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Abstract This paper investigates situations where a property of a ring can be tested
on a set of “prime right ideals.” Generalizing theorems of Cohen and Kaplansky,
we show that every right ideal of a ring is finitely generated (resp. principal) iff
every “prime right ideal” is finitely generated (resp. principal), where the phrase
“prime right ideal” can be interpreted in one of many different ways. We also use our
methods to show that other properties can be tested on special sets of right ideals,
such as the right artinian property and various homological properties. Applying
these methods, we prove the following noncommutative generalization of a result
of Kaplansky: a (left and right) noetherian ring is a principal right ideal ring iff
all of its maximal right ideals are principal. A counterexample shows that the left
noetherian hypothesis cannot be dropped. Finally, we compare our results to earlier
generalizations of Cohen’s and Kaplansky’s theorems in the literature.
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1 Introduction

Two famous theorems from commutative algebra due to I. S. Cohen and I. Kaplansky
state that, to check whether every ideal in a commutative ring is finitely generated
(respectively, principal), it suffices to test only the prime ideals. Cohen’s Theorem
appeared as Theorem 2 of [6].

Theorem 1.1 (Cohen’s Theorem) A commutative ring R is noetherian if f every prime
ideal of R is f initely generated.

Also, we recall a characterization of commutative principal ideal rings due to I.
Kaplansky, which appeared as Theorem 12.3 of [18]. Throughout this paper, a ring in
which all right ideals are principal will be called a principal right ideal ring, or PRIR.
Similarly, we have principal left ideal rings (PLIRs), and a ring which is both a PRIR
and a PLIR is called a principal ideal ring, or PIR.

Theorem 1.2 (Kaplansky’s Theorem) A commutative noetherian ring R is a principal
ideal ring if f every maximal ideal of R is principal.

Combining this result with Cohen’s Theorem, Kaplansky deduced the following
in Footnote 8 on p. 486 of [18].

Theorem 1.3 (Kaplansky–Cohen Theorem) A commutative ring R is a principal ideal
ring if f every prime ideal of R is principal.

(We refer to this result as the Kaplansky–Cohen Theorem for two reasons. The
primary and most obvious reason is that it follows from a combination of the above
results due to Cohen and Kaplansky. But we also use this term because it is a result
in the spirit of Cohen’s Theorem, that was first deduced by Kaplansky.)

The unifying theme of this paper is the generalization of the above theorems
to noncommutative rings, using certain families of right ideals as our tools. Let
us mention a typical method of proof of these theorems, as this will guide our
investigation into their noncommutative generalizations. One first assumes that the
prime ideals of a commutative ring R are all finitely generated (or principal), but that
there exists an ideal of R that is not f.g. (or principal). One then passes to a “maximal
counterexample” by Zorn’s Lemma and proves that such a maximal counterexample
is prime. This contradicts the assumption that all primes have the relevant property,
proving the theorem.

These “maximal implies prime” theorems were systematically studied in [29]
from the viewpoint of certain families of ideals, called Oka families. In particular,
the Cohen and Kaplansky–Cohen theorems were recovered in [29, p. 3017]. These
families were generalized to noncommutative rings in [33], where we defined Oka
families of right ideals. This resulted in a noncommutative generalization of Cohen’s
Theorem in [33, Theorem 6.2], stating that a ring R is right noetherian iff its
completely prime right ideals are all finitely generated. In the present paper, we
will improve upon this result, providing smaller “test sets” of right ideals that can
be checked to determine if a ring is right noetherian. In addition, we will provide
generalizations of Kaplansky’s Theorem 1.2 and the Kaplansky–Cohen Theorem 1.3.
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We begin by reviewing the relevant results from [29] in Section 2. This includes
an introduction to the notions of right Oka families, classes of cyclic modules
closed under extensions, completely prime right ideals, the Completely Prime Ideal
Principle (CPIP), and the CPIP Supplement. Our work in Sections 3 and 4 addresses
the following question: what are some sufficient conditions for all right ideals of
a ring to lie in a given right Oka family? In Section 3 we develop the idea of a
(noetherian) point annihilator set in order to deal with this problem. Then in Section 4
we prove the Point Annihilator Set Theorem 4.1. Along with its consequences, such
as Theorem 4.3, this theorem gives sufficient conditions for a property of right ideals
to be testable on a smaller set of right ideals. We achieve a generalization of Cohen’s
Theorem in Theorem 4.5. This result is “flexible” in the sense that, in order to check
whether a ring is right noetherian, one can use various test sets of right ideals (in
fact, certain point annihilator sets will work). One important such set is the cocritical
right ideals. Other consequences of the Point Annihilator Set Theorem are also
investigated.

Next we consider families of principal right ideals in Section 5. Whereas the family
of principal ideals of a commutative ring is always an Oka family, it turns out that
the family Fpr of principal right ideals can fail to be a right Oka family in certain
noncommutative rings. By defining a right Oka family F ◦

pr that “approximates” Fpr,
we are able to provide a noncommutative generalization of the Kaplansky–Cohen
Theorem in Theorem 5.11. As before, a specific version of this theorem is the
following: a ring is a principal right ideal ring if f all of its cocritical right ideals are
principal.

In Section 6 we sharpen our versions of the Cohen and Kaplansky–Cohen
Theorems by considering families of right ideals that are closed under direct
summands. This allows us to reduce the “test sets” of the Point Annihilator Set
Theorem 4.3 to sets of essential right ideals. For instance, to check if a ring is right
noetherian or a principal right ideal ring, it suffices to test the essential cocritical
right ideals. Other applications involving homological properties of right ideals are
considered.

We work toward a noncommutative generalization of Kaplansky’s Theorem 1.2
in Section 7. The main result here is Theorem 7.9, which states that a (left and right)
noetherian ring is a principal right ideal ring if f its maximal right ideals are principal.
Notably, our analysis also implies that such a ring has right Krull dimension ≤ 1. An
example shows that the theorem does not hold if the left noetherian hypothesis is
omitted.

Finally, we explore the connections between our results and previous general-
izations of the Cohen and Kaplansky–Cohen theorems in Section 8. These results
include theorems due to V. R. Chandran, K. Koh, G. O. Michler, P. F. Smith, and
B. V. Zabavs’kiı̆. Discussing these earlier results affords us an opportunity to survey
some previous notions of “prime right ideals” studied in the literature.

Conventions

All rings are associative and have identity, and all modules and ring homomorphisms
are unital. Let R be a ring. We say R is a semisimple ring if RR is a semisimple
module. We denote the Jacobson radical of R by rad(R). We say that R is semilocal
(resp. local) if R/ rad(R) is semisimple (resp. a division ring). Given a family F of
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right ideals in a ring R, we let F ′ denote the complement of F within the set of all
right ideals of R. Now fix an R-module MR. We will write N ⊆e M to mean that N is
an essential submodule of M. A proper factor of M is a module of the form M/N for
some nonzero submodule NR ⊆ M.

2 Review of Right Oka Families

In [33], we introduced the following notion of a “one-sided prime.”

Definition 2.1 A right ideal PR � R is a completely prime right ideal if, for all a,
b ∈ R,

aP ⊆ P and ab ∈ P =⇒ a ∈ P or b ∈ P.

Notice immediately that a two-sided ideal is completely prime as a right ideal iff
it is a completely prime ideal (that is, the factor ring is a domain). In particular, the
completely prime right ideals of a commutative ring are precisely the prime ideals of
that ring.

One way in which these right ideals behave like prime ideals of commutative rings
is that right ideals that are maximal in certain senses tend to be completely prime. A
more precise statement requires a definition. Given a right ideal I and element a of
a ring R, we denote

a−1 I = {r ∈ R : ar ∈ I}.

Definition 2.2 A family F of right ideals in a ring R is an Oka family of right ideals
(or a right Oka family) if R ∈ F and, for any element a ∈ R and any right ideal
IR ⊆ R,

I + aR, a−1 I ∈ F =⇒ I ∈ F .

For a family F of right ideals in a ring R, we let F ′ denote the complement of F
(the set of right ideals of R that do not lie in F), and we let Max(F ′) denote the set of
right ideals of R that are maximal in F ′. The precise “maximal implies prime” result,
which was proved in [33, Theorem 3.6], can now be stated.

Theorem 2.3 (Completely Prime Ideal Principle) Let F be an Oka family of right
ideals in a ring R. Then any right ideal P ∈ Max(F ′) is completely prime.

A result accompanying the Completely Prime Ideal Principle (CPIP) shows that,
for special choices of right Oka families F , in order to test whether F consists of
all right ideals it is enough to check that all completely prime right ideals lie in F .
Throughout this paper, a family F0 of right ideals in a ring R is called a semif ilter if,
whenever J ∈ F and I is a right ideal of R, J ⊆ I implies I ∈ F .

Theorem 2.4 (Completely Prime Ideal Principle Supplement) Let F be a right Oka
family in a ring R such that every nonempty chain of right ideals in F ′ (with respect
to inclusion) has an upper bound in F ′. Let S denote the set of completely prime right
ideals of R.
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– Let F0 be a semif ilter of right ideals in R. If S ∩ F0 ⊆ F , then F0 ⊆ F .
– For JR ⊆ R, if all right ideals in S containing J (resp. properly containing J)

belong to F , then all right ideals containing J (resp. properly containing J) belong
to F .

– If S ⊆ F , then F consists of all right ideals of R.

In order to efficiently construct right Oka families, we established the following
correspondence in [33, Theorem 4.7]. A class C of cyclic right R-modules is said to be
closed under extensions if 0 ∈ C and, for every short exact sequence 0 → L → M →
N → 0 of cyclic right R-modules, L ∈ C and N ∈ C imply M ∈ C. Given a class of
cyclic right R-modules, one may construct the following family of right ideals of R:

FC := {IR ⊆ R : R/I ∈ C}.
Conversely, given a family F of right ideals in R, we construct a class of cyclic
R-modules

CF := {MR : M ∼= R/I for some I ∈ F}.

Theorem 2.5 Given a class C of cyclic right R-modules that is closed under extensions,
the family FC is a right Oka family. Conversely, given a right Oka family F , the class
CF is closed under extensions.

This theorem was used to construct a number of examples of right Oka families
in [33]. For us, the most important such example is the finitely generated right ideals:
in any ring R, the family of f initely generated right ideals of R is a right Oka family
(see [33, Proposition 3.7]).

An easy consequence of the above theorem, proved in [33, Corollary 4.9], will be
useful throughout this paper.

Corollary 2.6 Let F be a right Oka family in a ring R. Suppose that IR ⊆ R is such
that the right R-module R/I has a f iltration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = R/I

where each f iltration factor is cyclic and of the form Mj/Mj−1 ∼= R/I j for some I j ∈ F .
Then I ∈ F .

An important issue to be dealt with in the proof of Theorem 2.5 is that of similarity
of right ideals. Two right ideals I and J of a ring R are similar, written I ∼ J, if R/I ∼=
R/J as right R-modules. Two results from [33, Section 4] about isomorphic cyclic
modules will be relevant to the present paper, the second of which deals directly with
similarity of right ideals.

Lemma 2.7 For any ring R with right ideal I ⊆ R and element a ∈ R, the following
cyclic right R-modules are isomorphic: R/a−1 I ∼= (I + aR)/I.

Proposition 2.8 Every right Oka family F in a ring R is closed under similarity: if
I ∈ F then every right ideal similar to I is also in F .
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Finally, in [33, Section 6] we studied a special collection of completely prime right
ideals.

Definition 2.9 A module M �= 0 is monoform if, for every nonzero submodule NR ⊆
M, every nonzero homomorphism N → M is injective. A right ideal PR � R is
comonoform if the right R-module R/P is monoform.

It was shown in [33, Proposition 6.3] that every comonoform right ideal is com-
pletely prime. The idea is that comonoform right ideals form an especially “well-
behaved” subset of the completely prime right ideals of any ring.

3 Point Annihilator Sets for Classes of Modules

In this section we develop an appropriate notion of a “test set” for certain properties
of right ideals in noncommutative rings. This is required for us to state the main
theorems along these lines in the next section. Recall that a point annihilator of a
module MR is defined to be an annihilator of a nonzero element m ∈ M \ {0}.

Definition 3.1 Let C be a class of right modules over a ring R. A set S of right ideals
of R is a point annihilator set for C if every nonzero M ∈ C has a point annihilator
that lies in S . In addition, we make the following two definitions for special choices
of C:

– A point annihilator set for the class of all right R-modules will simply be called a
(right) point annihilator set for R.

– A point annihilator set for the class of all noetherian right R-modules will be
called a (right) noetherian point annihilator set for R.

Notice that a point annihilator set need not contain the unit ideal R, because point
annihilators are always proper right ideals. Another immediate observation is that,
for a right noetherian ring R, a right point annihilator set for R is the same as a right
noetherian point annihilator set for R.

Remark 3.2 The idea of a point annihilator set S for a class of modules C is simply
that S is “large enough” to contain a point annihilator of every nonzero module in
C. In particular, our definition does not require every right ideal in S to actually be
a point annihilator for some module in C. This means that any other set S ′ of right
ideals with S ′ ⊇ S is also a point annihilator set for C. On the other hand, if C0 ⊆ C is
a subclass of modules, then S is again a point annihilator set for C0.

Remark 3.3 Notice that S is a point annihilator set for a class C of modules iff, for
every nonzero module MR ∈ C, there exists a proper right ideal I ∈ S such that the
right module R/I embeds into M.

The next result shows that noetherian point annihilator sets for a ring R exert a
considerable amount of control over the noetherian right R-modules.
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Lemma 3.4 A set S of right ideals in R is a noetherian point annihilator set if f for
every noetherian module MR �= 0, there is a f inite f iltration of M

0 = M0 � M1 � · · · � Mn = M

such that, for 1 ≤ j ≤ n, there exists I j ∈ S such that Mj/Mj−1 ∼= R/I j.

Proof The “if” direction is easy, so we will prove the “only if” part. For convenience,
we will refer to a filtration like the one described above as an S-f iltration. Suppose
that S is a noetherian point annihilator set for R, and let MR �= 0 be noetherian.
We prove by noetherian induction that M has an S-filtration. Consider the set X of
nonzero submodules of M that have an S-filtration. Because S is a noetherian point
annihilator set, it follows that X is nonempty. Since M is noetherian, X has a maximal
element, say N. Assume for contradiction that N �= M. Then M/N �= 0 is noetherian,
and by hypothesis there exists I ∈ S with I �= R such that R/I ∼= N′/N ⊆ M/N for
some N′

R ⊆ M. But then N � N′ ∈ X , contradicting the maximality of N. Hence
M = N ∈ X , completing the proof. 
�

We wish to highlight a special type of point annihilator set in the definition below.

Definition 3.5 A set S of right ideals of a ring R is closed under point annihilators
if, for all I ∈ S , every point annihilator of R/I lies in S . (This is equivalent to saying
that I ∈ S and x ∈ R \ I imply x−1 I ∈ S .) If C is a class of right R-modules, we will
say that S is a closed point annihilator set for C if S is a point annihilator set for C and
S is closed under point annihilators.

The idea of the above definition is that S is “closed under passing to further
point annihilators of R/I” whenever I ∈ S . The significance of these closed point
annihilator sets is demonstrated by the next result.

Lemma 3.6 Let C be a class of right modules over a ring R that is closed under taking
submodules (e.g. the class of noetherian modules). Suppose that S is a closed point
annihilator set for C. Then for any other point annihilator set S1 of C, the set S1 ∩ S is
a point annihilator set for C.

Proof Let 0 �= MR ∈ C. Because S is a point annihilator set for C, there exists 0 �=
m ∈ M such that I := ann(m) ∈ S . By the hypothesis on C, the module mR lies in C.
Because S1 is also a point annihilator set for C, there exists 0 �= mr ∈ mR such that
ann(mr) ∈ S1. The fact that S is closed implies that ann(mr) ∈ S ∩ S1. This proves
that S ∩ S1 is also a point annihilator set for C. 
�

The prototypical example of a noetherian point annihilator set is the prime
spectrum of a commutative ring. In fact, every noetherian point annihilator set in
a commutative ring can be “reduced to” some set of prime ideals, as we show below.

Proposition 3.7 In any commutative ring R, the set Spec(R) of prime ideals is a closed
noetherian point annihilator set. Moreover, given any noetherian point annihilator set
S for R, the set S ∩ Spec(R) is a noetherian point annihilator subset of S consisting of
prime ideals.
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Proof The set Spec(R) is a noetherian point annihilator set thanks to the standard
fact that any noetherian module over a commutative ring has an associated prime;
see, for example, [8, Theorem 3.1]. Furthermore, this set is closed because for
P ∈ Spec(R), the annihilator of any nonzero element of R/P is equal to P. The last
statement now follows from Lemma 3.6. 
�

In this sense right noetherian point annihilator sets of a ring generalize the concept
of the prime spectrum of a commutative ring. However, one should not push this
analogy too far: in a commutative ring R, any set S of ideals containing Spec(R) is
also a noetherian point annihilator set! In fact, with the help of Proposition 3.7 it is
easy to verify that any commutative ring R has smallest noetherian point annihilator
set S0 := {P ∈ Spec(R) : R/P is noetherian}, and that a set S of ideals of R is a
noetherian point annihilator set for R iff S ⊇ S0.

For most of the remainder of this section, we will record a number of examples
of point annihilator sets that will be useful in later applications. Perhaps the easiest
example is the following: the family of all right ideals of a ring R is a point annihilator
set for any class of right R-modules. A less trivial example: the family of maximal
right ideals of a ring R is a point annihilator set for the class of right R-modules
of finite length, or for the larger class of artinian right modules. More specifically,
according to Remark 3.3 it suffices to take any set {mi} of maximal right ideals such
that the R/mi exhaust all isomorphism classes of simple right modules.

Example 3.8 Recall that a module MR is said to be semi-artinian if every nonzero
factor module of M has nonzero socle, and that a ring R is right semi-artinian if RR is
a semi-artinian module. One can readily verify that R is right semi-artinian iff every
nonzero right R-module has nonzero socle. Thus for such a ring R, the set of maximal
right ideals is a point annihilator set for R, and in particular it is a noetherian point
annihilator set for R.

Example 3.9 Let R be a left perfect ring, that is, a semilocal ring whose Jacobson
radical is left T-nilpotent—see [25, Section 23] for details. (Notice that this class
of rings includes semiprimary rings, especially right or left artinian rings.) By a
theorem of Bass (see [25, (23.20)]), over such a ring, every right R-module satisfies
DCC on cyclic submodules. Thus every nonzero right module has nonzero socle,
and such a ring is right semi-artinian. But R has finitely many simple modules up
to isomorphism (because the same is true modulo its Jacobson radical). Choosing
a set S = {m1, . . . ,mn} of maximal right ideals such that the modules R/mi exhaust
the isomorphism classes of simple right R-modules, we conclude by Remark 3.3 that
S is a point annihilator set for any class of right modules C. Hence S forms a right
noetherian point annihilator set for R. (The observant reader will likely have noticed
that the same argument applies more generally to any right semi-artinian ring with
finitely many isomorphism classes of simple right modules.)

Directly generalizing the fact that the prime spectrum of a commutative ring
is a noetherian point annihilator set, we have the following fact, valid for any
noncommutative ring.
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Proposition 3.10 The set of completely prime right ideals in any ring R is a noetherian
point annihilator set.

Proof Let MR �= 0 be noetherian. For any point annihilator I = ann(m) with 0 �=
m ∈ M, the module R/I ↪→ M is noetherian. Thus M must have a maximal point
annihilator PR ⊇ I, and P is completely prime by [33, Proposition 5.3]. 
�

Recall that in any ring R, the set of comonoform right ideals of R forms a subset
of the set of all completely prime right ideals of R. As we show next, the subset of
comonoform right ideals is also a noetherian point annihilator set.

Proposition 3.11 For any ring R, the set of comonoform right ideals in R is a closed
noetherian point annihilator set.

Proof Because a nonzero submodule of a monoform module is again monoform,
Remark 3.3 shows that it is enough to check that any nonzero noetherian module
MR has a monoform submodule. This has already been noted, for example, in [30,
4.6.5]. We include a separate proof for the sake of completeness.

Let LR ⊆ M be maximal with respect to the property that there exists a nonzero
cyclic submodule N ⊆ M/L that can be embedded in M. It is readily verified that N
is monoform, and writing N ∼= R/I for some comonoform right ideal I, the fact that
N embeds in I shows that I is a point annihilator of M. 
�

Our most “refined” instance of a noetherian point annihilator set for a general
noncommutative ring is connected to the concept of (Gabriel–Rentschler) Krull
dimension. We review the relevant definitions here, and we refer the reader to the
monograph [14] or the textbooks [13, Ch. 15] or [30, Ch. 6] for further details. Define
by induction classes Kα of right R-modules for each ordinal α (for convenience, we
consider −1 to be an ordinal number) as follows. Set K−1 to be the class consisting
of the zero module. Then for an ordinal α ≥ 0 such that Kβ has been defined for
all ordinals β < α, define Kα to be the class of all modules MR such that, for every
descending chain

M0 ⊇ M1 ⊇ M2 ⊇ · · ·
of submodules of M indexed by natural numbers, one has Mi/Mi+1 ∈ ⋃

β<α Kβ for
almost all indices i. Now if a module MR belongs to some Kβ , its Krull dimension,
denoted K. dim(M), is defined to be the least ordinal α such that M ∈ Kα . Otherwise
we say that the Krull dimension of M does not exist.

From the definitions it is easy to see that the right R-modules of Krull dimension
0 are precisely the (nonzero) artinian modules. Also, a module MR has Krull
dimension 1 iff it is not artinian and in every descending chain of submodules of
M, almost all filtration factors are artinian.

One of the more useful features of the Krull dimension function is that it is an
exact dimension function, in the sense that, given an exact sequence 0 → L → M →
N → 0 of right R-modules, one has

K. dim(M) = sup(K. dim(L), K. dim(N))
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where either side of the equation exists iff the other side exists. See [13, Lemma 15.1]
or [30, Lemma 6.2.4] for details.

The Krull dimension can also be used as a dimension measure for rings. We define
the right Krull dimension of a ring R to be r. K. dim(R) = K. dim(RR). The left Krull
dimension of R is defined similarly.

Now a module MR is said to be α-critical (α ≥ 0 an ordinal) if K. dim(M) = α but
K. dim(M/N) < α for all 0 �= NR ⊆ M, and we say that MR is critical if it is α-critical
for some ordinal α. With this notion in place, we define a right ideal IR ⊆ R to be
α-cocritical if the module R/I is α-critical, and we say that I is cocritical if it is α-
cocritical for some ordinal α. Notice immediately that a 0-critical module is the same
as a simple module, and the 0-cocritical right ideals are precisely the maximal right
ideals.

Cocritical right ideals were already studied by A. W. Goldie in [11], though they
are referred to there as “critical” right ideals. (The reader should take care not to
confuse this terminology with the phrase “critical right ideal” used in a different sense
elsewhere in the literature, as mentioned in [33, Section 6].)

Remark 3.12 The first two remarks below are known; for example, see
[30, Section 6.2].

(1) Every nonzero submodule N of a critical module M is also critical and has
K. dim(N) = K. dim(M). Suppose that M is α-critical. If K. dim(N) < α, then
because K. dim(M/N) < α, the exactness of Krull dimension would imply the
contradiction K. dim(M) < α. Hence K. dim(N) = α. Also, for any nonzero
submodule N0 ⊆ N we have K. dim(N/N0) ≤ K. dim(M/N0) < α, proving that
N is α-critical.

(2) A critical module is always monoform. Suppose that M is α-critical and fix
a nonzero homomorphism f : C → M where CR ⊆ M. Because C and im f
are both nonzero submodules of M, they are also α-critical by (1). Then
K. dim(C) = K. dim(im f ) = K. dim(C/ ker f ), so we must have ker f = 0. Thus
M is indeed monoform.

(3) Any cocritical right ideal is comonoform and, in particular, is completely
prime. This follows immediately from the preceding remark and the fact
[33, Proposition 6.3] that any comonoform right ideal is completely prime.

It is possible to characterize the (two-sided) ideals that are cocritical as right ideals.

Proposition 3.13 For any ring R and any ideal P � R, the following are equivalent:

(1) P is cocritical as a right ideal;
(2) R/P is a (right Ore) domain with right Krull dimension.

Proof Because every cocritical right ideal is comonoform, (1) =⇒ (2) follows from
the fact [33, Proposition 6.5] that a two-sided ideal is comonoform as a right ideal
iff its factor ring is a right Ore domain. Because a semiprime ring with right Krull
dimension is right Goldie, the two conditions in (2) are equivalent.

(2) =⇒ (1): It can be shown that, for every module MR whose Krull dimension
exists and for every injective endomorphism f : M → M, one has K. dim(M) >

K. dim(M/ f (M)) (see [13, Lemma 15.6]). Applying this to M = S := R/P, we see
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that K. dim(S) > K. dim(S/xS) for all nonzero x ∈ S (this is also proved in [30,
Lemma 6.3.9]). Thus SS, and consequently SR, are critical modules. 
�

Example 3.14 The last proposition is useful for constructing an ideal of a ring that is
(right and left) comonoform but not (right or left) cocritical. If R is a commutative
domain that does not have Krull dimension, then the zero ideal of R is prime and
thus is comonoform by [33, Proposition 6.5]. But because R does not have Krull
dimension, the zero ideal cannot be cocritical by the previous result. For an explicit
example, one can take R = k[x1, x2, . . . ] for some commutative domain k. It is shown
in [14, Example 10.1] that such a ring does not have Krull dimension, using the fact
that a polynomial ring R[x] has right Krull dimension iff the ground ring R is right
noetherian.

The reason for our interest in the set of cocritical right ideals is that it is an
important example of a noetherian point annihilator set in a general ring.

Proposition 3.15 For any ring R, the set of all cocritical right ideals is a closed point
annihilator set for the class of right R-modules whose Krull dimension exists. In
particular, this set is a closed noetherian point annihilator set for R.

Proof Because any nonzero module with Krull dimension has a critical submodule
(see [13, Lemma 15.8] or [30, Lemma 6.2.10]), Remark 3.3 shows that the set of
cocritical right ideals of R is a point annihilator set for the class of right R-modules
with Krull dimension. Because any noetherian module has Krull dimension (see [13,
Lemma 15.3] or [30, Lemma 6.2.3]), we see by Remark 3.2 that this same set is a
right noetherian point annihilator set for R. The fact that this set is closed under
point annihilators follows from Remark 3.12(1). 
�

Let us further examine the relationship between the general noetherian point
annihilator sets given in Propositions 3.10, 3.11, and 3.15. From [33, Proposition 6.3]
and Remark 3.12(3) we see that there are always the following containment relations
(where the first three sets are noetherian point annihilator sets but the last one is not,
in general):

⎧
⎨

⎩

completely
prime

right ideals

⎫
⎬

⎭
⊇

{
comonoform
right ideals

}

⊇
{

cocritical
right ideals

}

⊇
{

maximal
right ideals

}

. (3.1)

Notice that in a commutative ring R the first two sets are equal to Spec(R) by [33,
Corollaries 2.3 & 6.7], and when R is commutative and has Gabriel–Rentschler Krull
dimension (e.g., when R is noetherian) the third set is also equal to Spec(R) by
Proposition 3.13. The latter fact provides many examples where the last containment
is strict: in any commutative ring R with Krull dimension > 0 there exists a non-
maximal prime ideal, which must be cocritical. It was shown in [33, Lemma 6.4 ff.]
and Example 3.14 that the first two inclusions can each be strict. However, the
latter example was necessarily non-noetherian. Below we give an example of a
noncommutative artinian (hence noetherian) ring over which both containments are
strict. This example makes use of the following characterization of semi-artinian
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monoform modules. The proof is straightforward and therefore is omitted. The socle
of a module MR is denoted by soc(M).

Lemma 3.16 Let MR be a semi-artinian R-module. Then the following are equivalent:

(1) M is monoform;
(2) For any nonzero submodule KR ⊆ M, soc(M) and soc(M/K) do not have

isomorphic nonzero submodules;
(3) soc(M) is simple and does not embed into any proper factor module of M.

Example 3.17 Let k be a division ring, and let R be the ring of all 3 × 3 matrices over
k of the form

⎛

⎝
a b c
0 d e
0 0 d

⎞

⎠ . (3.2)

One can easily verify (for example, by passing to the factor R/ rad(R) of R by its
Jacobson radical) that R has two simple right modules up to isomorphism. We may
view these modules as S1 = k with right R-action given by right multiplication by a
in Eq. 3.2 and S2 = k with right action given by right multiplication by d in Eq. 3.2.
Consider the right ideals

P0 :=
⎧
⎨

⎩

⎛

⎝
0 0 0
0 d e
0 0 d

⎞

⎠

⎫
⎬

⎭
⊆ P1 :=

⎧
⎨

⎩

⎛

⎝
0 0 c
0 d e
0 0 d

⎞

⎠

⎫
⎬

⎭
⊆ P2 :=

⎧
⎨

⎩

⎛

⎝
0 b c
0 d e
0 0 d

⎞

⎠

⎫
⎬

⎭
.

Then the cyclic module V := R/P0 is isomorphic to the space (k k k)R of row vectors
with the natural right R-action. Notice that Vi := Pi/P0 (i = 1, 2) corresponds to the
submodule of row vectors whose first 3 − i entries are zero. One can check that the
only submodules of V are 0 ⊆ V1 ⊆ V2 ⊆ V, which implies that this is the unique
composition series of V. It is clear that

V1 ∼= V2/V1 ∼= S2 and V/V2 ∼= S1.

We claim that P0 is a completely prime right ideal that is not comonoform. To see
that it is completely prime, it suffices to show that every nonzero endomorphism of
V = R/P0 is injective. Indeed, the only proper factors of V are V/V1 and V/V2. By
an inspection of composition factors, neither of these can embed into V, proving that
P0 is completely prime. To see that P0 is not comonoform, consider that

soc(V) = V1 ∼= V2/V1 = soc(V/V1).

By Lemma 3.16 we see that R/P0 = V is not monoform and thus P0 is not
comonoform.

We also claim that P1 is comonoform but not cocritical. Notice that over any
right artinian ring, every cyclic critical module has Krull dimension 0. But a 0-critical
module is necessarily simple. Thus a cocritical right ideal in a right artinian ring must
be maximal. But P1 is not maximal and thus is not cocritical. On the other hand,
R/P1 ∼= V/V1 has unique composition series 0 ⊆ V2/V1 ⊆ V/V1. This allows us to
easily verify, using Lemma 3.16, that V/V1 ∼= R/P1 is monoform, proving that P1 is
comonoform.
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This same example also demonstrates that the set of completely prime right
ideals is not always closed under point annihilators (as in Definition 3.5). This is
because the cyclic submodule V2 ⊆ V = R/P0 certainly has a nonzero noninjective
endomorphism, as both of its composition factors are isomorphic.

An example along these lines was already used in [14, p. 11] to show that a
monoform module need not be critical. Notice that the completely prime right ideal
P0 above is such that R/P0 is uniform, even if it is not monoform. (This means that
the right ideal P0 is “meet-irreducible.”) An example of a completely prime right
ideal whose factor module is not uniform was already given in Example completely
prime not meet-irreducible.

Given the containments of noetherian point annihilator sets in Eq. 3.1, one might
question the need for the notion of a point annihilator set. Why not simply state
all theorems below just for the family of cocritical right ideals? We already have an
answer to this question in Example 3.9, which demonstrates that every left perfect
ring has a finite right noetherian point annihilator set. The reason we can reduce to
a finite set S in such rings is the fact stated in Remark 3.3 that a noetherian right
module only needs to contain a submodule isomorphic to R/I for some I ∈ S . In
other words, S only needs to contain a single representative from any given similarity
class. So while a left perfect ring R may have infinitely many maximal right ideals, it
has only finitely many similarity classes of maximal right ideals. Thus we can reduce
certain problems about all right ideals of R to a finite set of maximal ideals! This will
be demonstrated in Proposition 4.8 and Corollary 5.5, below where we shall prove
that a left perfect ring is right noetherian (resp. a PRIR) iff all maximal right ideals
belonging to a (properly chosen) finite set are finitely generated (resp. principal).

We have also phrased the discussion in terms of general noetherian point annihi-
lator sets to leave open the possibility of future applications to classes of rings which
have nicer noetherian point annihilator sets than the whole set of cocritical right
ideals, akin to the class of left perfect rings.

4 The Point Annihilator Set Theorem

Having introduced the notion of a point annihilator set, we can now state our funda-
mental result, the Point Annihilator Set Theorem 4.1. This theorem gives conditions
under which one may deduce that one family F0 of right ideals is contained in a
second family F of right ideals. We will most often use it as a sufficient condition for
concluding that all right ideals of a ring lie in a particular right Oka family F .

Certain results in commutative algebra state that when every prime ideal in a
commutative ring has a certain property, then all ideals in the ring have that prop-
erty. As mentioned in the introduction, the two motivating examples are Cohen’s
Theorem 1.1 and Kaplansky’s Theorem 1.3. In [29, p. 3017], these theorems were
both recovered in the context of Oka families and the Prime Ideal Principle.
The useful tool in that context was the “Prime Ideal Principle Supplement” [29,
Theorem 2.6]. We have already provided one noncommutative generalization of this
tool in the Theorem 2.4, which we used to produce a noncommutative extension of
Cohen’s Theorem in [33, Theorem 3.8] stating that a ring is right noetherian iff its
completely prime right ideals are finitely generated.



946 M.L. Reyes

The CPIP Supplement states that for certain right Oka families F , if the set S
of completely prime right ideals lies in F , then all right ideals lie in F . The main
goal of this section is to improve upon this result by allowing the set S to be any
point annihilator set. This is achieved in Theorem 4.3 as an application of the Point
Annihilator Set Theorem.

The Point Annihilator Set Theorem basically formalizes a general “strategy of
proof.” For the sake of clarity, we present an informal sketch of this proof strategy
before stating the theorem. Suppose that we want to prove that every module with
the property P also has the property Q. Assume for contradiction that there is a
counterexample. Use Zorn’s Lemma to pass to a counterexample M satisfying P
that is “critical” with respect to not satisfying Q, in the sense that every proper factor
module of M satisfies Q but M itself does not satisfy Q. Argue that M has a nonzero
submodule N that satisfies Q. Finally, use the fact that N and M/N have Q to deduce
the contradiction that M has Q.

Our theorem applies in the specific case where one’s attention is restricted to
cyclic modules. In the outline above, we may think of the properties P and Q to
be, respectively, “M = R/I where I ∈ F0” and “M = R/I where I ∈ F .”

Theorem 4.1 (The Point Annihilator Set Theorem) Let F be a right Oka family such
that every nonempty chain of right ideals in F ′ (with respect to inclusion) has an upper
bound in F ′.

(1) Let F0 be a semif ilter of right ideals in R. If F is a point annihilator set for the
class of modules {R/I : IR ∈ Max(F ′) ∩ F0}, then F0 ⊆ F .

(2) For any right ideal JR ⊆ R, if F is a point annihilator set for the class of
modules R/I such that I ∈ Max(F ′) and I ⊇ J (resp. I � J), then all right ideals
containing (resp. properly containing) J belong to F .

(3) If F is a point annihilator set for the class of modules {R/I : IR ∈ Max(F ′)}, then
F consists of all right ideals of R.

Proof Suppose that the hypotheses of (1) hold, and assume for contradiction that
there exists I0 ∈ F0 \ F . The assumptions on F ′ allow us to apply Zorn’s Lemma
to find I ∈ Max(F ′) with I ⊇ I0. Then I ∈ F0 because F0 is a semifilter. The point
annihilator hypothesis implies that there is a nonzero element a + I ∈ R/I such that
a−1 I = ann(a + I) ∈ F . On the other hand, a + I �= 0 + I implies that I + aR � I.
By maximality of I, this means that I + aR ∈ F . Because F is a right Oka family, we
arrive at the contradiction I ∈ F .

Parts (2) and (3) follows from (1) by taking F0 to be, respectively, the set of all
right ideals of R (properly) containing J or the set of all right ideals of R. 
�

Notice that part (1) above remains true if we weaken the condition on chains in
F ′ to the following: every nonempty chain in F ′ ∩ F0 has an upper bound in F ′. The
latter condition holds if every I ∈ F0 is such that R/I is a noetherian module, or more
generally if F0 satisfies the ascending chain condition (as a partially ordered set with
respect to inclusion). However, we shall not make use this observation in the present
work.

The following is an illustration of how Theorem 4.1 can be applied in practice.
It is well-known that every finitely generated artinian module over a commutative
ring has finite length. However, there exist finitely generated (even cyclic) artinian
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right modules over noncommutative rings that do not have finite length; for instance,
see [26, Example 4.28]. Here we provide a sufficient condition for all finitely
generated artinian right modules over a ring to have finite length.

Proposition 4.2 If all maximal right ideals of a ring R are f initely generated, then every
f initely generated artinian right R-module has f inite length.

Proof It suffices to show that every cyclic artinian right R-module has finite length.
Let F0 be the semifilter of right ideals IR such that R/I is right artinian, and let
F be the right Oka family of right ideals I such that R/I has finite length. Our
goal is then to show that F0 ⊆ F . Because every nonzero cyclic artinian module
has a simple submodule, we see that F is a point annihilator set for the class
{R/I : I ∈ F0} ⊇ {R/I : I ∈ Max(F ′) ∩ F0}. To apply Theorem 4.1(1) we will show
that every nonempty chain in F ′ has an upper bound in F ′. For this, it is enough to
check that F consists of finitely generated right ideals. The hypothesis implies that
all simple right R-modules are finitely presented. If I ∈ F then R/I, being a repeated
extension of finitely many simple modules, is finitely presented. It follows that I is
finitely generated. (The details of the argument that F consists of f.g. right ideals are
in [33, Corollary 4.9].) 
�

In light of the result above, it would be interesting to find a characterization of the
rings R over which every finitely generated artinian right R-module has finite length.
How would such a characterization unite both commutative rings and the rings in
which every maximal right ideal is finitely generated?

For our purposes, it will often best to use a variant of the theorem above. This
variant keeps with the theme of Cohen’s and Kaplansky’s results (Theorems 1.1–1.3)
of “testing” a property on special sets of right ideals.

Theorem 4.3 Let F be a right Oka family such that every nonempty chain of right
ideals in F ′ (with respect to inclusion) has an upper bound in F ′. Let S be a set of right
ideals that is a point annihilator set for the class of modules {R/I : IR ∈ Max(F ′)}.
(1) Let F0 be a divisible semif ilter of right ideals in R. If F0 ∩ S ⊆ F , then F0 ⊆ F .
(2) For any ideal J � R, if all right ideals in S that contain J belong to F , then every

right ideal containing J belongs to F .
(3) If S ⊆ F , then all right ideals of R belong to F .

Proof As in the previous result, parts (2) and (3) are special cases of part (1).
To prove (1), Theorem 4.1 implies that it is enough to show that F is a point
annihilator set for the class of modules {R/I : IR ∈ Max(F ′) ∩ F0}. Fixing such R/I,
the hypothesis of part (1) ensures that R/I has a point annihilator in S , say A =
ann(x + I) ∈ S for some x + I ∈ R/I \ {0 + I}. Because I ∈ F0 and F0 is divisible,
the fact that A = x−1 I implies that A ∈ F0. Thus A ∈ S ∩ F0 ⊆ F , providing a point
annihilator of R/I that lies in F . 
�

We also record a version of Theorem 4.3 adapted especially for families of finitely
generated right ideals. Because of its easier formulation, it will allow for simpler
proofs as we provide applications of Theorem 4.3.
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Corollary 4.4 Let F be a right Oka family in a ring R that consists of f initely generated
right ideals. Let S be a noetherian point annihilator set for R. Then the following are
equivalent:

(1) F consists of all right ideals of R;
(2) F is a noetherian point annihilator set;
(3) S ⊆ F .

Proof Given any I ∈ Max(F ′), any nonzero submodule of R/I is the image of a
right ideal properly containing I, which must be finitely generated; thus R/I is
a noetherian right R-module. Stated another way, the class {R/I : I ∈ Max(F ′)}
consists of noetherian modules. Thus (1) ⇐⇒ (2) follows from Theorem 4.1(3) and
(1) ⇐⇒ (3) follows from Theorem 4.3(3). 
�

As our first application of the simplified corollary above, we will finally present
our noncommutative generalization of Cohen’s Theorem 1.1, improving upon [33,
Theorem 3.8].

Theorem 4.5 (A noncommutative Cohen’s Theorem) Let R be a ring with a right
noetherian point annihilator set S . The following are equivalent:

(1) R is right noetherian;
(2) Every right ideal in S is f initely generated;
(3) Every nonzero noetherian right R-module has a f initely generated point

annihilator;
(4) Every nonzero noetherian right R-module has a nonzero cyclic f initely presented

submodule.

In particular, R is right noetherian if f every cocritical right ideal is f initely generated.

Proof The family of finitely generated right ideals is a right Oka family by [33,
Proposition 3.7]. The equivalence of (1), (2), and (3) thus follows directly from
Corollary 4.4. Also, (3) ⇐⇒ (4) comes from the observation that a right ideal I is
a point annihilator of a module MR iff there is an injective module homomorphism
R/I ↪→ M, as well as the fact that R/I is a finitely presented module iff I is a finitely
generated right ideal [24, (4.26)(b)]. The last statement follows from Proposition 3.15.


�

In particular, if we take the set S above to be the completely prime right ideals of
R, we recover [33, Theorem 3.8]. Our version of Cohen’s Theorem will be compared
and contrasted with earlier such generalizations in Section 8.

The result above suggests that one might wish to drop the word “cyclic” in
characterization (4). This is indeed possible. We present this as a separate result since
it does not take advantage of the “formalized proof method” given in Theorem 4.1.
However, this result does follow the informal “strategy of proof” outlined at the
beginning of this section.

Proposition 4.6 For a ring R, the following are equivalent:

(1) R is right noetherian;
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(5) Every nonzero noetherian right R-module has a nonzero f initely presented
submodule.

Proof Using the numbering from Theorem 4.5, we have (1) =⇒ (4) =⇒ (5). Sup-
pose that (5) holds, and assume for contradiction that there exists a right ideal of R
that is not finitely generated. Using Zorn’s Lemma, pass to IR ⊆ R that is maximal
with respect to not being finitely generated. Then because every right ideal properly
containing I is f.g., the module R/I is noetherian. By hypothesis, there is a finitely
presented submodule 0 �= J/I ⊆ R/I. Then J � I implies that J is finitely generated,
so that R/J is finitely presented. Because R/I is an extension of the two finitely
presented modules J/I and R/J, R/I is finitely presented [28, Example 4.8(2)]. But
if R/I is finitely presented then IR is finitely generated [24, (4.26)(b)]. This is a
contradiction. 
�

The Akizuki–Cohen Theorem of commutative algebra (cf. [6, pp. 27–28]) states
that a commutative ring R is artinian iff it is noetherian and every prime ideal is
maximal. Recall that a module MR is finitely cogenerated if any family of submodules
of M whose intersection is zero has a finite subfamily whose intersection is zero.
In [29, (5.17)] consideration of the class of finitely cogenerated right modules led to
the following “artinian version” of Cohen’s theorem: a commutative ring R is artinian
iff for all P ∈ Spec(R), P is finitely generated and R/P is finitely cogenerated. Here
we generalize both of these results to the noncommutative setting.

Proposition 4.7 For a ring R with right noetherian point annihilator set S , the
following are equivalent:

(1) R is right artinian;
(2) R is right noetherian and for all P ∈ S , (R/P)R has f inite length;
(3) For all P ∈ S , PR is f initely generated and (R/P)R has f inite length;
(4) For all P ∈ S , PR is f initely generated and (R/P)R is f initely cogenerated;
(5) R is right noetherian and every cocritical right ideal of R is maximal;
(6) Every cocritical right ideal of R is f initely generated and maximal.

Proof (1) ⇐⇒ (2) ⇐⇒ (3): It is well-known that R is right artinian iff RR has
finite length. This equivalence then follows from Corollary 4.4, Theorem 4.5, and
the fact that F := {IR ⊆ R : R/IR has finite length} is a right Oka family (see [33,
Example 5.18(4)]).

(1) ⇐⇒ (4): It is known that a module MR is artinian iff every quotient
of M is finitely cogenerated (see [28, Example 19.0]). Because F := {IR ⊆ R :
R/IR is finitely cogenerated} is a right Oka family (see [33, Example 5.18(1B)]),
(1) ⇐⇒ (4) follows from Corollary 4.4.

We get (1) ⇐⇒ (5) ⇐⇒ (6) by applying the equivalence of (1), (2), and (3) to the
case where S is the set of cocritical right ideals of R, noting that every artinian critical
module is necessarily simple. 
�

Of course, the fact that a right noetherian ring is right artinian iff all of its cocritical
right ideals are maximal follows from a direct argument involving Krull dimensions
of modules. Indeed, given a right noetherian ring R with right Krull dimension α,
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choose a right ideal I ⊆ R maximal with respect to K. dim(R/I) = α. Then for any
right ideal J ⊇ I, K. dim(R/J) < α = K. dim(R/I); hence I is cocritical. So

r. K. dim(R) = sup{K. dim(R/I) : IR ⊆ R is cocritical}.
The result now follows once we recall that the 0-critical modules are precisely the
simple modules.

We also mention another noncommutative generalization of the Akizuki–Cohen
Theorem due to A. Kertész, which states that a ring R is right artinian iff it is right
noetherian and for every prime ideal P � R, R/P is right artinian [19]. (We thank
the referee for bringing this reference to our attention.)

Another application of Theorem 4.5 tells us when a right semi-artinian ring,
especially a left artinian ring, is right artinian. (The definition of a right semi-artinian
ring was recalled in Example 3.8.)

Proposition 4.8

(1) A right semi-artinian ring R is right artinian if f every maximal right ideal of R is
f initely generated.

(2) Let R be a left perfect ring (e.g. a semiprimary ring, such as a left artinian
ring) and let m1, . . . ,mn be maximal right ideals such that R/mi exhaust all
isomorphism classes of simple right modules. Then R is right artinian if f all of
the mi are f initely generated.

Proof It is easy to check that a right semi-artinian ring R is right artinian iff it is right
noetherian. The proposition then follows from Theorem 4.5 and Examples 3.8–3.9.


�

A result of B. Osofsky [32, Lemma 11] states that a left or right perfect ring R with
Jacobson radical J is right artinian iff J/J2 is finitely generated as a right R-module.
This applies, in particular, to left artinian rings. D. V. Huynh characterized which
(possibly nonunital) left artinian rings are right artinian in [15, Theorem 1]. In the
unital case, his characterization recovers Osofsky’s result above for the special class
of left artinian rings. We can use our previous result to recover a weaker version of
Osofsky’s theorem that implies Huynh’s result for unital left artinian rings.

Corollary 4.9 Let R be a ring with J := rad(R). Then the following are equivalent:

(1) R is right artinian;
(2) R is left perfect and J is a f initely generated right ideal;
(3) R is perfect and J/J2 is a f initely generated right R-module.

In particular, if R is semiprimary (for instance, if it is left artinian), then R is right
artinian if f J/J2 is f initely generated on the right.

Proof Because any right artinian ring is both perfect and right noetherian, we have
(1) =⇒ (3). For (3) =⇒ (2), suppose that R is perfect and that J/J2 is right finitely
generated. Then for some finitely generated submodule MR ⊆ JR, J = M + J2. Since
R is right perfect, J is right T-nilpotent. Then by “Nakayama’s Lemma” for right T-
nilpotent ideals (see [25, (23.16)]) implies that JR = MR is finitely generated.
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Finally we show (2) =⇒ (1). Suppose that R is left perfect and that JR is finitely
generated. For any maximal right ideal m of R, we have J ⊆ m. Now m/J is a right
ideal of the semisimple ring R/J and is therefore finitely generated. Because JR is
also finitely generated, we see that mR itself is finitely generated. Since this is true for
all maximal right ideals of R, Proposition 4.8(2) implies that R is right artinian. 
�

Next we give a condition for every finitely generated right module over a ring
R to have a finite free resolution (FFR). Notice that such a ring is necessarily right
noetherian. Indeed, any module with an FFR is necessarily finitely presented. Thus
if every f.g. right R-module has an FFR, then for every right ideal I ⊆ R the module
R/I must have an FFR and therefore must be finitely presented. It follows (from
Schanuel’s Lemma [24, (5.1)]) that IR is finitely generated, and R is right noetherian.

Proposition 4.10 Let S be a right noetherian point annihilator set for a ring R (e.g. the
set of cocritical right ideals). Then the following are equivalent.

(1) Every f initely generated right R-module has a f inite free resolution;
(2) For all P ∈ S , R/P has a f inite free resolution;
(3) Every right ideal in S has a f inite free resolution.

Proof (1) =⇒ (3): As mentioned before the proposition, if every f.g. right R-module
has a finite free resolution then R is right noetherian. So every right ideal IR ⊆ R is
finitely generated and therefore has a finite free resolution.

Next, (3) =⇒ (2) follows from the easy fact that, given IR ⊆ R, if I has a finite free
resolution then so does R/I. For (2) =⇒ (1), let F be the family of right ideals I such
that R/I has a finite free resolution and assume that S ⊆ F . This is a right Oka family
according to [33, Example 5.12(5)]. Moreover, if I ∈ F then R/I is finitely presented.
As noted earlier, this implies that IR must be finitely generated [24, (4.26)(b)]. It
follows from Corollary 4.4 that every right ideal of R lies in F . Because any finitely
generated right R-module is an extension of cyclic modules and because the property
of having an FFR is preserved by extensions, we conclude that (1) holds. 
�

5 Families of Principal Right Ideals

We will use Fpr(R) to denote the family of principal right ideals of a ring R. If the
ring R is understood from the context, we may simply use Fpr to denote this family.

A theorem of Kaplansky [18, Theorem 12.3 & Footnote 8] states that a commu-
tative ring is a principal ideal ring iff its prime ideals are all principal. In [29, (3.17)]
this theorem was recovered via the “PIP supplement.” It is therefore reasonable to
hope that the methods presented here will lead to a generalization of this result.
Specifically, we would like to know whether a ring R is a principal right ideal ring
(PRIR) if, say, every cocritical right ideal is principal. It turns out that this is in fact
true, but the path to proving the result is not as straightforward as one might imagine.
The obvious starting point is to ask whether the family Fpr of principal right ideals
in an arbitrary ring R is a right Oka family. Suppose that R is a ring such that Fpr

is a right Oka family. Then Corollary 4.4 readily applies to Fpr. However, it is not
immediately clear whether or not Fpr(R) is necessarily right Oka for every ring R.
The following proposition provides some guidance in this matter.
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Proposition 5.1 Let S ⊆ R be a multiplicative set. Then F := {sR : s ∈ S} is a right
Oka family if f it is closed under similarity. In particular, for any ring R, the family Fpr

of principal right ideals is a right Oka family if f it is closed under similarity.

Proof Any right Oka family is closed under similarity by Proposition 2.8. Conversely,
assume that the family F in question is closed under similarity. Suppose that I +
aR, a−1 I ∈ F , and write I + aR = sR for some s ∈ S. In the short exact sequence of
right R-modules

0 → I + aR
I

→ R
I

→ R
I + aR

→ 0,

observe that R/(a−1 I) ∼= (I + aR)/I = sR/I ∼= R/(s−1 I). Because F is closed under
similarity and a−1 I ∈ F , we must also have s−1 I ∈ F . Fix t ∈ S such that s−1 I = tR.
Then because I ⊆ I + aR = sR we have I = s(s−1 I) = stR, and st ∈ S implies that
I ∈ F . 
�

In particular, we have the following “first approximation” to our desired theorem.

Corollary 5.2 Let S be a right noetherian point annihilator set for R. The following
are equivalent:

(1) R is a principal right ideal ring;
(2) Fpr is closed under similarity and every right ideal in S is principal;
(3) Fpr is closed under similarity and is a right noetherian point annihilator set.

Proof If R is a PRIR, then Fpr is equal to the family of all right ideals in R and
therefore is closed under similarity. Also, by Proposition 5.1, if Fpr is closed under
similarity then it is a right Oka family. These observations along with Corollary 4.4
establish the equivalence of (1)–(3). 
�

This provides some motivation to explore for which rings the family Fpr is closed
under similarity (and consequently is a right Oka family). Recall that a ring R is
called right duo if every right ideal of R is a two-sided ideal. It is easy to see that in any
right duo ring, and particularly in any commutative ring, every family of right ideals is
closed under similarity. This is because in such a ring R, any right ideal I is necessarily
a two-sided ideal, so that I = ann(R/I) can be recovered from the isomorphism class
of R/I. Thus Proposition 5.1 applies to show that Fpr is a right Oka family whenever
R is a right duo ring, such as a commutative ring. For commutative rings R, the fact
that Fpr is an Oka family was already noted in [29, (3.17)].

Another collection of rings in which Fpr is closed under similarity is the class of
local rings. To show that this is the case, we use the fact [33, Proposition 4.6] that a
family F of right ideals of a ring R is closed under similarity iff, for every element a
and right ideal I of R, I + aR = R and a−1 I ∈ F imply I ∈ F . Suppose that R is local,
and that IR ⊆ R and a ∈ R are such that I + aR = R and a−1 I = xR is principal. We
want to conclude that I is principal. Write 1 = i0 + ar for some i0 ∈ I and r ∈ R. Let
U(R) denote the group of units of R. If i0 ∈ U(R), then I = R is principal. Else i0 /∈
U(R) implies that 1 − i0 = ar ∈ U(R) and hence a ∈ U(R) (R local implies that right
invertible elements are invertible). But then a−1 I = a−1 · I, so that I = a(a−1 I) =
axR is principal as desired.
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Remark 5.3 In any ring R, let IR, JR ⊆ R be right ideals such that J = xR is principal
and R/I ∼= R/J. Then I is generated by at most two elements. To see this, apply
Schanuel’s Lemma (for instance, see [24, (5.1)]) to the exact sequences

0 → I → R → R/I → 0 and

0 → J → R → R/J → 0

to get R ⊕ I ∼= R ⊕ J. The latter module is generated by at most two elements.
Therefore I, being isomorphic to a direct summand of this module, is generated by at
most two elements. Thus we see that such I is “not too far” from being principal. (Of
course, the same argument shows that if JR ⊆ R is generated by at most n elements
and if IR ⊆ R is similar to J, then I is generated by at most n + 1 elements.)

The analysis above also provides the following useful fact: if the module RR is
cancellable in the category of (finitely generated) right R-modules (or even in the
category of finite direct sums of f.g. right ideals), then the family Fpr is closed under
similarity (and hence is a right Oka family). Indeed, if this is the case, suppose that
R/I ∼= R/J for right ideals I and J with J principal. By the remark above, we have
I finitely generated and R ⊕ I ∼= R ⊕ J. With the assumption on RR we would have
IR

∼= JR principal, proving Fpr to be closed under similarity. (In fact one can similarly
show that, over such rings, the minimal number of generators μ(I) of a f.g. right ideal
I ⊆ R is an invariant of the similarity class of I.)

This provides another class of rings for which Fpr is a right Oka family, as
follows. Recall that a ring R is said to have (right) stable range 1 if, for a, b ∈ R,
aR + b R = R implies that (a + br)R = R for some r ∈ R (see [27, Section 1] for
details). In [9, Theorem 2] E. G. Evans showed that for any ring with stable range 1,
RR is cancellable in the full module category MR. Thus for any ring R with stable
range 1, Fpr(R) is a right Oka family. The class of rings with stable range 1 includes
all semilocal rings (see [25, (20.9)] or [27, (2.10)]), so that this generalizes the case of
local rings discussed above.

A similar argument applies in the class of 2-firs. A ring R is said to be a 2-f ir
(where “fir” stands for “free ideal ring”) if the free right R-module of rank 2 has
invariant basis number and every right ideal of R generated by at most two elements
is free. We claim that Fpr(R) is closed under similarity if R is a 2-fir. Suppose that
IR ⊆ R is similar to a principal right ideal J. As before, we have R ⊕ I ∼= R ⊕ J, and
I is generated by at most two elements. So I ∼= Rm, and J ∼= Rn where n ≤ 1 because
J is principal. Thus Rm+1 ∼= Rn+1 with n + 1 ≤ 2, and the invariant basis number of
the latter free module implies that m = n ≤ 1. Hence IR

∼= Rm is a principal right
ideal.

There is yet another way in which Fpr(R) can be closed under similarity. Suppose
that every finitely generated right ideal of R is principal; rings satisfying this property
are often called right Bezout rings. Then Fpr is equal to the set of all f.g. right ideals
of R, which is a right Oka family by [33, Proposition 3.7]. A familiar class of examples
of such rings is the class of von Neumann regular rings; in such rings, every finitely
generated right ideal is a direct summand of RR, and therefore is principal.

We present a summary of the examples above.
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Example 5.4 In each of the following types of rings, the family Fpr is closed under
similarity and thus is a right Oka family:

(1) Right duo rings (including commutative rings);
(2) Rings with stable range 1 (including semilocal rings);
(3) 2-firs;
(4) Right Bezout rings (including von Neumann regular rings).

One collection of semilocal rings that we have already mentioned is the class of
left perfect rings. An application of Corollary 5.2 in this case gives the following.

Corollary 5.5 Let R be a left perfect ring (e.g. a semiprimary ring, such as a one-
sided artinian ring), and let m1, . . . ,mn ⊆ R be maximal right ideals such that the R/mi

represent all isomorphism classes of simple right R-modules. Then R is a PRIR if f all
of the mi are principal right ideals.

Proof By Example 5.4(2), Fpr is an Oka family of right ideals in R. By Example 3.9,
the set {mi} is a right noetherian point annihilator set. The claim then follows from
Corollary 5.2. 
�

As it turns out, the family Fpr can indeed fail to be right Oka, even in a noetherian
domain! This will be shown in Example 5.7 below, with the help of the following
lemma.

Lemma 5.6 Let R be a ring with an element x ∈ R that is not a left zero-divisor.

(A) If J and K are right ideals of R with J ⊆ xR, then

x−1(J + K) = x−1 J + x−1 K.

(B) For any f ∈ R,

x−1(xf R + (1 + xy)R) = f R + (1 + yx)R.

Proof

(A) The containment “⊇” holds without any assumptions on x, J, or K be-
cause x(x−1 J + x−1 K) = x · (x−1 J) + x · (x−1 K) ⊆ J + K. To show “⊆” let f ∈
x−1(J + K), so that there exist j ∈ J and k ∈ K such that xf = j + k. Because
J ⊆ xR, there exists j0 such that j = xj0; notice that j0 ∈ x−1 J. Then we have
k = xk0 for k0 = f − j0 ∈ x−1 K. Now xf = xj0 + xk0, and because x is not a
left zero-divisor we have f = j0 + k0 ∈ x−1 J + x−1 K.

(B) Setting J = xf R and K = (1 + xy)R, one may compute that x−1 J = f R and
x−1 K = (1 + yx)R (using the fact that x is not a left zero divisor). The claim
follows directly from part (A). 
�

Example 5.7 A ring in which Fpr is not a right Oka family. Let k be a field and
let R := A1(k) = k〈x, y : xy = yx + 1〉 be the first Weyl algebra over k. Then R is
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known to be a noetherian domain (which is simple if k has characteristic 0). Define
the right ideal

IR := x2 R + (1 + xy)R ⊆ R,

which is shown to be nonprincipal in [30, 7.11.8]. Because I + xR contains both 1 +
xy ∈ I and xy ∈ xR, we must have 1 ∈ I + xR = R.

Because 1 + yx = xy ∈ xR, Lemma 5.6(B) above (with f = x) implies that x−1 I =
xR + (1 + yx)R = xR. Therefore we have I + xR = R and x−1 I = xR both mem-
bers of Fpr with I /∈ Fpr proving that Fpr is not a right Oka family. In fact
we have R/I ∼= R/xR where I is not principal (the isomorphism follows from
Lemma 2.7), showing explicitly that Fpr is not closed under similarity as predicted by
Proposition 5.1. In agreement with Remark 5.3, I is generated by two elements.

Notice that R/xR ∼= k[y], where k[y] ⊆ R acts by right multiplication and x ∈ R
acts as −∂/∂y. If k has characteristic 0 then this module is evidently simple, and
because R/I ∼= R/xR we see that I is a maximal right ideal. If instead char(k) = p >

0, then R/xR ∼= k[y] is evidently not simple, and not even artinian (the submodules
ynpk[y] form a strictly descending chain for n ≥ 0). But every proper factor of
this module has finite dimension over k and is therefore artinian. So we see that
R/I ∼= R/xR is 1-critical, making I a 1-cocritical right ideal. Thus regardless of the
characteristic of k, the nonprincipal right ideal I is cocritical.

On the other hand, when char k = 0 the ring M2(R) is known to be a principal
(right and left) ideal ring—see [30, 7.11.7]. Then Fpr(M2(R)) is equal to the set of
all right ideals in M2(R) and thus is a right Oka family. So we see that the property
“Fpr(R) is a right Oka family” is not Morita invariant. 
�

It would be very desirable to eliminate the condition in Corollary 5.2 that Fpr is
closed under similarity. It turns out that a suitable strengthening of the hypothesis
on the point annihilator set S will in fact allow us to discard that assumption. The
following constructions will help us achieve this goal in Theorem 5.11 below. Recall
that for right ideals I and J of a ring R, we write I ∼ J to mean that I and J are
similar.

Definition 5.8 For any ring R, we define

F ◦
pr(R) := {IR ⊆ R : ∀JR ⊆ R, I ∼ J =⇒ J ∈ Fpr(R)}

= {IR ⊆ R : I is only similar to principal right ideals}.
Alternatively, F ◦

pr(R) is the largest subset of Fpr(R) that is closed under similarity.

As with Fpr, we will often write F ◦
pr in place of F ◦

pr(R) when the ring R is
understood from the context. We saw in Proposition 5.1 that certain families of
principal right ideals are right Oka precisely when they are closed under similarity.
But F ◦

pr is the largest family of principal right ideas that is closed under similarity.
Thus one might wonder whether F ◦

pr is a right Oka family. As it turns out, we are
very fortunate and this is in fact true in every ring!

Proposition 5.9 For any ring R, F ◦
pr(R) is an Oka family of right ideals.
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Proof We will denote F := F ◦
pr(R). Because IR ∼ RR implies I = R ∈ Fpr, we see

that R ∈ F . Suppose that IR ⊆ R and a ∈ R are such that I + aR, a−1 I ∈ F . Set
C1 := R/a−1 I and C2 := R/(I + aR), so that we have an exact sequence

0 → C1 → R/I → C2 → 0.

To prove that I ∈ F , let JR ⊆ R be such that R/J ∼= R/I. We need to show that J is
principal. There is also an exact sequence

0 → C1 → R/J → C2 → 0.

Thus there exists x ∈ R with C1 ∼= (J + xR)/J and C2 ∼= R/(J + xR). But then
R/(I + aR) = C2 ∼= R/(J + xR) and I + aR ∈ F imply that J + xR = cR for some
c ∈ R. Now

R
a−1 I

= C1 ∼= J + xR
J

= cR
J

∼= R
c−1 J

and a−1 I ∈ F , so we find that c−1 J is principal. Then J ⊆ J + xR = cR gives J =
c(c−1 J), proving that J is principal. 
�

The following elementary observation will be useful in a number of places. It is
simply a convenient restatement of the fact that F ◦

pr is the largest set of principal
right ideals that is closed under similarity.

Lemma 5.10 Let S be a set of right ideals of a ring R that is closed under similarity. If
S ⊆ Fpr, then S ⊆ F ◦

pr (and, of course, conversely).

We are finally ready to state and prove our noncommutative generalization of the
Kaplansky–Cohen Theorem 1.3.

Theorem 5.11 (A noncommutative Kaplansky–Cohen Theorem) For any ring R,
let S be a right noetherian point annihilator set that is closed under similarity. The
following are equivalent:

(1) R is a principal right ideal ring;
(2) Every right ideal in S is principal;
(3) F ◦

pr is a right noetherian point annihilator set.

In particular, R is a principal right ideal ring if f every cocritical right ideal of R is
principal.

Proof The set of cocritical right ideals of R is a noetherian point annihilator set that
is closed under similarity, so it suffices to prove the equivalence of (1)–(3). It is easy
to see that (1) is equivalent to the claim that all right ideals lie in F ◦

pr. Also, it follows
from Lemma 5.10 that (2) holds precisely when S ⊆ F ◦

pr. The equivalence of (1)–(3)
now follows from Corollary 4.4 and Proposition 5.9. 
�

As with Cohen’s Theorem, there exist previous noncommutative generalizations
of the Kaplansky–Cohen theorem in the literature. In Section 8 we relate our
theorem with these earlier results.
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Comparing our two versions of the Kaplansky–Cohen Theorem, we see that
Corollary 5.2 follows from Theorem 5.11, at least if we consider condition (3) in each
equivalence. (Recall Remark 3.2, and the fact that F ◦

pr ⊆ Fpr.) However, this does
not mean that Corollary 5.2 is obsolete. It is clear that Theorem 5.11 is preferable to
Corollary 5.2 if we have enough knowledge about the point annihilator set S but
we do not know whether the family Fpr is closed under similarity. On the other
hand, if we are working in a class of rings for which we know that Fpr is closed
under similarity, then Corollary 5.2 may be of more use. This proved to be the
case in Corollary 5.5, where we were able to reduce the point annihilator set S to a
finite set.

Notice that our earlier examination of the Weyl algebra A1(k) in Example 5.7
fits nicely with Theorem 5.11, because the nonprincipal right ideal discussed in that
example was shown to be cocritical.

As a simple application of Theorem 5.11, we can show that a domain R with right
Krull dimension ≤ 1 is a principal right ideal domain if f its maximal right ideals are
principal. Indeed, by Proposition 3.13 the zero ideal of R is 1-cocritical as a right
ideal (and it is, of course, principal). Thus any nonzero cocritical right ideal of R
is 0-critical and therefore is a maximal right ideal. The claim then follows from
Theorem 5.11. However, we will prove a substantially more general version of this
fact in Proposition 7.1.

6 Families Closed Under Direct Summands

In this section we will develop further generalizations of Cohen’s Theorem and the
Kaplansky–Cohen theorems by further reducing the set of right ideals in a ring which
we are required to “test.” In particular, where our previous theorems stated that it
was sufficient to check that every right ideal in some noetherian point annihilator set
S is finitely generated (or principal), we will further reduce the task to checking that
every essential right ideal in S is finitely generated (or principal). We begin with a
definition, temporarily digressing to families of submodules of a given module other
than RR.

Definition 6.1 Let MR be a module over a ring R. We will say that a family F
of submodules of M is closed under direct summands if for any N ∈ F , any direct
summand of N also lies in F .

Notice that a family F of submodules of M that is closed under direct summands
necessarily has 0 ∈ F as long as F �= ∅. The following result is the reason for our
interest in families that are closed under direct summands. It shows the link between
such families and the essential submodules of M.

Lemma 6.2 In a module MR, let F be a family of submodules that is closed under
direct summands. Then all submodules of M lie in F if f all essential submodules of
M lie in F . In particular, if F is a family of right ideals in a ring R that is closed
under direct summands, then all right ideals of R lie in F if f all essential right ideals of
R lie in F .
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Proof (“If” direction) Suppose that every essential submodule of M lies in F , and
let LR ⊆ M. By Zorn’s lemma there exists a submodule NR maximal with respect
to L ∩ N = 0 (in the literature, such N is referred to as a complement to L). We
claim that N ⊕ L is an essential submodule of M. Indeed, assume for contradiction
that 0 �= K ⊆ M is a submodule such that (L ⊕ N) ∩ K = 0. Then we have the direct
sum L ⊕ N ⊕ K in M. It follows that L ∩ (N ⊕ K) = 0, contradicting the maximality
of N.

By assumption, N ⊕ L ⊆e M implies that N ⊕ L ∈ F . Then because F is closed
under direct summands, we conclude that N ∈ F . 
�

With this result as our motivation, let us consider a few examples of families of
right ideals that are closed under direct summands.

Example 6.3 In any module MR, the easiest nontrivial example of a family that is
closed under direct summands is the family F of all direct summands of M! The
application of Lemma 6.2 in this case says that a module M is semisimple iff every
essential submodule of M is a direct summand. However, it is easy to check that a
direct summand of M is essential in M iff it is equal to M. So this says that a module
is semisimple iff it has no proper essential submodules. This is a known result; for
instance, see [28, Example 3.9].

Example 6.4 The family of finitely generated submodules of a module MR is cer-
tainly closed under direct summands. It follows that a module M is right noetherian
iff all of its essential submodules are finitely generated. Again, this fact can be found,
for instance, in [28, Example 6.11].

We can generalize the result above as follows. Let α be any cardinal (finite or
infinite), and let F be the family of all submodules of M that have a generating set
of size < α. Then F is again closed under direct summands. So every submodule of
M is generated by < α elements iff the essential submodules of M are all generated
by < α elements.

Taking MR = RR and α = 2, we see in particular that Fpr is closed under direct
summands, and Lemma 6.2 implies that R is a PRIR iff its essential right ideals
are principal.

Here we end our digression into families of submodules of arbitrary modules and
focus our attention on families of right ideals in a ring R that are closed under direct
summands. The next two examples are of a homological nature.

Example 6.5 For a module MR, let F be the family of right ideals I ⊆ R such that
every module homomorphism f : I → M extends to a homomorphism R → M. This
was shown to be a right Oka family in [33, Proposition 5.16]. We claim that F is closed
under direct summands. For if I ⊕ J ∈ F and f : I → M is any homomorphism, then
we may extend f trivially to I ⊕ J → M. This morphism in turn extends to R → M
because I ⊕ J ∈ F . Hence I ∈ F .

By Baer’s Criterion, every right ideal lies in F precisely when M is injective. So
applying Lemma 6.2, we find that M is injective iff every essential right ideal of R
lies in F . This “essential version” of Baer’s Criterion has been noticed before; for
instance, see [28, Example 3.26].
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More generally, for any module MR and integer n ≥ 0, let Fn
M denote the family

of right ideals I ⊆ R such that Extn+1
R (R/I, M) = 0. The family F above was shown

to be equal to F0
M in the proof of [33, Proposition 5.16]. We claim that the families

Fn are closed under direct summands. The case n = 0 is covered above, so suppose
that n ≥ 1. Note that ExtnR(R, M) = Extn+1

R (R, M) = 0 because RR is projective. So
for any right ideal K ⊆ R, the long exact sequence in Ext provides isomorphisms
ExtnR(K, M) ∼= Extn+1

R (R/K, M). Thus for any direct sum of right ideals I ⊕ J ⊆ R,
combining this observation with a standard fact about Ext and direct sums gives

Extn+1
R (R/(I ⊕ J), M) ∼= ExtnR(I ⊕ J, M)

∼= ExtnR(I, M) ⊕ ExtnR(J, M)

∼= Extn+1
R (R/I, M) ⊕ Extn+1

R (R/J, M).

This makes it clear that if I ⊕ J ∈ Fn
M, then I ∈ Fn

M.
Extending Baer’s Criterion, one can show that a module MR has injective dimen-

sion ≤ n iff Extn+1
R (R/I, M) = 0 for all right ideals I of R (this is demonstrated in the

proof of [36, Theorem 8.16]). If we apply Lemma 6.2 to the family Fn
M, we see that

for any module MR we have id(M) ≤ n iff Extn+1
R (R/I, M) = 0 for all essential right

ideals I of R. 
�

Example 6.6 As an application of Example 6.5 above, we produce another example
of a family that is closed under direct summands. Let Fn be the family of all right
ideals of R such that pd(R/I) ≤ n. Because R/I has projective dimension ≤ n iff
Extn+1

R (R/I, M) = 0 for all modules M, we see that Fn is equal to the intersection of
all of the families Fn

M as M ranges over all right R-modules. Since all of these families
are closed under direct summands, Fn is also closed under summands. In this case we
can apply Lemma 6.2 to say that a ring R has r. gl. dim(R) ≤ n iff pd(R/I) ≤ n for all
essential right ideals IR ⊆ R. Notice that when n = 0, F0 is the family of right ideal
direct summands mentioned in Example 6.3.

Before continuing to the heart of this section, we require a small observation as
well as a new definition.

Remark 6.7 Notice that the set of essential right ideals is a divisible semifilter, and
is closed under similarity. It is easy to see that the set is a semifilter. To see that
it is divisible, we will use the following fact about essential submodules: for any
homomorphism of modules f : MR → NR and any essential submodule N0 ⊆ N, the
preimage f −1(N0) is an essential submodule of M (see [28, Example 3.7] for a proof
of this fact). Now given a right ideal I ⊆ R, x−1 I is the preimage of the right ideal I
under the homomorphism RR → RR given by left multiplication by x. Thus if I is an
essential right ideal, so is x−1 I. Finally, to see that this set is closed under similarity,
one only needs to realize that IR ⊆ R is essential iff R/I is a singular module; see [28,
Example 2(b)].

Definition 6.8 Let F be a family of right ideals in a ring R. We define

F̃ := {IR ⊆ R : I ⊕ J ∈ F for some JR ⊆ R}.
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This is the smallest family of right ideals containing F that is closed under direct
summands.

The next result, which is fundamental to this section, is a variation of Theorem 4.3
and Corollary 4.4.

Theorem 6.9 Let F be an Oka family of right ideals in a ring R.

(1) Assume that every chain of right ideals in F ′ has an upper bound in F ′, and let S
be a point annihilator set for the class of modules {R/I : I ∈ Max(F ′)}. If every
essential right ideal in S lies in F , then all right ideals of R lie in F̃ .

(2) Let S be a noetherian point annihilator set for R, and assume that F consists of
f initely generated right ideals. If every essential right ideal in S lies in F , then all
right ideals of R lie in F̃ .

Proof To prove (1), let S and F satisfy the given hypotheses. Let F0 denote the
divisible semifilter of essential right ideals of R. By assumption we have F0 ∩ S ⊆ F ,
so it follows from Theorem 4.3 that F0 ⊆ F . Then all essential right ideals of R lie in
F̃ ⊇ F , and it follows from Lemma 6.2 that all right ideals lie in F̃ .

Now (2) follows from (1) because the fact that F consists of finitely generated
right ideals implies both that every chain of right ideals in F ′ has an upper bound in
F ′ and that the class {R/I : I ∈ Max(F ′)} consists of noetherian modules (as in the
proof of Corollary 4.4). 
�

In particular, if the right Oka family F in the theorem above is in fact closed under
direct summands, then F̃ = F . Thus in this case Theorem 6.9 is a generalization
of Theorem 4.3. Our first application of this result will be a strengthening of the
noncommutative Cohen’s Theorem 4.5.

Theorem 6.10 For a ring R, let S be a right noetherian point annihilator set (such as
the set of cocritical right ideals). Then R is right noetherian if f every essential right
ideal in S is f initely generated.

Proof (“If” direction) This follows directly from Example 6.4 and Theorem 6.9(2)
by taking F = F̃ to be the family of finitely generated right ideals of R. 
�

Our next application of Theorem 6.9 will strengthen our noncommutative version
of the Kaplansky–Cohen Theorem 5.11. The careful statement of Theorem 6.9 will
pay off here.

Theorem 6.11 Let R be a ring with noetherian point annihilator set S that is closed
under similarity (such as the set of cocritical right ideals). Then R is a principal right
ideal ring if f every essential right ideal in S is principal.

Proof (“If” direction) Suppose that every essential right ideal in S is principal, and
set F := F ◦

pr. If S0 ⊆ S is the set of essential right ideals in S , then S0 is closed
under similarity because both S and the set of essential right ideals are closed
under similarity (recall Remark 6.7). By hypothesis S0 ⊆ Fpr, so Lemma 5.10 gives
S0 ⊆ F ◦

pr =: F . That is, every essential right ideal in S lies in F . Now Theorem 6.9(2)
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implies that all right ideals of R lie in F̃ . But Fpr is closed under direct summands
by Example 6.4, so F ⊆ Fpr implies that F̃ ⊆ Fpr. Hence every right ideal of R
is principal. 
�

Our final applications of Theorem 6.9 show how to reduce the test sets for various
homological properties in a right noetherian ring.

Theorem 6.12 Let R be a right noetherian ring, and let S be a right (noetherian) point
annihilator set for R (such as the set of cocritical right ideals).

(1) A module MR has injective dimension ≤ n if f Extn+1
R (R/P, M) = 0 for all

essential right ideals P ∈ S .
(2) Every f initely generated right R-module has f inite projective dimension if f, for

every essential right ideal P ∈ S , one has pd(R/P) < ∞.
(3) r. gl. dim(R) = sup{pd(R/P) : P ∈ S is an essential right ideal}.

Proof For a module MR and a nonnegative integer n, let Fn
M and Fn be the families

introduced in Examples 6.5 and 6.6, where they were shown to be closed under direct
summands. These families were shown to be right Oka families in [33, Section 5.B].
Defining F∞ := ⋃∞

n=1 Fn, it follows that F∞ is also a right Oka family that is closed
under direct summands.

For part (1), we note that a module MR has injective dimension ≤ n iff Fn
M

consists of all right ideals of R, which happens iff all essential right ideals in S lie
in Fn

M according to Theorem 6.9(2). Next we prove part (2). Because every finitely
generated right R-module is has a finite filtration with cyclic filtration factors, and
because the finiteness of projective dimension is preserved by extensions, we see
that every finitely generated right R-module has finite projective dimension iff every
cyclic right R-module does, iff F∞ consists of all right ideals. By Theorem 6.9, this
occurs iff all essential right ideals in S lie in F∞.

Part (3) similarly follows from Theorem 6.9 applied to the family Fn, noting that
R has right global dimension ≤ n iff Fn consists of all right ideals. 
�

The above joins a whole host of results stating that certain homological properties
can be tested on special sets of ideals. We mention only a few relevant references
here. When R is commutative, S = Spec(R), and n = 0 in part (1), the theorem above
recovers a result of J. A. Beachy and W. D. Weakley in [2]. Part (2) generalizes
a result characterizing commutative regular rings, the “globalizations” of regular
local rings (see [24, (5.94)]). Many results along the lines of part (3) are known. For
instance, a result of J. J. Koker in [22, Lemma 2.1] implies that if a ring R has right
Krull dimension, then its right global dimension is equal to the supremum of the
projective dimensions of the right modules R/P, where P ranges over the cocritical
right ideals of R. On the other hand, for a commutative noetherian ring R the global
dimension of R is equal to the supremum of pd(R/m), where m ranges over the
maximal ideals of R (see [24, (5.92)]). It has also been shown by K. R. Goodearl [12,
Theorem 16] and S. M. Bhatwadekar [3, Proposition 1.1] that for a (left and right)
noetherian ring R whose global dimension is finite, the global dimension of R is the
supremum of pd(R/m) where m ranges over the maximal right ideals of R. It is an
open question whether the finiteness of the global dimension can be dropped [13,
Appendix].
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7 A Noncommutative Generalization of Kaplansky’s Theorem

The goal of this section is to prove a noncommutative generalization of Kaplansky’s
Theorem 1.2. Specifically, we shall show in Theorem 7.9 that a noetherian ring whose
maximal right ideals are all principal is a principal right ideal ring. To motivate our
approach, we shall recall a result [10, Theorem C] of A. W. Goldie: a left noetherian
principal right ideal ring is a direct sum of a semiprime ring and an artinian ring.
Inspired by this fact, our proof of Theorem 7.9 will proceed by taking noetherian
ring whose maximal right ideals are principal and decomposing it as a direct sum of
a semiprime ring and an artinian ring. This should seem reasonable because we have
already shown in Corollary 5.5 that, in order to test whether an artinian ring is a
PRIR, it suffices to test only its maximal right ideals.

With Goldie’s result in mind, we begin this section by investigating under what
conditions one can check the PRIR condition on a semiprime ring by testing only its
maximal right ideals. The first result applies to semiprime rings with small right Krull
dimension.

Proposition 7.1 Let R be a semiprime ring with r. K. dim(R) ≤ 1. Then R is a principal
right ideal ring if f its maximal right ideals are principal.

Proof (“If” direction) By Theorem 6.11, it suffices to show that the essential cocrit-
ical right ideals of R are principal. Thus it is enough to show that every essential
cocritical right ideal of R is maximal. According to [30, 6.3.10] the fact that R is
semiprime with right Krull dimension means that, for every ER ⊆ R, K. dim(R/E) <

K. dim(RR) = 1. So K. dim(R/E) ≤ 0, and if E is also cocritical then it is 0-cocritical
and thus is maximal. This completes the proof. 
�

In Example 7.11 below we will show that the hypothesis on the right Krull
dimension cannot be relaxed. Of course, it is not the case that every semiprime PRIR
has right Krull dimension ≤ 1. In fact, in [14, Example 10.3] it is shown (using a
construction of A. V. Jategaonkar from [17]) that there exist principal right ideal
domains whose right Krull dimension is equal to any prescribed ordinal! So while
Proposition 7.1 gives a sufficient condition for semiprime rings to be PRIRs, it is
certainly not a necessary condition. However, with some additional effort we will use
this result to formulate a precise characterization of semiprime left and right principal
ideal rings in Corollary 7.5 below.

We will show in Proposition 7.4 below that if a semiprime ring with a certain
finiteness condition on the left has all maximal right ideals principal, it must have
small right Krull dimension. We take this opportunity to recall that a multiplicatively
closed subset S ⊆ R is saturated if, for any a, b ∈ R, ab ∈ S implies a, b ∈ S.

Lemma 7.2 Let R be a ring in which the multiplicative set of (resp. left) regular
elements is saturated and which satisf ies the ascending chain condition on left ideals
of the form Rs where s ∈ R is a (resp. left) regular element. Furthermore, suppose that
every maximal right ideal of R is principal. If b ∈ R is a (resp. left) regular element,
then R/b R has f inite length.
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Proof This argument adapts some of the basic ideas of factorization in noncommu-
tative domains, as in Proposition 0.9.3 and Theorem 1.3.5 of [7]. However, we do not
assume any of those results here.

If our fixed b ∈ R is not right invertible, then b R �= R. If b R is not maximal,
choose a maximal right ideal a1 R � R such that b R � a1 R. Then b = a1b 1 for some
b 1 ∈ R. We claim that Rb ⊆ Rb 1 is strict. Indeed, assume for contradiction that
Rb = Rb 1. Then we may write b 1 = ub for some u ∈ R. Thus b = a1b 1 = a1ub ,
and because b is (left) regular we have a1u = 1. This contradicts the fact that a1 R
is maximal. Hence Rb � Rb 1.

Because the set of (left) regular elements is saturated, we may now replace b
above by b 1 and proceed inductively to write bi−1 = aib i (if bi−1 R is not maximal)
where bi is (left) regular and ai R is a maximal right ideal. By the ACC condition on
R, the chain

Rb � Rb 1 � Rb 2 � · · ·
cannot continue indefinitely. So the process must terminate, say at b n−1 = anb n. This
means that b n R is a maximal right ideal. Writing an+1 := b n, we have a factorization
b = a1 · · · an+1 where the right ideals ai R are maximal. Then in the filtration

b R = (a1 · · · an+1)R ⊆ (a1 · · · an)R ⊆ · · · ⊆ a1 R ⊆ R,

each factor module (a1 · · · a j−1)R/(a1 · · · a j)R is a homomorphic image of the simple
module R/a j R (via left multiplication by a1 · · · a j−1) and thus is simple. This proves
that R/b R has finite length, as desired. 
�

In light of the hypotheses assumed above, the following definition will be useful.

Definition 7.3 We will say that a ring R satisfies left ACC-reg if it satisfies the
ascending chain condition on left ideals of the form Rs where s ∈ R is a regular
element.

Proposition 7.4 Let R be a semiprime ring with right Krull dimension that satisf ies
left ACC-reg. If all of the maximal right ideals of R are principal, then r. K. dim(R) ≤ 1
and R is a principal right ideal ring.

Proof Because R is semiprime and has right Krull dimension, it is right Goldie
(see [30, 6.3.5]). This has two important consequences. First, the set of regular
elements of R is saturated (because it is the intersection of R with the group of units
in its semisimple right ring of quotients). Second, the essential right ideals of R are
precisely the right ideals containing a regular element (see [24, (11.13)]). Thus, for
every ER ⊆e R, R/E has finite length by Lemma 7.2 and thus has Krull dimension
at most 0. Now [30, 6.3.10] provides us with the following equation for r. K. dim(R)

(which is valid because R is semiprime with right Krull dimension):

r. K. dim(R) = sup{K. dim(R/E) + 1 : ER ⊆e R} ≤ 1.

Applying Proposition 7.1, we see that R is a principal right ideal ring. 
�

An immediate consequence is the aforementioned characterization of semiprime
PIRs.
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Corollary 7.5 Let R be a semiprime ring.

(1) R is a principal ideal ring if f its left and right Krull dimensions are both at most 1
and the maximal left ideals and maximal right ideals of R are all principal.

(2) Suppose that R satisf ies left ACC-reg. Then R is a principal right ideal ring if f
r. K. dim(R) ≤ 1 and the maximal right ideals of R are principal.

It is possible to strengthen Proposition 7.4 to show that more general types of rings
must have small right Krull dimension.

Corollary 7.6 Let R be a ring with right Krull dimension, and let N be its prime
radical. Suppose that one of the following two conditions holds:

(A) R/N satisf ies left ACC-reg;
(B) R/P satisf ies left ACC-reg for every minimal prime ideal P � R.

If the maximal right ideals of R are principal, then r. K. dim(R) ≤ 1. In particular, a
noetherian ring whose maximal right ideals are principal has right Krull dimension at
most 1.

Proof According to [30, 6.3.8], the ring R with right Krull dimension has finitely
many minimal prime ideals P1, . . . , Pn and

r. K. dim(R) = r. K. dim(R/N) = max{r. K. dim(R/Pi)}.
Because every factor ring of R again has principal maximal right ideals, we may now
apply Proposition 7.4. 
�

It is an open question whether the left and right Krull dimensions of a general
noetherian ring must be equal [13, Appendix]. However, another application of
Proposition 7.4 shows that the Krull dimension of a noetherian PRIR must is
symmetric.

Corollary 7.7 A left noetherian principal right ideal ring R has

l. K. dim(R) = r. K. dim(R) ≤ 1.

Proof As mentioned before, the Krull dimension of R is not changed upon factoring
out its nilradical [30, 6.3.8]; thus we may assume that R is semiprime. In this case,
a result of J. C. Robson [34, Corollary 3.7] states that because R is a noetherian
PRIR, it must also be a PLIR. According to Proposition 7.4, both l. K. dim(R) and
r. K. dim(R) are at most 1. Now R has Krull dimension 0 on either side precisely
when R is artinian on that side. But a noetherian ring is artinian on one side iff it
is artinian on the other side. (This follows, for instance, from the Hopkins-Levitzki
Theorem [25, (4.15)].) Thus we see that the left and right Krull dimensions of R
must coincide, both equal to 0 when R is artinian and both equal to 1 when R is
not artinian. 
�

The next preparatory result provides a method of testing whether a module over
a semilocal ring is zero. One may think of this as a variation of Nakayama’s Lemma
(even though the latter is used in the proof below).
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Lemma 7.8 Let R be a semilocal ring, and let R B be a f initely generated left module.
If B = mB for all maximal right ideals m of R, then B = 0.

Proof Let R and R B be as above, and let J = rad(R). We claim that B/JB satisfies
the same hypotheses over the semisimple ring R/J. Indeed, the maximal right ideals
of R/J are the right ideals of the form m/J for a maximal right ideal m of R. For such
m/J we have

(m/J) · (B/JB) = mB/JB = B/JB.

Also, B/JB is finitely generated over R/J. So B/JB indeed satisfies the same
hypotheses over R/J. If we knew the lemma to hold over all semisimple rings, it
would follow that B/JB = 0. Nakayama’s Lemma would then imply that B = 0.

So we may assume that R is semisimple. Choose orthogonal idempotents e1, . . . , en

in R whose sum is 1 such that RR = ⊕
ei R is a decomposition of R into minimal

right ideals. Then for any k, (1 − ek)R = ⊕
i �=k ei R is a maximal right ideal of R. By

hypothesis, we have B = (1 − ek)RB = (1 − ek)B. Because the ei are orthogonal,

(1 − e1) · · · (1 − ek) = 1 − (e1 + · · · + ek)

In particular, (1 − e1) · · · (1 − en) = 1 − (e1 + · · · + en) = 0. It follows that

B = (1 − e1)B = (1 − e1)(1 − e2)B = · · · = (1 − e1) · · · (1 − en)B = 0.


�

Let us review some relevant results on noetherian rings. For an ideal I of a ring
R, we let C(I) denote the set of elements c ∈ R such that c + I is a regular element
of R/I. A theorem of J. C. Robson [35] states that a noetherian ring R with prime
radical N is a direct sum of a semiprime ring and an artinian ring iff, for every c ∈
C(N), N = cN = Nc. However, Robson commented in [35, p. 346] that if one only
assumes that N = cN for all c ∈ C(N), one can still conclude that there exists an
idempotent e ∈ R such that eRe is semiprime, (1 − e)R(1 − e) is artinian, and eR(1 −
e) = 0. This gives a useful “triangular decomposition” of such a ring. In particular it
can be used to derive the result of Goldie, mentioned at the beginning of this section,
that a left noetherian principal right ideal ring is a direct sum of a semiprime ring and
an artinian ring. The first paragraph of our argument below borrows from the proof
of this last statement given in [35, Theorem 4].

With all of the above results and remarks in hand, we are finally ready to prove
our noncommutative generalization of Kaplansky’s Theorem 1.2.

Theorem 7.9 (A noncommutative Kaplansky’s Theorem) A noetherian ring is a
principal right ideal ring if f its maximal right ideals are principal.

Proof (“If” direction) Suppose R is a noetherian ring whose maximal right ideals
are principal. Notice that every factor ring of R satisfies the same hypotheses. Let
N � R be the prime radical of R. We claim that N = cN for every c ∈ C(N). Let
x �→ x̄ denote the canonical map R → R/N =: R. By Proposition 7.4, r. K. dim(R) ≤
1. For c ∈ C(N), the element c̄ ∈ R is regular. So by [30, 6.3.9] we must have
K. dim(R/c̄R) < K. dim(R) ≤ 1. So the right R-module R/(N + cR) ∼= R/c̄R has
Krull dimension at most 0 and thus has finite length. Hence R/(N + cR) has a finite
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filtration with factors isomorphic to R/mi for some maximal right ideals m1, . . . ,mp

of R. The set of maximal right ideals of R is certainly closed under similarity (it
is the set of right ideals whose factor module is simple), so by Lemma 5.10 all
maximal right ideals lie in the right Oka family F ◦

pr. It follows from Corollary 2.6
that we have N + cR ∈ F ◦

pr. Choose d ∈ R such that N + cR = dR. Now in R,
c̄R = d̄R means that c̄ = d̄r̄ for some r ∈ R. Because the set of regular elements in
the semiprime noetherian ring R is saturated, the fact that c ∈ C(N) implies that d ∈
C(N). Now N ⊆ dR implies that N = d(d−1 N), and d ∈ C(N) gives d−1 N = N. Thus
N = d(d−1 N) = dN = (cR + N)N = cN + N2, and we conclude from Nakayama’s
Lemma [25, (4.22)] (or by induction and the fact that N is nilpotent) that N = cN.

Now according to Robson’s decomposition result [35, p. 346] the ring R is (up to
isomorphism) of the form

R =
(

A B
0 S

)

,

where A is an artinian ring, S is a semiprime ring, and A BS is a (left and right
noetherian) bimodule. Given any maximal right ideal m of A, we will show that
B = mB. The following is a maximal right ideal of R, and is therefore principal:

(
m B
0 S

)

=
(

x y
0 z

)

· R

for some x ∈ m, y ∈ B, and z ∈ S. It is easy to see that zS = S. Because S is
noetherian, z must be a unit. Now for any β ∈ B, there exists

(
a b
0 c

) ∈ R such that
(

x y
0 z

)(
a b
0 c

)

=
(

0 β

0 0

)

∈
(
m B
0 S

)

.

Since zc = 0 and z is a unit, we must have c = 0. Thus β = xb ∈ mB. Because β ∈ B
was arbitrary, this proves that B = mB. Since this holds for every maximal right ideal
m of A, we conclude from Lemma 7.8 that B = 0.

Hence R = A ⊕ S where A is an artinian ring and S is a semiprime ring. The
maximal right ideals of both S and A must also be principal. The artinian ring A
is a PRIR according to Corollary 5.5, and it follows from Proposition 7.4 that the
semiprime ring S is a PRIR. It follows that R = A ⊕ S is a PRIR. 
�

It is interesting to notice that, in the commutative setting, Kaplansky’s
Theorem 1.2 is “stronger” than the Kaplansky–Cohen Theorem 1.3, in the sense
that Kaplansky originally derived Theorem 1.3 as a consequence of Theorem 1.2.
This is opposite from our present situation, where the noncommutative version
of the Kaplansky Theorem 7.9 in fact follows from (the “essential version” of)
the noncommutative Kaplansky–Cohen Theorem 6.11 (through a series of other
intermediate results).

The following example shows that Kaplansky’s Theorem does not generalize if we
remove the left noetherian hypothesis.

Example 7.10 A local right noetherian ring R with right Krull dimension 1 whose
unique maximal right ideal is principal, but which is not a principal right ideal ring.
This construction is based on an exercise given in [26, Example 19.12]. Let k be a field
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such that there exists a field isomorphism θ : k(x) → k (which certainly does not fix
k), such as k = Q(x1, x2, . . . ). Consider the discrete valuation ring A = k[x](x). Given
a finitely generated module MA, we define a ring R := A ⊕ M with multiplication
given by

(a, m) · (a′, m′) := (aa′, m′θ(a) + ma′).

Let m = xA ⊕ M and N = 0 ⊕ M, both of which are ideals of R. Notice that N2 = 0
while R̄ := R/N ∼= A is a domain. This means that N is the prime radical of R. Thus
N is contained in the Jacobson radical rad(R). Because R/ rad(R) ∼= R̄/ rad(R̄) is a
field, the ring R is local with Jacobson radical equal to m. Using the fact that θ(x) ∈ k
is a unit in A, it is easy to conclude that m = (x, 0) · R is a principal right ideal.

Next we show that R is right noetherian. Because the ring R/N ∼= A is noetherian,
it is noetherian as a right R-module. Also, because N2 = 0, the right R-action on
NR = (0 ⊕ M)R factors through R/N ∼= A. Because A is noetherian and MA is
finitely generated, this means that NR is noetherian. So RR is an extension of the
noetherian right modules R/N and N, proving that R is right noetherian. Because
the prime radical of R is N, r. K. dim(R) = r. K. dim(R/N) = K. dim(A) = 1 (see [30,
6.3.8]). Finally, because the R-action on NR = (0 ⊕ M)R factors through R/N ∼= A,
if MA is any noncyclic A-module then N is not principal as a right ideal in R. In fact,
because the minimal number μ(NR) of generators of NR is equal to μ(MA) < ∞,
this number can be made as large as one desires.

Notice that the example above is not semiprime, in accordance with Proposi-
tion 7.1. With some extra work, we can produce a similar example R that is a domain.
By Proposition 7.1 again, we expect such R to have right Krull dimension > 1. (We
thank G. M. Bergman for helping to correct an earlier, incorrect version of this
example.)

Example 7.11 A local right noetherian domain R with right Krull dimension 2 whose
unique maximal right ideal is principal, but which is not a principal right ideal ring.
Let k, θ : k(x)

∼→ k, and A = k[x](x) be as in Example 7.10. Let B = A[[y; θ ]] ⊇ A,
the ring of skew power series over A subject to the relation ay = yθ(a). Consider the
ideal I = y2 B, and define the subring R := A ⊕ I ⊆ B. (Notice that R is the subring
of B consisting of power series in which y does not appear with exponent 1. We
can suggestively write R = A[[y2, y3; θ ]], with the understanding that the equation
ay = yθ(a) only has meaning via its consequences ayn = yθn(a) for n ≥ 2.) Being a
subring of the domain B, R itself is a domain.

We claim that I ⊆ rad(R). It suffices to show that 1 + I ⊆ U(R) (see [25, (4.5)]).
Let i ∈ I; then 1 + i is a unit of B because I ⊆ yB = rad(B). For i′ := −(1 + i)−1i =
−i(1 + i)−1 ∈ I (note: (1 + i)−1 commutes with i because 1 + i does), we have

(1 + i) · (1 + i′) = 1 + i + (1 + i)i′ = 1,

and similarly (1 + i′)(1 + i) = 1. So 1 + i ∈ U(R) as desired. One can now proceed
as in Example 7.10 to show that R is a local ring whose unique maximal right ideal
m := xA ⊕ I = xR is principal.

It is easy to see that R is a free right module over the subring A[[y2; θ ]] ∼=
A[[t; θ ]] =: S with basis {1, y3}. Because S is right noetherian (in fact, a principal
right ideal domain, according to [16]), R is also right noetherian. We claim that
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r. K. dim(S) = 2. First we show that for every f ∈ S \ {0}, K. dim(S/ f S) ≤ 1. Indeed,
we can write f = tmxnu for some unit u ∈ S. It follows from the filtration

S ⊇ tS ⊇ t2S ⊇ · · · ⊇ tmS ⊇ tmxS ⊇ tmx2S ⊇ · · · ⊇ tmxnS = f S

that S/ f S has a filtration whose factors are isomorhpic to either S/tS ∼= A or S/xS ∼=
A/xA. These filtration factors have submodule lattices isomorphic to that of AA or
(A/xA)A, and thus respectively have Krull dimension 1 or 0. Hence K. dim(S/ f S) ≤
1 as claimed. Because S has right Krull dimension and is a domain, we see from
Proposition 3.13 that SS is a critical module. We conclude that r. K. dim(S) = 2. Thus
K. dim(RS) = K. dim(S2

S) = K. dim(SS) = 2 (the second equality follows from the ex-
act sequence 0 → S → S2 → S → 0), which implies that K. dim(RR) ≤ K. dim(RS) =
2. On the other hand, the descending chain I ⊇ I2 ⊇ I3 ⊇ · · · of right ideals in R has
filtration factors Im/Im+1 = y2m B/y2m+2 B ∼= A ⊕ A. These have Krull dimension 1,
so we find K. dim(RR) > 1 and thus r. K. dim(R) = 2.

Finally, we show that I is not a principal right ideal of R. It suffices to show
that I/Im is not a cyclic right module over R/m ∼= k. Notice that Im = I(Ax + I) =
Ix + I2. Now By ⊆ yB implies that I2 = (y2 B)2 = y4 B. Also, Ix = y2xA ⊕ y3xA ⊕
y4xA · · · . Thus Im = Ix + I2 = y2xA ⊕ y3xA ⊕ y4 B. It follows that

I
Im

∼= y2 A[[y; θ ]]
y2xA ⊕ y3xA ⊕ y4 A[[y; θ ]]

∼= y2k ⊕ y3k

is not a cyclic k-vector space, as desired. 
�

We conclude this section with some questions that arise in light of the re-
sults above. Examples 7.10 and 7.11 show that the left noetherian hypothesis in
Theorem 7.9 cannot simply be dropped. While it seems somehow unnatural to try
to omit the right noetherian hypothesis, we have not found an example showing this
to be impossible. Thus we ask the following.

Question 7.12 Does there exist a left (but not right) noetherian ring R whose
maximal right ideals are all principal, but which is not a principal right ideal ring?
What if we assume, in addition, that R has right Krull dimension?

While reading an earlier draft of this work, G. M. Bergman kindly pointed out to
us that no such example exists if we assume further that R is a domain. We were able
to generalize this to include semiprime right Goldie rings as follows.

Proposition 7.13 Let R be a semiprime left noetherian ring in which every essential
right ideal contains a regular element (the latter hypothesis is satisf ied if R is a domain
or if R is right Goldie—in particular, if R has right Krull dimension). If every maximal
right ideal of R is principal, then R is a principal right ideal ring.

Proof By Example 6.4, it is enough to show that every essential right ideal of R is
principal. To this end, fix ER ⊆e R. Because R has a semisimple left ring of quotients,
the multiplicative set of regular elements of R is saturated. Thus the hypotheses of
Lemma 7.2 are satisfied. Since E contains a regular element, that lemma implies that
R/E has finite length. So R/E has a finite filtration whose factors are isomorphic to
R/mi for some maximal right ideals m1, . . . ,mn of R. Since the set of maximal right
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ideals is closed under similarity, Lemma 5.10 implies that all maximal right ideals of
R lie in F ◦

pr. Now Corollary 2.6 implies that E ∈ F ◦
pr ⊆ Fpr, so that E is principal. 
�

We also ask to what extent the PRIR condition can be tested up to similarity.

Question 7.14 Suppose that R is a noetherian ring each of whose maximal right
ideals is similar to a principal right ideal. Is R a principal right ideal ring? If not,
then is every right ideal of R similar to a principal right ideal?

It would be interesting to test the status of the first Weyl algebra R := A1(k) with
respect to this question. Is every maximal right ideal of R similar to a principal right
ideal? Does R have any right ideals that are not similar to principal right ideals?
More generally, we wonder whether there exists any ring that is not a PRIR, but in
which every right ideal is similar to a principal right ideal.

8 Previous Generalizations of the Cohen and Kaplansky Theorems

In this final section we will discuss how Theorems 4.5 and 5.11 relate to earlier
noncommutative generalizations of the Cohen and Kaplansky–Cohen theorems in
the literature. (We are not aware of any previous generalizations of Kaplansky’s
Theorem 1.2.) In [21], K. Koh generalized both of these theorems. He defined a
right ideal IR � R to be a “prime right ideal” if, for any right ideals A, B ⊆ R such
that AI ⊆ I, AB ⊆ I implies that A ⊆ I or B ⊆ I. Notice that this is equivalent to
the condition that for a, b ∈ R, aRb ⊆ I with aRI ⊆ I imply that either a ∈ I or
b ∈ I. We will refer to such a right ideal as a Koh-prime right ideal. Koh showed that
a ring R is right noetherian (resp. a PRIR) iff all of its Koh-prime right ideals are
finitely generated (resp. principal). Independently, in [4] (also appeared [5]) V. R.
Chandran also gave generalizations of the Cohen and Kaplansky theorems, showing
that a right duo ring is right noetherian (resp. a PRIR) iff all prime ideals of R are
finitely generated (whether this is f.g. as an ideal or f.g. as a right ideal is irrelevant,
since R is right duo). But Koh’s result implies Chandran’s result, since a two-sided
ideal is Koh-prime as a right ideal iff it is a prime ideal in the usual sense.

Notice that our completely prime right ideals are necessarily Koh-prime right
ideals. For suppose that PR ⊆ R is completely prime and that A, B ⊆ R are such
that AP ⊆ P and AB ⊆ P. If A � P, then there exists a ∈ A \ P. Now aP ⊆ P, and
for any b ∈ B we have ab ∈ P. It follows that b ∈ P because P is completely prime.
So B ⊆ P, proving that P is Koh-prime. It follows that Theorems 4.5 and 5.11, with
the set S taken to be the set of completely prime right ideals, imply Koh’s theorems,
which in turn imply Chandran’s theorems.

On the other hand, G. O. Michler offered another noncommutative generalization
of Cohen’s Theorem in [31]. He defined a right ideal I � R to be “prime” if aRb ⊆ I
implies that either a ∈ I or b ∈ I. This is equivalent to saying that, for right ideals
A, B ⊆ R, AB ⊆ I implies that one of A or B lies in I. We will refer to such
right ideals as Michler-prime right ideals. Michler proved in [31] that a ring is
right noetherian iff its Michler-prime right ideals are all finitely generated. Notice
immediately that the Michler-prime right ideals of a given ring form a subset of
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the set of all Koh-prime right ideals of that ring; thus Michler’s version of Cohen’s
Theorem generalizes Koh’s version.

If we were to try to recover Michler’s theorem directly from Theorem 4.5, we
would need to check that the Michler-prime right ideals form a noetherian point
annihilator set over an arbitrary ring R. In order to settle whether or not this is true,
we offer an alternate description of the Michler-prime right ideals below. Recall that
a module MR �= 0 is said to be a prime module if, for every nonzero submodule N ⊆
M, ann(N) = ann(M). One can show that the annihilator of a prime module is a prime
ideal (for example, as in [24, (3.54)]).

Proposition 8.1 A right ideal P � R is Michler-prime if f R/P is a prime module.

Proof First suppose that P is Michler-prime. To see that R/P is a prime module, con-
sider a nonzero submodule A/P ⊆ R/P (so that the right ideal A properly contains
P). Denote B := ann(A/P) � R. Then (A/P) · B = 0 implies that AB ⊆ P. Because
P is Michler-prime, this means that B ⊆ P, so that (R/P) · B = (P + B)/P = 0. So
B = ann(R/P), proving that the module R/P is prime.

Conversely, suppose that R/P is a prime module. Let a, b ∈ R be such that
aRb ⊆ P and a /∈ P. It follows that b annihilates (P + aR)/P �= 0, so that b ∈
ann((P + aR)/P) = ann(R/P). In particular, (R/P) · b = 0 implies that b ∈ P. This
proves that P is Michler-prime. 
�

Corollary 8.2 For a ring R, the set S of Michler-prime right ideals is a noetherian point
annihilator set if f every nonzero noetherian right R-module has a prime submodule.
This is satisf ied, in particular, if R has the ACC on ideals.

Proof The “only if” direction is clear from Proposition 8.1. For the “if” direction, let
MR be any module with a prime submodule N. Notice that a nonzero submodule of a
prime module is prime. Thus for any nonzero element m ∈ N, R/ ann(m) ∼= mR ⊆ N
is a prime module. By Proposition 8.1, ann(m) is a Michler-prime right ideal. So if
every nonzero noetherian module has a prime submodule, the set S is a noetherian
point annihilator set.

If R satisfies ACC on ideals, then every nonzero right R-module has a prime
submodule—see [24, (3.58)]. So in this case S is a point annihilator set, hence a
noetherian point annihilator set. 
�

We conclude from Corollary 8.2 and Theorem 4.5 that a ring is right noetherian if f
it satisf ies ACC on ideals and all of its Michler-prime right ideals are f initely generated.
This is actually a slight generalization of [31, Lemma 3], which Michler used as a
“stepping stone” to prove his main result.

Nevertheless, there do exist nonzero noetherian modules over some (large) rings
which do not have any prime submodules. Thus Michler’s primes do not form a
noetherian point annihilator set in every ring. We include an example below.

Example 8.3 Let k be a division ring, and let R be the ring of N × N row-finite upper
triangular matrices over k. Let MR = ⊕

N
k, viewed as row vectors over k, with the
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obvious right R-action. Let Mi denote the submodule of M consisting of row vectors
whose first i entries are zero. Then one can show that

M = M0 � M1 � M2 � · · ·
are the only nonzero submodules of M. This visibly shows that M is noetherian.
(Indeed, one can say more: every submodule of M is actually principal, generated by
one of the “standard basis vectors.” We omit the details because we will not use this
fact.) However, one can see that ann(Mi) is equal to the set of all matrices in R whose
first i rows are arbitrary and whose other rows are zero. So the fact that

ann(M0) � ann(M1) � ann(M2) � · · ·
makes it clear that M has no prime submodules.

Incidentally, MR is also an example of a cyclic 1-critical module that is not a prime
module. Thus, choosing a right ideal IR ⊆ R such that R/I ∼= M (such as the right
ideal of matrices in R whose first row is zero), we see that I is cocritical but not
Michler-prime.

In spite of this complication, it is in fact possible to derive Michler’s Theorem from
Theorem 4.5. The key observation that makes this possible is a lemma [37, Lemma 2]
due to P. F. Smith. This result states that if every ideal of a ring R contains a finite
product of prime ideals each containing that ideal, and if R satisfies the ACC on
prime ideals, then every nonzero right R-module has a prime submodule.

Theorem 8.4 (Michler) A ring R is right noetherian if f all of the Michler-prime right
ideals of R are f initely generated.

Proof (“If” direction.) Suppose that the Michler-prime right ideals of R are all
finitely generated. Every prime (two-sided) ideal of R is Michler-prime, and thus is
finitely generated as a right ideal. By [31, Lemmas 4 & 5] the following two conditions
hold:

1. Every ideal I � R contains a product of finitely many prime ideals of R, where
each of these ideals contains I;

2. R satisfies the ascending chain condition on prime ideals.

It follows from [37, Lemma 2] that every nonzero right R-module has a prime
submodule. So by Corollary 8.2, the set of Michler-prime right ideals is a noetherian
point annihilator set for R. Now it follows from Theorem 4.5 that R is a right
noetherian ring. 
�

In addition, our methods allow us to produce a generalization of the Kaplansky–
Cohen Theorem that is in the spirit of Michler’s Theorem! Note that this was not
proved in [31], and in fact seems to be a new result.

Theorem 8.5 A ring R is a principal right ideal ring if f all of the Michler-prime right
ideals of R are principal.

Proof (“If” direction.) Suppose that all of the Michler-prime right ideals of R
are principal. As in the proof of Theorem 8.4 above, it follows that the set S of
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Michler-prime right ideals of R is a noetherian point annihilator set for R. This set is
closed under similarity thanks to Proposition 8.1, so Theorem 5.11 implies that R is
a principal right ideal ring. 
�

For a given ring R, the effectiveness of Michler’s Theorem versus Theorem 4.5
with S taken to be the set of completely prime right ideals of R depends on the
scarcity or abundance of right ideals in R from the “test set” in either theorem. For
example, over a simple ring R, every nonzero right R-module is certainly prime. So
every proper right ideal of R will be Michler-prime. (In fact, Koh [20, Theorem 4.2]
has shown even more: a ring R is simple iff all of its proper right ideals are Michler-
prime.) Thus for a simple ring R, Michler’s theorem provides no advantage, as we
would still need to test every right ideal to see whether R is right noetherian. On the
other hand, all right ideals of a ring R are completely prime only if R is a division ring
(see [33, Proposition 2.11]). So outside of this trivial class of rings, we are guaranteed
that Theorem 4.5 with S = {completely prime right ideals} reduces the set of right
ideals which we need to test in order to determine whether a ring is right noetherian.
We can expect Theorem 4.5 to be increasingly effective when we take S to be either
of the two smaller test sets in Eq. 3.1.

There is another variant of Cohen’s Theorem for right fully bounded rings. (Recall
that R is right fully bounded if, for every prime ideal P � R, every essential right
ideal of R/P contains a nonzero ideal of R/P). This result says that a right fully
bounded ring is right noetherian if f all of its prime ideals are f initely generated as
right ideals. A statement of this theorem is given in [23, p. 95], and it is attributed
to G. O. Michler and L. W. Small independently. P. F. Smith provided a proof using
homological methods in [38, Corollary 5] and an elementary proof in [39, Theorem 1].
(On a related note, [39] also features a version of Cohen’s Theorem for modules over
commutative rings.) If one is satisfied to deal with the subclass of PI rings, then this
result can be proved via the approach of the present paper.

Theorem 8.6 (Michler–Small) A PI ring R is right noetherian if f all of its prime ideals
are f initely generated as right ideals.

Proof (“If” direction.) Let R be a PI ring in which every prime ideal is finitely
generated as a right ideal. By Theorem 4.5, to prove that R is right noetherian it is
enough to show that every nonzero noetherian right R-module MR has a nonzero
cyclic finitely presented submodule. (This basically produces a noetherian point
annihilator set of right ideals that are finitely generated.)

As in the proof of Theorem 8.4, every nonzero noetherian right R-module has
a prime submodule, so it suffices to assume that M is prime. In this case, P :=
Ann(M) is prime. By a result of Amitsur and Small [1, Proposition 3], because the
prime PI ring R/P has a faithful noetherian module M, it is a noetherian ring. A
result of Cauchon on right fully bounded noetherian rings (see, for instance, [13,
Theorem 9.10]) now implies that there is an embedding R/P ↪→ Mn for some integer
n ≥ 1, and we will identify R/P with its image as a submodule of M. Let π : Mn →
M be the projection of Mn onto one of its components such that R/P � ker π .
The module (R/P)R is finitely presented (because PR is finitely generated) and
noetherian. Thus π(R/P) ⊆ M is a factor of the finitely presented module R/P by
a finitely generated submodule and must istelf be finitely presented (for instance,
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see [24, (4.26)(b)]). Hence M has a nonzero cyclic finitely presented submodule as
desired. 
�

It is clear that the same proof would recover the Michler–Small Theorem for right
fully bounded rings (not only PI rings) if the following question has an affirmative
answer.

Question 8.7 Let R is a prime right (fully) bounded ring with a faithful (prime)
noetherian module MR. Is R right noetherian, or equivalently, is there an embedding
RR ↪→ Mn for some integer n ≥ 1?

(The equivalence of the two questions follows from Cauchon’s result, mentioned
in the proof above, that a prime right fully bounded noetherian ring with a faithful
module MR embeds into a finite direct sum of copies of M.)

In a more recent paper [40], B. V. Zabavs’kiı̆ also studied noncommutative
versions of the Cohen and Kaplansky–Cohen theorems. Theorem 1 of that paper
states that, for a right chain ring R (i.e., a ring whose right ideals are totally ordered
under inclusion), if every Michler-prime right ideal is principal, then R is a principal
right ideal ring. This is clearly generalized by Theorem 8.5 above. There is second
version of the Kaplansky–Cohen Theorem in [40, Theorem 2] using a test set that
is equal to the set of Koh-prime right ideals. Thus this theorem is equivalent to
Koh’s theorem. A noncommutative Cohen’s Theorem is proved in [40, Theorem 5]
using a test set that contains the Michler-prime right ideals as a subset; thus this
result is subsumed by Michler’s Theorem. Finally, there are also some results in [40]
investigating when every two-sided ideal of a ring is either finitely generated or
principal when considered as a right ideal.

Acknowledgements I wish to thank T. Y. Lam for his guidance throughout the time that I worked
on the topic at hand. He provided comments on a number of drafts of this work and helped to
fix some of the terminology introduced here. I am grateful to George Bergman who read two
drafts of this work and made many useful comments. In particular, he provided comments that
helped to clarify the content of Section 4, as well as an effective suggestion to help repair an error
in Example 7.11. I also thank W. Keith Nicholson for directing me to the reference [32] and for
suggesting Definition 6.8 in order to clarify certain arguments in Section 6. Finally, I thank the referee
for providing some helpful references.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

1. Amitsur, S.A., Small, L.W.: Finite-dimensional representations of PI algebras. J. Algebra 133(2),
244–248 (1990). MR 1067405 (91h:16029)

2. Beachy, J.A., Weakley, W.D.: A note on prime ideals which test injectivity. Commun. Algebra
15(3), 471–478 (1987). MR 882795 (88f:16026)

3. Bhatwadekar, S.M.: On the global dimension of some filtered algebras. J. Lond. Math. Soc. (2)
13(2), 239–248 (1976) MR 0404398 (53 #8200)

4. Chandran, V.R.: On two analogues of Cohen’s theorem. Indian J. Pure Appl. Math. 8(1), 54–59
(1977) MR 0453809 (56 #12062)



974 M.L. Reyes

5. Chandran, V.R.: On two analogues of Cohen’s theorem. Pure Appl. Math. Sci. 7(1–2), 5–10
(1978) MR 0460378 (57 #372)

6. Cohen, I.S.: Commutative rings with restricted minimum condition. Duke Math. J. 17, 27–42
(1950) MR 0033276 (11,413g)

7. Cohn, P.M.: Free Ideal Rings and Localization in General Rings. New Mathematical Mono-
graphs, vol. 3. Cambridge University Press, Cambridge (2006) MR 2246388 (2007k:16020)

8. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts
in Mathematics, vol. 150. Springer-Verlag, New York (1995) MR 1322960 (97a:13001)

9. Evans, E.G. Jr.: Krull–Schmidt and cancellation over local rings. Pac. J. Math. 46, 115–121 (1973)
MR 0323815 (48 #2170)

10. Goldie, A.W.: Non-commutative principal ideal rings. Arch. Math. 13, 213–221 (1962) MR
0140532 (25 #3951)

11. Goldie, A.W.: Properties of the idealiser. In: Ring Theory (Proc. Conf., Park City, Utah, 1971),
pp. 161–169. Academic Press, New York (1972) MR 0382341 (52 #3226)

12. Goodearl, K.R.: Global dimension of differential operator rings. II. Trans. Am. Math. Soc. 209,
65–85 (1975) MR 0382359 (52 #3244)

13. Goodearl, K.R., Warfield, R.B. Jr.: An Introduction to Noncommutative Noetherian Rings.
London Mathematical Society Student Texts, vol. 61, 2nd edn. Cambridge University Press,
Cambridge (2004) MR 2080008 (2005b:16001)

14. Gordon, R., Robson, J.C.: Krull Dimension. American Mathematical Society, no. 133. Memoirs
of the American Mathematical Society, Providence (1973) MR 0352177 (50 #4664)

15. Huynh, D.V.: A note on rings with chain conditions. Acta Math. Hungar. 51(1–2), 65–70 (1988)
MR 934584 (89e:16024)

16. Jategaonkar, A.V.: Left principal ideal domains. J. Algebra 8, 148–155 (1968) MR 0218387 (36
#1474)

17. Jategaonkar, A.V.: A counter-example in ring theory and homological algebra. J. Algebra 12,
418–440 (1969) MR 0240131 (39 #1485)

18. Kaplansky, I.: Elementary divisors and modules. Trans. Am. Math. Soc. 66, 464–491 (1949) MR
0031470 (11,155b)

19. Kertész, A.: Noethersche ringe, die artinsch sind. Acta Sci. Math. (Szeged) 31, 219–221 (1970)
MR 0279126 (43 #4852)

20. Koh, K.: On one sided ideals of a prime type. Proc. Am. Math. Soc. 28, 321–329 (1971) MR
0274488 (43 #251)

21. Koh, K.: On prime one-sided ideals. Can. Math. Bull. 14, 259–260 (1971) MR 0313325 (47 #1880)
22. Koker, J.J.: Global dimension of rings with Krull dimension. Commun. Algebra 20(10), 2863–

2876 (1992) MR 1179266 (94a:16011)
23. Krause, G.: On fully left bounded left noetherian rings. J. Algebra 23, 88–99 (1972) MR 0308188

(46 #7303)
24. Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer-

Verlag, New York (1999) MR 1653294 (99i:16001)
25. Lam, T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, vol. 131,

2nd edn. Springer-Verlag, New York (2001) MR 1838439 (2002c:16001)
26. Lam, T.Y.: Exercises in Classical Ring Theory. Problem Books in Mathematics, 2nd edn.

Springer-Verlag, New York (2003) MR 2003255 (2004g:16001)
27. Lam, T.Y.: A crash course on stable range, cancellation, substitution and exchange. J. Algebra

Appl. 3(3), 301–343 (2004) MR 2096452 (2005g:16007)
28. Lam, T.Y.: Exercises in Modules and Rings. Problem Books in Mathematics. Springer, New York

(2007) MR 2278849 (2007h:16001)
29. Lam, T.Y., Reyes, M.L.: A Prime Ideal Principle in commutative algebra. J. Algebra 319(7),

3006–3027 (2008) MR 2397420 (2009c:13003)
30. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Graduate Studies in Math-

ematics, vol. 30, revised ed. American Mathematical Society, Providence (2001) MR 1811901
(2001i:16039)

31. Michler, G.O.: Prime right ideals and right noetherian rings. In: Ring Theory (Proc. Conf., Park
City, Utah, 1971), pp. 251–255. Academic Press, New York (1972) MR 0340334 (49 #5089)

32. Osofsky, B.L.: A generalization of quasi-Frobenius rings. J. Algebra 4, 373–387 (1966) MR
0204463 (34 #4305)

33. Reyes, M.L.: A one-sided Prime Ideal Principle for noncommutative rings. J. Algebra Appl. 9(6),
877–919 (2010)



Noncommutative Generalizations of Theorems of Cohen and Kaplansky 975

34. Robson, J.C.: Rings in which finitely generated right ideals are principal. Proc. Lond. Math. Soc.
17(3), 617–628 (1967) MR 0217109 (36 #200)

35. Robson, J.C.: Decomposition of noetherian rings. Commun. Algebra 1, 345–349 (1974) MR
0342564 (49 #7310)

36. Rotman, J.J.: An Introduction to Homological Algebra. Pure and Applied Mathematics, vol. 85.
Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1979) MR 538169
(80k:18001)

37. Smith, P.F.: Injective modules and prime ideals. Commun. Algebra 9(9), 989–999 (1981) MR
614468 (82h:16018)

38. Smith, P.F.: The injective test lemma in fully bounded rings. Commun. Algebra 9(17), 1701–1708
(1981) MR 631883 (82k:16030)

39. Smith, P.F.: Concerning a theorem of I. S. Cohen. An. Ştiinţ. Univ. Ovidius Constanţa Ser.
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