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ABSTRACT: In this paper we investigate the holographic Rényi entropy of two disjoint
intervals on complex plane with small cross ratio = for conformal field theory with W
symmetry in the ground state, which could be dual to a higher spin AdSs gravity. We
focus on the cases of W3 and W, symmetries. In order to see the nontrivial contributions
from the W fields, we calculate the Rényi entropy in the expansion of x to order z® in
both the gravity and the CFT sides. In the gravity side the classical contributions to
the entanglement entropy is still given by the Ryu-Takayanagi area formula under the
reasonable assumption, while the 1-loop quantum corrections have to take into account
of the contributions not only from massless gravitons, but also from massless higher spin
fields. In the CFT side we still use the operator product expansion of twist operators in
the small interval limit, but now we need to consider the quasiprimary fields constructed
from W fields, besides the ones from Virasoro Verma module. In the large central charge
limit, we obtain the classical, 1-loop, 2-loop, and 3-loop parts of the Rényi entropy. The
classical and 1-loop results in the gravity and the CFT sides are in exact match. This
confirms the higher spin gravity/CFT correspondence, and also supports the holographic
computation of Rényi entanglement entropy, including the quantum correction, in both the
AdSs gravity and the higher spin AdSs gravity.
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1 Introduction

In this paper we continue the study of the short interval expansion of Rényi entropy of
two-dimensional (2D) conformal field theory (CFT) initiated in [1-3]. Let us first review
the basic definition of Rényi entropy. The entanglement Rényi entropy is an important
notion of quantum systems, and it is defined as follows [4, 5]. One can divide a system into
two parts, say A and its complement B. From the density matrix p of the whole system
one may obtain the reduced density matrix of A by tracing over the degrees of freedom of
B, i.e. pg = Trpp. Then the entanglement entropy of A and B is defined as

Sa=-—Trapalogpa. (1.1)



More generally one can define the Rényi entropy of A and B as

51(4”) =— i 1 log Traps. (1.2)
The entanglement entropy and the Rényi entropy are related by S4 = lim,, 1 Sgn). More-
over one may choose two subsystems A and B which are not necessarily complementary to
each other, and define the Rényi mutual information of A and B

Kb = 50+ 55— S 03
The mutual information 11(4133 encodes the entanglement between A and B.

The standard way of computing the Rényi entropy is the replica trick [6], but it is
usually hard to operate for a general system. Some computations in 2D CFT and higher
dimensional free field theory could be found in [1, 2, 7-14]. For a CFT with a gravity
dual one may use the AdS/CFT correspondence [15-17] to do a simpler holographic com-
putation in the bulk gravity. For the pure AdS gravity, it was conjectured by Ryu and
Takayanagi that the leading contribution of entanglement entropy is captured by the area
of a minimal surface in the bulk with asymptotic boundary ending on A [18-21]. This so-
called RT area law is reminiscent of the black hole entropy, and therefore since its proposal
there have been many attempts to derive this law in the gravity [22-25]. Very recently,
the RT area law of holographic entanglement entropy has been proved in [26] by taking it
as a generalized gravitational entropy. However it is fair to say that for dimension D > 3
CF'T, it is not certain if the holographic entanglement entropy is exactly the entanglement
entropy in the field theory, as there is short of direct computations in the field theory.
Nevertheless for 2D CFT, the situation is much clearer.

In 2D CFT, due to its infinite dimensional conformal symmetries, the direct field
computation is feasible. One could insert the twist operators to impose the nontrivial
boundary conditions in applying the replica trick [7, 9]. As a result, the partition function
on a higher-genus Riemann surface could be recast into the correlators of twist fields on a
complex plane in an orbifold CFT, which arises from the Z, replica symmetry. For a 2D
CFT on complex plane the Rényi entropy for one interval with length ¢ is universal and
only depends on the central charge [7]

c 1 4
=14 =)ot 1.4
s 6<+n>°ge (1.4)

with € being the UV cutoff. For the entanglement entropy Si, it has been reproduced
by the holographic computation in [18, 19]. For the general S,,n > 1, they have been
reproduced successfully in [27] from the Euclidean action of corresponding gravitational
configurations. For multi-interval case, the correctness of RT law and its agreement with
CFT result have been proved in [27] and [28], respectively.
In AdS3/CFTy correspondence, the central charge of CFT is inversely proportional to
the bulk Newton constant [29] l
3
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(1.5)



where [ is the radius of AdS3 spacetime and GE\?;) is the coupling constant. The RT area law

actually captures the contribution proportional to c. In the large central charge limit, this
is the leading contributions in CFT. For the multi-interval cases, there are subleading con-
tributions, which could be essential in discussing the issues like mutual information. From
AdS/CFT correspondence, these subleading contributions should be counted as the quan-
tum corrections to gravitational action [1, 30, 31]. In particular, the quantum correction
to the holographic Rényi entropy has been studied in [30]. In the small interval limit with
a small cross ratio x on complex plane, the quantum 1-loop correction of graviton to the
Rényi mutual information has been calculated to order 2%. According to the AdS/CFT cor-
respondence, the graviton in the bulk corresponds to the stress tensor in the CFT side. To
account the graviton correction, it is only necessary to consider the Virasoro Verma module
in CFT. Actually from the study of quantum gravity in AdSs, it has been known that the
pure gravity partition function could be reproduced from the Virasoro Verma module [32].
In [3] by studying the OPE of twist operators at small interval limit, the Rényi mutual infor-
mation of two interval has been computed in the CFT side. The quantum 1-loop correction
of graviton to the Rényi mutual information in [30] has been confirmed to order z%. This
strongly support the holographic computation of Rényi entropy beyond the classical level.

In this paper we continue the work initiated in [3]. In this work we would like to
consider the CFT with W symmetry in its ground state. In this case, the dual gravity
could be a higher spin (HS) AdSs gravity theory [33, 34]. Therefore our investigations
may not only shed light on the holographic Rényi entropy with matter coupling, but also
allows us to understand the HS/CFT correspondence from a new angle. We focus on the
Rényi mutual information of two disjoint intervals with small cross ratio. In order to see
the contributions from W fields with conformal weights 3 and 4 clearly, we need to find the
contributions up to order #8. Using the method in [30], we calculate the quantum 1-loop
contributions of spin-3 and spin-4 fields to the Rényi mutual information of the two interval

8. On the gravity side, under the assumption the classical configurations

case to order x
are still the handlebody geometries constructed in [27], we consider the 1-loop fluctuations
around these configurations. One feature of the calculation is that the contributions of
different spin fields are additive, and so we can calculate them separately. On the CET
side, we firstly consider only the contributions from the Virasoro Verma module and verify
the results in [30] to order 8. Then we consider the extra contributions from W fields in the
CF'T side. The leading contribution of the W, field to the Rényi mutual information in the
CFT is of order 2%™. This can be got easily, and matches the bulk result. The subleading
contributions are more difficult to get. Different from the calculation in the gravity side,
in the CFT side the contributions of W fields cannot be considered separately, as they are
involved with the stress tensor. We verify that the contributions of W3 field and/or Wy field
to order z® match exactly with the gravity results as well. This shows that the holographic
prescription of computing the entanglement Rényi entropy for the ground state CET not
only applies to an ordinary CFT but also to CFTs with W symmetries.

The remaining of the paper is arranged as follows. In section 2 we calculate the classical
Rényi entropy as well as the 1-loop corrections of spin-3 and spin-4 fluctuations to order
2% in the gravity side. In section 3 we confirm these results in the CFT side using the short



interval expansion of the Rényi entropy. We end with conclusion and discussion in section 4.
Some details of the computation in section 3 are presented in the appendixes A, B, and C.
The appendix D is a byproduct of the paper and it is about the case of one short interval
on cylinder. Some useful summation formulas are collected in appendix E.

Note added. The same day this paper appeared in arXiv, there appeared another pa-
per [35] which has some overlaps with our work.

2 Holographic Rényi entropy

In this section we calculate the classical and 1-loop parts of the holographic Rényi entropy
for two intervals with small cross ratio in CFT with W symmetry. As we are considering
the entanglement entropy in the vacuum state of CF'T, we focus on the AdS3 vacuum. The
gravitational configurations are the same as the ones worked out in [27, 30]. Therefore, we
assume that the classical part coming from bulk gravitational action is invariant.! But we
have not only the massless boundary gravitons but also massless higher spin fluctuations,
all of which contribute to 1-loop quantum correction. As the massless field with higher
spin m corresponds to a pair of holomorphic and antiholomorphic operators with confor-
mal weight m, their contributions to the Rényi entropy is of order z2™. In order to read
the nontrivial information, we need to do higher order expansion of x. In this work, we
manage to work out the contributions to order z®, which allows us to discuss the higher
spin gravity to spin-4 field.

The higher spin gravity has been under active study in the past few years. For the
pure spin-3 AdSs gravity, it was proposed in [33] that its action could be written in terms
of Chern-Simons form with gauge group SL(3, R). Moreover, as its asymptotic symmetry
group has W3 symmetry, it was conjectured that the spin-3 AdSs gravity could be holo-
graphically dual to a conformal field theory with W3 symmetry but the same central charge.
More generally, the Chern-Simons gravity could be defined with other Lie groups, describ-
ing the interaction of higher spin fields with gravity. When the gauge group is SL(4, R), it
describe both the spin-4 and spin-3 fields interacting with the gravity, which is dual to a
CFT with W(2,3,4) symmetry. But one may obtain only the spin-4 field interacting with
the gravity by choosing the gauge group to be SO(5) or Sp(4) [36]. This truncated spin-4
gravity is conjectured to be dual to a CFT with W (2,4) symmetry. In all these cases, the
dual CFT has the same central charge as the one for pure AdSs gravity, so that all the
higher spin fields could be set to vanish without spoiling the underlying correspondence.
In other words, all the classical gravitational configurations in [30] are still the classical
solutions of higher spin gravity and moreover their bulk classical actions would not be
changed by the presence of higher spin fields.

2.1 The classical part

The classical Rényi entropy for a 2D CFT with large central charge could be calculated
using the method proposed in [27, 28]. It reduces to the monodromy problem of an ordi-
nary differential equation. In [30] the method was used to calculate the small cross ratio

'For more careful justification of this assumption in higher spin gravity, see [35].



expansion of the classical Rényi entropy for the two intervals case. Here we adopt the same
prescription but only give the outline without much details. One could find the details of
the calculation in [30].

We choose the subregion A = (—o0, —1] U [—y,y] U [1,+00) with y being small, and
have the cross ratio

4y
T=-—"-00, 2.1
CEmE (21)
which is small too. The classical Rényi entropy could be obtained using
08¢ cn
S 2.2
with
I 2(n2-1)%y . 2 (n2 —1)% (490 — 2n2 — 11) 43
BT TNy, 30 13505
L2 - 1)? (321108 — 17205 — 1056n* — 172n2 + 376) ¢°
8505n12
2 (n2 - 1)2 y’
2 2 (740087n'? — 4410610 — 290847n® — 78748n° + 149973n*
101362516 ¢ " " " e "

+67854n — 58213) + O(y”). (2.3)

And then we can get the classical Rényi mutual information

= D oy s
6n
Ccn—1D(n+1)%?  cln—1)(n+1)* (490" — 2n* — 11) y*
N 9n? " 810n7
N c(n —1)(n+ 1) (3211n® — 17205 — 1056n* — 172n? + 376) y°

76545011

c(n—1)(n+1)%y8
22963500115

+67854n* — 58213) + O(y'"). (2.4)

(740087n'? — 441060 — 290847n® — 78748n° + 149973n*

Obviously, when n = 1, the classical part of the mutual information in this case is vanishing,
and this matches the RT area formula [1].

2.2 The 1-loop correction

The method of calculating the 1-loop correction of the Rényi entropy was given in [30], and
it is directly related to the computation of the partition function [37, 38]. The relation is
that

1 _
S1-loop i (log Z1=1oop _ i 1og le 1°°p) . (2.5)
For the two intervals on complex plane case, we have le 9P — 1 and the second term of

the right hand side of the above equation can be omitted.



2.2.1 Graviton

The partition function depends on the matter content of the gravity as well as the spacetime
configuration. When the spacetime is the quotient of global AdSs by a Schottky group I,
the 1-loop partition function for the graviton is [38]

Z1-loop _ H H q;n (2.6)

YEP m= 2

with P being a set of representatives of the primitive conjugacy classes of I'. Using this
method, the small cross ratio x expansion of the 1-loop correction of Rényi mutual infor-
mation to order 2% has been given in [30], and it has been confirmed to order 2% from CFT
computation by considering only the contributions from the Virasoro Verma module [3].

2.2.2 Spin-3 field

In the presence of higher spin fields, the 1-loop partition function becomes [39]

AR 2.7
I 0
Here the product over s is with respect to the spins of massless fields. For s = 2 it reduces
to the graviton case, and for s > 3 it corresponds to the higher spin fields. One feature of
this formula is that the contributions of the fields with different spins to the Rényi entropy
could be separated. Therefore, the contribution from the gravitons is the same as the one
got in [30]. For the spin-3 field, the contribution to the Rényi mutual information is

[1_190p _ n f61:6 + 3 (f? + (n2 - 1)f6) $7 (28)
mSPin=3 Ty — 1\ 4096n12 4096n14
273 fs + 504(n? — 1) f7 + 2(137n* — 25002 + 113 z®
196608n
The functions f,,’s are defined in (E.1), and the explicit form of I TIL S;?gp 5 could be got easily

loop
In ,spin—3

the (n — 1) factor in the denominator is cancelled by the (n? — 1) factor in the fy,’s.

using (E.2). Note that the singular behavior in at n = 1 is superficial. Actually,

2.2.3 Spin-4 field
For the spin-4 field, the contribution is

8
rilor — S L 0@ 2.9
n,sp1n—4 n — 1 (65536”16 + (x> ( )

3 Rényi entropy in the CFT side

In this section we compute the short interval expansion of the Rényi entropy in the CFT
side, and we mainly focus on the case of two intervals on complex plane with small cross
ratio. As we are considering the CFT with W symmetry, we must take into account
quasi-primary fields constructed from the primary W operators.



3.1 OPE of twist operators

The short interval expansion of Rényi entropy has been discussed intensively in [1-3], and
here we only outline the key points.

A systematic way of computing the n-th Rényi entropy of N disjoint intervals for
a general 2D CFT on complex plane was proposed in [7]. The replica trick requires us
to compute the partition function of the CFT on the Riemann surface R, y of genus
(n — 1)(N — 1), which originates from the sewing of n copies of the complex plane with
branch cuts. Alternatively, one may work with n copies of the original CFT on a complex
plane but with nontrivial boundary conditions relating the fields of different replicas at the
branch points. Note that In the first picture there is one copy of the original CFT on R, n
which is an orbifold CFT, and in the second picture there is one copy of the complex plane
but the CFT consists of n copies of the original CFT and so will be denoted by CFT™.
In the second picture the boundary conditions could be accounted by inserting the twist
operators o(z,Z2), d(z,2) at the branch points which are the boundaries of the intervals.
The twist operators are primary operators with conformal weights

h:l_z:c(n—1>, (3.1)

with ¢ being the central charge of the original CFT.

In the first picture we denote a local operator as ¢(zj, Z;) with z; being the coordinate
of j-th copy of the plane, and in the second picture we denote a local operator as ¢;(z, z)
with ¢; being an operator of the j-th copy of the original CF'T and z being the coordinate
of the complex plane. The operators in the two pictures can be converted freely, and
sometimes we just mix the two kinds of symbols for simplicity. For example, we take

T(Zjngh)T(ij?Ejz) =1 (Z7 2)T] (Z7 2)7 J1 # Jo2, (3'2)

with the left side being an operator in the first picture, which is nonlocal, and the right
side being an operator in the second picture, which is local, but the operators are taken to
be different.

If we choose A = [21, 23] U -+ U [zan-1, 22n], we have

Trph = (0(22n, Zan )0 (22N—1,Zon—1) - - - 0(22, Z2)5 (21, Z1)) C- (3.3)
When N =1 and A = [0, /], we have
1

Trpt = (o(0, 0)5(0,0)) ¢ = el 6 (7)), (3.4)

with ¢, being a constant related to the normalization of the twist operators. Then the

Rényi entropy for one interval could be found [7]

c 1 J4

with € being the UV cutoff.



We denote the linearly independent quasiprimary operators in CFT™ as Pk (z, z) with
the conformal wights hx and hy. Moreover we orthogonalize these operators as

OKLOK
(z — w)2hx (2 — w)2hx
The product of quasiprimary operators in each replica forms a quasiprimary operator of
CFT™,

<(I)K<Zv Z)QL(U% U_]))C =

(3.6)

n—1
(z.2) = [] ¢, (2. 2). (3.7)
j=0

In this case
n—1 n—1 n—1
K:{k'j}, aKg = Hakj, hK:thj, hK:thj- (3.8)
7=0 7=0 7=0

We should bear in mind that not all of the quasiprimary operators can be written in this
form [1, 3].
When the intervals are short, at each interval we have the OPE of the twist operators
in CFT"
A\~ at a’, 1 _
0(2,2)5(0,0) = co Y _drx Yy K 9" P (0,0), (3.9)

m! rl z2h—hx—mz2h—hx—r
m,r>0

with the summation K being over all the independent quasiprimary operators of CFT™.

Here
m T
m o_ ChK-i-m—l _r ChK-H”—l 3.10
aK:icm y aK:iCTL 5 ( . )
2hi+m—1 2h+r—1
I'(z+1)

with the binomial coefficient being C¥ = INCES N E=IE

just consider the one interval case N = 1, and find that [2, 3]

To calculate the dx’s, we may

1
A = gy Jim 2 Oz, D), (3.11)

with ag being a normalization coefficient in (3.6) and ¢ being the length of the interval
n (3.4).

To use the OPE of the twist operators, we have to find the quasiprimary operators
level by level. As the holomorphic and anti-holomorphic sector are decoupled and similar,
we may just focus on the ones in the holomorphic sector. These operators are listed in
appendix A. The OPE coefficients dy for these operators are calculated in appendix B.

We would like to consider the case of two short disjoint intervals on the complex plane.
We choose A = [0, /] U[1,1+¢] with £ being small, and thus the cross ratio z = ¢2 is small
too. As shown in [3], the partition function of CFT™ is

2 )—¢(n-1 2 2h (m + p)! +
Trpz = Cng 3(” n) ZO&KCZKE K Z (-)m m‘p' K p C;T;LKZZ‘y-m—l-p 1£m+p
m,p>0

2
=2z 6(n ) (ZaKd "8 F(hg, hic; 2hc; )) , (3.12)



with K being the summation over all holomorphic quasiprimary operators and
F(hg,hg;2hg;x) being the hypergeometric function. Note that we have used the for-
mula

mm+p)! m .
> ) (mw)%aicghi;imw& = Py, hi: 2hi: 03). (3.13)

m,p>0

3.2 Ordinary CFT

Firstly we only consider the quasiprimary operators constructed solely by the operators in
the Virasoro Verma module. The process in straightforward but tedious,. Some interme-
diate steps in the calculation can be found in appendix C.

We obtain the Rényi mutual information

17(12) _ L(f)tree + [7(12)171001) + [7(12)271001) + [7(12)37100p 4 (314)

Here we use the upper symbol (2) to remind that this is the contribution from the Virasoro
Verma module. The tree part, or the so-called classical part, being proportional to the
central charge c, is

[@tree _ c(n—1)(n+1)%2% c(n—1)(n+1)%2> N c(n —1)(n+1)% (1309n* — 2n? — 11) 2*
" 144n3 144n3 207360n"

c(n —1)(n+1)% (589n* — 2n? — 11) 2°

N 103680n7
c(n —1)(n+1)% (805139n® — 4244n° — 23397n* — 86n? + 188) z°

+ 156764160011
c(n —1)(n+1)% (244439n® — 1724n° — 9537n* — 86n? + 188) &7

N 5225472001

c(n—1)(n+1)%a8
1504935936000n15
+10301973n* + 67854n” — 58213) + O(z”). (3.15)

(6459666587n'* — 56285106n'0 — 312586347n® — 4722748n°

This is just (2.4) and matches the result in [1, 27, 28]. The quantum 1-loop part, being
proportional to °, is

n+ 1) (n? +11) (3n* + 10n? + 227) z*

1(2)17100p _ (

3628800n7

(n+ 1) (109n® + 149505 + 11307n* + 8190512 — 8416) z°

* 59875200n9

;o nt D" (1444050n"° + 19112974n® + 140565305n° + 1000527837n*
5230697472000 11

—167731255n% — 14142911)

I ks Do’ (5631890n'% + 72352658n'° 4 520073477n® + 3649714849n°
1569209241600 13

—767668979n* — 140870807n* + 13778112)

+ (n + L)a? (16193555193n'* + 202784829113n'? + 1429840752361n'°
3766102179840000n15

+9916221391201n% — 2370325526301n° — 689741905741n*

+59604098747n° + 161961045427) + O(z”) (3.16)



which matches the result in [30] to order #8. There are also the quantum 2-loop contribu-
tions, being proportional to 1/¢,

(n+1) (n® —4) (1908 + 875n° + 22317n* + 5056251 + 5691964) 6

I£L2)27loop _
70053984000n!1c

(n+1) (n? —4) 2"
3269185920003 ¢
+79361381n> — 9428724) (3.17)
(n+1) (n? —4)a8
8002967132160000n15¢
+336566965090n° + 3691373772429n" — 7444861995951 — 466025361058) + O(z”),

(276n'° + 12571n® + 317643n° + 7151253n*

(13294413n"* 4 59985250510 + 15034412216n°

and the quantum 3-loop contributions, being proportional to 1/c?,

_ +1)(n? — 4)(n? — 9)28
1(2)3 loop — (n 21 10 1994 8 1 4 6 4 29 4
S 1111523212300007.15 2 ( n 4+ 1994n° + 105648n° + 4785522n

+141534331n* + 2127620484) + O(z)". (3.18)

3.3 CFT with W (2, 3) symmetry

Taking the contributions only from the Wj field into account, we get the mutual information
I7(l2,3) _ IT(LQ,?:)tree + 1722’3)1_10013 + IT(LQ,3)2—loop + I7s2,3)3—loop e (319)

where I,s2’3)tree being the same as (3.15),
(n+1)x®
1307674363000n11
+2502467423n* — 4124265590 + 10856301)
(n+ 1)z”
3923023104000n13
+9134819803n° — 1856911805n* + 6081546107 + 4299552)
(n+1)2®
64023737057280000n15
+24353751911391n° 4 168908577430911n° — 38355668351111n°

+1040661434169n* —560442831723n% +2551371092917) +O(z”), (3.20)

[(23)1-loop _ (36108161 + 47796776n° + 351567243n"

+ (14086574n'? + 181019636n'" + 1301627579n°

+ (275521519443n"* + 3451880530003n '

with the --- being the 2%, z° parts of I7(12)171°°p

Y

1 2 —4 8
[(@2:3)2-loop ., (D" D27 665030712 1 30009367500 + 752188735903

4001483566080000¢n
+168383511650n° 4 1847152960191n* — 354725220325n2 — 75741834947)
with the - - - being the %, 27 parts of IT(L2)2_IOOP, and I\>3)3 1P being the same as {P3toor,

Regarding the above results, several remarks are in order

,10,



e There is no further contributions from the W-generated operators to the tree-level
result. This is consistent with the fact that there is no higher spin contribution to
the classical action in the bulk.

e The 1-loop result I\ 71ooP (3.20) is just the summation of p{P1teep (3.16) and
[5pin=317100P (9 Q) “and is in exact match with holographic computation.

e The 2-loop and 3-loop results are vanishing for n = 2. This is in accord with the fact
that the genus-1 partition function is 1-loop exact. Correspondingly the quantum
correction to the gravitational configuration with the asymptotic boundary being
genus-1 is 1-loop exact [32].

e The 2-loop corrections are generically nonvanishing for n > 3. This fact is in accord
with the fact that in gravity there exist higher loop corrections to the gravitational
configurations with the asymptotic boundary being higher genus [37].

e The 3-loop correction seems to be vanishing at n = 3. It is not clear if there is a
good reason for this fact.

3.4 CFT with W(2,4) symmetry

Taking the contributions only from the Wy field into account, we get the mutual information
I’r(L2,4) — 17(LZ,4)tree + 1’51274)1—10013 + 17(L2,4)2—100p + [5]}2,4)3-100]) R , (322)

where 17(12’4)“66, 17(12’4)2_1001), and 17(12’4)3_1001) being the same with I,(f)tree (3.15),

p{p2loer (3.17) and (B3 teop (3.18) respectively, but

(n+1)2®
64023737057280000n15
424307301089071n'° + 168575843022951n° — 4029494957809175 (3.23)

—11722057081371n" + 1032493037037n° 4 2876199658597) + O(2”).

[@41-loop _ 4 (275290459983n ' + 3447342687823n '

with --- being the 2%, 2% 2% and 27 parts of 17(12)1_10013 (3.16). The 1-loop result is just
the summation of I3 7° (3.16) and ISP 171 (2.9) and so is consistent with the

bulk result.

3.5 CFT with W (2,3,4) symmetry

Taking into account of both the contributions from W3 and Wy fields, we get the mutual

information
1(234) = [(234)tree | 7(2,3,0)1-loop | J(2,3,4)2—loop  J(2,3,4)3~loop 4 .. (3.24)
where I£2’3’4)tree, I7(12’3’4)27100p, and I§L2’3’4)37100p being the same with ng)tree (3.15),

(2,3)2—loop (2)3—loop . . . (2)1—loop
n . 5 . . R
I (3.21), and I, (3.18) being just the summation of I (3.16)
—loop 1—loop . . .
It (2.8) and I (2.9). This is consistent with the bulk result as well.

n,spin—3 n,spin—4a
Note that to order O(2®) we have the relation
1234 = [(23) 4 124 _ 1) (3.25)

but it is generally not true for higher order of x.
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4 Conclusion and discussion

In this paper we investigated the Rényi entropy of two intervals on complex plane with
small cross ratio x for 2D CFT with W symmetry. The results could be written as the
expansion of small  to order 2%, and so only the W3 and W, fields, and correspondingly the
spin-3 and spin-4 fields in the gravity side, may contribute. We firstly did the calculation in
the gravity side using the method in [27, 28, 30] and got the classical and 1-loop parts of the
holographic Rényi entropy. In the calculation we assumed that the classical configurations
are not changed by the presence of higher spin fields. Then we calculated in the CFT side
using the OPE of twist operators, and found exact match with the gravity results. Our
investigation provides a nontrivial test of HS/CFT correspondence in AdSs beyond the
genus-1 partition function. Together with the results in [3, 30], our study strongly support
the holographic computation of Rényi entropy at classical and 1-loop level in both pure
AdSs gravity and the higher spin AdSs gravities.

Our study shows that there are nonvanishing 2-loop and 3-loop corrections to the
Rényi entropies S,,n > 3. This is related to the fact that the partition function on a
higher genus Riemann surface is not 1-loop exact in dual gravity. It is certainly interesting
to check the correspondence beyond the 1-loop level. In particular, there is weak sign that
the m-loop correction with m > 3 is vanishing for S,,,n = 2,3,--- ,m. It would be nice to
check if this is true in CF'T and gravity.

In this work we have considered a general CFT with W symmetry. For a concrete
CFT, for example the minimal model that is dual to higher spin gravitational theory with
scalars in AdSs [39-41], we have to consider the contributions from the scalars in the
theory. In this so-called Gaberdiel-Gopakumar duality, there are many light states in the
CF'T which could contribute significantly to the Rényi entropies. However, it is not clear
what kind of objects in the bulk they correspond to and if such objects contribute to the
bulk computation. We leave this interesting issue to future work.

Recently there has been calculation of Rényi entropy for logarithmic CFT in [42]. The
computations in this work and [3, 42] are straightforward but quite tedious, and also they
are only limited to short interval expansion. It would be nice to find better ways to simplify
the computations in order to extend the discussions to higher levels. General calculations
beyond short interval expansion would also be desirable.

Another interesting question is about the relation between different Rényi entropies
Sp. As it is well-known that for two intervals on complex plane case S is the genus-1
partition function which could be computed in CFT in other ways [1], and S,, is expected
to be the genus-(n — 1) partition function of the CFT. From the works [3, 42], once the
genus-1 partition function is in match with the 1-loop bulk partition function, so do the
higher Rényi entropies Sy, (n > 2) match with the bulk partition function, at least to 1-loop.
It would be great to see if or not this is true in general.

In this work, we focused on the entanglement entropy in the ground state of CF'T,
without turning on the chemical potential for W charges. In [43, 44], the higher spin
entanglement entropy has been discussed from gravity side. It would be interesting to
investigate the higher spin Rényi entropies holographically or study them in CFT.
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A Counting of quasiprimary operators

In this appendix we count the quasiprimary operators that are needed in the calculation,
and get their normalization constant o defined in (3.6). At the first step, we work
out the holomorphic quasiprimary operators constructed by the operators in the Virasoro
Verma module to level eight for an ordinary CFT and then for the C'FT". Next we find
the additional holomorphic quasiprimary operators in the presence of W fields. For the
original CF'T before taking the replica, the partition function of the unit operator 1 is
|
tralo = H T 1+ 22 + 2 4+ 22% + 205 + 425 + 427 + 72% + O(2?), (A.1)

m=2

where tr counts the number of holomorphic operators. So the number of linearly indepen-
dent holomorphic quasiprimary operators # at each level Ly is

Lolo|2|3]4|5|6[7]8
#11]1]ol1]o|2]0]3

With some efforts, we could get the quasiprimary operators listed as follows.
e At level 0, it is of course the identity 1 with o = 1.

o At level 2, it is T' with ar = 3.

o At level 4,itis A= (TT) — %32T with a4 = 0(561-522)_

e At level 6, they are

4 23
= (8TIT) — =(TO*T) + —*T
B = (0TdT) 5(8 )+21Oa ,
93
D= = A2
C+70c+298 (A-2)
with
C=(T(TT)) - g(TaQT) + Loy (A.3)
B 10 35 '

Their normalization constants are respectively

~36¢(70c 4 29)
5= 175 ’
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3c¢(2¢ — 1)(5e + 22)(7c + 68)

= . A4
ar 4(70¢ + 29) (A.4)
e At level 8, they are
10 10 13
£ = (0*TO*T) — —(0TT) + —(TO*T) — —-0°T
( )= ( )+ 53 )~ 59650 T
9(140c¢ + 83)
=F+ _—=
7 + 50(105¢ + 11)
81(35¢ — 51) 12(465¢ — 127)
7= E A5
G+ 100(105¢ + 11) 5¢(210¢ + 661) — 251H’ (A.5)
with
4 1 47 29
= (T(ATOT)) — —(T(TIT)) — —(OTI*T) + ——(TI'T) — ——°T
9 3 29 41
= (T(T(TT))) — —(T(TOT)) + —(dTT) + —(TI*'T) — ——3°T. (A.
G = (T(T(TT))) - £ (T(TO°T)) + ~(OTPT) + = (TO'T) — - 0°T (A.6)
The corresponding normalization constants are respectively
~22880¢(105¢ + 11)
ae= 1323 ’
s — 26¢(5e + 22)(5¢(210¢ + 661) — 251)
" 125(105¢ + 11) ’
3c¢(2¢ — 1)(3c+ 46)(5¢ + 3)(5e + 22)(7c + 68)
ar = . (A.7)
2(5¢(210¢ + 661) — 251)
For the C'F'IT™, we consider the partition function
i 1 3 1 11
tralo = ﬂ2 T :1+nx2+na:3+n(n2+ )$4+n(n+l)$5+n(n+ >6(n+ ) 8

2 2
. n(n +25n+2)m7+n(n+3)(n22—27n+14)m8+0(x9), (A8)

where tr counts the holomorphic operators of the CFT™. The number of linear independent

holomorphic quasiprimary operators # at each level Lg is

Lo

4

5

6

8

#

n(n+1)

n(n—1)

n(n+1)(n+5)

n(n+1)(n>+17n+18)

2

2

6

24

The quasiprimary operators are listed in the following table, in which j;’s are integer, taking

values between 0 and n — 1.
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Lo quasiprimary operators degeneracies #
0 1 : :
2 T, - -
4 Aj n n(nt1)
15, Tj, with j1 < j2 ”("2*1) 2
o Tjijo With j1 < j2 n(n=T) 2]
B;
D; -
6 T, Aj, with j1 # jo n(n—1) M
KCjj, with j1 < ja (n2—1)
T}, T, T}, with j1 < ja < js n(n—16)(n—2)
Lj,j, with ji # jo n(n—1)
’ Mo WU JL < J2 - n(n—1)(2n+5)
T, Jjpjs with g1 < g2 < j3 n(n—1)(n—2) 6
N’j1j2j3 with j1 < j2 <3 3
E; n
H;
Z;
15, Bj, with ji # ja n(n—1)
T3, D, with ji # js - 1)
Aj Aj, with j1 < jo n(n2—1)
8 Ojj, with j1 # ja n(n—1) ”(n+1)(n222-17n+18)
Pj1jo with ji < jo n(n2—1)
15, Tj, Aj, with ji < ja, j1 # j3 and jo # js W
T, Kjyjs with j1 < j2 < js
Qijrjags With j1 < j2 < J3 W
Rjijags With j1 < ja < j3
15,15, 15,1, with ji < j2 < j3 < ja n(n_l)(gZQ)(”_?’)

In the above table, there are several new quasiprimary operators, which could not be
written as the product of the quasiprimary operators in different replicas. At level five and
six, they are

~7j1j2 = Tj1iaTj2 - Z.aleTjw
2
]lejé = aleasz - 5 (Tj182T]'2 + a2Tj1Tj2) : (A,Q)
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At level seven they are
L, = Tj,10A;, — 2i0T; Aj,,
) ) 2, o
Mgy = ZBTJEGQTJQ - 62TJ’1Z(C)TJ'2 + 9 (Zaglesz - leladez) )
-N-j1j2j3 = le (Tjﬂ‘aTj:a + iaTJéTjs) - 2iaTj1Tj2Tj3' (A.l())
At level eight they are
2 4
Oj1j2 - ale aAjz - §le 82-'43'2 - gaszlAjza
5 5
Pj1j2 = GQTJ&aQTJ’z 9 (8Tj163sz + 83leasz) + 63 (Tj164Tj2 + 84lesz) )

2
Qj1j2j3 = TjQstjl - §TJ1KJ

273
2
Rijijogs = Tjs Kjrjp — 11 (leszj?s + TJ'2KJ'3]'1) : (A'll)
The normalization factors of these orthogonalized quasiprimary operators are respec-
tively
c? 0.2 *(5c + 22) 36¢2
arr=— ag=2c arp=——""- ax=——
TT 4’ J ) TA 20 ) K 5 )
o 6c2(5¢c + 22) 880c?
(81 = — oyr=———: (0% =
TTrT R ) L 5 ) M 9 ’
18¢%(70c + 29
arg = 37 Oéj\[:363, aTB:(1,75>7
3c?(2c—1)(5c+22)(7c+68)
= A12
e 8(70¢c + 29) ’ (A.12)
c2(5c+22)2 728¢%(5¢ + 22)
a = a e
A4 100 © 225
57200c? A(5¢ + 22) 18¢3
ap= Q@ == arg=——
P 63 ) TTA 40 ’ TK 5 ’
154¢3 182¢3 ct
ag= aR = Q =—.
Q 15 R 55 TTTT = 16

For a CFT with W symmetry, we should consider additional contributions, and the

trato = H ﬁ ﬁ, (A.13)

s Mm=s

partition function is

where the tr counts the number of the holomorphic operators again, and s denotes all the
possible spins in the theory. If the theory has W (2,3) symmetry, it is

R 1
tralo = 11 = 1+2? 4223432 +42° + 825+ 102" +17284+-0(2?), (A.14)
1—a? 12 (1 — gm)?

and for CFT™ it would be

[e.9]

1 1
tralo =
(1 _ x2)n mH3 (1 o xm)Qn
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+n(n?® +Tn+2)z"

:1+nx2+2nx3+

n(n+5)

_l’_

zt + 2n(n + 1)zd +
n(n + 3)(n? 4+ 75n + 26) 8

n(n? +27n +20) 4
x

24
The numbers of independent quasiprimary operators for the CF'T and the CFT™ are listed

6

+ O(z?).

as follows.
Lo |0]|1]2|3]| 4 5 6 7 8
CFT |1 1|1 1 4 2 7
n n(n+1 n(3n—1 n(n“+15n+8 n 5n2+15n78 n(n+1 n2+53n+30
CFT" | 1 n | n | 20D | 0G0l | aG7Ends) | nGnTln=] | ki )

If the theory has W(2,4) symmetry, it is

traplo = = 1+22+ 23+ 32 + 325 + 6254+ 72" +1328 4+ O (2° ,
(1—22)( 1—3;3 Tl_[4 1—am)? (@)
(A.16)

and for CFT™ it would be

o0
tralo =
(1—2z?)n 1—x3 ”nl__l4(1—xm
5 1 17
=14 nz? +na’ + n(n;)x‘l—i—n(n+2)x5 + nin + )6(n+ )x6
21 9n+4 344202 +191n 4+ 78

n(n +2n+ )$7+n(n + n21— n+ )m8+0($9). (A17)

Then we can get the numbers of independent quasiprimary operators for the CFT and the
CFT™ listed as follows.

Lo 011213 4 5 6 7 8
CFT [1]0]1]0 2 0 3 1 6
CFT" 11o0lnlo n(n2+3) n(n2—1) 'n(7z,2+é2n+5) n(n+5)6(2n—1) n(n3+30n224+83n,+30)

If the theory has W (2,3,4) symmetry, it is

1 1
trato = e H T 5 = 14274220 +42" +507+102°+ 142" 4+252° + O (),
x
(A.18)
and for CFT™ it would be
1 > 1
tra’o =
rr (1 _ x2)n<1 _ x3)2n 7»,]1:[4 (1 _ xm)fﬂn
7 2 4 33n + 26
:1+na:2+2n:c3+n(n;)x‘l—i-n@n—k?))xs—i-n(n 6n )3:6

n (n® +90n? 4 395n + 114) ¢
24 v
Then the numbers of independent quasiprimary operators for the CF'T and the CFT™ are

+n (n®+10n+3) 2" + + O(a).

(A.19)

listed as follows.
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Ly o(112|3| 4 5 6 7 8

CFT |1 /0]1]1 2 1 5 4 11
n n(n+3) | n(3n—1) | n(n?+21n+8) | n(G5n°4+27n—8) | n(n°+66n>+155n+42)
CFT™ |1]|0|n|n 5 5 5 3 51

There are large numbers of the quasiprimary operators from W fields. However, most
of them have vanishing coefficients dx so that they do not contribute to the OPE of the
twist operators.

For the CFT with W(2,3) (W3) symmetry, we denote the extra holomorphic and anti-
holomorphic primary operator as W (z) = W3(z) and W (z) = W3(2) which have conformal
weight (3,0) and (0,3) respectively. In this case to level eight for CFT™, the additional
holomorphic quasiprimary operators with nonvanishing coefficients di are listed as below.

Lo quasiprimary operators degeneracies
6 W;, W;, with ji < j n(n1)
7 U, ;, with jy < ja wesl)
W;i Sj, with ji 7 Jja n(n —1)
8 Vi, with ji < ja nnol)
T, W, Wi, with j1 # jo, j1 # j3 and j2 < j3 n(n%)(n—m

Here we have
3
S =(TW) — ﬁa2W,
uj1j2 == WJ128W]2 — ZaW]1W]2,

2
? (leazwjz + 82Wj1 sz) : (A'QO)

As we mentioned there are actually some other quasiprimary operators, for examples

Vi, = OW;,0W;, —

W; at level three and Tj W;, with ji # jo at level five, but all of them have vanishing
coeflicients dx, and so do not contribute to the OPE of twist operators. The normalization
factor of W (z) is ay = § such that the normalization factors of the above quasiprimary

operators are respectively

e — CTe+114) N ¢ N _4e
S = 742 ) WW — 9’ Uu — 3
c(7c+ 114) 52¢? e
_ _ 20 =_. A21
aws 126 ) ay 7 ) ATWW 18 ( )

Obviously, if we only consider the operators up to level 6, the quasiprimary operators
from W fields are somehow trivial, without mixing with the stress tensor.

For the CFT with W (2,4) symmetry, we denote the extra holomorphic and anti-
holomorphic primary operators as Wy(z) and Wy(Z), which has conformal weight (4,0)
and (0,4) respectively. In this case to level eight for CFT", the additional holomorphic
quasiprimary operators are Wy;, Wy;, with ji < jo. We choose the normalization such that

ow, = aw,w, = 1. (A.22)
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For the CFT with W(2,3,4) (W4) symmetry, the extra holomorphic quasiprimary
operators to level eight consist of the ones from W3 field and the ones from Wy field listed
above. One may wonder if there exist the quasiprimary operators that are the mixtures of
the stress tensor, W3 and W, fields. Such kind of operators do exist, for example W3;, Wy;,
with j1 # jo at level seven, but they having vanishing coefficients dx and do not contribute.

B The coefficients dg

The calculation of the OPE coefficients d for the quasiprimary operators is straightforward
but tedious [2, 3]. For brevity, we only outline the process and then give the results. Firstly
we need to determine how the holomorphic operators T'(z), A(z), B(z), D(z), £(2), H(z)
and Z(z) transform under the coordinate transformation z — f(z) with f(z) being a general
holomorphic function of z. We denote the Schwarz derivative as

oy I 8 (f”(Z))Q, B

-z 2\ [f(7)
and for simplicity we use the shorthands
f=1(), =12, 1= 1"2),
s =s(z), s =5(2), " =5"(2), cee (B.2)

The transformations of 7" and A are

T(z) = [PT(f) + 135,
A) = fHA) + 22 (1T + ops) (B.3)

The transformation of one single operator include the homogeneous terms, which are pro-
portional to nonidentity quasiprimary operators or derivatives thereof, and the inhomoge-
neous terms which are proportional to the identity operator. For examples, the transfor-
mation of 7'(z) includes one homogeneous term f?T(f) and one inhomogeneous term s,
while the transformation of A(z) includes two homogeneous terms f™A(f)+ 25222 f25T( f)

and one inhomogeneous term %. The transformation of B(z) is complicated
8
B(z) = f°B(f) - "5 A(f)
1
~ 1050 (28(5c + 22) f?s* + (70c + 29) (f*s” — 5f' f"s' + 5f"s)) T(f)
70¢+29 .9, ., p 70c+29 4 o
—_— -2 oI (f) — ———f"s0°T
o TR < 2 S)OT () — S 0P ()
- m (7445% + (T0c + 29) (455" — 552)) , (B.4)

and the transformation of D(z) is relatively easy

D) = £o() + I (S + L2 (17100 4 50) ) (B9
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In the following discussion we only need the inhomogeneous terms of the transformations
of £(z), H(z) and Z(z), and explicitly we have
E(z) = [PE(f) + -
+ 553560 (2345234 + 22555(4s5" — 55'%) + (105¢ 4 11)(10s5s™) — 705's"” + 633”2)) ,
H(z) = FPH() 4

3 c(be +22)
1296000(105¢ + 11)

, ¢(2¢ —1)(3c + 46)(5c + 3)(5c + 22)(7c + 68)
) = 1"T() + ot 20736(5¢(210¢ + 661) — 251) #, (B-6)

5 (104(465¢ — 127)s” + 3 (5¢(210c 4 661) — 251) (4ss” — 55™%))

with the ---’s represent some homogeneous terms.
The coefficients dx for identity and quasiprmary operators at only one replica could
be calculated easily as

Q=1 dp— n®—1 - (n? —1)? ds — — (n* —1)% (2n?(35¢ + 61) — 93)
’ 12n2 "’ 288nt ' 10368n5(70c + 29) ’
iy — (n? —1)3 _ (n? — 1)% (11340n*c + 11561n* — 16236n> + 5863) B.7)
1036806 ° ¢ 65894400n3(105¢ + 11) ’ ‘
o (n?—1)? (3150n%c+ (15960n* —6045) c— (2404n* —1651)) _ (n?-1)t
" 53913618 (5¢(210c+661) —251) © T 49766408

For quasiprimary operators that can be factorized as two nonidentity quasiprimary oper-
ators at two different replicas, we need the orthogonal relation of the operators. And the
final results are

1 1 (n? —1)2 n?-1 1 (n? —1)3

d%"lzj"z - 1 %"1,112 = 4

4 4 6 6

8ne Siiis 144n 96n°c Siis 3456n
s 5(n?—-1) 1 (n? — 1) (140(n® + 2)c + 337n% — 163) 1
B = -
6912n8¢ 5.?1.7‘2 6912n8¢(70c¢ + 29) S?ljz
(n?—-1)3 (2n2(35c +61) — 93) (B.S)
124416n8(70c + 29) ’ )

@z — (n*=1)* 1 (@ -1* 5 1 (n*=1)% 1 (n?-1)*

2304nSc st 124416n%" A4 128n8¢(5c+22)

1 s
o 1152n8¢c sj ;,  82944n8

8
Sj1ja

where we have defined s, j, = sin w For quasiprimary operators that can be factorized
as three and four nonidentity quasiprimary operators at different replicas, we need the
correlation functions of three and four quasiprimary operators. The correlation functions

we need are

(T(fl)T(f2)T(f3)>C = m7
Ce(Be+22) 1
(T(f)T(R)Afs))e = —; L (B.9)
1 1 1
TATET )T (fa)i = € <(f12f34f13f24)2 " (f13foaf1af23)” " (f12f34f14f23)2>

+c2< 1 N 1 N 1 )
4 \(frzfa)*  (fiafon)t  (frafoz)*/’
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where f;; = f; — f;. And then we get

1 1 n2—1( 1 1 1 (n? —1)3
AR = — + + + +
6.2 o2 2 2 6 4 4 4 6 °
8nbc 551725 ajsSTair 96n°¢c N Siyis Sisi 1728n
dj1j2j3 _ 1 1 _ n®—1 1
A 64n8c? (sj1j3sj2j3)4 96n8c? (3j1j23j1j35j2j3)2
(n? —1)2 1 2 2 (n? — 1)
+ + + + (B.10)
8 4 4 4 8
2304n8c N Siis s 41472n
2 2 2 2 4
dIrd2dsds gj1j2j3j4 1 gj1j2j3j4 - 1 J1jzjsis 4 (n*—1) J1J2J374 (n” —1)
TTTT 16n8c37* 64n8c27P 96n8c2 77 1152n8¢ 70 2073618 ’
where
J1j2J3ja — 1 1 1
Ja 7 T 7 T 2
(8j14287sjaSingsSinga)”  (8j1jsSinjaSirjaSings)”  (SirjaSisjaSiriaSiajs)
J1j2J3j4 1 + 1 1
9p _(SHS..)4 ($51535i050) " (S51708i0is) "
J1J2°7374 J1J3°72J4 J1J4°7273
J1j2J374 — 1 1 1 1
9y = 5 T 7 T 7 T 2
(841725523573i1) " (8j1g2SiajaSian ). (Sj1jsSiajaSian)  (SjajsSisjaSisja)
s 1 1 1 1 1 1
J1J27334 __
95 R R s S S (B.11)
Ji1J2 J1J3 J1J4 J273 J2Ja J3J]4a

There are other operators that cannot be factorized, and the coefficients dx for these
operators are

g L G ogne_ 5 L n?49 1 (n2-1)7
J 16ndcs? = & 128n6c 8 . 288nbe st | 5184n4 ’
1J2 JiJ2 J1J2
iz _ n® —1 ¢, it — 3 ¢y An® +1l¢y,
- 5 ? - 7 5 )
384n7¢ 52 i, 256n7¢c st i, 1760n7¢c 57 s
2
giizis _ _ 1 2245 SiniaSinds ~ Sings M= 1 [ Ciga  Cings  2Chjs
7 6417 (8417254145 Sjajs)” 38dnTe \ s 5, 80 S0
2 2
giizis _ L (dj1j2j3 n 2dj3j1j2) iz — n?—1 654020 +13)s3 ;  (n®—1)°
N 3\ 1 TT)r 7O T 39936nc s 17971206
e _ 1 30030 — 220(41n? + 169)s? ;, + 16(27n* + 451n% + 572)s% . 3(n2 — 1)2
P T 732160005 it 9152001+
Qirdzds — 1 143?2]3 + 275?1128?1j3 - 88?2]'3 (S§1j2 + S?lj:}) — 8(n2 + 2)(8j1j23j1]'33j2j3)2
K 2304n8c2 (5j1j25j1j33j2j3)4
N n?—1 (5-2(n+2)s3 N 5—2(n* +2)s3 ;. N 45 — 4(n® +9)s7 ;.
6912n%c S.?lj? S?lj?» 25?2j3
(n* = 1)
62208n6 ’
ivga SL a2 s ivia 99 [ i 2 i1 ad o
d]thJs — ﬁ (d%zlés] _ 9d%“I]C2J3> , dQRhJs — ﬁ (d%“slej _ ﬁ (d%’%zjs + d%gljcah)) . (B.IQ)
Here cj, j, = cos (i1 =2) 17:3'2).
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In the presence of W3 symmetry, the

additional quasiprimary operators listed in the

table above (A.20) have the coefficients
» 3 1 i 3 ¢ i n?—-1 1
F AL , Iz — J1j2’ J1J2 , (B.13)
W (2n)b¢ s?m ~(2n)7c S ws (2n)8¢ 8?1]‘2
U (6(n26+ 15) _ o1 ) gy — 18 . 41 . n?— 1 1
) 2
26(271)80 Sj152 Sj1ga (Qn) € 8515255275 S (2n) J2J3
In the calculation we need to use the three-point function
c
(T(FPOW(RIW(fs))e = a1 (B.14)
fiafisfas
In the presence of W4 symmetry we have
1 1
d{/VmW = (B.15)
8 8
o (2n) Sj152

C Some details in subsection 3.2

It is useful to find that

N N2
ary <d%1lg7233> Fay (dj\lf3213> _

<(d1132]3 2_|_ (d1233]1>2_|_ (dgﬁ}lh)Q)

2
_ 4 (hjmzjs | opii2is 12h]“2“> - 8(” 1) piizis
(2n)14 331 322 222 3(2n)
4(n? —1)%c » L
J17273 J1]2]3 J17273
W(hmo —hy — hg ™). (C.1)
Here we have
s 1 cj Cj
J1J2J3 — Jij2 2 2 2 J2J3 2 2 2
ha - (SA G G )3 ] (2 Sj12 — Sjajs 8]3]1) + $0 (2 Sjods — Sisi 8]1.72)
J172 572735 j351 8512 o3
+CJ3]1(22 S22 )
85 ]5]1 J1J2 J273 )
Jaj1
hj1j2j3 _ Gj1j2C%ags + Cj2j3Cjzj1 Cjzj1Cj1j2 (C 2)
b0 g2 . g9 g2 g0 ’
J1J2 " J273 J2J3 "J3J1 J3J1 "J1)2
and )
Jij2js
hips® = 52 + cyc. (C.3)

S

G172 53238 jar
with the indexes mpq being totally symmetric and cyc. being some possible cyclic terms.

For examples, there is

1

J1j2J3 —
hmmm To2m 2m 2m (04)
J17277273° 371
and for m # p there is
h]1J2J3 — 1 1 1 (C_5)
mmp 2m SQm S2p 2m 52P 2m 2p  2m 2m ’

J1J2°j2J3 " 33j1

12 35243 Sis i1 J1d2 3523 Sz
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and for m # p, m # q, p # q there is

hi3p3 = . + ! + ! + ! + : + !
mea 2m 2P 20 2m 29 2P 29 gam 2P 2P gam G20 2P G294 gam 29 g2p  gam
J1J2 3233 "J3J1 J1J2 3233 "J3J1 J1J2 3233 "J3J1 J1J2 7233 "J13J1 J1J2 " J233 "J13J1 J1J2 ~J233 "J3J1

Another useful relation is
N2 N2 N2
ar (") + ag (d47°) + ar (@)

163¢” grizis\% | ( giedsin\? . ( gisindz)?
= g (1 (o) () (a7

A (P P ) )

1 2_1 2_12 2_142 2_163
_ ;" s (n )c _(n )e v (n )°c ’
2129920n16¢”  6389760n16 230031360n16 172523520n14 517570560n12

where
I = 308hJ{27 + 14457427 — 120R3527 — 504RJ5P% — 16(n* +2) (14h§yfj3 + 11h§12g2j3)
+192(n” + 2)*h352,
IT = 1755h1%2% + 91015278 — 520RI5P7 — 168(n? + 13)hiy2"* — 188(3n® + 13) A4
(110 — 0K — 56n2 A + 32(n? + 2)(3n? + 13,
ITT = 8775hj5" + 3900h5557° — 1560(n” 4 9)hLi"* — 1560(n” 4 2) 55" (C.8)
+48(3n* + 26n* + 117) 357 + 16(25n" 4 149n” + 156) Al
+88n°(n? — 13" —192n%(n* — 1)(n” + 2)R{1P7,
IV = 65h3527% — A(3n* + 13)h"°.

D One short interval on cylinder

This appendix is a byproduct of the paper. Here we compute the Rényi entropy for the
case of a short interval with length ¢ on a cylinder. We choose the spatial part of the 2D
CFT is a circle of length L. The Rényi entanglement entropy of A is known [7]

c 1 L . «t
Sp = 6 (1 + n) log <7re sin L> . (D.1)

Using the OPE of twist operators, the result was reproduced to order O(¢6/L%) in [3], and
the result in this paper allows us to calculate to order O(¢3/L?).
It is shown that in [3] that the Rényi entropy is

2
Trp = ¢, 06 x) (Z dKEhK<<I>K(O)>L> , (D.2)

K

with K being the summation over all the linear independent holomorphic quasiprimary
operators constructed solely by the operators in the Virasoro Verma module.
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With the transformation formulas in the previous section we could get

7TZC 7T4C & 7'('66
o= Ao =T (BO) = —ore
_ 70¢(2¢ — 1)(5e + 22)(Tc + 68) 234527%¢
(DO))r = 216(70¢ + 29) LS ’ (€O = So5a515
_ 1378¢(5c + 22)(465¢ — 127)
RO =~ 10125(105¢ + 11)L8 (D:3)
71'86 Cc — C C C &
(0, — ™20 = DBe + 46)(5e £ 3)(5¢ + 22)(Te + 68)

1296(5¢(210¢ + 661) — 251) L8

Then we could find the Rényi entanglement entropy

1
Sp = T log Trp'y

1 Y 2£2 454 656 8€8 glU
S 1+ — logf—w S — - +0|—=5]), (D4)
6 n e 6L> 180L* 2835L6  37800L® Lo
which matches (D.1) to the order of O(¢8/L?).
The finite temperature effect is the same with the finite length case if we substitute

L — ip with 8 being the inverse temperature.

E Some useful summation formulas

In this appendix we summarize some formulas that are needed in our calculation. We
define

—_

e
1
j=1 (sin ﬂ)
n
We have also defined h&lej?’, hglj”?’ in (C.2), hﬁ%%f]jg’ in (C.3), and gg}hjg’j“, g%mj?’j“, g%ljgj?’j“,
gyt in (B11).
Explicitly we need

n?—1 (n? —1) (n® +11) (n? —1) (2n* + 23n? + 191)
fi= 3 f2= 15 , f3= 045 )
(n? — 1) (n? + 11) (3n* 4 10n? + 227)
fa= 14175 ’
(n? — 1) (2n® + 35n° + 321n* + 21251 + 14797)
fs = ; (E.2)
93555
(n? — 1) (1382n'% + 28682n° + 307961n° + 2295661n* + 13803157n? + 92427157)
fo= 638512875 '
(n? — 1) (60n'2 + 1442n'° + 1782208 + 151241n° + 997801n* + 5636617n? + 36740617)
fr= 273648375 ’
2
fs = W (10851n'* + 296451n'? + 4149467n'% + 3968626 7n° + 292184513n°

+1777658113n* + 96116791691 + 61430943169) .
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The above formulas are useful because it often appears in the calculation that

1
Z 827 = gfma

0<j1<ja<n—1 "J1j2

n(n — 2
S -ty

.~ 2
0<j1<g2<js<n—1
There are also several summation formulas listed below.
Z ivisis _ 2n(n? — 1)(n? — 4)(n? — 9) (31905 + 13566n* + 152271n? + 892244)
« 638512875 ’

0<j1<j2<jz<n—1

Z B1dzds — n(n2 B 1)(77’2 - 4) (57716 + 58n* 4 32502 + 1052)
L 467775 ,

0<j1<j2<jz<n—1

n(n? —1)(n* — 4) (n? 4 47)

Z hjljzjs _
H 2835 ’
0<j1<j2<js<n—1
Y R = n(n? —1)(n? — 4) (n* + 40n? + 679)
At 14175 ’

0<j1<j2<js<n—1
Z hj1j2j3 _ Qn(n2 - 1)(n2 - 4) (n2 + 11) (TL2 + 19)
220 14175 ’

0<j1<j2<js<n—1

> piviads _ 2n(n” = 1)(n® — 4) (6n° + 173n* 4 2084n? + 12137)
20 467775 ’

0<j1<j2<jz<n—1

inia  m(n?—1)(n?—4)
QL1273 — 8 9 6 4
E 330 638512375 (739n° + 20075n° 4 355677n

0<j1<j2<js<n—1

+2953625n + 14813884) ,

Z pirisds _ n(n? — 1)(n? — 4) (3n5 + 125n* + 1757n? + 21155)
st 467775 ’

0<j1<j2<jz<n—1

Z priais _ n(n? — 1)(n? — 4) (19n® + 875n° + 22317n* + 50562512 + 5691964)
222 273648375 ’

0<j1<j2<jz<n—1

inis  m(n? —1)(n? —4)
hILI273 — 4 8 1874 6 4581 4
2 521 G3g518Ts (473N +18745n° + 458199n

0<j1<j2<jz<n—1

+6674755n + 65423828) ,

P—1(n*-4)
piviads _ 1621n® + 50875n° + 630273n*
> 120 63512875 (16217 +50875n” + "

0<j1<j2<jz<n—1

+5624825n + 29980406) ,

inia  m(n?—1)(n? —4)
3 piiads _ (404n® + 17945n° + 276297n*
0<j1<j2<js<n—1 638512875

+2703955n2 + 27241399) ,
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iaie _ nln? = 1(n? —4)
s _ TUR 138010 + 5819n° + 14647915 + 2091357n
> 131 ToTs53s625 (1380 4 B819n7 4 " !

0<j1<j2<jz<n—1

+22440283n° + 193043924 ,

oo n(n? —1)(n?—4)
hﬂl]2j3 — 122 10 8 1 1 6 1 4
E 511 1915538625 ( n 4+ 5798n° + 100301n" + 10606091

0<j1<j2<js<n—1

+8570077n” + 77354293 ,

o 2= 1)(n? —4)
pirdais _ 6110 + 299n® + 802315 + 168477n*
> 322 Ssai07Tas (O 20907 4 8023n° + "

0<j1<j2<jz<n—1

+2635831n2 + 26217764) ,

oo 2n(n? —1)(n? —4)
Z piieds — (30n' + 1229n® + 27865n° + 529947n*
0 fen 1915538625

+6100405n” + 51401324) ,

i 2n(n? —1)(n? —4)
BILI2IE — 147702 4+ 63995110 + 14964340 + 27120610n°
2. 431 ISsiozsdozs (VAT 463995070 4 e "

0<j1<j2<jz<n—1

+367070101n* + 350077539512 + 26585391988) ,

o dn(n? —1)(n? —4)
pILizis — 128n'2 + 701510 4 2031010 + 4225095n°
> 832 IS8i6oad0aTs 128 70150+ e "

0<j1<j2<jz<n—1

+78482039n" + 10548803900 + 9748602232) ,

L n(nQ _ 1)(’17,2 o 4)
higs” = 12 4 3720500 + 1040278n® + 22228690n°
2 422 158162310575 (7090 + 3720507 4 1040278n" + 22228690n

0<j1<j2<js<n—1
+325794217n" + 389286210517 + 34949076796) ,
2n(n? —1)(n? — 4)

pirdzds _ 2757n'? 4 8824510 + 1511414n + 20490610n°
> 440 Is8I6a3d0nTs (20T ner e "

0<j1<j2<jz<n—1

+181728201n" + 1105797145n° + 4786765628) ,

There are also the summations of four indexes.

Z gj1j2j3j4 _ n(n2 - 1)(n2 - 4)(77‘2 - 9) (n2 + 119)
“ 28350 ’

0<j1<j2<j3<ja<n—1

3 ivjagads M —=2)(n = 3)(n* — 1) (n® + 11) (7Tn® + 13n° 4 93n + 127)
98 B 113400 ’

0<j1<j2<j3<ja<n—1

Z J1j2jsia — n(n - 3)(77’2 - 1)(n2 - 4) (n2 + 47)
g” 2835 ,

0<j1<j2<js<ja<n—1
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n(n—2)(n —3)(n* - 1) (n? + 11)

Z ggljzjsjzx _ 7
0<j1 <jz<js<ja<n—1 180
R 2 _ 1 2 _ 4 2
Z (gg}]zjsu)Q _ n(n 54)2(%5943?7(577/ 9) (217110 + 199408 + 10564815

0<j1<j2<j3<ja<n—1

+4785522n" + 141534331n” 4 2127620484) ,

a2 n(n—2)(n—3)(n?—1)
J120804 ) — 21879n'3 + 45093n'2 + 6995100
> (gﬂ ) 3907608795000\ et et "

0<j1<j2<j3<ja<n—1

+1522530n' + 12198793n° + 30819611n° 4 178371380n"
+647286940n° + 2857453977n° + 1420798989904
+57188421110n° + 2241933145301 + 788902033351n

+949713901397) ,

2 2
J1j2J37a 2 — n(n — 3)(7’L — 1)(’11 — 4) 1 8 1 7 ) 6 454 5
> (2 ) 015538025 (133n° + 51907 + 7682n° + 454861

0<j1<j2<js<ja<n—1

+292677n* +1470231n> +7950068n> + 356789647 +146880640)

iiei\2 n(n—=2)(n=3)(n* —1) (n®+11) 4 3
J1J727374 —
> (95 ) = 26700 (3n* 4 23n
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> glpaeiada gldzeis — (148n' + 12742n° + 399559n
0t T e 57466158750

+9468311n* + 14984819302 + 1582095047) ,
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J1j2J3ja J1j2jsja n(n - 2)(" - 3) (n2 - 1) 9 8 7
E 93 Js 9551051500 (3003n + 10001n° 4+ 105060n
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+407500n°% + 2141874n° 4 7267638n* + 28886340n°
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