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Abstract: In this paper we investigate the holographic Rényi entropy of two disjoint

intervals on complex plane with small cross ratio x for conformal field theory with W

symmetry in the ground state, which could be dual to a higher spin AdS3 gravity. We

focus on the cases of W3 and W4 symmetries. In order to see the nontrivial contributions

from the W fields, we calculate the Rényi entropy in the expansion of x to order x8 in

both the gravity and the CFT sides. In the gravity side the classical contributions to

the entanglement entropy is still given by the Ryu-Takayanagi area formula under the

reasonable assumption, while the 1-loop quantum corrections have to take into account

of the contributions not only from massless gravitons, but also from massless higher spin

fields. In the CFT side we still use the operator product expansion of twist operators in

the small interval limit, but now we need to consider the quasiprimary fields constructed

from W fields, besides the ones from Virasoro Verma module. In the large central charge

limit, we obtain the classical, 1-loop, 2-loop, and 3-loop parts of the Rényi entropy. The

classical and 1-loop results in the gravity and the CFT sides are in exact match. This

confirms the higher spin gravity/CFT correspondence, and also supports the holographic

computation of Rényi entanglement entropy, including the quantum correction, in both the

AdS3 gravity and the higher spin AdS3 gravity.
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1 Introduction

In this paper we continue the study of the short interval expansion of Rényi entropy of

two-dimensional (2D) conformal field theory (CFT) initiated in [1–3]. Let us first review

the basic definition of Rényi entropy. The entanglement Rényi entropy is an important

notion of quantum systems, and it is defined as follows [4, 5]. One can divide a system into

two parts, say A and its complement B. From the density matrix ρ of the whole system

one may obtain the reduced density matrix of A by tracing over the degrees of freedom of

B, i.e. ρA = TrBρ. Then the entanglement entropy of A and B is defined as

SA = −TrAρA log ρA. (1.1)
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More generally one can define the Rényi entropy of A and B as

S
(n)
A = −

1

n− 1
log TrAρ

n
A. (1.2)

The entanglement entropy and the Rényi entropy are related by SA = limn→1 S
(n)
A . More-

over one may choose two subsystems A and B which are not necessarily complementary to

each other, and define the Rényi mutual information of A and B

I
(n)
A,B = S

(n)
A + S

(n)
B − S

(n)
A∪B. (1.3)

The mutual information I
(1)
A,B encodes the entanglement between A and B.

The standard way of computing the Rényi entropy is the replica trick [6], but it is

usually hard to operate for a general system. Some computations in 2D CFT and higher

dimensional free field theory could be found in [1, 2, 7–14]. For a CFT with a gravity

dual one may use the AdS/CFT correspondence [15–17] to do a simpler holographic com-

putation in the bulk gravity. For the pure AdS gravity, it was conjectured by Ryu and

Takayanagi that the leading contribution of entanglement entropy is captured by the area

of a minimal surface in the bulk with asymptotic boundary ending on A [18–21]. This so-

called RT area law is reminiscent of the black hole entropy, and therefore since its proposal

there have been many attempts to derive this law in the gravity [22–25]. Very recently,

the RT area law of holographic entanglement entropy has been proved in [26] by taking it

as a generalized gravitational entropy. However it is fair to say that for dimension D ≥ 3

CFT, it is not certain if the holographic entanglement entropy is exactly the entanglement

entropy in the field theory, as there is short of direct computations in the field theory.

Nevertheless for 2D CFT, the situation is much clearer.

In 2D CFT, due to its infinite dimensional conformal symmetries, the direct field

computation is feasible. One could insert the twist operators to impose the nontrivial

boundary conditions in applying the replica trick [7, 9]. As a result, the partition function

on a higher-genus Riemann surface could be recast into the correlators of twist fields on a

complex plane in an orbifold CFT, which arises from the Zn replica symmetry. For a 2D

CFT on complex plane the Rényi entropy for one interval with length ℓ is universal and

only depends on the central charge [7]

Sn =
c

6

(

1 +
1

n

)

log
ℓ

ǫ
, (1.4)

with ǫ being the UV cutoff. For the entanglement entropy S1, it has been reproduced

by the holographic computation in [18, 19]. For the general Sn, n > 1, they have been

reproduced successfully in [27] from the Euclidean action of corresponding gravitational

configurations. For multi-interval case, the correctness of RT law and its agreement with

CFT result have been proved in [27] and [28], respectively.

In AdS3/CFT2 correspondence, the central charge of CFT is inversely proportional to

the bulk Newton constant [29]

c =
3l

2G
(3)
N

(1.5)
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where l is the radius of AdS3 spacetime and G
(3)
N is the coupling constant. The RT area law

actually captures the contribution proportional to c. In the large central charge limit, this

is the leading contributions in CFT. For the multi-interval cases, there are subleading con-

tributions, which could be essential in discussing the issues like mutual information. From

AdS/CFT correspondence, these subleading contributions should be counted as the quan-

tum corrections to gravitational action [1, 30, 31]. In particular, the quantum correction

to the holographic Rényi entropy has been studied in [30]. In the small interval limit with

a small cross ratio x on complex plane, the quantum 1-loop correction of graviton to the

Rényi mutual information has been calculated to order x8. According to the AdS/CFT cor-

respondence, the graviton in the bulk corresponds to the stress tensor in the CFT side. To

account the graviton correction, it is only necessary to consider the Virasoro Verma module

in CFT. Actually from the study of quantum gravity in AdS3, it has been known that the

pure gravity partition function could be reproduced from the Virasoro Verma module [32].

In [3] by studying the OPE of twist operators at small interval limit, the Rényi mutual infor-

mation of two interval has been computed in the CFT side. The quantum 1-loop correction

of graviton to the Rényi mutual information in [30] has been confirmed to order x6. This

strongly support the holographic computation of Rényi entropy beyond the classical level.

In this paper we continue the work initiated in [3]. In this work we would like to

consider the CFT with W symmetry in its ground state. In this case, the dual gravity

could be a higher spin (HS) AdS3 gravity theory [33, 34]. Therefore our investigations

may not only shed light on the holographic Rényi entropy with matter coupling, but also

allows us to understand the HS/CFT correspondence from a new angle. We focus on the

Rényi mutual information of two disjoint intervals with small cross ratio. In order to see

the contributions from W fields with conformal weights 3 and 4 clearly, we need to find the

contributions up to order x8. Using the method in [30], we calculate the quantum 1-loop

contributions of spin-3 and spin-4 fields to the Rényi mutual information of the two interval

case to order x8. On the gravity side, under the assumption the classical configurations

are still the handlebody geometries constructed in [27], we consider the 1-loop fluctuations

around these configurations. One feature of the calculation is that the contributions of

different spin fields are additive, and so we can calculate them separately. On the CFT

side, we firstly consider only the contributions from the Virasoro Verma module and verify

the results in [30] to order x8. Then we consider the extra contributions fromW fields in the

CFT side. The leading contribution of the Wm field to the Rényi mutual information in the

CFT is of order x2m. This can be got easily, and matches the bulk result. The subleading

contributions are more difficult to get. Different from the calculation in the gravity side,

in the CFT side the contributions of W fields cannot be considered separately, as they are

involved with the stress tensor. We verify that the contributions of W3 field and/or W4 field

to order x8 match exactly with the gravity results as well. This shows that the holographic

prescription of computing the entanglement Rényi entropy for the ground state CFT not

only applies to an ordinary CFT but also to CFTs with W symmetries.

The remaining of the paper is arranged as follows. In section 2 we calculate the classical

Rényi entropy as well as the 1-loop corrections of spin-3 and spin-4 fluctuations to order

x8 in the gravity side. In section 3 we confirm these results in the CFT side using the short

– 3 –
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interval expansion of the Rényi entropy. We end with conclusion and discussion in section 4.

Some details of the computation in section 3 are presented in the appendixes A, B, and C.

The appendix D is a byproduct of the paper and it is about the case of one short interval

on cylinder. Some useful summation formulas are collected in appendix E.

Note added. The same day this paper appeared in arXiv, there appeared another pa-

per [35] which has some overlaps with our work.

2 Holographic Rényi entropy

In this section we calculate the classical and 1-loop parts of the holographic Rényi entropy

for two intervals with small cross ratio in CFT with W symmetry. As we are considering

the entanglement entropy in the vacuum state of CFT, we focus on the AdS3 vacuum. The

gravitational configurations are the same as the ones worked out in [27, 30]. Therefore, we

assume that the classical part coming from bulk gravitational action is invariant.1 But we

have not only the massless boundary gravitons but also massless higher spin fluctuations,

all of which contribute to 1-loop quantum correction. As the massless field with higher

spin m corresponds to a pair of holomorphic and antiholomorphic operators with confor-

mal weight m, their contributions to the Rényi entropy is of order x2m. In order to read

the nontrivial information, we need to do higher order expansion of x. In this work, we

manage to work out the contributions to order x8, which allows us to discuss the higher

spin gravity to spin-4 field.

The higher spin gravity has been under active study in the past few years. For the

pure spin-3 AdS3 gravity, it was proposed in [33] that its action could be written in terms

of Chern-Simons form with gauge group SL(3, R). Moreover, as its asymptotic symmetry

group has W3 symmetry, it was conjectured that the spin-3 AdS3 gravity could be holo-

graphically dual to a conformal field theory withW3 symmetry but the same central charge.

More generally, the Chern-Simons gravity could be defined with other Lie groups, describ-

ing the interaction of higher spin fields with gravity. When the gauge group is SL(4, R), it

describe both the spin-4 and spin-3 fields interacting with the gravity, which is dual to a

CFT with W (2, 3, 4) symmetry. But one may obtain only the spin-4 field interacting with

the gravity by choosing the gauge group to be SO(5) or Sp(4) [36]. This truncated spin-4

gravity is conjectured to be dual to a CFT with W (2, 4) symmetry. In all these cases, the

dual CFT has the same central charge as the one for pure AdS3 gravity, so that all the

higher spin fields could be set to vanish without spoiling the underlying correspondence.

In other words, all the classical gravitational configurations in [30] are still the classical

solutions of higher spin gravity and moreover their bulk classical actions would not be

changed by the presence of higher spin fields.

2.1 The classical part

The classical Rényi entropy for a 2D CFT with large central charge could be calculated

using the method proposed in [27, 28]. It reduces to the monodromy problem of an ordi-

nary differential equation. In [30] the method was used to calculate the small cross ratio

1For more careful justification of this assumption in higher spin gravity, see [35].
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expansion of the classical Rényi entropy for the two intervals case. Here we adopt the same

prescription but only give the outline without much details. One could find the details of

the calculation in [30].

We choose the subregion A = (−∞,−1] ∪ [−y, y] ∪ [1,+∞) with y being small, and

have the cross ratio

x =
4y

(1 + y)2
, (2.1)

which is small too. The classical Rényi entropy could be obtained using

∂Scl
n

∂y
= −

cn

3(n− 1)
γ3, (2.2)

with

γ3 = −
n2 − 1

2n2y
+

2
(

n2 − 1
)2

y

3n4
+

2
(

n2 − 1
)2 (

49n4 − 2n2 − 11
)

y3

135n8

+
2
(

n2 − 1
)2 (

3211n8 − 172n6 − 1056n4 − 172n2 + 376
)

y5

8505n12

+
2
(

n2 − 1
)2

y7

1913625n16

(

740087n12 − 44106n10 − 290847n8 − 78748n6 + 149973n4

+67854n2 − 58213
)

+O(y9). (2.3)

And then we can get the classical Rényi mutual information

Icln =
c(n+ 1)

6n
log y − Scl

n

=
c(n− 1)(n+ 1)2y2

9n3
+

c(n− 1)(n+ 1)2
(

49n4 − 2n2 − 11
)

y4

810n7

+
c(n− 1)(n+ 1)2

(

3211n8 − 172n6 − 1056n4 − 172n2 + 376
)

y6

76545n11

+
c(n− 1)(n+ 1)2y8

22963500n15

(

740087n12 − 44106n10 − 290847n8 − 78748n6 + 149973n4

+67854n2 − 58213
)

+O(y10). (2.4)

Obviously, when n = 1, the classical part of the mutual information in this case is vanishing,

and this matches the RT area formula [1].

2.2 The 1-loop correction

The method of calculating the 1-loop correction of the Rényi entropy was given in [30], and

it is directly related to the computation of the partition function [37, 38]. The relation is

that

S1−loop
n = −

1

n− 1

(

logZ1−loop
n − n logZ1−loop

1

)

. (2.5)

For the two intervals on complex plane case, we have Z1−loop
1 = 1 and the second term of

the right hand side of the above equation can be omitted.

– 5 –
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2.2.1 Graviton

The partition function depends on the matter content of the gravity as well as the spacetime

configuration. When the spacetime is the quotient of global AdS3 by a Schottky group Γ,

the 1-loop partition function for the graviton is [38]

Z1−loop =
∏

γ∈P

∞
∏

m=2

1

|1− qmγ |
, (2.6)

with P being a set of representatives of the primitive conjugacy classes of Γ. Using this

method, the small cross ratio x expansion of the 1-loop correction of Rényi mutual infor-

mation to order x8 has been given in [30], and it has been confirmed to order x6 from CFT

computation by considering only the contributions from the Virasoro Verma module [3].

2.2.2 Spin-3 field

In the presence of higher spin fields, the 1-loop partition function becomes [39]

Z1−loop =
∏

γ∈P

∏

s

∞
∏

m=s

1

|1− qmγ |
. (2.7)

Here the product over s is with respect to the spins of massless fields. For s = 2 it reduces

to the graviton case, and for s ≥ 3 it corresponds to the higher spin fields. One feature of

this formula is that the contributions of the fields with different spins to the Rényi entropy

could be separated. Therefore, the contribution from the gravitons is the same as the one

got in [30]. For the spin-3 field, the contribution to the Rényi mutual information is

I1−loop
n,spin−3 =

n

n− 1

(

f6x
6

4096n12
+

3
(

f7 + (n2 − 1)f6
)

x7

4096n14
(2.8)

+

(

273f8 + 504(n2 − 1)f7 + 2(137n4 − 250n2 + 113)f6
)

x8

196608n16
+O(x)9

)

.

The functions fm’s are defined in (E.1), and the explicit form of I1−loop
n,spin−3 could be got easily

using (E.2). Note that the singular behavior in I1−loop
n,spin−3 at n = 1 is superficial. Actually,

the (n− 1) factor in the denominator is cancelled by the (n2 − 1) factor in the fm’s.

2.2.3 Spin-4 field

For the spin-4 field, the contribution is

I1−loop
n,spin−4 =

n

n− 1

(

f8x
8

65536n16
+O(x)9

)

. (2.9)

3 Rényi entropy in the CFT side

In this section we compute the short interval expansion of the Rényi entropy in the CFT

side, and we mainly focus on the case of two intervals on complex plane with small cross

ratio. As we are considering the CFT with W symmetry, we must take into account

quasi-primary fields constructed from the primary W operators.

– 6 –
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3.1 OPE of twist operators

The short interval expansion of Rényi entropy has been discussed intensively in [1–3], and

here we only outline the key points.

A systematic way of computing the n-th Rényi entropy of N disjoint intervals for

a general 2D CFT on complex plane was proposed in [7]. The replica trick requires us

to compute the partition function of the CFT on the Riemann surface Rn,N of genus

(n − 1)(N − 1), which originates from the sewing of n copies of the complex plane with

branch cuts. Alternatively, one may work with n copies of the original CFT on a complex

plane but with nontrivial boundary conditions relating the fields of different replicas at the

branch points. Note that In the first picture there is one copy of the original CFT on Rn,N

which is an orbifold CFT, and in the second picture there is one copy of the complex plane

but the CFT consists of n copies of the original CFT and so will be denoted by CFTn.

In the second picture the boundary conditions could be accounted by inserting the twist

operators σ(z, z̄), σ̃(z, z̄) at the branch points which are the boundaries of the intervals.

The twist operators are primary operators with conformal weights

h = h̄ =
c

24

(

n−
1

n

)

, (3.1)

with c being the central charge of the original CFT.

In the first picture we denote a local operator as φ(zj , z̄j) with zj being the coordinate

of j-th copy of the plane, and in the second picture we denote a local operator as φj(z, z̄)

with φj being an operator of the j-th copy of the original CFT and z being the coordinate

of the complex plane. The operators in the two pictures can be converted freely, and

sometimes we just mix the two kinds of symbols for simplicity. For example, we take

T (zj1 , z̄j1)T (zj2 , z̄j2) ≡ Tj1(z, z̄)Tj2(z, z̄), j1 6= j2, (3.2)

with the left side being an operator in the first picture, which is nonlocal, and the right

side being an operator in the second picture, which is local, but the operators are taken to

be different.

If we choose A = [z1, z2] ∪ · · · ∪ [z2N−1, z2N ], we have

TrρnA = 〈σ(z2N , z̄2N )σ̃(z2N−1, z̄2N−1) · · ·σ(z2, z̄2)σ̃(z1, z̄1)〉C . (3.3)

When N = 1 and A = [0, ℓ], we have

TrρnA = 〈σ(ℓ, ℓ)σ̃(0, 0)〉C = cnℓ
− c

6
(n− 1

n), (3.4)

with cn being a constant related to the normalization of the twist operators. Then the

Rényi entropy for one interval could be found [7]

Sn =
c

6

(

1 +
1

n

)

log
ℓ

ǫ
, (3.5)

with ǫ being the UV cutoff.

– 7 –



J
H
E
P
0
4
(
2
0
1
4
)
0
4
1

We denote the linearly independent quasiprimary operators in CFTn as ΦK(z, z̄) with

the conformal wights hK and h̄K . Moreover we orthogonalize these operators as

〈ΦK(z, z̄)ΦL(w, w̄)〉C =
δKLαK

(z − w)2hK (z̄ − w̄)2h̄K

. (3.6)

The product of quasiprimary operators in each replica forms a quasiprimary operator of

CFTn,

ΦK(z, z̄) =
n−1
∏

j=0

φkj (z, z̄). (3.7)

In this case

K = {kj}, αK =
n−1
∏

j=0

αkj , hK =
n−1
∑

j=0

hkj , h̄K =
n−1
∑

j=0

h̄kj . (3.8)

We should bear in mind that not all of the quasiprimary operators can be written in this

form [1, 3].

When the intervals are short, at each interval we have the OPE of the twist operators

in CFTn

σ(z, z̄)σ̃(0, 0) = cn
∑

K

dK
∑

m,r≥0

amK
m!

ārK
r!

1

z2h−hK−mz̄2h̄−h̄K−r
∂m∂̄rΦK(0, 0), (3.9)

with the summation K being over all the independent quasiprimary operators of CFTn.

Here

amK ≡
Cm
hK+m−1

Cm
2hK+m−1

, ārK ≡
Cr
h̄K+r−1

Cr
2h̄K+r−1

, (3.10)

with the binomial coefficient being Cy
x = Γ(x+1)

Γ(y+1)Γ(x−y+1) . To calculate the dK ’s, we may

just consider the one interval case N = 1, and find that [2, 3]

dK =
1

αKℓhK+h̄K

lim
z→∞

z2hK z̄2h̄K 〈ΦK(z, z̄)〉Rn,1
, (3.11)

with αK being a normalization coefficient in (3.6) and ℓ being the length of the interval

in (3.4).

To use the OPE of the twist operators, we have to find the quasiprimary operators

level by level. As the holomorphic and anti-holomorphic sector are decoupled and similar,

we may just focus on the ones in the holomorphic sector. These operators are listed in

appendix A. The OPE coefficients dK for these operators are calculated in appendix B.

We would like to consider the case of two short disjoint intervals on the complex plane.

We choose A = [0, ℓ]∪ [1, 1+ ℓ] with ℓ being small, and thus the cross ratio x = ℓ2 is small

too. As shown in [3], the partition function of CFTn is

TrρnA = c2nℓ
− c

3
(n− 1

n)





∑

K

αKd2Kℓ2hK

∑

m,p≥0

(−)m
(m+ p)!

m!p!
amKapKCm+p

2hK+m+p−1ℓ
m+p





2

= c2nx
− c

6
(n− 1

n)

(

∑

K

αKd2KxhKF (hK , hK ; 2hK ;x)

)2

, (3.12)

– 8 –
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with K being the summation over all holomorphic quasiprimary operators and

F (hK , hK ; 2hK ;x) being the hypergeometric function. Note that we have used the for-

mula
∑

m,p≥0

(−)m
(m+ p)!

m!p!
amKapKCm+p

2hK+m+p−1ℓ
m+p = F (hK , hK ; 2hK ; ℓ2). (3.13)

3.2 Ordinary CFT

Firstly we only consider the quasiprimary operators constructed solely by the operators in

the Virasoro Verma module. The process in straightforward but tedious,. Some interme-

diate steps in the calculation can be found in appendix C.

We obtain the Rényi mutual information

I(2)n = I(2)treen + I(2)1−loop
n + I(2)2−loop

n + I(2)3−loop
n + · · · . (3.14)

Here we use the upper symbol (2) to remind that this is the contribution from the Virasoro

Verma module. The tree part, or the so-called classical part, being proportional to the

central charge c, is

I(2)treen =
c(n− 1)(n+ 1)2x2

144n3
+

c(n− 1)(n+ 1)2x3

144n3
+

c(n− 1)(n+ 1)2
(

1309n4 − 2n2 − 11
)

x4

207360n7

+
c(n− 1)(n+ 1)2

(

589n4 − 2n2 − 11
)

x5

103680n7

+
c(n− 1)(n+ 1)2

(

805139n8 − 4244n6 − 23397n4 − 86n2 + 188
)

x6

156764160n11

+
c(n− 1)(n+ 1)2

(

244439n8 − 1724n6 − 9537n4 − 86n2 + 188
)

x7

52254720n11

+
c(n− 1)(n+ 1)2x8

1504935936000n15

(

6459666587n12 − 56285106n10 − 312586347n8 − 4722748n6

+10301973n4 + 67854n2 − 58213
)

+O(x9). (3.15)

This is just (2.4) and matches the result in [1, 27, 28]. The quantum 1-loop part, being

proportional to c0, is

I(2)1−loop
n =

(n+ 1)
(

n2 + 11
) (

3n4 + 10n2 + 227
)

x4

3628800n7

+
(n+ 1)

(

109n8 + 1495n6 + 11307n4 + 81905n2 − 8416
)

x5

59875200n9

+
(n+ 1)x6

523069747200n11

(

1444050n10 + 19112974n8 + 140565305n6 + 1000527837n4

−167731255n2 − 14142911
)

+
(n+ 1)x7

1569209241600n13

(

5631890n12 + 72352658n10 + 520073477n8 + 3649714849n6

−767668979n4 − 140870807n2 + 13778112
)

+
(n+ 1)x8

3766102179840000n15

(

16193555193n14 + 202784829113n12 + 1429840752361n10

+9916221391201n8 − 2370325526301n6 − 689741905741n4

+59604098747n2 + 161961045427
)

+O(x9) (3.16)
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which matches the result in [30] to order x8. There are also the quantum 2-loop contribu-

tions, being proportional to 1/c,

I(2)2−loop
n =

(n+ 1)
(

n2 − 4
) (

19n8 + 875n6 + 22317n4 + 505625n2 + 5691964
)

x6

70053984000n11c

+
(n+ 1)

(

n2 − 4
)

x7

326918592000n13c

(

276n10 + 12571n8 + 317643n6 + 7151253n4

+79361381n2 − 9428724
)

(3.17)

+
(n+ 1)

(

n2 − 4
)

x8

8002967132160000n15c

(

13294413n12 + 599852505n10 + 15034412216n8

+336566965090n6 + 3691373772429n4 − 744486199595n2 − 466025361058
)

+O(x9),

and the quantum 3-loop contributions, being proportional to 1/c2,

I(2)3−loop
n =

(n+ 1)(n2 − 4)(n2 − 9)x8

111152321280000n15c2
(

21n10 + 1994n8 + 105648n6 + 4785522n4

+141534331n2 + 2127620484
)

+O(x)9. (3.18)

3.3 CFT with W (2, 3) symmetry

Taking the contributions only from theW3 field into account, we get the mutual information

I(2,3)n = I(2,3)treen + I(2,3)1−loop
n + I(2,3)2−loop

n + I(2,3)3−loop
n + · · · , (3.19)

where I
(2,3)tree
n being the same as (3.15),

I(2,3)1−loop
n = · · ·+

(n+ 1)x6

1307674368000n11

(

3610816n10 + 47796776n8 + 351567243n6

+2502467423n4 − 412426559n2 + 10856301
)

+
(n+ 1)x7

3923023104000n13

(

14086574n12 + 181019636n10 + 1301627579n8

+9134819803n6 − 1856911805n4 + 60815461n2 + 4299552
)

+
(n+ 1)x8

64023737057280000n15

(

275521519443n14 + 3451880530003n12

+24353751911391n10 + 168908577430911n8 − 38355668351111n6

+1040661434169n4−560442831723n2+2551371092917
)

+O(x9), (3.20)

with the · · · being the x4, x5 parts of I
(2)1−loop
n ,

I(2,3)2−loop
n = · · ·+

(n+1)(n2−4)x8

4001483566080000cn15

(

6650397n12 + 300093675n10 + 7521887359n8

+168383511650n6 + 1847152960191n4 − 354725220325n2 − 75741834947
)

+O(x9), (3.21)

with the · · · being the x6, x7 parts of I
(2)2−loop
n , and I

(2,3)3−loop
n being the same as I

(2)3−loop
n .

Regarding the above results, several remarks are in order
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• There is no further contributions from the W -generated operators to the tree-level

result. This is consistent with the fact that there is no higher spin contribution to

the classical action in the bulk.

• The 1-loop result I
(2,3)1−loop
n (3.20) is just the summation of I

(2)1−loop
n (3.16) and

Ispin−3,1−loop
n (2.8), and is in exact match with holographic computation.

• The 2-loop and 3-loop results are vanishing for n = 2. This is in accord with the fact

that the genus-1 partition function is 1-loop exact. Correspondingly the quantum

correction to the gravitational configuration with the asymptotic boundary being

genus-1 is 1-loop exact [32].

• The 2-loop corrections are generically nonvanishing for n ≥ 3. This fact is in accord

with the fact that in gravity there exist higher loop corrections to the gravitational

configurations with the asymptotic boundary being higher genus [37].

• The 3-loop correction seems to be vanishing at n = 3. It is not clear if there is a

good reason for this fact.

3.4 CFT with W (2, 4) symmetry

Taking the contributions only from theW4 field into account, we get the mutual information

I(2,4)n = I(2,4)treen + I(2,4)1−loop
n + I(2,4)2−loop

n + I(2,4)3−loop
n + · · · , (3.22)

where I
(2,4)tree
n , I

(2,4)2−loop
n , and I

(2,4)3−loop
n being the same with I

(2)tree
n (3.15),

I
(2)2−loop
n (3.17) and I

(2)3−loop
n (3.18) respectively, but

I(2,4)1−loop
n = · · ·+

(n+ 1)x8

64023737057280000n15

(

275290459983n14 + 3447342687823n12

+24307301089071n10 + 168575843022951n8 − 40294949578091n6 (3.23)

−11722057081371n4 + 1032493037037n2 + 2876199658597
)

+O(x9).

with · · · being the x4, x5, x6 and x7 parts of I
(2)1−loop
n (3.16). The 1-loop result is just

the summation of I
(2)1−loop
n (3.16) and Ispin−4,1−loop

n (2.9), and so is consistent with the

bulk result.

3.5 CFT with W (2, 3, 4) symmetry

Taking into account of both the contributions from W3 and W4 fields, we get the mutual

information

I(2,3,4)n = I(2,3,4)treen + I(2,3,4)1−loop
n + I(2,3,4)2−loop

n + I(2,3,4)3−loop
n + · · · , (3.24)

where I
(2,3,4)tree
n , I

(2,3,4)2−loop
n , and I

(2,3,4)3−loop
n being the same with I

(2)tree
n (3.15),

I
(2,3)2−loop
n (3.21), and I

(2)3−loop
n (3.18) being just the summation of I

(2)1−loop
n (3.16),

I1−loop
n,spin−3 (2.8) and I1−loop

n,spin−4 (2.9). This is consistent with the bulk result as well.

Note that to order O(x8) we have the relation

I(2,3,4)n = I(2,3)n + I(2,4)n − I(2)n , (3.25)

but it is generally not true for higher order of x.
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4 Conclusion and discussion

In this paper we investigated the Rényi entropy of two intervals on complex plane with

small cross ratio x for 2D CFT with W symmetry. The results could be written as the

expansion of small x to order x8, and so only the W3 and W4 fields, and correspondingly the

spin-3 and spin-4 fields in the gravity side, may contribute. We firstly did the calculation in

the gravity side using the method in [27, 28, 30] and got the classical and 1-loop parts of the

holographic Rényi entropy. In the calculation we assumed that the classical configurations

are not changed by the presence of higher spin fields. Then we calculated in the CFT side

using the OPE of twist operators, and found exact match with the gravity results. Our

investigation provides a nontrivial test of HS/CFT correspondence in AdS3 beyond the

genus-1 partition function. Together with the results in [3, 30], our study strongly support

the holographic computation of Rényi entropy at classical and 1-loop level in both pure

AdS3 gravity and the higher spin AdS3 gravities.

Our study shows that there are nonvanishing 2-loop and 3-loop corrections to the

Rényi entropies Sn, n > 3. This is related to the fact that the partition function on a

higher genus Riemann surface is not 1-loop exact in dual gravity. It is certainly interesting

to check the correspondence beyond the 1-loop level. In particular, there is weak sign that

the m-loop correction with m ≥ 3 is vanishing for Sn, n = 2, 3, · · · ,m. It would be nice to

check if this is true in CFT and gravity.

In this work we have considered a general CFT with W symmetry. For a concrete

CFT, for example the minimal model that is dual to higher spin gravitational theory with

scalars in AdS3 [39–41], we have to consider the contributions from the scalars in the

theory. In this so-called Gaberdiel-Gopakumar duality, there are many light states in the

CFT which could contribute significantly to the Rényi entropies. However, it is not clear

what kind of objects in the bulk they correspond to and if such objects contribute to the

bulk computation. We leave this interesting issue to future work.

Recently there has been calculation of Rényi entropy for logarithmic CFT in [42]. The

computations in this work and [3, 42] are straightforward but quite tedious, and also they

are only limited to short interval expansion. It would be nice to find better ways to simplify

the computations in order to extend the discussions to higher levels. General calculations

beyond short interval expansion would also be desirable.

Another interesting question is about the relation between different Rényi entropies

Sn. As it is well-known that for two intervals on complex plane case S2 is the genus-1

partition function which could be computed in CFT in other ways [1], and Sn is expected

to be the genus-(n − 1) partition function of the CFT. From the works [3, 42], once the

genus-1 partition function is in match with the 1-loop bulk partition function, so do the

higher Rényi entropies Sn(n > 2) match with the bulk partition function, at least to 1-loop.

It would be great to see if or not this is true in general.

In this work, we focused on the entanglement entropy in the ground state of CFT,

without turning on the chemical potential for W charges. In [43, 44], the higher spin

entanglement entropy has been discussed from gravity side. It would be interesting to

investigate the higher spin Rényi entropies holographically or study them in CFT.
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A Counting of quasiprimary operators

In this appendix we count the quasiprimary operators that are needed in the calculation,

and get their normalization constant αK defined in (3.6). At the first step, we work

out the holomorphic quasiprimary operators constructed by the operators in the Virasoro

Verma module to level eight for an ordinary CFT and then for the CFTn. Next we find

the additional holomorphic quasiprimary operators in the presence of W fields. For the

original CFT before taking the replica, the partition function of the unit operator 1 is

trxL0 =
∞
∏

m=2

1

1− xm
= 1 + x2 + x3 + 2x4 + 2x5 + 4x6 + 4x7 + 7x8 +O(x9), (A.1)

where tr counts the number of holomorphic operators. So the number of linearly indepen-

dent holomorphic quasiprimary operators # at each level L0 is

L0 0 2 3 4 5 6 7 8 · · ·

# 1 1 0 1 0 2 0 3 · · ·

With some efforts, we could get the quasiprimary operators listed as follows.

• At level 0, it is of course the identity 1 with α1 = 1.

• At level 2, it is T with αT = c
2 .

• At level 4, it is A = (TT )− 3
10∂

2T with αA = c(5c+22)
10 .

• At level 6, they are

B = (∂T∂T )−
4

5
(T∂2T ) +

23

210
∂4T,

D = C +
93

70c+ 29
B (A.2)

with

C = (T (TT ))−
9

10
(T∂2T ) +

4

35
∂4T. (A.3)

Their normalization constants are respectively

αB =
36c(70c+ 29)

175
,
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αD =
3c(2c− 1)(5c+ 22)(7c+ 68)

4(70c+ 29)
. (A.4)

• At level 8, they are

E = (∂2T∂2T )−
10

9
(∂T∂3T ) +

10

63
(T∂4T )−

13

2268
∂6T,

H = F +
9(140c+ 83)

50(105c+ 11)
E ,

I = G +
81(35c− 51)

100(105c+ 11)
E +

12(465c− 127)

5c(210c+ 661)− 251
H, (A.5)

with

F = (T (∂T∂T ))−
4

5
(T (T∂2T ))−

1

5
(∂T∂3T ) +

47

210
(T∂4T )−

29

2520
∂6T,

G = (T (T (TT )))−
9

5
(T (T∂2T )) +

3

10
(∂T∂3T ) +

29

70
(T∂4T )−

41

1680
∂6T. (A.6)

The corresponding normalization constants are respectively

αE =
22880c(105c+ 11)

1323
,

αH =
26c(5c+ 22)(5c(210c+ 661)− 251)

125(105c+ 11)
,

αI =
3c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)

2(5c(210c+ 661)− 251)
. (A.7)

For the CFTn, we consider the partition function

trxL0 =
∞
∏

m=2

1

(1− xm)n
=1+nx2+nx3+

n(n+3)

2
x4+n(n+1)x5+

n(n+1)(n+11)

6
x6

+
n(n2+5n+2)

2
x7+

n(n+3)(n2+27n+14)

24
x8+O(x9), (A.8)

where tr counts the holomorphic operators of the CFTn. The number of linear independent

holomorphic quasiprimary operators # at each level L0 is

L0 0 1 2 3 4 5 6 7 8 · · ·

# 1 0 n 0 n(n+1)
2

n(n−1)
2

n(n+1)(n+5)
6

n(n−1)(2n+5)
6

n(n+1)(n2+17n+18)
24 · · ·

The quasiprimary operators are listed in the following table, in which ji’s are integer, taking

values between 0 and n− 1.
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L0 quasiprimary operators degeneracies #

0 1 1 1

2 Tj n n

4
Aj n n(n+1)

2Tj1Tj2 with j1 < j2
n(n−1)

2

5 Jj1j2 with j1 < j2
n(n−1)

2
n(n−1)

2

Bj n

Dj n

6 Tj1Aj2 with j1 6= j2 n(n− 1) n(n+1)(n+5)
6

Kj1j2 with j1 < j2
n(n−1)

2

Tj1Tj2Tj3 with j1 < j2 < j3
n(n−1)(n−2)

6

Lj1j2 with j1 6= j2 n(n− 1)

7
Mj1j2 with j1 < j2

n(n−1)
2 n(n−1)(2n+5)

6Tj1Jj2j3 with j1 < j2 < j3 n(n−1)(n−2)
3Nj1j2j3 with j1 < j2 < j3

Ej n

Hj n

Ij n

Tj1Bj2 with j1 6= j2 n(n− 1)

Tj1Dj2 with j1 6= j2 n(n− 1)

Aj1Aj2 with j1 < j2
n(n−1)

2

8 Oj1j2 with j1 6= j2 n(n− 1) n(n+1)(n2+17n+18)
24

Pj1j2 with j1 < j2
n(n−1)

2

Tj1Tj2Aj3 with j1 < j2, j1 6= j3 and j2 6= j3
n(n−1)(n−2)

2

Tj1Kj2j3 with j1 < j2 < j3

Qj1j2j3 with j1 < j2 < j3
n(n−1)(n−2)

2

Rj1j2j3 with j1 < j2 < j3

Tj1Tj2Tj3Tj4 with j1 < j2 < j3 < j4
n(n−1)(n−2)(n−3)

24

· · · · · · · · · · · ·

In the above table, there are several new quasiprimary operators, which could not be

written as the product of the quasiprimary operators in different replicas. At level five and

six, they are

Jj1j2 = Tj1i∂Tj2 − i∂Tj1Tj2 ,

Kj1j2 = ∂Tj1∂Tj2 −
2

5

(

Tj1∂
2Tj2 + ∂2Tj1Tj2

)

. (A.9)
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At level seven they are

Lj1j2 = Tj1i∂Aj2 − 2i∂Tj1Aj2 ,

Mj1j2 = i∂Tj1∂
2Tj2 − ∂2Tj1i∂Tj2 +

2

9

(

i∂3Tj1Tj2 − Tj1i∂
3Tj2

)

,

Nj1j2j3 = Tj1 (Tj2i∂Tj3 + i∂Tj2Tj3)− 2i∂Tj1Tj2Tj3 . (A.10)

At level eight they are

Oj1j2 = ∂Tj1∂Aj2 −
2

9
Tj1∂

2Aj2 −
4

5
∂2Tj1Aj2 ,

Pj1j2 = ∂2Tj1∂
2Tj2 −

5

9

(

∂Tj1∂
3Tj2 + ∂3Tj1∂Tj2

)

+
5

63

(

Tj1∂
4Tj2 + ∂4Tj1Tj2

)

,

Qj1j2j3 = Tj2Kj3j1 −
2

9
Tj1Kj2j3 ,

Rj1j2j3 = Tj3Kj1j2 −
2

11
(Tj1Kj2j3 + Tj2Kj3j1) . (A.11)

The normalization factors of these orthogonalized quasiprimary operators are respec-

tively

αTT =
c2

4
, αJ =2c2, αTA=

c2(5c+ 22)

20
, αK=

36c2

5
,

αTTT =
c3

8
, αL=

6c2(5c+ 22)

5
, αM=

880c2

9
,

αTJ =c3, αN =3c3, αTB=
18c2(70c+ 29)

175
,

aTD=
3c2(2c−1)(5c+22)(7c+68)

8(70c+ 29)
, (A.12)

αAA=
c2(5c+ 22)2

100
, αO=

728c2(5c+ 22)

225
,

αP =
57200c2

63
, αTTA=

c3(5c+ 22)

40
, αTK=

18c3

5
,

αQ=
154c3

45
, αR=

182c3

55
, αTTTT =

c4

16
.

For a CFT with W symmetry, we should consider additional contributions, and the

partition function is

trxL0 =
∏

s

∞
∏

m=s

1

1− xm
, (A.13)

where the tr counts the number of the holomorphic operators again, and s denotes all the

possible spins in the theory. If the theory has W (2, 3) symmetry, it is

trxL0 =
1

1− x2

∞
∏

m=3

1

(1− xm)2
= 1+x2+2x3+3x4+4x5+8x6+10x7+17x8+O(x9), (A.14)

and for CFTn it would be

trxL0 =
1

(1− x2)n

∞
∏

m=3

1

(1− xm)2n
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= 1 + nx2 + 2nx3 +
n(n+ 5)

2
x4 + 2n(n+ 1)x5 +

n(n2 + 27n+ 20)

6
x6

+ n(n2 + 7n+ 2)x7 +
n(n+ 3)(n2 + 75n+ 26)

24
x8 +O(x9). (A.15)

The numbers of independent quasiprimary operators for the CFT and the CFTn are listed

as follows.

L0 0 1 2 3 4 5 6 7 8 · · ·

CFT 1 0 1 1 1 1 4 2 7 · · ·

CFTn 1 0 n n n(n+1)
2

n(3n−1)
2

n(n2+15n+8)
6

n(5n2+15n−8)
6

n(n+1)(n2+53n+30)
24 · · ·

If the theory has W (2, 4) symmetry, it is

trxL0 =
1

(1− x2)(1− x3)

∞
∏

m=4

1

(1− xm)2
= 1+x2+x3+3x4+3x5+6x6+7x7+13x8+O(x9),

(A.16)

and for CFTn it would be

trxL0 =
1

(1− x2)n(1− x3)n

∞
∏

m=4

1

(1− xm)2n

= 1 + nx2 + nx3 +
n(n+ 5)

2
x4 + n(n+ 2)x5 +

n(n+ 1)(n+ 17)

6
x6

+
n(n2 + 9n+ 4)

2
x7 +

n(n3 + 42n2 + 191n+ 78)

24
x8 +O(x9). (A.17)

Then we can get the numbers of independent quasiprimary operators for the CFT and the

CFTn listed as follows.

L0 0 1 2 3 4 5 6 7 8 · · ·

CFT 1 0 1 0 2 0 3 1 6 · · ·

CFTn 1 0 n 0 n(n+3)
2

n(n−1)
2

n(n2+12n+5)
6

n(n+5)(2n−1)
6

n(n3+30n2+83n+30)
24 · · ·

If the theory has W (2, 3, 4) symmetry, it is

trxL0 =
1

(1−x2)(1−x3)2

∞
∏

m=4

1

(1−xm)3
=1+x2+2x3+4x4+5x5+10x6+14x7+25x8+O(x9),

(A.18)

and for CFTn it would be

trxL0 =
1

(1− x2)n(1− x3)2n

∞
∏

m=4

1

(1− xm)3n

= 1 + nx2 + 2nx3 +
n(n+ 7)

2
x4 + n(2n+ 3)x5 +

n
(

n2 + 33n+ 26
)

6
x6

+ n
(

n2 + 10n+ 3
)

x7 +
n
(

n3 + 90n2 + 395n+ 114
)

24
x8 +O(x9). (A.19)

Then the numbers of independent quasiprimary operators for the CFT and the CFTn are

listed as follows.
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L0 0 1 2 3 4 5 6 7 8 · · ·

CFT 1 0 1 1 2 1 5 4 11 · · ·

CFTn 1 0 n n n(n+3)
2

n(3n−1)
2

n(n2+21n+8)
6

n(5n2+27n−8)
6

n(n3+66n2+155n+42)
24 · · ·

There are large numbers of the quasiprimary operators from W fields. However, most

of them have vanishing coefficients dK so that they do not contribute to the OPE of the

twist operators.

For the CFT with W (2, 3) (W3) symmetry, we denote the extra holomorphic and anti-

holomorphic primary operator as W (z) = W3(z) and W̄ (z̄) = W̄3(z̄) which have conformal

weight (3, 0) and (0, 3) respectively. In this case to level eight for CFTn, the additional

holomorphic quasiprimary operators with nonvanishing coefficients dK are listed as below.

L0 quasiprimary operators degeneracies

6 Wj1Wj2 with j1 < j2
n(n−1)

2

7 Uj1j2 with j1 < j2
n(n−1)

2

Wj1Sj2 with j1 6= j2 n(n− 1)

8 Vj1j2 with j1 < j2
n(n−1)

2

Tj1Wj2Wj3 with j1 6= j2, j1 6= j3 and j2 < j3
n(n−1)(n−2)

2

· · · · · · · · ·

Here we have

S = (TW )−
3

14
∂2W,

Uj1j2 = Wj1i∂Wj2 − i∂Wj1Wj2 ,

Vj1j2 = ∂Wj1∂Wj2 −
2

7

(

Wj1∂
2Wj2 + ∂2Wj1Wj2

)

. (A.20)

As we mentioned there are actually some other quasiprimary operators, for examples

Wj at level three and Tj1Wj2 with j1 6= j2 at level five, but all of them have vanishing

coefficients dK , and so do not contribute to the OPE of twist operators. The normalization

factor of W (z) is αW = c
3 such that the normalization factors of the above quasiprimary

operators are respectively

αS =
c(7c+ 114)

42
, αWW =

c2

9
, αU =

4c2

3
,

αWS =
c2(7c+ 114)

126
, αV =

52c2

7
, αTWW =

c3

18
. (A.21)

Obviously, if we only consider the operators up to level 6, the quasiprimary operators

from W fields are somehow trivial, without mixing with the stress tensor.

For the CFT with W (2, 4) symmetry, we denote the extra holomorphic and anti-

holomorphic primary operators as W4(z) and W̄4(z̄), which has conformal weight (4, 0)

and (0, 4) respectively. In this case to level eight for CFTn, the additional holomorphic

quasiprimary operators are W4j1W4j2 with j1 < j2. We choose the normalization such that

αW4
= αW4W4

= 1. (A.22)
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For the CFT with W (2, 3, 4) (W4) symmetry, the extra holomorphic quasiprimary

operators to level eight consist of the ones from W3 field and the ones from W4 field listed

above. One may wonder if there exist the quasiprimary operators that are the mixtures of

the stress tensor, W3 and W4 fields. Such kind of operators do exist, for example W3j1W4j2

with j1 6= j2 at level seven, but they having vanishing coefficients dK and do not contribute.

B The coefficients dK

The calculation of the OPE coefficients dK for the quasiprimary operators is straightforward

but tedious [2, 3]. For brevity, we only outline the process and then give the results. Firstly

we need to determine how the holomorphic operators T (z), A(z), B(z), D(z), E(z), H(z)

and I(z) transform under the coordinate transformation z → f(z) with f(z) being a general

holomorphic function of z. We denote the Schwarz derivative as

s(z) ≡
f ′′′(z)

f ′(z)
−

3

2

(

f ′′(z)

f ′(z)

)2

, (B.1)

and for simplicity we use the shorthands

f = f(z), f ′ = f ′(z), f ′′ = f ′′(z), · · ·

s = s(z), s′ = s′(z), s′′ = s′′(z), · · · . (B.2)

The transformations of T and A are

T (z) = f ′2T (f) +
c

12
s,

A(z) = f ′4A(f) +
5c+ 22

30
s
(

f ′2T (f) +
c

24
s
)

. (B.3)

The transformation of one single operator include the homogeneous terms, which are pro-

portional to nonidentity quasiprimary operators or derivatives thereof, and the inhomoge-

neous terms which are proportional to the identity operator. For examples, the transfor-

mation of T (z) includes one homogeneous term f ′2T (f) and one inhomogeneous term c
12s,

while the transformation of A(z) includes two homogeneous terms f ′4A(f)+ 5c+22
30 f ′2sT (f)

and one inhomogeneous term c(5c+22)s2

720 . The transformation of B(z) is complicated

B(z) = f ′6B(f)−
8

5
f ′4sA(f)

−
1

1050

(

28(5c+ 22)f ′2s2 + (70c+ 29)(f ′2s′′ − 5f ′f ′′s′ + 5f ′′2s)
)

T (f)

+
70c+ 29

420
f ′2(f ′s′ − 2f ′′s)∂T (f)−

70c+ 29

1050
f ′4s∂2T (f)

−
c

50400

(

744s3 + (70c+ 29)(4ss′′ − 5s′2)
)

, (B.4)

and the transformation of D(z) is relatively easy

D(z) = f ′6D(f) +
(2c− 1)(7c+ 68)

70c+ 29
s

(

5

4
f ′4A(f) +

5c+ 22

48
s
(

f ′2T (f) +
c

36
s
)

)

. (B.5)
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In the following discussion we only need the inhomogeneous terms of the transformations

of E(z), H(z) and I(z), and explicitly we have

E(z) = f ′8E(f) + · · ·

+
c

952560

(

23452s4 + 2255s(4ss′′ − 5s′2) + (105c+ 11)(10ss(4) − 70s′s′′′ + 63s′′2)
)

,

H(z) = f ′8H(f) + · · ·

−
c(5c+ 22)

1296000(105c+ 11)
s
(

104(465c− 127)s3 + 3 (5c(210c+ 661)− 251) (4ss′′ − 5s′2)
)

,

I(z) = f ′8I(f) + · · ·+
c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)

20736(5c(210c+ 661)− 251)
s4, (B.6)

with the · · · ’s represent some homogeneous terms.

The coefficients dK for identity and quasiprmary operators at only one replica could

be calculated easily as

d1 = 1, dT =
n2 − 1

12n2
, dA =

(n2 − 1)2

288n4
, dB = −

(n2 − 1)2
(

2n2(35c+ 61)− 93
)

10368n6(70c+ 29)
,

dD =
(n2 − 1)3

10368n6
, dE =

(n2 − 1)2
(

11340n4c+ 11561n4 − 16236n2 + 5863
)

65894400n8(105c+ 11)
, (B.7)

dH = −
(n2−1)3

(

3150n2c2+
(

15960n2−6045
)

c−
(

2404n2−1651
))

539136n8(5c(210c+661)−251)
, dI =

(n2−1)4

497664n8
.

For quasiprimary operators that can be factorized as two nonidentity quasiprimary oper-

ators at two different replicas, we need the orthogonal relation of the operators. And the

final results are

dj1j2TT =
1

8n4c

1

s4j1j2
+

(n2 − 1)2

144n4
, dj1j2TA =

n2 − 1

96n6c

1

s4j1j2
+

(n2 − 1)3

3456n6
,

dj1j2TB =
5(n2 − 1)

6912n8c

1

s6j1j2
−

(n2 − 1)
(

140(n2 + 2)c+ 337n2 − 163
)

6912n8c(70c+ 29)

1

s4j1j2

−
(n2 − 1)3

(

2n2(35c+ 61)− 93
)

124416n8(70c+ 29)
, (B.8)

dj1j2TD =
(n2−1)2

2304n8c

1

s4j1j2
+
(n2 − 1)4

124416n8
, dj1j2AA =

5

128n8c(5c+22)

1

s8j1j2
+
(n2−1)2

1152n8c

1

s4j1j2
+
(n2−1)4

82944n8
,

where we have defined sj1j2 ≡ sin π(j1−j2)
n

. For quasiprimary operators that can be factorized

as three and four nonidentity quasiprimary operators at different replicas, we need the

correlation functions of three and four quasiprimary operators. The correlation functions

we need are

〈T (f1)T (f2)T (f3)〉C =
c

f2
12f

2
23f

2
13

,

〈T (f1)T (f2)A(f3)〉C =
c(5c+ 22)

10

1

f4
23f

4
13

, (B.9)

〈T (f1)T (f2)T (f3)T (f4)〉C = c

(

1

(f12f34f13f24)
2 +

1

(f13f24f14f23)
2 +

1

(f12f34f14f23)
2

)

+
c2

4

(

1

(f12f34)
4 +

1

(f13f24)
4 +

1

(f14f23)
4

)

,
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where fij ≡ fi − fj . And then we get

dj1j2j3TTT = −
1

8n6c2
1

s2j1j2s
2
j2j3

s2j3j1
+

n2 − 1

96n6c

(

1

s4j1j2
+

1

s4j2j3
+

1

s4j3j1

)

+
(n2 − 1)3

1728n6
,

dj1j2j3TTA =
1

64n8c2
1

(sj1j3sj2j3)
4
−

n2 − 1

96n8c2
1

(sj1j2sj1j3sj2j3)
2

+
(n2 − 1)2

2304n8c

(

1

s4j1j2
+

2

s4j1j3
+

2

s4j2j3

)

+
(n2 − 1)4

41472n8
, (B.10)

dj1j2j3j4TTTT =
1

16n8c3
gj1j2j3j4α +

1

64n8c2
gj1j2j3j4β −

n2 − 1

96n8c2
gj1j2j3j4γ +

(n2 − 1)2

1152n8c
gj1j2j3j4δ +

(n2 − 1)4

20736n8
,

where

gj1j2j3j4α =
1

(sj1j2sj3j4sj1j3sj2j4)
2 +

1

(sj1j3sj2j4sj1j4sj2j3)
2 +

1

(sj1j2sj3j4sj1j4sj2j3)
2 ,

gj1j2j3j4β =
1

(sj1j2sj3j4)
4 +

1

(sj1j3sj2j4)
4 +

1

(sj1j4sj2j3)
4 ,

gj1j2j3j4γ =
1

(sj1j2sj2j3sj3j1)
2 +

1

(sj1j2sj2j4sj4j1)
2 +

1

(sj1j3sj3j4sj4j1)
2 +

1

(sj2j3sj3j4sj4j2)
2 ,

gj1j2j3j4δ =
1

s4j1j2
+

1

s4j1j3
+

1

s4j1j4
+

1

s4j2j3
+

1

s4j2j4
+

1

s4j3j4
. (B.11)

There are other operators that cannot be factorized, and the coefficients dK for these

operators are

dj1j2J =
1

16n5c

cj1j2
s5j1j2

, dj1j2K =
5

128n6c

1

s6j1j2
−

n2 + 9

288n6c

1

s4j1j2
−

(n2 − 1)2

5184n4
,

dj1j2L =
n2 − 1

384n7c

cj1j2
s5j1j2

, dj1j2M =
3

256n7c

cj1j2
s7j1j2

−
4n2 + 11

1760n7c

cj1j2
s5j1j2

,

dj1j2j3TJ = −
1

64n7c2
2cj2j3sj1j2sj1j3 − s2j2j3

(sj1j2sj1j3sj2j3)
3

−
n2 − 1

384n7c

(

cj1j2
s5j1j2

−
cj1j3
s5j1j3

−
2cj2j3
s5j2j3

)

,

dj1j2j3N =
1

3

(

dj1j2j3TJ + 2dj3j1j2TJ

)

, dj1j2O =
n2 − 1

39936n8c

65− 4(2n2 + 13)s2j1j2
s6j1j2

−
(n2 − 1)3

179712n6
,

dj1j2P =
1

7321600n8c

30030− 220(41n2 + 169)s2j1j2 + 16(27n4 + 451n2 + 572)s4j1j2
s8j1j2

+
3(n2 − 1)2

915200n4
,

dj1j2j3TK = −
1

2304n8c2
14s4j2j3 + 27s2j1j2s

2
j1j3

− 8s2j2j3(s
2
j1j2

+ s2j1j3)− 8(n2 + 2)(sj1j2sj1j3sj2j3)
2

(sj1j2sj1j3sj2j3)
4

+
n2 − 1

6912n8c

(

5− 2(n2 + 2)s2j1j2
s6j1j2

+
5− 2(n2 + 2)s3j1j3

s6j1j3
+

45− 4(n2 + 9)s2j2j3
2s6j2j3

)

−
(n2 − 1)3

62208n6
,

dj1j2j3Q =
81

77

(

dj2j3j1TK −
2

9
dj1j2j3TK

)

, dj1j2j3R =
99

91

(

dj3j1j2TK −
2

11

(

dj1j2j3TK + dj2j3j1TK

)

)

. (B.12)

Here cj1j2 ≡ cos π(j1−j2)
n

.
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In the presence of W3 symmetry, the additional quasiprimary operators listed in the

table above (A.20) have the coefficients

dj1j2WW = −
3

(2n)6c

1

s6j1j2
, dj1j2U = −

3

(2n)7c

cj1j2
s7j1j2

, dj1j2WS = −
n2 − 1

(2n)8c

1

s6j1j2
, (B.13)

dj1j2V =
1

26(2n)8c

(

6(n2 + 13)

s6j1j2
−

91

s8j1j2

)

, dj1j2j3TWW =
18

(2n)8c2
1

s2j1j2s
4
j2j3

s2j3j1
−

n2 − 1

(2n)8c

1

s6j2j3
.

In the calculation we need to use the three-point function

〈T (f1)W (f2)W (f3)〉C =
c

f2
12f

2
13f

4
23

. (B.14)

In the presence of W4 symmetry we have

dj1j2W4W4
=

1

(2n)8
1

s8j1j2
. (B.15)

C Some details in subsection 3.2

It is useful to find that

αTJ

(

dj1j2j3TJ

)2
+ αN

(

dj1j2j3N

)2
=

2c3

3

(

(

dj1j2j3TJ

)2
+
(

dj2j3j1TJ

)2
+
(

dj3j1j2TJ

)2
)

=
4

(2n)14c

(

hj1j2j3331 + 2hj1j2j3322 − 12hj1j2j3222

)

−
8(n2 − 1)

3(2n)14
hj1j2j3α

+
4(n2 − 1)2c

9(2n)14
(hj1j2j3500 − hj1j2j3400 − hj1j2j3β ). (C.1)

Here we have

hj1j2j3α =
1

(sj1j2sj2j3sj3j1)
3

(

cj1j2
s5j1j2

(2s2j1j2 − s2j2j3 − s2j3j1) +
cj2j3
s5j2j3

(2s2j2j3 − s2j3j1 − s2j1j2)

+
cj3j1
s5j3j1

(2s2j3j1 − s2j1j2 − s2j2j3)

)

,

hj1j2j3β =
cj1j2cj2j3
s5j1j2s

5
j2j3

+
cj2j3cj3j1
s5j2j3s

5
j3j1

+
cj3j1cj1j2
s5j3j1s

5
j1j2

, (C.2)

and

hj1j2j3mpq =
1

s2mj1j2s
2p
j2j3

s2qj3j1
+ cyc. (C.3)

with the indexes mpq being totally symmetric and cyc. being some possible cyclic terms.

For examples, there is

hj1j2j3mmm =
1

s2mj1j2s
2m
j2j3

s2mj3j1
, (C.4)

and for m 6= p there is

hj1j2j3mmp =
1

s2mj1j2s
2m
j2j3

s2pj3j1
+

1

s2mj1j2s
2p
j2j3

s2mj3j1
+

1

s2pj1j2s
2m
j2j3

s2mj3j1
, (C.5)
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and for m 6= p, m 6= q, p 6= q there is

h
j1j2j3
mpq =

1

s2mj1j2
s
2p

j2j3
s
2q

j3j1

+
1

s2mj1j2
s
2q

j2j3
s
2p

j3j1

+
1

s
2q

j1j2
s2mj2j3

s
2p

j3j1

+
1

s
2p

j1j2
s2mj2j3

s
2q

j3j1

+
1

s
2p

j1j2
s
2q

j2j3
s2mj3j1

+
1

s
2q

j1j2
s
2p

j2j3
s2mj3j1

.

(C.6)

Another useful relation is

αTK

(

dj1j2j3TK

)2
+ αQ

(

dj1j2j3Q

)2
+ αR

(

dj1j2j3R

)2

=
163c3

455

(

11

(

(

dj1j2j3TJ

)2
+
(

dj2j3j1TJ

)2
+
(

dj3j1j2TJ

)2
)

− 4
(

dj1j2j3TJ dj2j3j1TJ + dj2j3j1TJ dj3j1j2TJ + dj3j1j2TJ dj1j2j3TJ

)

)

(C.7)

=
1

2129920n16c
I−

n2 − 1

6389760n16
II+

(n2 − 1)2c

230031360n16
III−

(n2 − 1)4c2

172523520n14
IV +

(n2 − 1)6c3

517570560n12
,

where

I = 308hj1j2j3440 +1445hj1j2j3422 −120hj1j2j3332 −504hj1j2j3431 −16(n2+2)
(

14hj1j2j3331 +11hj1j2j3322

)

+192(n2 + 2)2hj1j2j3222 ,

II = 1755hj1j2j3511 + 910hj1j2j3322 − 520hj1j2j3421 − 168(n2 + 13)hj1j2j3222 − 188(3n2 + 13)hj1j2j3411

−4(11n2 − 104)hj1j2j3321 − 56n2hj1j2j3420 + 32(n2 + 2)(3n2 + 13)hj1j2j3311 ,

III = 8775hj1j2j3600 + 3900hj1j2j3330 − 1560(n2 + 9)hj1j2j3500 − 1560(n2 + 2)hj1j2j3320 (C.8)

+48(3n4 + 26n2 + 117)hj1j2j3400 + 16(25n4 + 149n2 + 156)hj1j2j3220

+88n2(n2 − 1)hj1j2j3211 − 192n2(n2 − 1)(n2 + 2)hj1j2j3111 ,

IV = 65hj1j2j3300 − 4(3n2 + 13)hj1j2j3200 .

D One short interval on cylinder

This appendix is a byproduct of the paper. Here we compute the Rényi entropy for the

case of a short interval with length ℓ on a cylinder. We choose the spatial part of the 2D

CFT is a circle of length L. The Rényi entanglement entropy of A is known [7]

Sn =
c

6

(

1 +
1

n

)

log

(

L

πǫ
sin

πℓ

L

)

. (D.1)

Using the OPE of twist operators, the result was reproduced to order O(ℓ6/L6) in [3], and

the result in this paper allows us to calculate to order O(ℓ8/L8).

It is shown that in [3] that the Rényi entropy is

TrρnA = cnℓ
− c

6
(n− 1

n)

(

∑

K

dKℓhK 〈ΦK(0)〉L

)2

, (D.2)

with K being the summation over all the linear independent holomorphic quasiprimary

operators constructed solely by the operators in the Virasoro Verma module.
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With the transformation formulas in the previous section we could get

〈T (0)〉L =
π2c

6L2
, 〈A(0)〉L =

π4c(5c+ 22)

180L4
, 〈B(0)〉L = −

62π6c

525L6
,

〈D(0)〉L =
π6c(2c− 1)(5c+ 22)(7c+ 68)

216(70c+ 29)L6
, 〈E(0)〉L =

23452π8c

59535L8
,

〈H(0)〉L = −
13π8c(5c+ 22)(465c− 127)

10125(105c+ 11)L8
, (D.3)

〈I(0)〉L =
π8c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)

1296(5c(210c+ 661)− 251)L8
.

Then we could find the Rényi entanglement entropy

Sn = −
1

n− 1
log TrρnA

=
c

6

(

1 +
1

n

)(

log
ℓ

ǫ
−

π2ℓ2

6L2
−

π4ℓ4

180L4
−

π6ℓ6

2835L6
−

π8ℓ8

37800L8
+O

(

ℓ10

L10

))

, (D.4)

which matches (D.1) to the order of O(ℓ8/L8).

The finite temperature effect is the same with the finite length case if we substitute

L → iβ with β being the inverse temperature.

E Some useful summation formulas

In this appendix we summarize some formulas that are needed in our calculation. We

define

fm =
n−1
∑

j=1

1
(

sin πj
n

)2m . (E.1)

We have also defined hj1j2j3α , hj1j2j3β in (C.2), hj1j2j3mpq in (C.3), and gj1j2j3j4α , gj1j2j3j4β , gj1j2j3j4γ ,

gj1j2j3j4δ in (B.11).

Explicitly we need

f1 =
n2 − 1

3
, f2 =

(n2 − 1)
(

n2 + 11
)

45
, f3 =

(n2 − 1)
(

2n4 + 23n2 + 191
)

945
,

f4 =
(n2 − 1)

(

n2 + 11
) (

3n4 + 10n2 + 227
)

14175
,

f5 =
(n2 − 1)

(

2n8 + 35n6 + 321n4 + 2125n2 + 14797
)

93555
, (E.2)

f6 =
(n2 − 1)

(

1382n10 + 28682n8 + 307961n6 + 2295661n4 + 13803157n2 + 92427157
)

638512875
.

f7 =
(n2 − 1)

(

60n12 + 1442n10 + 17822n8 + 151241n6 + 997801n4 + 5636617n2 + 36740617
)

273648375
,

f8 =
(n2 − 1)

488462349375

(

10851n14 + 296451n12 + 4149467n10 + 39686267n8 + 292184513n6

+1777658113n4 + 9611679169n2 + 61430943169
)

.
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The above formulas are useful because it often appears in the calculation that

∑

0≤j1<j2≤n−1

1

s2mj1j2
=

n

2
fm,

∑

0≤j1<j2<j3≤n−1

hj1j2j3m00 =
n(n− 2)

2
fm.

There are also several summation formulas listed below.

∑

0≤j1<j2<j3≤n−1

hj1j2j3
α =

2n(n2 − 1)(n2 − 4)(n2 − 9)
(

319n6 + 13566n4 + 152271n2 + 892244
)

638512875
,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
β =

n(n2 − 1)(n2 − 4)
(

5n6 + 58n4 + 325n2 + 1052
)

467775
,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
111 =

n(n2 − 1)(n2 − 4)
(

n2 + 47
)

2835
,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
211 =

n(n2 − 1)(n2 − 4)
(

n4 + 40n2 + 679
)

14175
,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
220 =

2n(n2 − 1)(n2 − 4)
(

n2 + 11
) (

n2 + 19
)

14175
,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
320 =

2n(n2 − 1)(n2 − 4)
(

6n6 + 173n4 + 2084n2 + 12137
)

467775
,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
330 =

n(n2 − 1)(n2 − 4)

638512875

(

739n8 + 20075n6 + 355677n4

+2953625n2 + 14813884
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
311 =

n(n2 − 1)(n2 − 4)
(

3n6 + 125n4 + 1757n2 + 21155
)

467775
,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
222 =

n(n2 − 1)(n2 − 4)
(

19n8 + 875n6 + 22317n4 + 505625n2 + 5691964
)

273648375
,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
321 =

n(n2 − 1)(n2 − 4)

638512875

(

473n8 + 18745n6 + 458199n4

+6674755n2 + 65423828
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
420 =

n(n2 − 1)(n2 − 4)

638512875

(

1621n8 + 50875n6 + 630273n4

+5624825n2 + 29980406
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
411 =

n(n2 − 1)(n2 − 4)

638512875

(

404n8 + 17945n6 + 276297n4

+2703955n2 + 27241399
)

,
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∑

0≤j1<j2<j3≤n−1

hj1j2j3
421 =

n(n2 − 1)(n2 − 4)

1915538625

(

138n10 + 5819n8 + 146479n6 + 2091357n4

+22440283n2 + 193043924
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
511 =

n(n2 − 1)(n2 − 4)

1915538625

(

122n10 + 5798n8 + 100301n6 + 1060609n4

+8570077n2 + 77354293
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
322 =

n(n2 − 1)(n2 − 4)

383107725

(

6n10 + 299n8 + 8023n6 + 168477n4

+2635831n2 + 26217764
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
331 =

2n(n2 − 1)(n2 − 4)

1915538625

(

30n10 + 1229n8 + 27865n6 + 529947n4

+6100405n2 + 51401324
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
431 =

2n(n2 − 1)(n2 − 4)

488462349375

(

1477n12 + 63995n10 + 1496434n8 + 27120610n6

+367070101n4 + 3500775395n2 + 26585391988
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
332 =

4n(n2 − 1)(n2 − 4)

488462349375

(

128n12 + 7015n10 + 203101n8 + 4225095n6

+78482039n4 + 1054880390n2 + 9748602232
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
422 =

n(n2 − 1)(n2 − 4)

488462349375

(

709n12 + 37205n10 + 1040278n8 + 22228690n6

+325794217n4 + 3892862105n2 + 34949076796
)

,

∑

0≤j1<j2<j3≤n−1

hj1j2j3
440 =

2n(n2 − 1)(n2 − 4)

488462349375

(

2757n12 + 88245n10 + 1511414n8 + 20490610n6

+181728201n4 + 1105797145n2 + 4786765628
)

,

There are also the summations of four indexes.

∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4α =
n(n2 − 1)(n2 − 4)(n2 − 9)

(

n2 + 119
)

28350
,

∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4β =
n(n− 2)(n− 3)(n2 − 1)

(

n2 + 11
) (

7n3 + 13n2 + 93n+ 127
)

113400
,

∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4γ =
n(n− 3)(n2 − 1)(n2 − 4)

(

n2 + 47
)

2835
,
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∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4δ =
n(n− 2)(n− 3)(n2 − 1)

(

n2 + 11
)

180
,

∑

0≤j1<j2<j3<j4≤n−1

(

gj1j2j3j4α

)2
=

n(n2 − 1)(n2 − 4)(n2 − 9)

54273594375

(

21n10 + 1994n8 + 105648n6

+4785522n4 + 141534331n2 + 2127620484
)

,

∑

0≤j1<j2<j3<j4≤n−1

(

gj1j2j3j4β

)2

=
n(n− 2)(n− 3)(n2 − 1)

3907698795000

(

21879n13 + 45093n12 + 699510n11

+1522530n10 + 12198793n9 + 30819611n8 + 178371380n7

+647286940n6 + 2857453977n5 + 14207989899n4

+57188421110n3 + 224193314530n2 + 788902033351n

+949713901397) ,

∑

0≤j1<j2<j3<j4≤n−1

(

gj1j2j3j4γ

)2
=

n(n− 3)(n2 − 1)(n2 − 4)

1915538625

(

133n8 + 519n7 + 7682n6 + 45486n5

+292677n4+1470231n3+7950068n2+35678964n+146880640
)

,

∑

0≤j1<j2<j3<j4≤n−1

(

gj1j2j3j4δ

)2

=
n(n− 2)(n− 3)(n2 − 1)

(

n2 + 11
)

56700

(

3n4 + 23n3

+55n2 + 397n+ 962
)

,

∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4α gj1j2j3j4β =
n(n2 − 1)(n2 − 4)(n2 − 9)

57466158750

(

148n10 + 12742n8 + 399559n6

+9468311n4 + 149848193n2 + 1582095047
)

,

∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4α gj1j2j3j4γ =
2n(n2 − 1)(n2 − 4)(n2 − 9)

1915538625

(

13n8 + 1193n6 + 49371n4

+1707707n2 + 27272116
)

,

∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4α gj1j2j3j4δ =
n(n2 − 1)(n2 − 4)(n2 − 9)

638512875

(

587n6 + 57813n4 + 1175013n2

+18724987) ,

∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4β gj1j2j3j4γ =
n(n2 − 1)(n2 − 4)(n2 − 9)

(

n2 + 39
)

212837625

(

17n6 + 511n4

+8323n2 + 71789
)

,
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∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4β gj1j2j3j4δ =
n(n− 2)(n− 3)(n2 − 1)

2554051500

(

3003n9 + 10001n8 + 105060n7

+407500n6 + 2141874n5 + 7267638n4 + 28886340n3

+64096300n2 + 168447723n+ 207636161
)

,

∑

0≤j1<j2<j3<j4≤n−1

gj1j2j3j4γ gj1j2j3j4δ =
n(n− 3)(n2 − 1)(n2 − 4)

(

n2 − 3n+ 26
)

467775

(

3n4 + 14n3

+104n2 + 370n+ 1429
)

.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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