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Abstract It is known that, up to isomorphism, there is a unique distance-regular graph�with
intersection array {32, 27; 1, 12} [equivalently, � is the unique strongly regular graph with
parameters (105, 32, 4, 12)]. Here we investigate the distance-regular antipodal covers of �.
We show that, up to isomorphism, there is just one distance-regular antipodal triple cover of�
(a graph �̂ discovered by the author over 20years ago), proving that there is a unique distance-
regular graph with intersection array {32, 27, 8, 1; 1, 4, 27, 32}. In the process, we confirm
an unpublished result of Steve Linton that there is no distance-regular antipodal double cover
of �, and so no distance-regular graph with intersection array {32, 27, 6, 1; 1, 6, 27, 32}. We
also show there is no distance-regular antipodal 4-cover of �, and so no distance-regular
graph with intersection array {32, 27, 9, 1; 1, 3, 27, 32}, and that there is no distance-regular
antipodal 6-cover of � that is a double cover of �̂.
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L. H. Soicher

1 Introduction

A graph � is distance-regular with intersection array

{b0, b1, . . . , bd−1; c1, c2, . . . , cd}

if � is connected with diameter d , and for i = 0, 1, . . . , d , whenever vertices v,w are at
distance i in �, there are exactly bi vertices adjacent tow at distance i +1 from v and exactly
ci vertices adjacent to w at distance i − 1 from v (with the convention that bd = c0 =
0). Distance-regular graphs occur in many areas of discrete mathematics, including coding
theory, design theory and finite geometry. See, for example, the encyclopaedic reference [2]
by Brouwer et al. The present paper is a contribution to the problem of determining the
distance-regular graphs with a given intersection array.

We shall investigate the antipodal distance-regular covers of the Goethals-Seidel graph
[9], the unique (up to isomorphism) distance-regular graph � with intersection array
{32, 27; 1, 12} [4,5]. The graph � can be constructed as the second subconstituent of the
second subconstituent of the famous McLaughlin graph, the unique distance-regular graph
with intersection array {112, 81; 1, 56} (see [3]).

A distance-regular antipodal triple cover �̂ of � was constructed by the author in [14],
but its uniqueness was not determined. The main purpose of this paper is to prove that, up to
isomorphism, �̂ is the unique distance-regular graph with intersection array

{32, 27, 8, 1; 1, 4, 27, 32}.

In the process of doing this,we confirmanunpublished result of SteveLintonwhich shows that
there is no distance-regular graph with intersection array {32, 27, 6, 1; 1, 6, 27, 32}. We also
prove there is no distance-regular graph with intersection array {32, 27, 9, 1; 1, 3, 27, 32},
and that there is no distance-regular antipodal 6-cover of � that is a double cover of the
distance-regular triple cover �̂.

We classify distance-regular antipodal r -covers of � by studying the r -fold topological
covers of the 2-dimensional simplicial complexwhose 0-, 1-, and 2-simplices are respectively
the vertices, edges, and triangles of �. Our main tool is version 2.0 of the author’s GAP
program described in [12] for the computation of fundamental groups, certain quotients of
fundamental groups, and covers of finite abstract 2-dimensional simplicial complexes. This
program is freely available from [16], where we also provide aGAP/GRAPE [15,17] logfile
of all the computations related to this paper. It is hoped that [16] and the methods of this
paper will be useful in other classifications of covers of graphs. In particular, Theorem 3.1
should be of independent interest.

All graphs in this paper are finite and undirected, with no loops and no multiple edges,
and have at least one vertex. Throughout, we follow [2] for graph-theoretical concepts and
notation. An important new reference for distance-regular graphs, covering developments
since [2] was published, is Van Dam et al. [18]. See also Brouwer et al. [1]. A good reference
for the group-theoretical concepts used in this paper is Robinson [13]. We denote the com-
mutator subgroup of a group G by [G,G], the cyclic group of order n is denoted by Cn , and
where p is a prime, the elementary abelian group of order pk is denoted by Ck

p .
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The uniqueness of a distance-regular graph

2 The fundamental group and covers

Let � be a connected graph. We also consider � to be an abstract 2-dimensional simplicial
complex (or 2-complex) whose 0-, 1-, and 2-simplices are respectively the vertices, edges,
and triangles of �. With this in mind, throughout this paper, by a cover of �, we mean a pair
(�̃, θ), where �̃ is a graph and θ : V (�̃) → V (�) is a surjection, called a covering map,
such that the following hold:

• For every v ∈ V (�), the fibre vθ−1 of v is a coclique (independent set) of �̃,
• The union of any two distinct fibres mapping under θ to a non-edge of � is a coclique of

�̃,
• The induced subgraph on any two fibres mapping under θ to an edge of � is a perfect

matching in �̃,
• The induced subgraph on any three fibres mapping under θ to a triangle of � consists of

pairwise disjoint triangles in �̃.

Note that, as defined here, �̃ is a cover of � precisely when �̃ is a topological cover of �

when they are both viewed as 2-complexes as described above.
Whenwe do not need to specify the coveringmap explicitly, wemay denote a cover (�̃, θ)

simply by �̃. If each fibre of a cover �̃ of � has the same positive integer cardinality r , then
we call �̃ an r -cover of �. A 2-cover is also called a double cover, and a 3-cover is also
called a triple cover. If � is a non-complete graph, then an antipodal r -cover �̃ of � is a
connected r -cover of � with the property that being equal or at maximum distance in �̃ is an
equivalence relation on V (�̃), whose equivalence classes are the fibres.

The connected r -covers of � correspond to the transitive permutation representations of
degree r of the fundamental group of � (regarded as a 2-complex), defined with respect to
a fixed, but arbitrary, spanning tree of �. We shall explain this further in this section. For a
more general, fuller and detailed exposition, see [12], on which our explanation is based.

Now, fix a spanning tree T of �. The choice of T does not matter, and in particular,
does not affect the isomorphism class of the fundamental group of �. Then, for each arc
(ordered edge) (v,w) of �, define an abstract group generator gv,w. For our purposes, the
fundamental group G of � is the finitely presented group whose generators are these gv,w

and whose defining relations are:

• gs,t = 1 for each arc (s, t) of T ;
• gv,wgw,v = 1 for each edge {v,w} of �;
• gx,ygy,zgz,x = 1 for each triangle {x, y, z} of �.

Suppose (�̃, θ) is any connected r -cover of �. Then T θ−1 consists of r disjoint copies
T1, . . . , Tr of T , with Tiθ = T . We may thus label the vertices of �̃ by ordered pairs (v, i),
with v ∈ V (�) and i ∈ I = {1, . . . , r}, so that the fibre of a vertex v of� is {(v, 1), . . . , (v, r)}
and (v, i) ∈ V (Ti ) for each i . In particular, note that a different choice for the fixed spanning
tree T would only result in a relabelling of vertices within the fibres of �̃.

Now for each arc (v,w) of �, let ρv,w be the permutation of I defined by iρv,w = j if
and only if {(v, i), (w, j)} is an edge of �̃. If {x, y, z} is a triangle of �, then {x, y, z}θ−1 is
a set of disjoint triangles in �̃, and so ρx,yρy,zρz,x is the identity permutation. It now follows
that the map ρ defined on the generators of G by (gv,w)ρ = ρv,w extends to a transitive
permutation representation from G to the symmetric group Sr . The r -cover �̃ is completely
defined by this representation.

Conversely, every transitive permutation representation ρ : G → Sr defines a connected
r -cover, denoted �ρ , of �. For each v ∈ V (�), the fibre of v in �ρ consists of the ordered
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pairs (v, i), for i ∈ I , and (v, i) and (w, j) are joined by an edge in �̃ if and only if {v,w} is
an edge of � and j = i((gv,w)ρ). The preimage in G of the stabilizer in Gρ of a point i ∈ I
is isomorphic to the fundamental group of �ρ (see [12]).

We consider two covers (�1, θ1) and (�2, θ2) of � to be isomorphic if there is a graph
isomorphism from �1 to �2 which maps the fibres of �1 to those of �2. Thus, isomorphic
covers differ only by a relabelling of the fibres and of the vertices within each fibre. In
particular, every connected r -cover of � is isomorphic to a cover of the form �ρ , for some
transitive permutation representation ρ : G → Sr , corresponding to the preimage in G of
the stabilizer in Gρ of the point 1.

Isomorphism of covers can be checked as follows using nauty [11], which can be called
from within GRAPE [15]. Given the cover �1 of �, we make a {red, blue}-vertex-coloured
graph�+

1 . The red-coloured vertices of�
+
1 are the vertices of�1, with two red vertices joined

in �+
1 precisely when those vertices are joined in �1. The blue-coloured vertices of �+

1 are
in one-to-one correspondence with the fibres of �1, and a blue vertex is joined in �+

1 only to
the red vertices in the corresponding fibre. Similarly, we make �+

2 from the cover �2 of �.
Then �1 and �2 are isomorphic as covers of � if and only if �+

1 is isomorphic to �+
2 by a

colour-preserving graph isomorphism.
We are usually interested in classifying covers up to isomorphism. Note that if (�1, θ1)

and (�2, θ2) are isomorphic covers of �, and (�̃1, θ̃1) is any cover of �1, then (�̃1, θ̃1θ1) is
a cover of � isomorphic to (�̃2, θ̃2θ2) for some cover (�̃2, θ̃2) of �2.

3 Imprimitivity and covers

We may sometimes be interested in a cover of a cover.
Let � be a connected graph, let (�1, θ1) be a connected m-cover of �, and let (�2, θ2)

be a connected n-cover of �1. Then clearly, (�2, θ2θ1) is a connected mn-cover of �. Given
a spanning tree T of �, we take a spanning tree T1 of �1 containing the forest T θ−1

1 , and
define the fundamental group G of � with respect to T and the fundamental group G1 of �1

with respect to T1. Then (�1, θ1) corresponds to a transitive representation ρ1 : G → Sm ,
with the fibre of v in �1 being labelled {(v, i) : 1 ≤ i ≤ m}, as described previously, and
(�2, θ2) corresponds to a transitive representationρ2 : G1 → Sn , with the fibre of (v, i) being
labelled {(v, i, j) : 1 ≤ j ≤ n}. Now (�2, θ2θ1) corresponds to a transitive representation
ρ : G → Smn , and if m, n > 1, then Gρ acts imprimitively on the indices (i, j) of the fibre
of a vertex of �, the blocks of imprimitivity being {(i, j) : 1 ≤ j ≤ n}, for i = 1, . . . ,m.

Conversely, suppose that m, n > 1 and ρ : G → Smn is a transitive permutation repre-
sentation of the fundamental group G of � such that Gρ is an imprimitive group having m
blocks of size n. Then, if σ : G → Sm is the transitive permutation action of Gρ on the
blocks of imprimitivity, we see that �ρ is an n-cover of the m-cover �σ of �.

We have the following useful result.

Theorem 3.1 Let� be a non-complete distance-regular graph and suppose�ρ is a distance-
regular antipodal mn-cover of � corresponding to a transitive permutation representation
ρ of the fundamental group G of �, such that Gρ has m > 1 blocks of imprimitivity of size
n > 1. Then �ρ must be an n-cover of an antipodal distance-regular m-cover of �.

Proof As above, wemay suppose thatGρ is a group of permutations of�:={(i, j) : 1 ≤ i ≤
m, 1 ≤ j ≤ n}, with blocks of imprimitivity Bi :={(i, j) : 1 ≤ j ≤ n}, for i = 1, . . . ,m,
and that the fibre of �ρ mapping to the vertex v of � is labelled as {(v, i, j) : 1 ≤ i ≤ m, 1 ≤
j ≤ n}.

123



The uniqueness of a distance-regular graph

Now consider the partition

π :={ {(v, i, j) : 1 ≤ j ≤ n} : v ∈ V (�), 1 ≤ i ≤ m}
of V (�ρ). Then each part in π is contained in a fibre of �ρ , and π is an equitable (also called
regular) partition of V (�ρ) (since each vertex in the part {(v, i, j) : 1 ≤ j ≤ n} is joined
to exactly one or no vertex in the part {(w, k, 	) : 1 ≤ 	 ≤ n}, with a join to one vertex
precisely when {v,w} ∈ E(�) and ρv,w maps the block Bi to Bk). Wemay thus apply Godsil
and Hensel [8, Theorem 6.2] to deduce that �ρ/π is an antipodal distance-regular m-cover
of � (see also Theorem 7.3 in [7, Sect. 11], attributed to Brouwer, Cohen and Neumaier). ��

4 On the distance-regular antipodal r-covers of �

Throughout this section, � denotes the unique distance-regular graph with intersection
array {32, 27; 1, 12} [equivalently, the unique strongly regular graph with parameters
(105, 32, 4, 12)]. Suppose � is a distance-regular antipodal r -cover of �. Parameter fea-
sibility conditions (see [2]) imply � has diameter 4, r ∈ {2, 3, 4, 6}, and � has intersection
array

{32, 27, 12(r − 1)/r, 1; 1, 12/r, 27, 32}. (1)

Conversely, if � is a distance-regular graph with intersection array (1), then � is an antipodal
r -cover of a distance-regular graph with intersection array {32, 27; 1, 12} (see [6]), so � is
an antipodal distance-regular r -cover of (a graph isomorphic to) �.

To study covers of �, we explore quotients of the fundamental group of �, viewed as a
2-complex, with respect to a fixed spanning tree T of �. This fundamental group is denoted
throughout this section by D. It was shown in [14] that D is infinite.

Theorem 4.1 The abelianised fundamental group D/[D, D] of� is isomorphic toC16
2 ×C2

3 .

Proof We compute a presentation for D/[D, D] using the program [16], and determine the
abelian invariants of this group using GAP [17]. ��

We are now in a position to classify the connected double covers of �, which was done
independently by Steve Linton over 20 years ago, using his vector enumeration algorithm
[10].

Theorem 4.2 Up to isomorphism of covers, � has just 13 connected double covers, with
each having its abelianised fundamental group isomorphic to C15

2 × C2
3 , and none being

distance-regular.

Proof Each subgroup of index 2 in D contains the commutator subgroup [D, D].We compute
the 216 − 1 covers of � corresponding to the subgroups of index 2 in D/[D, D], and using
GRAPE calling nauty, we determine that, up to isomorphism of covers, there are just 13
such covers. We test each of these covers for distance-regularity using GRAPE, and find
that none of them are distance-regular. We use the program [16] to compute each of their
abelianised fundamental groups. ��
Corollary 4.3 There is no distance-regular graph with intersection array {32, 27, 6, 1; 1, 6,
27, 32}.

We now consider the triple covers of �, and start by showing that D has no quotient
isomorphic to the symmetric group S3. This is a corollary of the following:
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Proposition 4.4 Let N be a subgroup of D of index 2, and suppose N has a subgroup M,
such that M is normal in D and N/M is abelian. Then D/M is abelian.

Proof The subgroup N of D is isomorphic to the fundamental group of some connected
2-cover of �, so by Theorem 4.2, [N , N ] has index 21532 in N , and so [N , N ] has index
21632 in D, as does [D, D], by Theorem 4.1. Thus [N , N ] = [D, D], and since N/M is
abelian, M contains [N , N ], and so D/M is abelian. ��
Corollary 4.5 The group D has no quotient isomorphic to the symmetric group S3.

We are now in a position to classify the connected triple covers of �.

Theorem 4.6 Up to isomorphism of covers, � has just two connected triple covers, �∗ and
�̂. The cover �∗ has abelianised fundamental group isomorphic to C16

2 × C2
3 and is not

distance-regular. The cover �̂ has abelianised fundamental group isomorphic to C18
2 × C2

3
and is distance-regular.

Proof Each connected triple cover of � is isomorphic to a cover of the form �ρ , for some
transitive permutation representation ρ : D → S3. Since D has no quotient isomorphic to
S3, we must have Dρ ∼= C3, the cyclic group of order 3, and so each subgroup of index 3 in
D is normal and contains [D, D].

We compute the four covers of� corresponding to the subgroups of index 3 in D/[D, D],
and determine that, up to isomorphism of covers, there are just two such covers, �∗ and �̂,
and we calculate that these have the properties as stated in the theorem. ��
Corollary 4.7 Up to isomorphism, there is a unique distance-regular graphwith intersection
array {32, 27, 8, 1; 1, 4, 27, 32}.

Further properties of this distance-regular graph �̂ are given in [14] (where the graph is
called 
).

We now show there is no distance-regular antipodal 4-cover of �.

Theorem 4.8 There is no distance-regular graph with intersection array {32, 27, 9, 1; 1, 3,
27, 32}.
Proof A distance-regular graph with the intersection array of the theorem would be an
antipodal 4-cover of �. Such a 4-cover would correspond to some transitive permutation
representation ρ of degree 4 of D. The image Dρ of D cannot be imprimitive, for other-
wise, by Theorem 3.1, � would have a distance-regular antipodal 2-cover. We cannot have
Dρ ∼= S4, since D has no quotient isomorphic to S3, which is a quotient of S4. This leaves
Dρ ∼= A4 as the only possibility.

Suppose now D has a quotient isomorphic to A4. Then there is a transitive permutation
representation α : D → S6, having three blocks of imprimitivity of size 2, with Dα ∼= A4.
The corresponding cover �α is a 2-cover of a 3-cover �̃ of �. The 3-cover �̃ corresponds
to a normal subgroup N of D of index 3, and N has a subgroup M of index 4 that is normal
in D, such D/M ∼= A4.

Suppose now �̃ is isomorphic (as a cover of �) to �∗. By Theorem 4.6, [N , N ] has index
21632 in N , and so [N , N ] has index 21633 in D. By Theorem 4.1, [D, D] has index 21632

in D, so [N , N ] is a normal subgroup of index 3 in [D, D]. Since N/M ∼= C2
2 , M contains

[N , N ], and so either D/M is abelian or D/M has a normal subgroup of order 3, neither of
which holds.
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Thus, wemust have �̃ isomorphic to �̂. We computed all 218−1 connected 2-covers of �̂
as covers of the form�ρ of�, for ρ a transitive permutation representation from D to S6. Just
three of these covers �ρ have Dρ isomorphic to A4, corresponding to the three permutation
isomorphic transitive representations of degree 6 of one quotient of D isomorphic to A4. Now
given a connected 6-cover �ρ with Dρ ∼= A4, we construct the cover �σ of � defined by
the representation of Dρ acting by right multiplication on the four (right) cosets of a Sylow
3-subgroup. Up to isomorphism of covers of �, there is only one such �σ , which we find is
not distance-regular.

��
Finally, we can prove the following:

Theorem 4.9 There is no distance-regular antipodal 6-cover of � that is a double cover of
�̂.

Proof When we determined all 218 − 1 connected 2-covers of �̂, we found that none is
distance-regular. ��

Combining this result with Theorems 3.1, 4.2 and 4.6, we see that there is no distance-
regular antipodal 6-cover of � corresponding to an imprimitive degree 6 permutation
representation of D, but this still leaves open the possibility of a distance-regular antipo-
dal 6-cover of � corresponding to a primitive such representation.
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