane is also broken and correspondingly

the UR(1) is broken explicitly in the field theory side.

The N = 2 hypermultiplet is in the fundamental representation of SU(Nc). This

hypermultiplet consists of two chiral superfield Q and Q̃ with opposite chirally in the N = 1

1In this case supersymmetry is broken explicitly.
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notation. The two Weyl fermions of chiral superfields, ψ and ψ̃ are transformed under

UR(1) with +1 and −1 charges and we can combine these two Weyl fermions into a Dirac

fermion Ψ. In this picture, UR(1) plays the role of the axial symmetry UA(1). It is worth

noting that unlike QCD there are some charged mesons under UA(1) transformation [51].

Here we are interested in a system at finite temperature, finite axial chemical potential

and in the presence of external electric and magnetic field. For those reasons, the brane

construction by the following design is chosen,

• In order to have finite temperature in the dual field theory, the AdS-Schwarzschild is

chosen for the background metric in the following coordinate,

ds2 = −|gtt|dt2 + gxxd~x
2 + guudu

2 + gθθdθ
2 + gφφdφ

2 + gSSds
2
S3 , (2.4)

where

gtt =
L2

u2
bh(u), gxx =

L2

u2
, guu =

L2

u2
b−1
h (u),

gθθ = L2, gφφ = L2 sin2 θ, gSS = L2 cos2 θ.

(2.5)

In the above, bh(u) =
(
1− u4/u4

h

)
and ds2

S3 is the metric of a unit 3-sphere. Here,

the boundary of the AdS is at u→ 0 and uh indicates the location of the horizon of

the black hole. The Hawking temperature, which is also the temperature of the dual

field theory, is given by

T =
1

πuh
. (2.6)

• We mentioned earlier that the rotational symmetry in the 89-plane corresponds to

a global axial UA(1) symmetry in the field theory side and the length of the strings

stretched between D3- and D7-branes corresponds to the mass of the quarks in the

fundamental representations.

Moreover, it is shown in [53] that the rotating D7-branes around D3-branes with

constant angular velocity leads to the complex mass meiφ in the dual field theory

where φ is the azimuthal coordinate in the 89-plane in our case. Now it is simple to

argue that the angular velocity ∂tφ = ω = 2µ5 of the D7-brane corresponds to the

axial chemical potential µ5 in the dual field theory due to the chiral anomaly [46].

• We are interested in finding out the response of the system to the background electric

and magnetic field. For simplicity, we assume E and B are parallel when both exist

in the background. Thus, we turn on the U(1) gauge field on the D7-brane in the

following form,

Ftz = E, Fxy = B, Fuz = ∂uAz. (2.7)

The above brane setup fulfills our desires in the dual field theory.

The embedding of the D7-branes can be understood more easily in the coordinate

r2 +R2 =
1

u2
,

R

r
= tan θ (2.8)

– 5 –
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where u and θ are defined in the metric (2.4).2 The S5 metric in this coordinate is ds2
S5 =

dR2 + R2dφ2 + r2ds2
S3 . The 89-plane is parametrized by polar coordinate (R,φ) where R

is the distance of the D3- and D7-branes. In the massless limit, we have R(r) → 0 which

corresponds to θ(u) → 0. For more details of the D7-brane embedding in this coordinate

please refer to [46, 52]. We use it in the future occasionally.

Let us go back to the coordinate mentioned in (2.4). The D7-branes are extended

along AdS5 × S3 where S3 ⊂ S5. In the static gauge, the D7-branes fill the coordinates

{t, xi, u, S3}. Nevertheless, the embedding is not completely determined unless we specify

the coordinates {φ, θ} which is function of {t, xi, u, S3} in general. However, translational

symmetry in xµ direction and rotational symmetry in the S3 restrict the functionality of

the remaining coordinates to the form θ(u) and φ(t, u) = ωt + ϕ(u). We could choose

φ(t, u) = ωt for the later ansatz. However, this choice leads to instability of the D7-brane

action while the linear velocity at some point of the rotating brane may exceed the local

speed of light. The additional term ϕ(u) let the brane to “twist” in 89-direction and cure

this problem [46].

In this section, we focus on the massless quark limit where θ(u) = 0. Later, we will

generalize it to the massive quarks by considering certain assumptions. A straightforward

calculation leads to the following form for the DBI action,

SDBI = −N
∫
du
√
Q1 +Q2A′2z , (2.9)

where prime superscript means derivative with respect to u. The terms Q1 and Q2 are

given by

Q1 =
L10

u10

(
1 + (2πα′)2B2 u

4

L4

)(
1− (2πα′)2E2 u4

L4bh(u)

)
, (2.10)

Q2 =
L6

u6
bh(u)

(
1 + (2πα′)2B2 u

4

L4

)
(2πα′)2. (2.11)

In the above, we have performed the integration over {t, xi, S3} trivially. Moreover, we

have re-defined SDBI/VR1,3 → SDBI where VR1,3 is the volume of the Minkowski space-

time. Recalling that the 3-sphere volume is 2π2 and L4 = λα′2, the constant behind the

integral is given by

N =
λNcNf

L5(2π)4
. (2.12)

The angular velocity ω of rotating D7-brane does not appear in the action (2.9) which

means that the effect of the axial chemical potential is not encoded in the DBI action and

it appears in the CS action. The self-dual five form is F5 = 4(ΩS5 + ?ΩS5) where ΩS5 is

2The AdS5 × S5 in this coordinate is written as

ds2 =
ρ2

L2

(
−dt2 + d~x2

)
+
L2

ρ2
(
dr2 + r2ds2S3 + dR2 +R2dφ2) ,

where ρ2 = r2 +R2.

– 6 –
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the volume form of a 5-sphere with radius L. This field is found by the following R-R four

form potential,

C4 =
L4

u4
dt ∧ dx ∧ dy ∧ dz − L4 cos4 θ dφ ∧ ωS3 , (2.13)

where ωS3 is the volume form of a 3-sphere with unit radius. Using above and gauge

field (2.7), the CS action can be written as

SCS = −N
∫
du
(
P1A

′
z + P2 ϕ

′) , (2.14)

where

P1 = L(2πα′)2B ω, P2 = L(2πα′)2BE, (2.15)

and we have performed a similar action re-definition SCS/VR1,3 → SCS .

From (2.9) and (2.14), one can see that the SD7 only depends on the derivative of ϕ

and Az. Hence, by performing two successive Legendre transformation, we can replace ϕ

and Az by two corresponding constants of motion. The constant of motion correspond to

ϕ is δSD7
δϕ′ = −NP2 and Legendre transformation trivially cancels the term P2ϕ

′ in the

action. It means that there is no constraint on the field ϕ and we can freely set it equal to

zero in the massless limit. However, the constant of motion related to Az is not trivial. If

we define

j ≡ δSD7

δA′z
= − A′zQ2√

Q1 +Q2A′2z
− P1, (2.16)

then the following transformation replaces field Az by its corresponding constant of mo-

tion j,

ŜD7 = SD7 −
∫
du jA′z

= −N
∫
du

√√√√Q1

(
1− (j/N + P1)2

Q2

)
.

(2.17)

In the next section, we will extensively explore the imaginary part of the brane action.

However, we are dealing with a steady state situation here. As a result, in this case the

action should be real. The reality condition of the above action demands that the quantity

Q1 and terms inside the round bracket change their sign at the same u. The term Q1

changes its sign at

u∗ =
[
(2πα′E)2/L4 + π4T 4

]−1/4
, (2.18)

while it is clear from (2.11) that Q2 is always a positive quantity. To avoid the imaginary

action, the term in the round bracket inside the square root should be equal to zero at u∗.

It leads to

j = −NP1 −N
√
Q2(u∗). (2.19)

– 7 –
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Using holographic renormalization, it has been shown that the electrical current in the field

theory side is proportional to j, more precisely, 〈Jz〉 = −j.3 The equations (2.11), (2.15)

and (2.18) give rise to the following relation for the current,4

〈Jz〉 = σE + σBB, (2.20)

where

σ =
NcNf

4π3/2

√
4B2/λ√

4E2/λ+ π2T 4
+
√

4E2/λ+ π2T 4, σB =
NcNf

2π2
µ5. (2.21)

The σ and σB are studied previously in [45] and [46], respectively. Setting µ5(= ω/2)

equal to zero, the CS action vanishes and consequently σB = 0. Unlike σ, the magnetic

conductivity σB do not depend on the ’t Hooft coupling. In fact, CME in the massless

quark limit and strong coupling is similar to the calculations in the weak coupling. The

term σB is anomaly-induced transport coefficient and we know that the chiral anomaly is

one-loop exact (for more discussions refer to [54] and references therein). However, massive

quarks break the chiral symmetry explicitly and we do expect that CME in strongly coupled

differs from that in weak coupling. It can be seen that CME in the large Nc and ’t Hooft

coupling receives stringy corrections for finite quark mass [48].

3 Chiral equilibrium instability of quarkonium mesons

The response of a QCD-like matter to the external electric and magnetic field at finite

temperature and axial chemical potential has been studied in the previous section. We

should note that the quarkonia are neutral degrees of freedom and we do not expect any

interactions between them and the electromagnetic fields. It means that the electric current

exists only in the phase of the melted mesons.5

Let us first review the physical picture of the instability in the presence of electric

field [12]. For a fixed quark mass, consider a system with no electric field initially and turn

3According to AdS/CFT dictionary,

〈Jz〉 = lim
ε→0

(
L

ε

)4
1√
−γ

δSsub
D7

δAz(ε)
,

where γ is the determinant of the flat boundary metric at u → 0 and Ssub
D7 is the divergent subtracted

action. Moreover,

δSsub
D7 =

∫
ε

du
δSsub

D7

δ∂uAz
δ∂uAz = −jδAz(ε),

where we have used the definition of j in (2.16). It immediately leads to 〈Jz〉 = −j. For the details, see the

appendix A of [46].
4From (2.17), in fact, we find two different values for j which lead to the current 〈Jz〉 = ±σE + σBB.

We see from (2.7) that the information of electric field sign will not show up in the DBI and consequently

in the D7-brane action, whereas the magnetic field (and axial chemical potential) sign is present in the CS

action in (2.15). The ± sign comes from the missing information by squaring E. For that reason we reject

conventionally the negative sign in the current equation.
5We call the supersymmetric mesons in this study as quarkonium mesons, quarkonia or simply mesons

interchangeably.
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it on in a short interval δt such that the final value of the electric field is strong enough to

dissociate the quarks inside the mesons. In this case, the system is unstable and we expect

that long enough time after turning on the field, the system reaches to the steady current
~J = σ ~E. The full time evolution of the system needs a time-dependent calculation in the

gravity, however, the instability of equilibrium state just after applying the electric field

can be studied by the imaginary part of the D7-brane action. Both approaches have been

studied in [12].

The electric current is also induced along the magnetic field in a plasma with non-zero

axial chemical potential. Note that (as we mentioned in the introduction) there are some

mesons in the supersymmetric QCD which are UA(1) charged. Now, assume the axial

chemical potential of the system is below a critical value µ5,cr and suddenly is increased

above it. It leads to increasing the internal energy of the plasma and a phase transition

happens. In this process, the electrically and chirally charged quarks are liberated from

meson confinement, and eventually, CME leads to a steady current ~J = σB ~B in the presence

of external magnetic field. The increasing of axial chemical potential may happen by a

vacuum tunneling in the gluonic sector [40] where the tunneling leads to a strong enough

chiral imbalance in the system such that the axial chemical potential is raised above the

critical value.

The time evolution of the induced current is not addressed in this study and we will

only focus on the decay rate of the equilibrium state exactly after changing the axial

chemical potential by studying the imaginary part of the D7-brane action. Moreover, we

set the electric field equal to zero to suppress the Schwinger effect in this section.

3.1 Instability of gapless mesons

In order to clarify the main idea of the paper, we investigate the (almost) gapless system

in the large magnetic field in this subsection. The result for the small magnetic field is

presented in the appendix A.1.

In our holographic picture, it is not reasonable to speak about mesons in a system

with massless quarks. In fact, at zero temperature and axial chemical potential and in

the absence of quark mass scale, the system is conformal and there is no mass spectrum

for mesons [15]. Here, we assume the quark mass is extremely small compare to the other

physical quantities in the system such as temperature and axial chemical potential. Hence,

one can set θ(u) ∼ 0 and the resulting D7-brane action is (2.17). The other assumption

is that the magnetic field does not reach to its critical value where the meson melting

transition disappears [31]. Above this critical value, the θ(u) ∼ 0 is not the preferred

solution energetically and our calculations is not reliable anymore. This point has been

studied in [36] for the case of non-zero magnetic field and axial chemical potential.

Exactly after increasing the axial chemical potential suddenly, the electric current

should be equal to zero. Regarding this argument (and following [12]), we set j = 0

in the action (2.17) and study its possible imaginary part. After defining the following

dimensionless quantities,

y ≡ L

u
, b ≡ (2πα′)B, w ≡ Lω, (3.1)

– 9 –



J
H
E
P
0
6
(
2
0
1
6
)
0
5
3

the explicit form of the action in this limit is

I = −N L

∫ ∞
yh

dy

√
y6 + y2 b2 − b2w2

qh(y)
. (3.2)

where I ≡ ŜD7

∣∣∣
β=0

and qh(y) = (1 − y4
h/y

4). Note that all dimensionful parameters are

collected behind the integral.

The field theory as well as the gauge/gravity computations show that the Schwinger

effect vanishes for the zero electric field even if the magnetic field is non-zero. But, interest-

ingly, the appearance of the new term inside the square root related to the axial chemical

potential is a sign of a new source for the equilibrium instability at the presence of µ5 and

magnetic field and absence of the electric field.

In the zero temperature, the term inside the square root is negative at its minimum

y = 0. Therefore, the imaginary part of the action comes from the integration in the range

y ∈ [0, y0] where y0 is the root of the polynomial y6 + y2 b2 − b2w2. The problem becomes

more simple in the limit b� 1 where we can find y0 and =I analytically. In this limit, we

should be careful about the critical value of the magnetic field mentioned at the beginning

of this subsection. For example, repeating the [36] procedure, we can find bcr ∼ 13 for

w = 1. Hence, in any case, the magnetic field should be always below an upper bound.

Assuming the polynomial y6 + y2b2 − b2w2 has a finite root at b � 1, one can sim-

ply ignore y6 and find y0 = w. Around this point, we consider the expansion y0 =

w
∑

k=0 a2k(w
2/b)2k for small values of w2/b. The coefficients a2k can be achieved order

by order in this expansion,

y0 = w

[
1− 1

2

(
w2

b

)2

+ · · ·

]
. (3.3)

We could go further in the expansion, but, comparing to the numerical calculations show

that it does not improve the result for w2

b . 0.2.

Until the root is approximately y0 ∼ w, we have 0 ≤ y . w in the range of integration

and we can expand
√
y6 + y2b2 − b2w2 for large b. Using y0 from above, we find the

following expansion for the =I,

=I =
NcNf

8π2
µ2

5B

[
λ1/2 − 5

(2π)2
λ3/2

(
µ2

5

B

)2

+ · · ·

]
. (3.4)

Unlike the holographic pictures of Schwinger effect, the above imaginary part depends

on the ’t Hooft coupling which might be an evidence for the difference of instability in the

weak coupling limit. Moreover, the relation (3.4) is an expansion for small w2/b. Neverthe-

less, after substituting physical dimensionful quantities, one finds that it is an expansion

with respect to the ’t Hooft coupling. It shows that this result cannot be calculated by the

perturbative methods.6

6In the next subsection, we re-write =I in terms of mesons mass and its binding energy. In this case,

the ’t Hooft coupling does not appear explicitly.
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Figure 1. (a) The imaginary part of the action at T = 0. The black (dashed) curve is the analytical

result for the small magnetic fields (A.1) and red (dotted) curve refers to the analytical result for the

large magnetic fields, (3.4). The blue dots are obtained numerically. (b) Temperature dependence

of =I normalized to constant N and magnetic field B for three different values of axial chemical

potential at large B.

In general, one can find y0 and calculate the integration in (3.2) numerically. This

has been done and the result is plotted in figure 1(a) for µ5 = 1 and different values of

the magnetic field (λ = 20). The numerical values of =I normalized to the coefficient

N are plotted by the blue dots in this figure.7 Also the analytical results for two cases

b � 1 and b � 1 are depicted by black dashed curve and red dotted curve, respectively.

Both asymptotic analytical results (A.1) and (3.4) are in good agreement with numerical

calculations.

Let us now study =I in the large magnetic field and finite temperature. In this limit,

if the negative part of the term inside the square root is in a finite range of y then the

term y6 can be ignored in (3.2). As we will see, it is the case here. This limit brings the

magnetic field b out of the square root. If one rescales the integration parameter y = w ỹ,

the imaginary part of the simplified action turns into the following form,

=I = −N L bw2

∫ ỹ0

ỹh

dỹ ỹ
√
ph(ỹ), (3.5)

where

ph(ỹ) =
ỹ2

ỹ4 − ỹ4
h

− 1, (3.6)

and y0 is the root of ph(y). By inspection, one can find that for ỹ > ỹh the function ph(ỹ)

is monotonically decreasing and in the range y ∈ [yh,∞), the root is as follows,

ỹ0 =

1 +
√

1 + 4ỹ4
h

2

1/2

. (3.7)

It confirms the approximation of neglecting the term y6 in (3.2).

7Here after in numerics, we use a unit in which L = 1 and all dimensionful quantities such as magnetic

field chemical potential etc. also will be in this unit.
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Note that ph(ỹ) goes to infinity in the limit ỹ → ỹh. Let us introduce p̃h(ỹ) and

demand that it has same infinite properties as ph(ỹ). Considering (3.7), it can be simply

seen that the condition ỹh � 1 (high temperature limit) leads to ỹ0 = 1
4ỹh

+ ỹh. In other

words, large values of ỹh shrinks the integration range of =I to a small interval with length
1

4ỹh
. Therefore, one can set ỹ = ε+ ỹh and expand the function as follows,

ph(ỹ) =
1

4ε ỹh
+ finit term +O(ε). (3.8)

As a result, we choose p̃h(ỹ) = ỹh
4(ỹ−ỹh) + k and fix coefficient k such that p̃h(ỹ0) = 0. The

final result is the following,

p̃h(ỹ) =
1

4ỹh

(
1

ỹ − ỹh
− 1

ỹ0 − ỹh

)
. (3.9)

It can be simply checked that the difference between ph(ỹ) and p̃h(ỹ) for ỹh > 2 (T/µ5 >

4/π) in the integration interval is less than 0.2 %. The integration of approximated function

can be performed and the result is8

=I =
NcNf

16π2
λ1/2µ2

5B

[
1 +

(
1

2π

µ5

T

)2

+O(
µ4

5

T 4
)

]
+O(

µ4
5

B2
). (3.11)

The interesting point of the above result is that it is not depend on T in the first

order of high temperature expansion. The other interesting point is that the above result

defers by a factor of 1/2 in comparison with the first term in the relation (3.4) at zero

temperature. It shows that raising the temperature in the large magnetic field decreases

the instability, meanwhile, the rate of decreasing becomes smaller at higher temperature

and finally =I approaches to (3.11).

In more general case, we can study the equilibrium instability at high magnetic field

numerically. The temperature dependence of =I (normalized to constant N and large

magnetic field B) for three different values of µ5 is shown in figure 1(b). It can be seen

that the equilibrium instability decreases by increasing the temperature and approach

to (3.11). The initial points in the numerical results are also in agreement with the first

term (3.4).

3.2 Stable/unstable equilibrium state for gapped mesons

In this subsection, we extend our study to the massive quarks where the function θ(u) is

not equal to zero anymore. One needs to calculate its functionality by solving the equation

of motion. The asymptotic expansion of the solution is θ(u) = c0u + c2u
3 + · · · where c0

is proportional to the quark mass m and c2 is proportional to the quark condensate 〈ψ̄ψ〉.
8The following integration formula is used,∫ β

α

dx xn
√

1

x− α −
1

β − α =
π

2
αn
√
β − α 2F1

(
1

2
,−n, 2, 1− β

α

)
, (3.10)

where 2F1 is the hypergeometric function.
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Figure 2. The blue curves are the D7-brane embedding R(r) for T = 0.3, µ5 = 3.56 (left), T =

1.31, µ5 = 3.41 (middle), T = 2.21, µ5 = 2.33 (right). The asymptotic value of R(r) corresponds to

the mass m = 5.81 for λ = 20. Red (dashed) curves indicate the worldvolume horizons and black

curves are black hole horizons.

Before exploring the equilibrium instability of chiral mesons, let us mention some

remarks on holographic CME [46]. The D7-brane embedding θ(u) (or equivalently R(r)

in the coordinate (2.8)) is achieved by the equation of motion calculated by varying the

action (2.2). Due to the rotation of the branes, a worldvolume horizon might induce on

the D7-brane which is given by

θwv(u∗) = arcsin

√
1

w2u2
∗

(
1− u4

∗
u4
h

)
. (3.12)

At the finite temperature and axial chemical potential, there are two possible horizons,

background horizon of AdS-Schwarzschild and worldvolume horizon. Accordingly, there are

three different embeddings for D7-branes which depend on the induction of background or

worldvolume horizons on them [46–48]. The CME is non-zero for embeddings that intercept

the above locus. Using this picture, one can relate the current to the quark mass as follows.

By increasing the quark mass, there is a critical mass (critical embedding) where the D7-

brane do not cross the locus (3.12) which means CME is zero for m > mcr (see figure 2

of ref. [46]). In the field theory picture, for small mass, there are some melted mesons or

equivalently quarks that move along the magnetic field via CME. However, for larger mass,

there are neutral bound state of quarks in the system, therefore, there is no current.

According to the above picture, we can plot a stable/melted phase diagram for a given

quark mass. One should fix the mass and check for what values of T and µ5 the current

becomes non-zero. We have shown three different critical embeddings for same quark mass

in figure 2. The red dashed curve indicates worldvolume horizon and black curve depicts

the background horizon and the blue curve is the critical embedding. All the curves are

in (2.8) coordinate. Different values of T and µ5 for same quark mass c0 ' 8.17 are shown

by red triangles in figure 3(a). Here the value of magnetic field is chosen B = 1 which is

much lower than its critical value. For T = 1.5 and µ5 = 3.5 the critical magnetic field is
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Figure 3. (a) The phase diagram of stable/melted mesons (red triangles) and stable/unstable

equilibrium state (black curve). (b) The µ5 dependence of =I/N for three different temperatures.

The dots refer to numerical calculations and red curve corresponds to analytical result for T = 0.

The m = 5.81 has been considered for quark mass.

Bcr ∼ 500. One can check that the phase diagram in figure 3(a) does not change drastically

by choosing B = 10 and 30.

Now we would like to find out the decay rate of a system at temperature T when the

value of µ5 suddenly increases. Basically, we could assume that the quarkonia at given

T , µ5 = 0 and external magnetic field is in the equilibrium state. It leads to a numerical

function for θ(u). Using it, we calculate the terms inside the square root in the action and

study its value for non-zero µ5 and investigate whether it becomes imaginary. Note that

the existence of non-zero µ5 deforms the D7-brane shape, but, if it happens very rapidly

then we can assume that the initial shape of the brane does not deviate from θ(u). The

same logic is used for studying the Schwinger effect in the gapped systems in the presence

of electric field [12]. In [12], the initial embedding is the supersymmetric solution for D7-

brane because the temperate is assumed to be zero initially. In T = E = B = µ5 = 0, the

supersymmetric solution for D7-brane embedding is

θ(u) = arcsin

[
2π L2m√

λ
u

]
, (3.13)

where m = c0/(2πα
′). This solution in the coordinate (2.8) is simply R(r) = c0. Following

this logic, we assume at finite temperature and zero chemical potential the solution θ(u) is

approximately what is mentioned in (3.13). This is a good approximation in the following

conditions: i) The magnetic field is much smaller than its critical value, or ii) The increase

in the axial chemical potential and the magnetic field happens simultaneously. In fact, this

approximation becomes exact if all variables turn on at the same time, however, we assume

the first option, B � Bcr.
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For the massive quarks, the parameters Q1, Q2 and P1 in (2.10), (2.11) and (2.15)

change to the following forms,

Q1 =
L10

u10

(
1 + (2πα′)2B2 u

4

L4

)(
1− (2πα′)2m

2 u2

L4

)3

,

Q2 =
L6

u6
bh(u)

(
1 + (2πα′)2B2 u

4

L4

)(
1− (2πα′)2m

2 ω2 u4

L4 bh(u)

)(
1− (2πα′)2m

2 u2

L4

)3

(2πα′)2,

P1 = L (2πα′)2B ω

(
1− (2πα′)2m

2 u2

L4

)2

. (3.14)

By defining η ≡ 2πα′m
L = 2π√

λ
mL and using redefinitions (3.1), the action can be rewrit-

ten as

I = −N L

∫ ∞
ymin

dy

y3

√
(y2 − η2)3

[
y6 + y2

(
b2 − w2 η2

qh(y)

)
− b2w2

qh(y)

]
, (3.15)

where ymin = max{η, yh}.
We would like to find a stable region in the T , B and µ5 space. First assume η ≥ yh

which means (y2 − η2)3 ≥ 0. In (3.15), the term in the square bracket should be positive

in the range η ≤ y <∞ to avoid the negative values inside the square root. It happens if

we choose |w| >
√
η4 − y4

h/η or equivalently,

|µ5| >
√
π2m2

λ
− π2λT 4

16m2
. (3.16)

In the region η < yh, however, there is always a window that the action (3.15) becomes

imaginary. Here, (y2 − η2) has a positive value, but the term inside the square bracket

goes to −∞ at y → yh and +∞ at y → ∞ which means its sign changes somewhere in

the middle. The relation (3.16) shows the stable/unstable region for the given T and µ5.

Note that in this relation B is absent. It is compatible with the previous remark that

the magnetic field has not active role in the quarkonia instability. However, we should

mention that the approximation (3.13) leads to the magnetic field independence in the

stable/unstable regions. We expect the value of magnetic field (well below its critical

value) changes mildly the stable/unstable region in a more accurate study. There is a

critical value for the temperature where above that, the system becomes unstable for any

values of axial chemical potential. Similarly a critical value for µ5 is obtained,

Tcr =
2m√
λ
, µ5,cr =

πm√
λ
. (3.17)

The stable region (3.16) is the region where the supersymmetric solution (3.13) for

a fixed mass does not intercept the worldvolume horizon (3.12) for different values of T

and µ5. In other words, one can find (3.16) by using the supersymmetric solution and

the method we have found the stable/melted meson phases. This is the shaded region in

figure 3(a). The difference between stable region (shaded region) and stable meson phase

(the region below the red triangles) is that the later is achieved in the equilibrium state
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where T and µ5 are assumed to be fixed, while the former is calculated for the case µ5 is

suddenly increases from zero. In the gravity side, it can be understood by the difference

between two solutions of θ(u) in two cases.

Now we will study the decay of the equilibrium state when µ5 increases suddenly such

that the system goes into the unstable region in T -µ5 space. In the limit yh = 0 and b� 1,

it is possible to find an analytical result. The imaginary part of the action (3.15) in this

limit is

=I = N L b

∫ w

η

dy

y3

√
(y2 − η2)3(w2 − y2) = N L b

π(w − η)3

4w
, (3.18)

which can be written in terms of the field theory quantities as,

=I =
NcNf

8π2

√
λµ2

5B

[
1− π√

λ
(
m

µ5
)

]3

µ5 ≥ µ5,cr. (3.19)

Interestingly, only the term in the square bracket is added compare to the gapless system

(see (3.4)). Recall that adding mass in the Schwinger effect (1.1) leads to a summation of

exponentials which is interpreted as a sum over instantons.

The other feature appears if we write =I in terms of the quarkonium mass Mq and

its binding energy Eb. In this case, the ’t Hooft coupling does not appear explicitly in the

equation. The mass of the lightest meson in the model under consideration is given by [15]

Mq = 4π
√

2
m√
λ

= 4
√

2µ5,cr.

According to the above, the meson mass is much smaller than its quark constituents.

Consequently, the binding energy is very large in this model and is given by Eb ∼ 2m.

Using these facts, we have

=I =
NcNf

8π2
µ2

5B

[
1− Mq

4
√

2µ5

]3
(

2π
√

2Eb
Mq

)
µ5 ≥

Mq

4
√

2
. (3.20)

This is true for large number of colors and large ’t Hooft coupling of N = 4 SYM theory

and what we could ask is whether it is true for QCD. Unlike the mesons in our model,

the binding energy is not large in QCD. As an example the J/Ψ meson binding energy

is around ∼ 0.4 GeV which is one order smaller than its mass and constituent quarks. In

any case, according to the above result, the system is more unstable for mesons with larger

binding energies.

In more general cases, a numerical analysis is needed to find =I. It can be found in

figure 3(b) for T ' 0 (red), T ' 2.23 (black) and T ' 2.58 (blue). The quark mass is

chosen m ' 5.81 and B ' 35.6. It is seen that the =I is non-zero when the µ5 ≥ µ5,cr.

The red curve corresponds to the analytical result for instability (3.19). There is a good

agreement between the analytical and the numerical results for T = 0.

4 Melted meson equilibrium point and its instability

In this section, we again study a gapless system, but this time, in the presence of electric

and magnetic field at the same time. One can imagine a case that both Ohm’s law and
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CME produce current in opposite directions such that the net current is equal to zero.

In this case, there is a sub-space in (E,B, T, µ5) space in which the system is always in

equilibrium.9 In order to study the decay rate to a non-equilibrium state, we slightly move

away from this sub-space and then study the instability.

Choosing e ≡ (2πα′)E, the D7-brane action is written as

I = −N L

∫ ∞
yh

dy
√
pe(y) pb(y), (4.1)

where

pe(y) = 1− e2

y4qh(y)
, pb(y) = y6 + y2 b2 − b2w2

qh(y)
. (4.2)

Let us define y− = min{ye, yb} and y+ = max{ye, yb} where ye and yb are roots of pe(y)

and pb(y), respectively. Then the imaginary part of the action comes from integration of√
pe(y) pb(y) in the range y− < y < y+ . When y− → y+ the =I = 0 so the system is

stable. This happens in a special point where pe(y) and pb(y) have common roots. Such

a point exists if the equation pb(ye) = 0 is satisfied for at least one point in (E,B, T, µ5)

space. Using (2.21), this equation reduces to10

σBB = −σE, (4.3)

where 〈Jz〉 = 0. Here, we will try to find =I when we slightly violate the constraint

σBB = −σE.

In general, numerical calculations are needed to find the =I. However, we can simplify

it in some special limits and find analytical results. In the limit B → +∞, the electrical

conductivity σ is

σ =
NcNf

2π2

[
4E2

π2 λ
+ T 4

]−1/4 |B|√
λ
. (4.4)

Now the equation (2.20) can be written as

〈Jz〉 =
NcNf

2π2
(µ5 + µ̃5)B +O(

1

B
), (4.5)

in the large magnetic field where

µ̃5 ≡
E√
λ

[
4

π2 λ
E2 + T 4

]−1/4

. (4.6)

Regarding this equation, µ̃5 mimics the axial chemical potential in large magnetic field and

the equation (4.3) reduces to µ5 = −µ̃5.

9We should be careful in considering the state in equilibrium. In fact, Ohm’s law is a dissipative effect

and CME is non-dissipative. Here equilibrium state is referred to a state with no current.
10Similar to the current in equilibrium (2.20), there is a sign ambiguity. It happens because sign of

electric field is missed by squaring E in DBI action. However, the sign of B and µ5 is stored in CS action.

We choose minus sign compatible with (2.20).
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Figure 4. The electric field dependence of =I/(NB) for zero temperature and large magnetic.

The blue dotes refer to numerical analysis and red (dashed) curve corresponds to analytical result.

Let us calculate =I for a large magnetic field and zero temperature in a small interval

with radius ε→ 0 around stable region µ5 = −µ̃5. In this limit, we have

=I = N L b

∫ y+

y−

dy
√

(e2/y4 − 1)(y2 − w2) (4.7)

where y− = min{
√
|e|, |w|} and y+ = max{

√
|e|, |w|} and y+ = y− + ε. The term inside

the square root can be factorized in the following form[
(
√
|e|+ y)(|e|+ y2)(|w|+ y))

y4

](|w| −
√
|e|)2

4
−

(
y −
|w|+

√
|e|

2

)2
 . (4.8)

Inside the interval of integration we have y ∼
√
|e| ∼ |w|. It indicates that the leading term

inside the first bracket in the above relation does not depend on ε for finite
√
|e| and |w|.

However, the leading term in the second bracket is in the order of ε. We approximate the

first bracket by evaluating it around (y+ + y−)/2. One can check that the value of the first

bracket in this approximation is equal 8 + 4ε/|w|. The integration of the second bracket

inside the square root is nothing but the area of a semi-circle with radios (y+−y−)/2. The

final result is the following,11

=I =
NcNf

4π2

√
λ

2
B (|µ5| − |µ̃5|)2 + · · · . (4.9)

According to the above result, the leading term of the instability is quadratically increasing

when we move away from the stable sub-space in large magnetic field and zero temperature.

In figure 4, the numerical calculations are compared with analytical results for µ5 = 2.

The stable point occurs at E = −8
√
λ/π. The red dashed curve in this figure is analytical

result (4.9) and blue dots are obtained by numerical calculations. It can be seen that two

results have good agreement around the stable point |µ̃5| = |µ5|. Note that at E → 0

the leading term inside the first square bracket is not large compare to ε anymore and the

11There is a sign difference if
√
e & w or

√
e . w that we absorb it into the sign ambiguity of =I.
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analytical result is not valid. The =I has been already calculated in (3.4) for the case

E = 0 and it shows correct value in comparison with numerical solutions at this point.

As a final remark, let us mention that by setting w = yh = 0 in (3.2) the =I diverges

(for details please refer to [13]). Interestingly, the existence of µ5 in our study leads to

disappearance of this divergence even at the zero temperature.

5 Summary

Using AdS/CFT, equilibrium instability of chiral quarkonia in a plasma in the presence of

external electric and magnetic field and at finite axial chemical potential has been studied.

We have found that despite the system is stable when there exist magnetic field only, in the

case that it is accompanied by axial chemical potential the system may become unstable.

This instability has been investigated via imaginary part of the D7-branes action.

The stable/unstable phase transition and the instability of mesons (see figure 3) have

been investigated in the following picture. Consider a stable system of mesons in a plasma

at finite temperature such that its axial chemical potential is much smaller than a critical

value µ5,cr (e.g. µ5 = 0 initially). Also, a non-zero external magnetic field exists in the

background. Recall that quarkonia in the system are charged with respect to UA(1) but

they are not electrically charged. For that reason, they can not couple to magnetic field

and no current can be induced by CME. However, by assuming an external mechanism

(a vacuum tunneling for example) a sudden change in the axial chemical potential occurs

such that µ5 goes beyond the critical value µ5,cr. Then the system becomes unstable

and constituent quarks of the quarkonium are liberated. In this case, the new degrees

of freedom are electrically and axially charged and CME produces the current. It means

that the initial equilibrium decays to another state which is ultimately a steady state with

constant current. For quarkonia with mass Mq and binding energy Eb the =I at zero

temperature and large magnetic field has been presented in (3.20). Also the numerical

study for more general cases have been depicted in figure 3(b).

Finally, the massless mesons have been investigated in a system that two Ohm’s law

and CME cancel their effects. These are two different mechanisms in producing current.

Basically, it happens for specific choices of E, B and µ5 (and T ) such that σBB = −σE.

Any deviation from this sub-space makes the equilibrium state unstable. We have studied

=I when the constraint σBB = −σE is slightly violated.
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A More about instability of gapless systems

A.1 Small magnetic field

Recall the action (3.2). At zero temperature, the term inside the square root is y6 +y2b2−
b2w2 which is negative in the range 0 ≤ y < y0. In the limit b → 0, we can easily ignore
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Figure 5. Temperature dependence of =I normalized to constant N for three different values of

B µ5 at small B. Dotes refer to numerical calculations and curves refer to analytical results.

the term b2y2 and immediately find the root y0 = (bw)1/3. Now obtaining the imaginary

part of the action (3.2) is straightforward,

= I = N L

∫ (bw)1/3

0
dy
√
b2w2 − y6,

=
NcNf

3
B(

1

6
,

3

2
)

[
2λ

(
B µ5

4π2

)4
]1/3

,

(A.1)

where B(1/6, 3/2) is the beta special function.

For the finite temperature case, we do as follows. By sending the magnetic field to

zero and defining y = (bw)1/3ỹ the imaginary part of the action (3.2) can be written as

=I = −N L (bw)4/3

∫ ỹ0

ỹh

dỹ ỹ2
√
p(ỹ), (A.2)

where

p(ỹ) =
1

ỹ4 − ỹ4
h

− ỹ2. (A.3)

Similar to the case b� w2 at zero temperature, the root of p can be found perturbatively

as the following,

ỹ0 = ỹh

(
1 +

1

4ỹ5
h

− 7

32ỹ12
h

+ · · ·
)

(A.4)

At high temperature, we will use the same strategy as subsection 3.1 and replace the

function p(ỹ) by p̃(ỹ) where the asymptotic behavior of two functions at ỹ → ỹh are same

and p̃(ỹ0) = 0. The resulting function is

p̃(ỹ) =
1

4ỹ3
h

(
1

ỹ − ỹh
− 1

ỹ0 − ỹh

)
, (A.5)
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Figure 6. (a) The black curves are contours for =I/N at T = 5 and red crosses indicates Bµ5 = cte

levels. (b) The temperature dependence of ∆r(b, w, T ) for three different values of magnetic field.

which is much easier to integrate analytically. The integration formula (3.10) leads to the

analytical result for =I,

=I =
NcNf

28/3π10/3λ1/12
(B µ5)4/3

(
B µ5

T 3

)5/6

+ · · · . (A.6)

Several features of the above result can be considered. First, the ’t Hooft coupling is ap-

peared with negative power which means in contrast to the other limits, the effect vanishes

at λ� 1. Second feature is that the instability disappears at high temperature limit.

The numerical results for arbitrary temperature, small magnetic field and three differ-

ent values of B µ5 are presented in figure 5. For large enough values of T , the numerical

results and the analytical expansion (A.6) are in agreement. In addition, the numerical

values at zero temperature are compatible with equation (A.1).

A.2 General numerical study

One can calculate =I numerically for arbitrary magnetic field, axial chemical potential and

temperature. The result is presented in a contour plot in figure 6(a) for T = 5. The thick

black curves are contours with constant values of =I and red crosses on each curve shows

the points with B µ5 = cte. One sees that there is a good agreement between contour

trades and B µ5 = cte which is a sign that =I is a function of combination B µ5 at T = 5

approximately.

Recalling the analytical results in different asymptotic values, it can be seen that in

both cases of zero and non-zero temperature, the =I is a function of B µ5 at B → 0. It is

not surprising because in (3.2) only combination bw appears in the action at b → 0. Let

us define the quantity

∆r(b, w, T ) =
=I(r b, w/r, T )−=I(b, w, T )

=I(r b, w/r, T ) + =I(b, w, T )
. (A.7)
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If =I is just a function of bw (or B µ5) then the above quantity is equal to zero for all values

of r. However, the non-zero ∆r(b, w, T ) for a given r indicates that =I is a function of b and

w separately. As an example, ∆10(0.1, 10, 5) ∼ 10−6 while ∆10(10, 10, 5) ∼ 10−2. It means

for small values of magnetic field this quantity approaches to zero which is compatible with

previous analytical results for small values of b in (A.1) and (A.6).

Moreover, the dependence of ∆r(b, w, T ) with respect to the temperature leads to an

interesting conclusion. This dependence is shown in figure 6(b) for r = 10, w = 10 and

b = 1, 10 and 100. According to this figure, for a given B and r, the function ∆r(b, w, T )

approaches to zero for a large enough temperature. In other words, for finite values of B

and µ5 and large enough temperature =I is approximately a function of combination B µ5.
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