Duncan and Mack-Crane Res Math Sci(2016)3:1 H
DOI 10.1186/s40687-015-0050-9 @ ResearCh In . .
the Mathematical Sciences

a SpringerOpen Journal

RESEARCH Open Access

Derived equivalences of K3 surfaces @
and twined elliptic genera

John F.R. Duncan'" and Sander Mack-Crane?

"Correspondence:
john.duncan@emory.edu Abstract

' Department of Mathemati : ; : n et ;
epartment of atnermatics We use the unique canonically twisted module over a certain distinguished super
and Computer Science, Emory

University, Atlanta, GA 30322, vertex operator algebra—the moonshine module for Conway’s group—to attach a
USA weak Jacobi form of weight zero and index one to any symplectic derived equivalence
Full list of author information is R i, . . . .
available at the end of the article of a projective complex K3 surface that fixes a stability condition in the distinguished
space identified by Bridgeland. According to work of Huybrechts, following
Gaberdiel-Hohenegger-Volpato, any such derived equivalence determines a
conjugacy class in Conway’s group, the automorphism group of the Leech lattice.
Conway's group acts naturally on the module we consider. In physics, the data of a
projective complex K3 surface together with a suitable stability condition determines a
supersymmetric non-linear sigma model, and supersymmetry-preserving
automorphisms of such an object may be used to define twinings of the K3 elliptic
genus. Our construction recovers the K3 sigma model twining genera precisely in all
available examples. In particular, the identity symmetry recovers the usual K3 elliptic
genus, and this signals a connection to Mathieu moonshine. A generalization of our
construction recovers a number of Jacobi forms arising in umbral moonshine. We
demonstrate a concrete connection to supersymmetric non-linear K3 sigma models by
establishing an isomorphism between the twisted module we consider and the vector
space underlying a particular sigma model attached to a certain distinguished K3
surface.
Mathematics Subject Classification: 11F50, 14F05, 14J28, 17B69, 20C34, 20C35,
58J26

Contents

1 Background . . . . . ... ...
1.1 Monstrous moonshine . . . . . . . . . . . e e
1.2 K3surfacesand Jacobiforms . .. .. .. ... ... ... ...
1.3 Sigmamodels . . . . .. .. L
1.4 Mathieumoonshine . . . . . . . . . .
1.5 Umbralmoonshine. . . . . . . . ... . .. .. e
1.6 Organization . . . ... ... ... . ... e
Lattices . . . . . . . o e e e e e e e e e
Modular forms . . . . . . .. e e e
Derived equivalences . . . . . . .. ...

[S2BT =N OL I \O)

Vertexalgebra . . . . . . . ...
6 The Clifford module construction . . . . . . . . . . . . it

© 2016 Duncan and Mack-Crane. This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any

L]
@ SP rlnger medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40687-015-0050-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Duncan and Mack-Crane Res Math Sci(2016)3:1 Page 2 of 47

7 Liftingtothespingroup . . . . ... ... ... L L
8 The Conway moonshinemodule . . . .. ... ... ... ... ... ... .. .....
9 Twininggenera . . . . . . . . . . e
10 Umbral moonshine . . . ... .. ... .. e
11 Sigmamodels . . . . . . ... e
Appendix A: Computations . . . . . . . . ..o e e e e e e e
Appendix B: Coincidences . . . . . . . . . . . e
References . . . . . .. . . o i

1 Background

The main result of this paper is a construction which attaches weak Jacobi forms to
suitably defined autoequivalences of the bounded derived category of coherent sheaves
on a complex projective K3 surface.

The origins of our method extend back to the monstrous moonshine phenomenon,
initiated by the observations of McKay and Thompson [101,102], Conway—Norton [29],
and Queen [95]. The more recent Mathieu moonshine observation of Eguchi—Ooguri—
Tachikawa [51], and its extension [18,19,25] to Niemeier lattice root systems is also closely
related.

Our results also have physical significance. As we explain presently, they suggest that a
certain distinguished super vertex operator algebra is a universal object for supersymmet-
ric non-linear K3 sigma models. This represents a new role for vertex algebra in physics:
rather than serving as the “chiral half” of a particular, holomorphically factorizable super
conformal field theory, the super vertex operator algebra in question is, evidently, simul-
taneously related to a diverse family of super conformal field theories.

1.1 Monstrous moonshine
To explain the connection to monstrous moonshine, recall that an isomorphism of Rie-
mann surfaces

Ty :T\H > C (1.1)

is attached to each conjugacy class [g] in the monster group M by the work [29] of
Conway—Norton. Here C:=CuU {00} ~ P! denotes the Riemann sphere, we set

H:=HUQU {oo}, (1.2)

for H = {r € C|3(r) > 0}, and I'y is a discrete subgroup of SL3(R) that is commensurable
with the modular group SLy(Z). Actually, I’y always lies between some I'g(N) and its
normalizer in SLy(R) [cf. Sect. 3 for I'g(N) and its normalizer], and the subgroup of

11
upper-triangular matrices in Iy is generated by :I:( 0 1) for all g € M. Further, T, maps

the I'g-orbit containing co € Hto oo € C. So T, (restricted to H) admits a Fourier series

expansion

Tt = > colmg” (13)

n>—1

for some cy(n) € C, where g = e>™i7 (we choose a square root of —1 in C and denote it i).
Moreover, c;(—1) = 1and ¢;(0) = 0 for all g € ML
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Forg = etheidentity in M we have I', = SL2(Z), so T,(t) is almost the classical complex
elliptic j-invariant,
T.(r) = j(r) — 744
= ¢! + 196,884 + 21,493,7604> + 864,299,970° + 20,245,856,2564* + - - -
(1.4)

McKay’s original moonshine observation is that 196,884 = 1 + 196,883, where 196,883 is
the dimension of the first non-trivial irreducible representation of M. Thompson extended
this [102] and posited the existence of a graded infinite-dimensional M-module

Vi=— 6}9 Vﬁ, (1.5)

n>—1

such that J(t) := j(r) — 744 is the generating function of the dimensions of its homo-
geneous subspaces. The T, of Conway—Norton [29] are explicit predictions for what the
graded traces of elements ¢ € M on V' should be

To(t)= > (trvnq g) e (1.6)

n>—1

The M-module V* was constructed concretely by Frenkel-Lepowsky—Meurman [62—
64]. The identities (1.6) were established for all ¢ € M by Borcherds [10].

We refer to [40] for a recent review of moonshine, including a much fuller description
of the above developments, and many more references.

The most obvious connection between moonshine and this article starts with the mul-
tiplicative moonshine observation of Conway—Norton (cf. §9 of [29]), considered in detail
by Queen [95], which attaches analogues of the T of (1.1) to elements of the Conway
group Cog, a twofold cover of the sporadic simple group Co;.

The Conway group may be realized explicitly as the automorphism group of the Leech
lattice A,

Cog = Aut(A). (1.7)
We have A ®7 C ~ C?* so Cog comes equipped with a 24-dimensional representation

over C (cf. Sect. 2 for more on the Cog and A). Choose g € Cog and let €1, . . ., 24 be the
associated eigenvalues. Queen confirmed [95] (cf. also [81]) that

24
ty(7) = g ! H H (1 - siqzn_l) (1.8)

n>0i=1
defines an isomorphism of Riemann surfaces Fg\ﬁ — G, asin (1.1), for some discrete
group I'g < SLy(R), for any g € Coy.
Note that, in contrast to Ty, the constant term in the Fourier expansion of #; is — g,
where

Xg = Zsi, (1.9)
i
and this value is generally non-vanishing. Define T}, for g € Coo, by setting
T5(r) = t(t/2) + xg =4~ + 0 (¢'?). (1.10)
Inour earlier work [43], we obtained the Conway group analogues of the results of Frenkel—

Lepowsky—Meurman and Borcherds on monstrous moonshine mentioned above, con-
structing a graded infinite-dimensional Cop-module

V= D Vi (1.11)

n>—1
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and showing that
Ty(t) = Z (trvﬁ2 g) q"? (1.12)
n>—1
for g € Coo.

More than this, and in direct analogy with V%, the Coo-module V** comes equipped
with a distinguished super vertex operator algebra structure (cf. Sect. 5 for a recap on
vertex algebra, and Sect. 8 for the construction and characterization of V*7).

The reader familiar with vertex algebra will no doubt also be aware of the modularity
results on trace functions attached to vertex operator algebras (cf. [35,90,111]) and super
vertex operator algebras (cf. [38,103,104]). The results of [35], for example, go a long way
to explaining why the right-hand side of (1.6) should define a holomorphic function on
H that is invariant for some congruence subgroup of SLy(Z). Interestingly, there is as
yet no conceptual understanding of why (1.6) should actually satisfy the much stronger
condition of defining an isomorphism as in (1.1), but see [47], or §6 of the review [40], for
a conjectural proposal to establish a theory that would achieve this.

1.2 K3 surfaces and Jacobi forms

In this article, we use the unique (up to equivalence) canonically twisted V**-module to
attach a Jacobi form ¢, [cf. (9.10)] to a suitable derived autoequivalence g of a complex
projective K3 surface X. More precisely, we prove the following result in Sect. 9.

Theorem (9.5) Let X be a projective complex K3 surface and let o be a stability condition
in Bridgeland’s space. If g is a symplectic autoequivalence of the derived category of coherent
sheaves on X that preserves o, then ¢g is a weak Jacobi form of weight 0, index 1, and some
level.

Jacobi forms (cf. [52] or Sect. 3) are 2-variable analogues of modular forms, admitting
transformation formulas under a group of the form SLy(Z) x Z?2 (or a finite index subgroup
thereof), that are modeled on those of the classical Jacobi theta functions ©%;(z, z) [cf. (3.14)].
Jacobi forms also appear as Fourier coefficients of Siegel modular forms (cf. [53]). Roughly,
aJacobi form has level if it is required to transform only under some congruence subgroup
I' < SLy(Z), and the term weak refers to certain growth conditions at the cusps of .

See Sect. 4 for a brief review of K3 surfaces, their symplectic derived autoequivalences,
and stability conditions, and see Sect. 5 for the notion of canonically twisted module over
a super vertex operator algebra.

Note that the appearance of Jacobi forms in vertex algebra goes back to the work of Kac—
Peterson [79] (cf. also [78]) on basic representations of affine Lie algebras. (In particular,
it actually predates Borcherds’ introduction of the notion of vertex algebra in [9]). More
general results were established recently in [82], by applying earlier work [89] of Miyamoto.
Cf. also [36]. Vertex algebraic constructions were used to attach Jacobi forms to conjugacy
classes in the sporadic simple group of Rudvalis in [45,46].

What is the meaning of the functions ¢, of Theorem 9.5? One answer to this question
is furnished by physics. More specifically, Theorem 9.5 can be interpreted as a state-
ment about supersymmetric non-linear sigma models on K3 surfaces. For as explained by
Huybrechts in [75], the analyses of [2,4,91] (cf. [68] for a concise account) suggest the con-
jecture that the pairs (X, o) with X and o as in Theorem 9.5 are in natural correspondence
with the supersymmetric non-linear sigma models on complex projective K3 surfaces.
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1.3 Sigma models

Witten introduced [83,108] a construction which attaches a weak Jacobi form for SLy(Z)
to any supersymmetric non-linear sigma model, called the elliptic genus of the model in
question. It turns out [cf. (9.28)] that ¢, is exactly the K3 elliptic genus when g = e is the
identity autoequivalence (in particular, both ¢, and the K3 elliptic genus are independent
of the choices of X and o).

Generalizing this, the analysis of [68] suggests that we can expect to obtain a Jacobi
form with level, called a twined elliptic genus, from any supersymmetry-preserving auto-
morphism of a supersymmetric non-linear sigma model. In terms of the pairs (X, o), such
automorphisms should correspond to symplectic autoequivalences that preserve o. Thus,
it is natural to compare the ¢, to twined elliptic genera of supersymmetric non-linear K3
sigma models.

Unfortunately, it is generally a difficult matter to compute twined K3 elliptic gen-
era, for the Hilbert spaces attached to supersymmetric non-linear K3 sigma models are
only known in a few special cases. However, it has been shown recently by Gaberdiel—
Hohenegger—Volpato [68] (cf. also [75]) that any group of supersymmetry-preserving
automorphisms of such a model can be embedded in the Conway group Cog (actually,
Coog here can be replaced by Co;, but it seems to be more natural to regard Cog as the
operative group). More specifically (and subject to some assumptions about the moduli
space of K3 sigma models), the groups of supersymmetry-preserving automorphisms of
K3 sigma models are exactly the subgroups of Cog that pointwise fix a 4-dimensional
subspace of A ®z R, according to [68].

Thus, there is hope that a suitably defined Cog-module may be used to recover all the
twined K3 elliptic genera, bypassing the explicit construction of super conformal field
theories attached to K3 sigma models. The present work furnishes strong evidence that
this is indeed the case, and that Vtsf, is precisely the Cop-module to consider. Indeed, about
half of the conjugacy classes in Cog that fix a 4-space in A ®y R appear in the explicit
computations of [68,69,106], and we find precise agreement with the ¢, defined via Vtsvuv,
in every case.

This leads us to the following conjecture, indicating one precise sense in which V*% may
serve as a universal object for K3 sigma models.

Conjecture (9.6) The twined elliptic genus attached to any supersymmetry-preserving
automorphism of a supersymmetric non-linear K3 sigma model coincides with ¢g for some
g € Coy fixing a 4-space in A @z R.

It will be interesting to see if V*% cannot ultimately shed light on more subtle aspects of
K3 sigma models, beyond their twined elliptic genera.

It is at first surprising that the central charge of V** is twice that of the super conformal
field theories attached to K3 sigma models, i.e., 12 rather than 6. In Sect. 11, we give an
explanation for this discrepancy by demonstrating an isomorphism of Virasoro modules
between V% and the Neveu—Schwarz sector of the super conformal field theory attached to
a particular, distinguished K3 sigma model, which has been considered earlier in [65,107].
See Proposition 11.1. Note that we naturally obtain a Virasoro module structure of central
charge 12 on the sigma model by taking the diagonal copy of the Virasoro algebra, within
the two commuting copies that act on left- and right-movers, respectively.
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For concreteness, we have chosen to formulate our main results in terms of derived
categories of coherent sheaves, and their stability conditions, rather than sigma models.
We refer the reader to [3,12,39] for introductory expositions of the deep connection
between these notions.

1.4 Mathieu moonshine

Itisastriking fact that the K3 elliptic genus is involved in another, more recently discovered
moonshine phenomenon, which is, at first glance, seemingly unrelated to the monster.
Namely, it was observed by Eguchi—Ooguri—Tachikawa [51] that if the K3 elliptic genus
Zx3 = @, is written in the form

1-91 (7:: 2)2 (2) 7}1(7:: 2)2
— s tHY (1) ————,
()3 n(r)3
where 7 is the Dedekind eta function [cf. (3.5)], ¢1 is the usual Jacobi theta function [cf.

(3.14)], and p denotes the Appell-Lerch sum

Zx3(t, 2) = 24u(t, 2) (1.13)

s01/2 n, n(n+1)/2
W 2) = —— > (i (1.14)
01(r, 2) =~ 1—yq"
2mit

where g = e and y = e¥™, then ¢'/8H@ (1) is a power series in g with integer

coefficients,

HP (1) = —247V/8 4 9047/% + 4624"%/% + 154043/
+ 4554418 + 11592438 + ..., (1.15)

and the coefficient of each non-polar term appearing in (1.15) is twice the dimension of
an irreducible representation of the largest sporadic simple group of Mathieu, My4 (the
meaning of the superscript ? will be elucidated presently).

Inspired by the monstrous antecedent, it is natural to conjecture the existence of a
graded infinite-dimensional Mj4-module

Ko =@, (1.16)

n>0

such that H?(r) = —24~1/8 + > 0 dim(lv(r(i)l/s)q”_l/g, and investigate the series

(2) o, —1/8 n—1/8
Hg" (7)== —2q + an (trk;?)l/s g) q (1.17)

for g € May.

The work of Cheng [22], Eguchi—Hikami [50], and Gaberdiel-Hohenegger—Volpato

[66,67] determined precise candidates for (1.17), and found, moreover, that if x, denotes

the number of fixed points of g € My, in its unique (up to equivalence) non-trivial
permutation action on 24 points, then

2 2

Z"02) = xgh(e:2) ﬂ?fé’)? S ﬁ;((i’)?

is a weak Jacobi form of weight 0 and index 1, with some level depending on g.

(1.18)

The group M»4 appears naturally as a subgroup of Coy, in such a way that the definition
of xg just given coincides with (1.9) for g € Mas < Cog, so we may compare the ¢, of
Theorem 9.5 to the weak Jacobi forms Zéz) of Mathieu moonshine. Interestingly, ¢, = Zg)
for g in all but 7 of the 26 conjugacy classes of Ma4. Cf. Table 8. The conjugacy classes of
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My for which ¢ # ZL” are those named 3B, 6B, 12B, 214, 21B, 234, and 23B in [32].
Note that ¢, is not even defined for g in any of the last 5 of these, since such elements of
Cog do not pointwise fix a 4-space in A ®z R.

Regarding the M4-module K@ of (1.16), Gannon has proven [70] that the candidate
Hg(z) determined in [22,50,66,67] are indeed the graded trace functions attached to a
graded Mays-module, but there is, as yet, no analogue for K@ of the vertex algebraic
constructions of V? or V*. The fact that ¢, recovers Zé(,Z) for so many g € Moy suggests
that V*% may play an important role in determining such a concrete construction.

See [23] for a detailed review of Mathieu moonshine, including explicit descriptions of
the Héz). The Hg(z) are examples of mock modular forms of weight 1/2, a notion which has
arisen fairly recently, thanks to the foundational work of Zwegers [112] on Ramanujan’s
mock theta functions [96,97], contemporaneous work [15] of Bruinier—Funke on har-
monic Maass forms, and subsequent contributions by Bringmann—Ono [14] and Zagier
[110]. We refer to [94,110] for introductory accounts of mock modular forms. The Héz)
for g € Moy have been constructed uniformly in [24], and related results appear in [13].

1.5 Umbral moonshine

The superscripts in K@), Héz), and Zéz) indicate that Mathieu moonshine is but one case of
amore generally defined theory. Indeed, the observations of [51] were extended in [18,19]
(cf. also [25]), to an association of (vector-valued) mock modular forms Hg) = (Hg';)) to
conjugacy classes [g] in finite groups G\ (with G) = My, for £ = 2), for certain symbols
¢, called lambencies. The resulting collection of relationships between finite groups and
mock modular forms is now known as umbral moonshine.

The lambencies of [19] are in correspondence with the 23 (non-empty) simply laced
root systems that arise in even self-dual positive-definite lattices of rank 24. These are
the so-called Niemeier root systems (cf. Sect. 2). For example, if # is a divisor of 24 and
k = 24/n, then £ = n + 1 corresponds to the union of k copies of the A, root system,
denoted Aﬁ. In particular, £ = 2 corresponds to A%‘L.

The group G is, by definition, the outer automorphism group of the self-dual lattice
N© whose Niemeier root system corresponds to £. That is, GO .= Aut(N®)/ W where
W is the normal subgroup of Aut(N®)) generated by reflections in root vectors. Note
that all of these groups G**) embed in Coy.

According to the McKay correspondence [56,88], the irreducible simply laced root
systems are in correspondence with certain surface singularities called du Val singularities
(cf. e.g., [49]). Thus, the governing role of simply laced root systems in umbral moonshine
suggests a geometric interpretation involving non-smooth K3 surfaces equipped with
configurations of du Val singularities. Evidence in support of this idea is developed in [20].
A number of the weak Jacobi forms ¢, constructed here appear also in [20].

As in the case that £ = 2, the particular properties of the mock modular forms Hg)
support the existence of graded infinite-dimensional G"-modules

w0 _ -(£)
K™= @ @ I(r,nfrz/éLm’ (1.19)

rel® nez

r2—4mn50

such that

HY () = —247 "5, 4> (trk(@ g) q" (1.20)
n

r,n—r2/4m
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for g € G and r € 1Y), where m is a certain positive integer depending on £ and I is
a certain subset of {1, ..., m — 1} (we refer the reader to [19,25] or §9 of [40] for a fuller
discussion of K©) and its relation to G and the Hg)).

The existence of G)-modules K satisfying (1.20) is one of the main conjectures
of umbral moonshine, and has now been proven [41] for all Niemeier root systems. A
concrete, vertex algebraic construction of K© has been established recently [42] for the
special case that £ = 30+6, 10, 15, which is the lambency corresponding to the root system
Eg’. Vertex algebraic constructions of G)-modules closely related to the K©) appear in
[48] for the lambencies corresponding to A8, Ag, Ag, and A%Z, and in [17] for Dg, Dg, D%Z,
and Dog.

In the case of Ale‘_l, where k(¢ — 1) = 24, the mock modular forms Hg), together with
certain characters g and ¥, of G (), can be used to define weak Jacobi forms Zg) of weight
0 and index £ — 1 (and some level depending on g), in a natural way (see §4 of [18] for the
details of this construction).

In Sect. 10, we present a natural generalization of the construction of ¢, in Sect. 9, and in
so doing attach a weak Jacobi form ¢g), of weight 0 and index £ — 1, to any element g € Cog
that fixes a 2d-dimensional subspace of A ®z R, where d = 2(¢ —1). Interestingly, many of
the Zg) of umbral moonshine are realized as (scalar multiples of) ¢g) for suitable g € Coy.
Thus, we have evidence that V** may be an important device for realizing a number of the
K© explicitly. The particular coincidences between Zg) and gi)gz) are recorded in Sect. B,
Tables 8,9, 10, 11 and 12.

Surprisingly, V*" can be used to attach mock modular forms to conjugacy classes in finite
groups beyond those arising as G) for some lambency £. Indeed, in [16] the canonically
twisted V*-module Vtsf, is used to attach 2-vector-valued mock modular forms of weight
1/2 to conjugacy classes in any subgroup of Cog fixing a 2-space in A ®z R. In this
way, mock modular forms are attached to the conjugacy classes of the sporadic Mathieu
groups Moz and Mj3, McLaughlin’s sporadic group McL, and the sporadic group HS of
Higman and Higman-Sims (cf. [71,72,100]). An association of mock modular forms to
conjugacy classes in subgroups of Cog fixing 3-spaces in A ®z R is also considered in [16].
Consequently, mock modular forms (of a different kind) are attached to My and M.
See [21] (and its prequel [8]) for an extension of this method to subgroups of Cog that fix
aline in A ®z R. This analysis associates mock modular forms (of yet another variety) to
the sporadic groups Coy, Co3, and Mag.

It is evident from the above-mentioned results that V** should play an important role in
umbral moonshine. Thus, the close relationship between Conway moonshine and mon-
strous moonshine serves to motivate the possibility that monstrous and umbral moon-
shine are related in a deep and direct way, potentially sharing a common origin. The
results of [93] also motivate this point of view. See the introduction to [18] for related

discussion.

1.6 Organization

We now describe the structure of the paper. Since the main result involves a number of
different topics, not typically seen together in a single work, we begin with a number of
brief preliminary sections. We recall some basic facts about even self-dual lattices, and
also discuss the Conway group in Sect. 2. We then recall modular forms, Jacobi forms,
and certain special examples of such functions in Sect. 3. We review the main results from
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[75] on derived equivalences of K3 surfaces in Sect. 4. In Sect. 5, we recall basic definitions
in vertex algebra theory, and give a brief description of the Clifford module (a.k.a. free
fermion) super vertex algebra construction in Sect. 6.

The results of our earlier work [43] play an important role here, and we review these next,
recalling some useful formulas relating to spin modules in Sect. 7, and the construction
of the distinguished super vertex operator algebra V** in Sect. 8.

In Sect. 9, we establish our main result: a mechanism which attaches a weak Jacobi
form to any symplectic derived equivalence of a K3 surface that fixes a suitable stability
condition. See Theorem 9.5.

We also formulate a conjecture relating the Jacobi forms so arising to twined elliptic
genera of K3 sigma models. In brief, all the examples of twined K3 elliptic genera available
in the literature are recovered from our construction. This suggests that the super vertex
operator algebra V*% serves as a universal object for K3 sigma models.

The construction of Sect. 9 easily generalizes so as to recover a number of weak Jacobi
forms of umbral moonshine. We discuss this in detail in Sect. 10.

We give some deeper evidence for the conjectural relationship between V** and K3
sigma models in Sect. 11, by exhibiting an isomorphism of graded vector spaces between
V5% and the super conformal field theory arising from a certain distinguished K3 sigma
model.

We present data necessary for the computation of all the Jacobi forms appearing in this
work in Sect. A. We record coincidences between these Jacobi forms and other functions
appearing in the context of K3 sigma models, and umbral moonshine, in Sect. B.

As mentioned earlier, we choose a square root of —1 in C and denote it by i. We also
set e(x) := e27ix,

2 Lattices

An integral lattice is a free Z-module of finite rank, L ~ 7Z”, equipped with a symmetric
bilinear form (-, -) : L®zL :— Z. An excellent general reference for lattices is [31]. Given a
field k of characteristic zero, the bilinear form (-, -) extends naturally to the #-dimensional
vector space L ®z k over k. The signature of L is the pair (r, s) where r is the maximal
dimension of a positive-definite subspace of L ®7 R and s is the maximal dimension of a
negative-definite subspace of L ®z R. Call n the rank of L, and say L is non-degenerate if
n = r+s. Say L is positive-definite if s = 0, and negative-definite if r = 0. Say L is indefinite
ifrs £ 0.

Define the dual of L by setting

L ={yelL®;Ql\y)€Z forallx € L}. (2.1)

Certainly L* contains L. Say that L is self-dual if L* = L. Observe that a self-dual lattice is
necessarily non-degenerate.

Given A € L call (A, 1) the square-length of A. A lattice L is called even if all of its square-
lengths are even integers. The set of vectors of square-length £2 in an even lattice is called
its root system.

Write R"* for a real vector space of dimension n = r + s, with elements denoted
x = (%1, ..., %), equipped with the bilinear form:

(%y) =D xyi— D Xy (2.2)
i=1

i=r+1
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Write I,; for the lattice in R composed of vectors x = (x;) with integer coordinates.
Observe that I, is self-dual. One often writes Z" for I,,0. Assuming r = s mod 8, define
an even self-dual lattice II,,; in R"® by setting
r n
I :={x€Z"U(Z+ %)n C R in = Z x; mod 2 (2.3)
i=1 i=r+1
(cf.e.g., [30]). Taking r = 8 and s = 0, we obtain the Eg root lattice, commonly denoted Eg.
It is the unique (up to isomorphism) even self-dual lattice of signature (8, 0). The lattice
I 1 is often denoted U, and sometimes called the hyperbolic plane.
We refer to Chapter V of [98] for a proof of the following fundamental result.

Theorem 2.1 Suppose that L is a non-even self-dual integral lattice with signature (r, s).
Ifrs # O0then L =~ I,.;. Suppose that L is an even self-dual lattice with signature (r, s). Then
r=s mod 8 Ifrs # 0 then L ~ II,.;.

Note that the right-hand side of (2.3) defines an integral self-dual lattice so long as
r4+s =0 mod 4. The lattice of rank # = 0 mod 4 obtained by taking r = nands =0
in (2.3) is called the spin lattice of rank 1, and we denote it D;\. The Dy, root lattice is the
intersection I,,0 N II,,0 (for any positive #), and is an even lattice of index 2 in D;lIr

> x=0 mod 2]. (2.4)

D, = [x eZ" c R
i=1

We have isomorphisms D} ~ Z* and D = Eg, and DY, is the unique (up to isomor-
phism) self-dual lattice of signature (12, 0) having no vectors with square-length 1. The
lattices DR and Eng are the only even self-dual lattices of signature (16, 0).

According to Theorem 2.1, we have

Lo U =1, (2.5)

for L = E§e3 . But there are in fact 24 choices for L (up to isomorphism) that solve (2.5),
according to Niemeier’s classification [92] of even self-dual definite lattices of rank 24 (cf.
also [105] and Chapter 16 of [31]). Distinguished amongst these is the Leech lattice, named
for its discoverer (cf. [84,85]) and denoted here by A, which is the unique even self-dual
lattice of signature (24, 0) with an empty root system (i.e., no vectors of square-length 2).

The uniqueness of the Leech lattice was proven by Conway [27]. Conway also investi-
gated its automorphism group [26,28] and discovered three new sporadic simple groups
in the course of this, Co;, Coz, and Cos. Define the Conway group by setting

Cog := Aut(A). (2.6)
Then Coy is not simple, for its center is non-trivial, generated by — Id. But the quotient
group

Coy := Cop/{£1d} (2.7)

is simple, and is the largest sporadic simple Conway group. The groups Co, and Co3 may
be realized as the stabilizers in Cog of vectors in A with square-length equal to 4 or 6,
respectively.

Given alattice L with signature (1, s), write L(—1) for the lattice of signature (s, r) obtained
by multiplying the bilinear form on L by —1. Then, for example, if L is even self-dual with
signature (k, 16 + k) for some positive integer k, we have
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L~ ek == Es(—1)%2 @ U%X, (2.8)

as a consequence of Theorem 2.1.

We call A(—1) the negative-definite Leech lattice.

An embedding of lattices K — L is an embedding of abelian groups ¢ : K — L such that
(M = (L), ((u)) for &, w € K. A primitive embedding is an embedding ¢ : K — L
such that the quotient group L/((K) is torsion free.

3 Modular forms

Here we recall some basic facts about modular forms and Jacobi forms. For t € H and
z € C, we use the notation g := e(r) and y := e(z), where e(x) := e2mix,

Recall (cf. e.g., [80,99]) that a holomorphic functionf : H — Cisa called an unrestricted

modular form of weight k for a group I' < SLy(R) if

at+b 1
Y (cr + d) (ct +d)k =/ 6D

for all (j Z) € I'. Assume for simplicity that I" is commensurable with SLy(Z). Then

the action of " on H extends naturally to @ := Q U {oc}, and the orbits of I" on @ are
called its cusps. The orbit containing oo is called the infinite cusp of ', and the modular
group SLy(Z) has only the infinite cusp.

Say that f as in (3.1) is a weakly holomorphic modular form if it has at most exponential
growth at cusps. This amounts to the condition that if o € SLy(Z) then f(o7) admits a
Laurent expansion in g'/", for some positive integer w. If the Laurent expansions of the
f(oT) are actually Taylor series in g'/*, so that f(or) = O(1) as J(r) — oo, then we
say that f is a modular form. A cusp form satisfies f(ot) — 0 as J(r) — oo, for every
o € SLy(Z).

Write M (I") for the space of modular forms of weight k for I'. Write S (I") for the
subspace of cusp forms.

The Eisenstein series Ey are a family of modular forms for the full modular group SL»(Z).
For k even and greater than 2, the Eisenstein series Ey is defined by

1
E@)= > (3:2)
k
mnez (Wl'[-i-}'l)
(m,n)#(0,0)

and admits a Fourier expansion

2
E =14 —— _ " 3.3
k(7) =h ;)ok 1(n)q (3.3)
where og(n) := Zd\ . d°. When k = 2, the series in (3.2) is not absolutely convergent, but
converges conditionally to (3.3), and we define E; by (3.3). The conditional convergence
prevents Ey from being a modular form, but it is a quasi-modular form, satisfying

E at+b 1 n 3 2mic Ey(r) (3.4)
_— = T B
\er+d (ct+d)?  n?(ct+4d) 2

for (Z Z) € SLy(Z) (cf. e.g., Proposition 6 of [109]).
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We make extensive use of the Dedekind eta function, a modular form of weight % (with
non-trivial multiplier), defined by

n(z):=q"*[]1—q". (3.5)

n>0

Related is Ramanujan’s Delta function, a cusp form of weight 12 for SL»(Z), defined by
A7) := n(1)* (3.6)

In this work, a modular form with level is a modular form for some I'y(N),

To(N) := I(“ Z) € SLy(Z)jc=0 mod N] . (3.7)
C

Note that if f(r) is a modular form with level N (i.e., a modular form for I'g(XN)), then
f(ht) is a modular form with level AN.
The functions A are a family of modular forms of weight 2 with level, defined by

_N 4 (v
An(r):= 2midr log( n(z)

One easily checks using (3.4) that Ay € Ma(T'o(N)).
For later use, we note the basic identities,

) = % (NEy(NT) — Ex(1)). (3.8)

Aa(t) = 4A2(27) 4+ 2A2(),  Aalt + 1/2) = 8A2(27) — 2A5(7). (3.9)

In particular, A4(t + 1/2) is also a modular form for I'g(4). Really, this is unsurprising
because I'y(4) is normalized by the matrix ((1) 1{2 .More generally, we have the following

beautiful description of the full normalizer of I'o(N) from [29].
Given a positive integer N, let / denote the largest divisor of 24 such that 42 divides N.
Set n = N /h. Then the normalizer of I'g(N) in SLy(R) is composed of the matrices

1 fae b/h
%(cn de) (3.10)

where e is an exact divisor of n/h (i.e., e|(n/h) and (e, n/eh) = 1), and a, b, ¢, d € Z are
chosen so that ade® — ben/h = e.

We write ['g(n|h) for the set of matrices (3.10) with e = 1. It is a subgroup of SLy(R) that
is conjugate to ['g(n/h). For a fixed non-trivial exact divisor e|(#n/h), the matrices (3.10)
comprise an Atkin—Lehner involution of T'g(n|h) (really, an Atkin—Lehner involution is
a coset of I'g(n|k) in its normalizer, an involution in the sense that it defines an order 2
element of the quotient group N(Ig(#n|h))/To(n|h)).

Assume now that I" is a subgroup of SLy(Z). We call a holomorphic function ¢ : HxC —
C an unrestricted Jacobi form of weight k and index m for I' if it satisfies

at+b z 1 cz?
, —-m——-1 = »Z), 3.11
¢(Ct+d cr—l—d) (cr—i-d)ke( mct—f—d) ¢(v.2) (31D)
(0, 2 + 2T + " Y = ¢(t,2), (3.12)
for Z Z) e I'and (A, ) € Z?, where g = e(r) and y = e(z). For ¢ an unrestricted Jacobi
form and o € SLy(Z), we have
¢(ot1,2) = Z co(n/w, r)q"/wyr (3.13)

mrez
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for some ¢, (1, r) € C. Say that ¢ is a weak Jacobi form if ¢, (n/w, r) = O whenever n/w < 0,
for all o € SLy(Z). Note that ¢, (n/w, r) differs from c,/(n/w, r) only by a root of unity
when o’c~1 € T. So it suffices to check the c, (1/w, r) for just one representative o of
each right coset of I' in SLy(Z).

Good references for Jacobi forms include [34] and [52]. Jacobi forms occur naturally as
Fourier coefficients of Siegel Modular forms (cf. [52,53]), but that manifestation will not
play an explicit role here.

In this work, a weak Jacobi form with level N is a weak Jacobi form for I'(N).

Particularly useful for writing Jacobi forms down explicitly are the four Jacobi theta
functions, defined as

— _IZ % n+1/2 (n+1/2)2/2

nez

92(, 2) = z yn+1/2 q(n+1/2)2/2)

e (3.14)
93(r,2) =D _y'q" %,

nez
Pa(r,2) = D (-1)"y'q" 2

nez

and admitting the product formulas
(r,2) =—ig"* "> (1—y ) [T (1—y"'¢") 1 —yg") 0 — g™,
n>0
9a(t,2) = q"*y2 (14 ) [] (1 +y7"'¢") A + g A — g™,
=0 (3.15)

93(t,2) = [[ (1 +y'q" %) (1 494" ) (1 - g,

n>0
9a(m2) = [[(1=y"'¢"""?) (L —yq" ) (1 - "),

n>0

according to the Jacobi triple product identity.
The first examples of weak Jacobi forms with level 1 are ¢g 1 and ¢_3 1, defined by

(5,2 | 93(1,2) | Valt, 2)?
dor(r,2) =4 (o e + ) (316
and
2
e (317)

The subscripts indicate weight and index, respectively. Note that ¢g1(7,0) = 12 and
¢_2,1(7,0) = 0, which is consistent with the facts that all modular forms of weight 0 are
constant, and all modular forms of negative weight are 0.

Proposition 6.1 of [1] states that any weak Jacobi form of even weight can be written as
a polynomial in ¢ and ¢_5; with modular form coefficients. We record the following
special cases of this for use later on.

Proposition 3.1 A holomorphic function ¢ : H x C — C is a weak Jacobi form of weight
0 and index m for I if and only if there exists C € C and modular forms Fy; € My;(I'), for
1 <j < m, such that
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#(t,2) = Cepo1 (7, 2)" + Zsz(TW—z,l(T; 2Y o1 (1, 2)" 7. (3.18)

j=1

We conclude this section with formulas that illustrate (3.18) explicitly for the particular
combinations of Jacobi theta functions appearing in (3.16) and (3.17).

Lemma 3.2 We have the following identities.

$-21(1,2) = _1917((1_;)26)2 (3.19)
%2¢o,1(r, z) +202(1)p-21(1, 2) = % (3.20)
%qbo,l(r, 2) — Aa(T/2 + 1/2)p_21(7, 2) = % (3.21)
%qﬁm(r, 2) — Aa(t/2)p_21(7,2) = % (3.22)

Note that the first identity of Lemma 3.2 is just the definition of ¢_3 1 [cf. (3.17)].

Proof Let I'(N) denote the principal congruence group of level N, being the kernel of the
natural map SLy(Z) — SLy(Z/NZ). First, we will show that

(1, z)?
3.23
5i(z, O (323
is a Jacobi form for I"(2) of weight 0 and index 1, for i € {2, 3, 4}. The transformations
P,z + 1) D(1,2) Ntz+1)? )yt 2)? (3.24)

9002 002 0 om0z 1Y a0
can be seen by explicit computation using (3.14). Thus, (3.23) transforms properly under
72 in the case that i = 2. If S and T are the standard generators for the modular group,
then I'(2) is generated by 7% : 7 > 7 + 2 and ST?S : T > 5= (see §6 of [58]), so the
required transformations under I'(2) are

2
Dot +2,2)%  0a(r, 2)? 22 (ZTL’ 25_1) i 0(1,2) (3.25)
— _— — e 2rt— . .
92t +2072  0a(t, 002 o)’
2 (m 0)

192(.5: 0)2
The first can be seen explicitly from (3.14), and the second follows from acting successively

with 7" and S, using Jacobi’s imaginary transformations

1 . 1 .
¥ (— i E) = /—ir e’”zz/’m(t, z) and ¥4 (— - i) = JZir ™ P (7, 2).
T T

(3.26)

The required form for the Fourier expansion can also be seen from (3.14). Thus (3.23) is
a Jacobi form for I'(2) of weight 0 and index 1 for i = 2.
Similar arguments handle the cases that i = 3 and i = 4. For i = 3, we use another of

Jacobi’s imaginary transformations,
1z

%(_?;):V_hgwﬁ%ﬁﬂl (3.27)

As recorded in [33], the group I'(2) is a genus 0 congruence subgroup of SLy(Z) with
3 inequivalent cusps. By Theorem 2.23 of [99], the dimension of the space of weight 2
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modular forms on I'(2) is 2, and the dimension of the space of weight 0 modular forms
on I'(2) is 1 (i.e., spanned by a constant function). Proposition 6.1 of [1] shows that the
dimension of the space of weight 0, index 1 Jacobi forms on I'(2) must therefore be 3.
Now the proof of the required identities is reduced to checking the agreement of Fourier
coefficients up to O(g). o

4 Derived equivalences
Let X be a complex K3 surface; i.e., a compact connected complex manifold of dimension
2 with Qg( ~ Ox and H'(X, Ox) = 0 (good references for K3 surfaces include [5,7]).
Then the intersection form (. ) equips the integral singular cohomology group H?(X, Z)
with the structure of an even self-dual lattice of signature (3, 19), so we have H>(X, Z) ~
Eg(—1)®? @ U®3 according to (2.8).

Write H(X, Z) = (H(X,Z), {, )) for the Mukai lattice of X, being the lattice obtained
from

H*(X,Z) = H'(X, Z) ® H*(X, Z) ® H*(X, Z) (4.1)

by reversing the sign of the pairings between H%(X, Z) and H*(X;, Z), so that

(A ) = (A2.2) — (Ao-pta) — (Aa.f0) (4.2)
for A = Ao + A2 + A4 € H(X, Z) with Ay € H¥(X, Z), &c. Then H(X, Z) is self-dual and
even with signature (4, 20).

H(X,Z) ~ Eg(—1)®% @ u®* (4.3)

A Hodge structure of weight 2 on a lattice L is a direct sum decomposition

L®;,C=1"? Lt g L>° (4.4)

of the complex vector space enveloping L into complex subspaces L7 < L ®z C such that
the R-linear complex conjugation v + ¥ on L ®y, C that fixes the subset L ®7 R induces
R-linear isomorphisms LP9 >~ L%P.

If X is a complex K3 surface, then we naturally obtain a weight 2 Hodge structure

H(X,Z) ®z C = H*°(X) ® H» (X) @ H**(X) (4.5)
on the Mukai lattice of X, by setting

H>(X) := H*(X),

HY' () := H*°(X) @ H"'(X) @ H>*(X), (4.6)

H*?(X) := H**(X),
where the HP9(X) = HP4(X, C) are the Dolbeaut cohomology groups of X. Say that an
automorphism g of the lattice H(X, Z) is a symplectic Hodge isometry of H(X, Z) if the C-
linear extension of g to H(X, Z)®7C fixes H*°(X) (and hence also H*2(X)) pointwise. Note
that H>°(X) and H%2(X) are isotropic with respect to the bilinear form on H(X,Z) ®z C
induced from H(X, Z). The intersection

Py = (H*(X)® H*?(X)) N H(X, Z) ®, R (47)

is a positive-definite 2-dimensional subspace of H (X, Z) ®z, R.

Following [75], we write Aut(H (X, Z)) for the group of symplectic Hodge isometries of
the Mukai lattice H(X, Z) of a complex K3 surface X. Note that any symplectic automor-
phism of X of finite order naturally induces a symplectic Hodge isometry of H (X, Z), via
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the induced action of g on H*(X, Z) (cf. §1.2 of [75]), but for general X not all symplectic
Hodge isometries arise in this way (cf. §1.4 of [75]).

Assume now that X is projective, admitting an embedding in some complex projective
space P, Write DP(X) for the bounded derived category of coherent sheaves on X and let
Aut(DP(X)) denote the group of isomorphism classes of exact C-linear autoequivalences
of DP(X) (see [6,73] for detailed expositions of this theory). The induced action of an
exact autoequivalence of DP(X) on H(X, Z)—cf. the discussion in §1.2 in [11]—defines a
morphism of groups from Aut(DP(X)) to the automorphism group (i.e., orthogonal group)
of H(X, Z), and we write Auty(D"(X)) for the subgroup of symplectic autoequivalences,
being those elements of Aut(DP(X)) that map to symplectic Hodge isometries of H(X, Z).

Aut, (Db(X)) — Auty(H(X, 7)) (4.8)

Let Stab(X) denote the space of stability conditions on DP(X). (See [74] for a nice intro-
duction to stability conditions.) Write Stab®(X) for the distinguished connected compo-
nent of Stab(X) introduced and first analyzed by Bridgeland in [11]. Given o € Stab®(X),
say that an autoequivalence in Auty(DP(X)) is o -positive if its induced action on Stab(X)
fixes o, and write Auts(DP(X), o) for the group of all (isomorphism classes of) o -positive
exact C-linear autoequivalences of DP(X).

Set H"'(X,Z) := H"'(X) N H(X, Z) [cf. (4.6)]. To each o € Stab(X) is attached a
central charge Z, which may be regarded as a morphism of groups H%'(X, Z) — C, or
equivalently, via Poincaré duality, as an element of H!(X, Z) ® C. According to §1.3 of
[75], the real subspace of HY(X,7) @z R spanned by the real and imaginary parts of Z,

Py :=RR(Z) ®RI(Z) < H''(X, Z) @2 R, (4.9)
is positive with respect to the induced bilinear form from H(X, Z), when Z is the cen-
tral charge of a stability condition in Stab®(X). For such a Z € HY\(X, Z) ®; C, define
Auty(H(X, Z), Z) to be the subgroup of symplectic Hodge isometries of H(X, Z) whose
R-linear extensions to H(X, Z) ® R fix the subspace Pz pointwise; such an isometry is
called Pz-positive.

Recall the natural map (4.8). Huybrechts has shown that this map induces an isomor-
phism between the group of o-positive symplectic autoequivalences of DP(X) and the
group of Pz-positive symplectic Hodge isometries of H(X, Z) when Z is the central charge
of a stability condition o in Stab®(X).

Proposition 4.1 ([75]) Let X be a projective complex K3 surface, let o € Stab®(X) and let
Z be the central charge of o. Then the natural map Auts(DP(X)) — Auty(H(X, Z)) induces
an isomorphism of groups

Aut, (Db(X),a) 2 Aut,(H (X, Z), 2). (4.10)

We have mentioned that Px and Pz are positive-definite 2-dimensional subspaces of
H(X,7Z) @z R. They are orthogonal [compare (4.7) with (4.9)], and H(X, Z) has signature
(4, 20) [cf. (4.3)], so

M:=Px ® Py (4.11)
is a maximal positive-definite subspace of HX, Z)®zR. As explained in [75], the intersec-
tion [T+ N H (X, Z) contains no vectors § with (5, §) = —2. For, on one hand, if (8, §) = —2
and § € P)J(‘, then § € H"'(X, Z). On the other hand, it is proven in Proposition 13.2 of
[11] thatif § € HYY(X, Z) and (3, 8) = —2, then (Z, ) # 0.
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Note that any positive-definite 4-dimensional subspace of H(X, Z)®zR, and in particular
1 = Py @ Pz, is naturally oriented. For if ¢ is a non-zero element of H>%(X), then the
4-tuple (M(<), J(¢c), N(Z), I(Z)) defines an oriented basis, and the resulting orientation
depends neither on ¢ nor on Z (cf. §4.5 of [76]).

Given X and o € Stab®(X) as above, define

Gr = Aut, (Db(X), 0), (4.12)

and use the natural isomorphism (4.10) to identify Gr; with Aut; (H(X, Z), Z). Also define
' to be the sublattice of H(X, Z) composed of vectors orthogonal to the sublattice of
H(X, Z) that is fixed by G, so that

= (H(X, Z)GH)L NH X, 7). (4.13)

Then I'yy is an even, negative-definite lattice of rank at most 20, naturally admitting a
faithful action by Gj. Moreover, according to the argument in §§B.1-2 of [68] (cf. also
§2.2 of [75]), the lattice I'; admits a primitive embedding

L:Tn — A(=1) (4.14)

in the negative-definite Leech lattice (cf. Sect. 2), and the action of Gj on I'; extends
naturally to A(—1), in such a way that all vectors in «(I'r;)* N A(—1) are fixed by Gry. Thus,
the primitive embedding ¢ of (4.14) determines an embedding of groups,

ly : G — Aut(A), (4.15)

which we may use to identify Gr; with a subgroup of the Conway group, Cog = Aut(A)
[cf. (2.6)]. The sublattice of A fixed by this copy of G has rank at least 4.

Call a primitive embedding as in (4.14) a Leech marking of the data (X, o). We may
summarize the previous paragraph by saying that the group G = Auty(D"(X), o) is
isomorphic to a subgroup of Cog that fixes a rank 4 sublattice of A, and the choice of
Leech marking ¢ determines this subgroup completely. The main result of [75] states that
the converse is also true.

Theorem 4.2 ([75]) For X a projective complex K3 surface and o € Stab®(X), the group
Gn = Auty(DP(X), o) is isomorphic to a subgroup of Cog whose action on the Leech lattice
fixes a sublattice of rank at least 4. Conversely, if G, is a subgroup of Cog that fixes a rank 4
sublattice of the Leech lattice, then there exists a projective complex K3 surface X, a stability
condition o € Stab®(X), and a Leech marking t for (X, o) such that G, is a subgroup of
Ly Gn.

Recall from Sect. 2 that the center of Coy is the group of order 2 generated by — Id, and
Co; denotes the sporadic simple quotient group Co; = Cog/{%Id}. Observe thatif G, isa
subgroup of Cog that has a fixed point in its action on A, then the natural map Coy — Co;
induces an isomorphism between G, and its image in Co;. Thus, one may replace Cog
with Co; in the statement of Theorem 4.2.

5 Vertex algebra
In this section, we briefly recall super vertex operator algebras and their canonically twisted
modules. We refer to the texts [59,77,86] for more background on vertex algebra.

A super vector space is a simply a vector space with a Z/2-grading, V = V5 @ Vi. A

linear operator T': V' — V is called even if T(V;) C V;, and odd if T(V;) C Vi
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For V a super vector space and z a formal variable, write V((z)) := V[[z]][z"!] for
the space of Laurent series in z with coefficients in V. Taking z to be even, we naturally
obtain a super structure V;((z)) @ Vj((z)) on V((2)). Observe that the rational function
f(zw) = (z — w)~! naturally defines elements of C((z))((w)) and C((w))((z)) via for-
mal power series expansions, for we have f(z w) = >, ¢ 27" Iw" in C((z))((w)) and
flzw) = — ano w™"1z" in C((w))((2)). These rules extend naturally so as to define

formal expansion maps
Vllz w]][z_l, w L (z — w)_l]

v N 6D
V)W)  V(Iw)(=)  VIw)((z —w)).
A super vertex algebra is a super vector space V = Vi @ Vj equipped with a vacuum
vector 1 € Vj, an even linear operator 7 : V — V, and a linear map
V — End(V) [[zil]]
ar— Y(az) = Za(,,)z_”_l (5.2)

nez
which associates to each a € V a vertex operator Y (a, z). These data should satisfy the

following axioms for any 4, b,c € V.

1. Y(a,2)b € V((2)) andifa € Vj (resp.a € Vi) thenay,) is an even (resp. odd) operator
for all #;

2. Y(L,z) =1dy and Y(a,2)1 € a + zV|[[z]];

3. [T,Y(a,z)] =0,Y(a z)and T1 = 0;

4. Ifa € Vyg and b € V) are Z/2 homogenous, there exists an element

feViewlzLw™z-w]
depending on a, b, and ¢, such that
Y(a,z)Y (b, w)c, (=12 @r®)y (p, w)Y(a,z)c, and Y(Y(a,z — w)b w)c

are the formal expansions of f in V((z))((w)), V ((w))((2)), and V ((w))((z—w)), respec-
tively [cf. (5.1)].

For V = V; @ Vj a super vertex operator algebra, let 6 : V' — V denote the parity
involution, acting as (—1) on V;. A canonically twisted module for V is a super vector
space M = My ® Mj equipped with a linear map

V — End(M) [[z51/2]]
a— Y (a zl/z) = Z Ayewz " (5.3)
neiz
associating to each a € V a canonically twisted vertex operator Yy (a, z/?), which satisfies

the following axioms for any 4, b € V, u € M:
1. Yi(a 2% u € M((z'/?)) and ifa € Vi (resp. a € V7) then a,)«, is an even (resp.
odd) operator for all #;

2. You(L2'?) = Idys
3. Ifa € Vy(u) and b € V)p), there exists an element

feM [[zl/z, W1/2]] [Z—I/Z, w12 (7 — w)_l]
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depending on 4, b, and u, such that

Yiw (4 21%) You (b w'?) u,  (=1POPO Y (b, w'?) Yoy (@, 2") u,
and Yy (Y(a 2z — w)b, wl/z) u

are the expansions of f in the spaces M((z'/2))(w'/?)), M((w'/?))((z'/?)), and
M((w'/?))((z — w)), respectively; and
4. 1f0(a) = (—1)"a, then a(,)ny = Oforn ¢ Z + 7.

More details on twisted vertex operators can be found, e.g., in [60,87].
The Virasoro algebra V is the Lie algebra spanned by L(m), for m € Z, and a central

element c, with Lie bracket
m® —

m
) Sm+n,0C. (5.4)

[L(m), L(n)] = m — n)L(m + n) +

A representation V — End(V) of the Virasoro algebra is said to have central charge c if
the central element c acts as multiplication by con V.

A super vertex operator algebra is a super vertex algebra V' = V;; @ Vj containing a
Virasoro element w € Vj such that if L(n) := w(,41) for n € Z then

5. L(-1)=T,;

6. [L(m),L(n)] = (m — n)L(m + n) + malgmémﬂ,,oc Idy for some ¢ € C;
7. L(0) is a diagonalizable operator on V, with rational eigenvalues bounded below, and

finite-dimensional eigenspaces.

According to item 6, the components of Y (w, z) generate a representation of the Virasoro
algebra on V with central charge c.

In this work, all super vertex operator algebras will have rational central charges. For V'
such a super vertex operator algebra, let us write V = @ne(@ V,, for the decomposition of
V into eigenspaces! for L(0) — 2

V= {v € V| (L(0) — 5) v = nv} (5.5)

Similarly, if V4, is a canonically twisted module for V, we also write L(#) for w(,41),t [cf.
(5.3)], a linear operator on V4, and we write (Viy), for the eigenspace with eigenvalue n
for L(0) — 57.

(Viwn == {V € Viwl (L(O) - i) V= l’lV} (5.6)

For V a super vertex operator algebra, suppose to be given an element ;j € V with
L(0); = j such that if /(n) := j(,) then

U(m), J(n)] = kmnoldy (5.7)

in End(V) for some k € C. We call such an element ; a U(1) element for V, and we
call k the level of j. The action of the operator J(0) = j() preserves the eigenspaces for
L(0) — 53 by hypothesis, and may in addition be diagonalizable. In such a situation, we
write V' = @, Vi, for the corresponding decomposition into bi-graded subspaces for
V.

!Note that V}, often denotes the L(0)-eigenspace with eigenvalue 7 elsewhere in the literature, and in (2.5) of [43], in
particular.
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Vir = {v € VI (L(0) — 5) v = nv, J(O)v = rv} (5.8)

Similarly, for Vi, a canonically twisted V-module, we abuse notation slightly by writing
J(0) also for j(p)w, an operator on Vi, and define

(Vewnr == {v € Viwl (L(0) — 53) v = nv, JO)v = rv}. (5.9)

We will use the bi-gradings arising from suitably chosen U(1) elements in a certain
distinguished super vertex operator algebra to define weak Jacobi forms in Sects. 9 and
10.

6 The Clifford module construction

We now briefly review the standard construction that attaches a super vertex operator
algebra, and a canonically twisted module for it, to a vector space equipped with a non-
degenerate symmetric bilinear form. We refer to [54] for a very thorough treatment, and
to [43] for a fuller description using the same notation that is employed here.

Let a be a finite-dimensional complex vector space equipped with a non-degenerate
symmetric bilinear form (-, -), and for each n € Z let a(n+ %) be a vector space isomorphic
to a, with a chosen isomorphism a — a(n + %), denoted u — u(n + %). Set

o =Pan+3) (6.1)
n<0
and define A(a) to be a copy of the regular left module for the exterior algebra of the vector
space a~,

Aa) = [\ @)v. 6.2)

For u € aand m € 7Z, we regard u(m + %) as an operator on A(a) by letting u(m + %)
act by left multiplication in case m < 0. For m > 0, the action of u(m + %) is determined

by the rules
um+Hvn+i)a=—vm+um+l)a— 28 1m0 )

u(m + %)v =0, (6.3)
forv e a,n < 0,and a € A(a). Then for u € a the vertex operator attached to u(—%)v is
defined by setting

Y (u(=5)v2) =D u(nt3) 2" (64)

nez
Theorem 4.4.1 of [59] ensures that this specification extends uniquely to a super vertex
algebra structure on A(a).
Choose an orthonormal basis {e; : 1 < i < dim(a)} for a. Then

wi=—— e (—%) e (—%) v (6.5)

serves as a Virasoro element for A(a), equipping it with the structure of a super vertex
operator algebra with central charge ¢ = %dim a.
A similar construction produces a canonically twisted module for A(a) [cf. (5.3)], which
we call A(a)n,. We recall this now, assuming for the sake of simplicity that dim a is even.
For each n € Z, let a(n) be a vector space isomorphic to a, with a chosen isomorphism

+

a — a(n) denoted u +— u(n). Suppose also to be given isotropic subspaces a™ < a such

that a = a~ @ a™. Such a decomposition is called a polarization of a. Now set
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iy =0~ (0) @ P a(n), (6.6)
n<0
where a*(0) is the image of a® under the isomorphism u — %(0), and define A(a)y to be
a regular left module for the exterior algebra of the vector space 4, so that

A@ow = /\ (65) Viw- 6.7)

Similar to before, we regard u(m) as an operator on A(a)y by letting u(m) act by left
multiplication in case m < 0. For m > 0, the action of u(m) is determined by the rules

u(m)v(n)a = v(n)u(m)a — 28,140t v)a, u(m)vyy =0 m > 0oru ca’, (6.8)

forv € a,n < 0,anda € A(a)wy. For u € a, the twisted vertex operator attached to u(—%)v
is defined by setting

Yiul(—3)v,2) 1= D u(n)z™" 12, (6.9)

nez
This specification extends uniquely to a canonically twisted A(a)-module structure on
A(a)ew, according to the discussion in §2.2 of [60]. In particular, the twisted vertex operator

You (0,2"%) = D Lmz "> (6.10)

nez

equips A(a)wy with a representation of the Virasoro algebra, and the action of L(0) :=
w(1),tw is diagonalizable. An explicit computation yields that the eigenvalues of L(0) — 53

on A(a)ny are contained in Z + ﬁ dim a, so that

A =0 < n¢Z+ i dim a. (6.11)

[cf. (5.6)].
The super vertex operator algebra A(a) admits various U(1) elements [cf. (5.7)]. For
example, if isotropic vectors ali, ceo aj € aare chosen (for some d < % dim a) such that

(ali, af) = 8;), then

d
1 _
1= > a; (—1/2)af (-1/2)v € A(a) (6.12)
i=1

is a U(1) element with level d. Moreover, the action of J(0) := j) on A(a) is diagonal,
with integer eigenvalues, and similarly for /(0) := j(g),«w as an operator on A(a)gy. Since it
will be useful later in the article, we record a more detailed statement as follows for future
use.

Lemma 6.1 Let j as in (6.12). Then j is a U(1) element for A(a)® with level d. We have
JO)v = 0 and J(0)Vey = viy. Also, [J(0), a; (r)] = xa; (r) forall1 <i < dandr € 37,
and ifu € aisorthogonal to Span{af, ces aj }, then J (0) commutes with u(r) forallr € %Z.

Proof The lemma follows from standard vertex algebra computations. For example, sup-
pose a = u(—%)v(—%)v for some u, v € a, and a(,)rw € End(A(a)ww) is the coefficient of
27"V in Yeu (@, 21/2) : A(0)pw = A(0)ew((2)). Then we have

aoyow = D W=rv(r) : (6.13)

rez
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where : : denotes the fermonic normal ordering, defined so that

u(—r)v(r) forr > 0,
tu(=r)v(r) 1 = 1 2@(0)v(0) — v(0)u(0))  forr=0, (6.14)
—v(r)u(—r) forr < 0.

For a(y) : A(a) — A(a), we should replace Z with Z + % in the summation in (6.13). The
required relations follow from (6.3) and (6.8). |

Define the Clifford algebra associated to a and (., -) by setting
Cliff(a) := T(a)/1, (6.15)

where T'(a) is the tensor algebra of a and I is the ideal generated by the u ® u + (1, u)1 for
u € a.Givenu; € a,writeu ... uy fortheimage of u1®- - -Quy € T'(a)in Cliff (a). Then the
relations (6.8) ensure that Cliff(a) acts naturally on A(a)ww, via ug ... ux — u1(0). .. ur(0),
for u; € a.

The Cliff (a)-submodule of A(a)wy generated by vy, is the unique (up to isomorphism)
non-trivial irreducible representation of Cliff(a). We denote this subspace of A(a)y, by
CM. We have

A@w >~ N (@ a(n)) ®CM, CM =~ A(a (0)viw. (6.16)

n<0

7 Lifting to the spin group
Let a be a complex vector space equipped with a non-degenerate symmetric bilinear
form (-, -), as in Sect. 5. To recall the definition of the spin group of a, denoted Spin(a), we
remind that the main anti-automorphism « of Cliff (a) is defined by setting ot (u; . . . uy) :=
Uy ...u1 for u; € a. The group Spin(a) is composed of the even, invertible elements
x € Cliff(a) with a(x)x = 1 such that xux™! € a whenever u € a.

Set

x(u) := xux ! (7.1)
for x € Spin(a) and # € a. Then u + x(u) is a linear transformation on a belonging to
SO(a) and the assignment x — x(-) defines a surjective map Spin(a) — SO(a) with kernel
{£1}.

1 — {£1} — Spin(a) — SO(a) — 1

x> x() (7.2)
The group Spin(a) acts naturally on A(a) and A(a)ny. Explicitly, if a € A(a) has the form
a=u(—n + %) g (g + %)v for some u; € aand n; € ZT, then

xa = uy (—n1 + %) oty (=g + %) v, (7.3)
for x € Spin(a), where u; := x(u;) [cf. (7.1)]. Evidently, —1 is in the kernel of this assign-

ment Spin(a) — Aut(A(a)), so the action factors through SO(a).
For A(a)wy, we use (6.16) to identify the elements of the form

ur(=nm) ... up(—me) @ y (7.4)

as a spanning set, where u; € a and n; € Z* as above, and y € CM [cf. (6.16)]. The
image of such an element under x € Spin(a) is given by | (—mn1) - - - u} (=) ® xy, where
u; == x(u;) as before. Since CM is a faithful Spin(a)-module, so too is A(a)y-
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In terms of the vertex operator correspondences, we have

Y (xa, z2)xb = xY (a, 2)b = Zx(a(n)b)z_"_l,

nez
Yiw (xa, 2%) xc = xYew (a4, 2"/?) ¢ = Z x (@) 27"

1
nezz

(7.5)

for x € Spin(a), a, b € A(a), and ¢ € Any(a).

Say that g € Spin(a) is a [ift of an element g € SO(a) if g has the same order as g, and
¢(-) = g [cf. (7.1)]. More generally, say that G < Spin(a) is a lift of a subgroup G < SO(a)
if the natural map (7.2) induces an isomorphism G5 G

Suppose we are given an identification a = A ®z C where A is the Leech lattice (cf.
Sect. 2). In this situation, we set G := Aut(A), a copy of the Conway group Cop which we
may naturally regard as a subgroup of SO(a). Proposition 3.1 in [43] demonstrates that
there is a unique lift of G < SO(a) to Spin(a).

Proposition 7.1 ([43]) Ifa = A ®z C and G = Aut(A) < SO(a), then there is a unique
subgroup G < Spin(a) such that the natural map Spin(a) — SO(a) induces an isomor-
phism G>G.

WithG > G = Aut(A) ~ Cog as in Proposition 7.1, write
g—g (7.6)

for the inverse isomorphism, G — G.

Assuming an identification a = A ®gz C, we now construct some elements of G~ Cog
explicitly. Let ¢ € G = Aut(A) and choose a basis {al.i} for a, consisting of eigenvectors
for g, such that the a* := Spanc{af} are isotropic subspaces of a, and (ali, a;?) = 0.
Write A; for the eigenvalue of g attached to a;r.

gaf) =raf (7.7)

Then a = a~ & a' is a g-invariant polarization of a, and we may assume that

12
3= He%xi (7.8)
i=1
belongs to G, where
i, _ _ .
X; = 5 (ai a;" — alf"ai ) € Cliff(a). (7.9)

Forif3 ¢ G for our first choice of basis {al«i}, then —3 € G, and 3 gets replaced with —3 in
(7.8) once we swap a; with af for some i. We call 3 as in (7.8) the lift of — Id, associated
to the polarization a = a~ @ a™.

Note that Xi2 = —1, s0 e = (cosw)1 + (sin®)X; in Cliff (a) for « € R. Also, Xia;ft =
:tia?E = —aiiX,-, and X; commutes with X; and aji when i # j. This entails (cf. e.g., §3.1
of [43]) that the lift g of g to G < Spin(a) is given explicitly by

12
g=[]e" (7.10)
i=1

for some «; € 27 Q such that A; = e [cf. (7.7)].
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We can now compute the trace of g as an operator on the Spin(a)-module CM [cf.
(6.16)]. Indeed, since X;Viy = iviw, and the 212 monomials

a; 0)...a; (0)vuy (7.11)

il 13

with 1 <i; < --- < i, < 12 furnish a basis for CM, we have

12 12
weug =v[[ (1+247) =TT (vi+v") (7.12)
i=1 i=
for v; := e%land v := ]_[lli1 Vi.

Suppose that V is a real vector space contained in a, such that a = V ®@g C, and such that
(-, -) restricts to an R-valued bilinear formon V (e.g,a = A®zCand V = A®zR). Then
a choice of orientation RTw C /\24(\/) on V also determines a lift of — Id, to Spin(a), for
given an ordered basis {e;} of V' satisfying (e;, ¢;) = %5;; and

e1N---Ney € Rtw, (7.13)
we obtain one of the two lifts of — Id, to Spin(a) by setting
3/ i=e1...6ex € Chff(a) (7.14-)

We call 3 the lift of —Id, associated to the orientation R w. Evidently, a change in
orientation replaces 3’ with —3'.

We see now from Proposition 7.1 that A is naturally oriented. For settinga = A ®7 C
and V = A®zR C a,and taking G = Aut(A) < SO(a) and G < Spin(a) as in Proposition
7.1, we may choose the preferred orientation on V' to be the one for which the associated
lift 3’ of — Id,, [cf. (7.14)] belongs to G. By the same token, there is a preferred SO(a)-orbit
of polarizations a = a~ @ a™ of a = A ®;, C, being the one for which an associated lift 3
[cf. (7.8)] belongs to G.

Recall that the construction of A(a) depends upon a choice of polarizationa = a~ @®a™
[cf. (6.6)]. If 3 is the lift associated to a = a~ @ a™ [cf. (7.8)], then we have

FVew = Viw (7.15)
(since dima = 0 mod 4). Thus 3 acts with order two on A(a)wy. We write
A()ow = A(a)p, ® A(0)},, (7.16)

for the decomposition into eigenspaces for 3, where 3 acts as (—1) Id on A(a)iw. The
element 3 is central so the action of Spin(a) on A(a)ny preserves the decomposition (7.16).

From the description (7.3), we see that writing A(a) for the (—1) eigenspace of either 3
or —j3 recovers the super space decomposition of A(a).

An) = A(0)° ® A(a)! (7.17)

8 The Conway moonshine module
We now recall the main construction from [43].

Assume henceforth that a is a 24-dimensional vector space over C, equipped with a
bilinear form (-, ) : a ® a — C that is symmetric and non-degenerate. Suppose also to
be chosen a lift 3’ € Spin(a) of —Id, (in practice, 3’ will be the lift of — Id, associated to
an orientation on some real vector space V C a, as in 7.14). Then fora = a~ @ a*t a
polarization such that 3 = 3 [cf. (7.8)] we set

V=A@ @A), V=A@ @A), (8.1)
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where A(a) and A(a)y are constructed as in Sect. 5, and the subspaces A(a)/ andA(a){w are
as in (7.17) and (7.16), respectively. According to [43], The A(a)’-module V*" is naturally
a super vertex operator algebra, and Vtsvjv is naturally a canonically twisted module for V*%.

Proposition 8.1 ([43]) The A(a)®-module structure on V*° extends uniquely to a super
vertex operator algebra structure on V%, and the A(a)°-module structure on Vtsvuv extends

uniquely to a canonically twisted V*"-module structure.

The super vertex operator algebra V*% is distinguished. The following abstract charac-
terization of V*! has been established in [43] (cf. Theorem 5.15 of [44]).

Theorem 8.2 ([43]) The super vertex operator algebra V*° is the unique self-dual Cs-
cofinite rational super vertex operator algebra of CFT type with central charge 12 such that
LO)u = %ufor u € VS implies u = 0.

We refer to [43] for the precise meanings of the terms self-dual, C»-cofinite, rational,
and CFT type. Briefly, a super vertex operator algebra V' is rational if any V-module
can be written as a direct sum of irreducible V-modules. We say that V is self-dual if
it is irreducible as a module over itself, and if V' is the only irreducible V-module up to
isomorphism. As explained in [43], Theorem 8.2 identifies V** as an analogue for super
vertex operator algebras of the extended binary Golay code, of the Leech lattice A (cf.
Sect. 2), and (conjecturally) of the moonshine module vertex operator algebra V7 (cf. Sect.
1.1).

As explained in Sect. 7, the spin group Spin(a) acts naturally on the A(a) and A(a){w,
so it acts naturally on V*% and VSJ In particular, given an identiﬁcation a=A®zC,we
because G = Aut(A) <
SO(a) admits a unique lift G < Spin(a), according to Proposition 7.1.

naturally obtain actions of the Conway group Cog on V** and V, tw,

Since it will be useful in the sequel, we now recall (cf. §4.3 of [43]) explicit expressions
for the graded traces of elements of G ~ Cog on V*! and Vf“u,. In preparation for this,
define n,(7) for g € G = Aut(A) by setting

12
Di=q[[T](1-7"a") 0 = 2", (82)
n>0i=1
where the A?ﬂ are the eigenvalues for g acting on g, as in (7.7), and define C; by setting®
Co = trem 38 (8.3)
[cf. (7.6)]. Note that

ng(f/2 12 H ( 1 1/2) (1 - rig"172). (8.4)

ng n>0i=1
Also,
12 12
ngvH(l—k 1)_H(vi—vi_1) (8.5)
i=1 i=1

according to (7.12), where the v and v; are as in (7.12), the v; being square roots of the A;.
So in particular, C; is determined up to sign by the eigenvalues of g, and C, = 0 exactly
when g has a non-zero fixed point in a.

*Note that C, is denoted Cg in [43].



Duncan and Mack-Crane Res Math Sci(2016)3:1 Page 26 of 47

For g € G define

T§(1) = trys: 3gq" 0%, (8.6)

Touon(T) = tr s 38q

tw

L(O)—C/Z‘L' (8.7)

We obtain the explicit formulas

1 77g('5/2) ﬂ—g(f/z)
Ti(t) = = C, — C_gn— , 8.8
g(f) 5 ( () + n—g(f) + gng(f) g g(f) (8.8)
1 (ng(t/2)  n—g(x/2)
Tgftw(r) =3 ( () — 1o + Cyng(t) + Cgn (1)), (8.9)
from Lemma 4.6 of [43] [or by direct calculation using (8.1), (8.2), and (8.3)].
Define also
Xg ' =1trqg (8.10)
so that x, = Z}il(ki + Ai_l) for A; asin (7.7). In [43], the following alternative identities
are proved:
ng(t/l)
TS(0) = e (8.11)
¢ ng(f) ¢
Tgstw(r) = Cygn(T) — Xg- (8.12)

Both the equivalence of (8.8) with (8.11) and of (8.9) with (8.12) follow from the following
non-trivial identity, which is the content of the main technical lemma (Lemma 4.8) of
[43].

Lemma 8.3 ([43]) Forg € G = Aut(A) we have

_ 77—g(7"/2) 77g(7"/2)
n—g(t) ng('()

2Xg + C_gn_g(t) — Cgne(r) = 0. (8.13)

The main result of [43] is that T is the normalized principal modulus for a genus zero
group I'; < SLy(R), and Tjy, is also a principal modulus, so long as C; # 0. From the
explicit descriptions of the I'y in Table 1 of [43], we see that Tgs (27) is invariant for some
Co(N), with N depending on g, for every g € Coo.

Theorem 8.4 ([43]) Let g € Cog. Then T; (27) is the normalized principal modulus for a
genus zero group T'y < SLy(R) that contains some T'o(N). If g has a fixed point in its action
on the Leech lattice, then the function Ty (7) is constant, with constant value — xg. If g has

no fixed points, then T

gtw(r) is a principal modulus for a genus zero group Tgry < SLa(R).

The groups I'y and gty are described explicitly in [43].

Note that the characteristic polynomial for the action of an element g € G on a can
always be written in the form [,,_o(1 — x")»
finitely many being zero (cf. §4.3 of [43]). It follows from (8.2) that ,(7) = [],,,~o n(mz)km,
The formal product

g = H mlkm (8.14)

m>0

for some non-negative integers ky;,, all but

is called the Frame shape of g.

9 Twining genera

In this section, we establish the main results of the paper.
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Let X be a projective complex K3 surface and let 0 = (P, Z) be a stability condition
in Bridegland’s space Stab®(X) (cf. Sect. 4). Presently, we will attach a formal series ¢ €
Cly*']llg]] toany g € Gy = Aut,(DP(X), o) by computing the graded trace of a suitable
automorphism of the canonically twisted module Vts‘f, for the distinguished super vertex
algebra V* that was reviewed in Sect. 8 (and studied in detail in [43]). It will develop (see
Theorem 9.5) that ¢, is a weak Jacobi form of weight zero and index one, with some level
(cf. Sect. 3).

In order to define ¢, we require explicit realizations of V** and Vts‘f,. In preparation for
this, we take a = H(X, Z) ®z C to be the complex vector space enveloping the Mukai
lattice. Once and for all, we choose an orientation on H(X, Z) @7 R C a,

24
Rtw c /\ (H(X Z) @z R), (9.1)

and we let 3’ [cf. (7.14)] denote the corresponding lift of —Id, to Spin(a). Then, for a
polarization a = a~ @ a™ such that 3 = 3’ [cf. (7.8)], we identify

V=A@ @A), VI =A@ @AW", (9.2)

as in Sect. 8.

As in (6.10) we write Yiw(w, z/2) = D ez L(n)z="~2 for the twisted module vertex
operator Vts‘f, — Vts‘f,((z)) attached to the Virasoro element w € V** [cf. (6.5)]. Then L(0)
acts diagonalizably on VtsfV with eigenvalues in Z + %, thus L(0) — o7 defines an integer
grading on Vtsvf,, since the central charge of V*" is ¢ = % dim(a) = 12.

The data of X and Z enable us to define a U(1) element (cf. Sect. 5), and hence a second
integer grading on V. To see this, first recall the spaces Px [cf. (4.7)] and Pz [cf. (4.9)]
from Sect. 4. Let ¢ be a non-zero element of H>°(X), and choose vectors

xx € RN(s), yx € RI(g), xz € RR(Z), yz e RI(Z) (9.3)

of norm one with respect to (-, -), so that {xx, yx, 2z, ¥z} is an orthonormal basis for
IT = Px & Pz. Now set

ay = %(xx tiyy), ay = %(xz +iyz), (9.4)
so that the a)jg and aﬂZC are isotropic, satisfying (a)i(, a)f) (aﬂZC, aZ) = 1. Then

yi= pax (Sh)ak (<) v ez (D) af (<))v 95)
is a U(1) element of level 4 for V¥ [cf. (6.12)]. Write J(n) € End(\/tsvi) for the coefficient
of z7"~1 in the twisted vertex operator attached to j,

Yow (1,2'2) = D Tz, (9:6)

nez

According to (6 11), Lemma 6.1, and the fact that dim a = 24, the operators L(0) — 53 and
J(0) equip V, w1th an integral bi-grading

Viw = EB (ves) 9.7)
nrel ’
n>0

with finite-dimensional homogenous subspaces,

(vni) {v € VEI(LO) — &)v = v, J(O)v = rv}, (9.8)
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Now recall 'y < H(X, Z) [cf. (4.13)] and let ¢ : T’y — A(—1) be a Leech marking of
(X, o) [cf. (4.14)]. Choose a copy of the negative-definite Leech lattice A(—1) in a such
thata = A(—1) ®z C and I'; € A(—1), and assume also that ((y) = y. Set

G = Aut(A(-1)), (9.9)

a copy of the Conway group Cop in SO(a), and let G be the lift of G to Spin(a) whose
existence and uniqueness is guaranteed by Proposition 7.1. Recall that we write g > g
for the isomorphism G — G. We may assume that 3’ € G [cf. (9.1)], for if this is not true
for our first choice of A(—1), then it becomes true once we replace A(—1) with its image
under the reflection in the hyperplane defined by a non-zero vector in IT.

As explained in Sect. 4, the Leech marking ¢ induces an embedding of groups ¢, : G —
G [cf. (4.15)]. Using this map to regard Gy as a subgroup of G, we suppress it from
notation. Thus, to each g € Gr; C G is associated a corresponding element g € G. We
now define ¢, € Cly*!1[[q]] by setting

b = —trye @O0 ©.10

where 3 = 3’ is the central element of G.
Our notation ¢, obscures the choice of Leech marking for (X, o). We now show that
this convention entails no ambiguity.

Proposition 9.1 The series ¢, is independent of the choice of Leech marking 1.

Proof Suppose that A(—1) C a is chosen as above, having full rank a = A(—1) ®z C
in a, containing 'y as a primitive sublattice, and such that 3’ € G, for G the unique
lift of G := Aut(A(—1)) >~ Cop to Spin(a), and 3’ the lift of —Id, associated to the
chosen orientation (9.1) on H(X, Z) ®z R. A second choice of Leech marking leads to a
second copy of the negative-definite Leech lattice, A'(—1) C a, witha = A’(—1) ®; C
and g < A(=1) N A/(—1). Set G’ := Aut(A’(—1)) and write G’ for the unique lift of
G’ >~ Coy to Spin(a), and assume, as we may, that 3’ € G.

We have g € G N G'. Write g and g’ for the respective lifts to Spin(a), determined by G
and G". We have g = 4¢’, and we require to show that, in fact, g = 2.

Let 1 be an orthogonal transformation of a that restricts to an isomorphism /2 : A(—1) =
A’(—1). By our hypothesis that 3’ € G N G/, we have i € SO(a). Since I'ry is a primitive
sublattice of A(—1) N A’(—1), we may choose / so that it restricts to the identity on I'f.
Then & commutes with g, because g acts trivially on Ff-[‘. More than this, any lift 71 of /1 to
Spin(a) commutes with g, because we have g = Hllil e%Xi [cf. (7.10)], for some basis {al.i}
of eigenvectors for g, as in (7.7), with X; as in (7.9), and we may assume that ¢; # 0 only
when aii e I'n ®z C. Then ZXi = Xﬁwhenever a; # 0,and so ﬁ@ = :g\ﬁ Now hGh—Lis a
lift of G’ to Spin(a), so it must be G’ by Proposition 7.1. So Hgh~listheliftg of hgh™! = g
to G, s0g = /h\/g\j/z\’1 = g, as we required to show. i

The coefficients of the ¢, may be computed explicitly, in direct analogy with (8.9). With
this purpose in mind, we define constants Dy as follows.

Given g € Gy, choose a polarizationa = a~ @a* fora = H(X, Z) ®; C such that a is
spanned by (isotropic) eigenvectors aii for g, constituting a pair of dual bases in the sense

that (a;, a;L) = §;;j (cf. the discussion in Sect. 8). We may assume that

£ _ 4+ 4+ _ &
an =dy, a4 =4z (9.11)
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since a)i( and a§ are fixed by g, by hypothesis. We may also assume that the lift of —Id,
associated to the polarization a = a~ @ a™coincides with 3" [cf. (9.1)], for if not, then
replace aii with a7, for some i € {1,...,10}.

Write Aiﬂ for the eigenvalue of g attached to af. Set X; := %(a;a;r - aja;) asin (7.9).
Then, according to the discussion in Sect. 7, we have

10
z =[] (9.12)
i=1

for some «; € 27w Q satisfying )»?El = et2%l We now set v; := e%i, for 1 < i < 10, and

define

10

D =] (v,' - v;l) , (9.13)
i=1
Observe that if v := []}2, v; then Dy = v/ [}2,(1 — A;%). So Dy vanishes if and only if
g has a fixed point in its action on I'f. In particular, Dy vanishes whenever the sublattice
of A fixed by g has rank larger than 4.
We are now prepared to present an explicit expression for ¢,.

Proposition 9.2 Let X be a projective complex K3 surface and let o € Stab®(X). Then for
geGn= Auts(DP(X), o) and ¢g defined by (9.10), we have

by = — 1 (15‘4(1, 2 0g(1/2)  3(x, 2)? n_g(r/z))
g 2 \ W4(7, 0)2 1g(7) 93(t, 0)2 n_¢(®)

1 191 ('C, Z)2 192('5» Z)2
( a@e D 5 op

5 ang(r)) (9.14)

2T and y = 22, In particular, ¢g is the Fourier expansion of

after substituting q = e
a holomorphic function ¢g(t,z) on H x C, invariant under (t,z) — (v + m, z + n), for

m,n € 7.

Proof The required identity (9.14) may be obtained via direct calculation. We use the
decomposition V¢ = A(a)! GBA(ct)(t)W along with the formulas (8.2) and (8.3). We also use
Lemma 6.1, and the product formulas (3.15) for the Jacobi theta functions ¥;.

For the contribution of A(a)! to ¢g, note that

A EJ/(O) qL(O)—c/24
10

_ q—1/2 H (1 +y—1qn—1/2)2 (1 +yqn—1/z)2H (1 + )»,»_161"_1/2) (1 + )\iqn—l/2)

n>0 i=1

D3(t, 2)2 n—g(1/2)

— (9.15)
03(7,0)2 n_g(1)
since 111 = A12 = 1 according to the convention (9.11). Similarly,
N _ Da(T, 2)? N—g(7/2)
tra() 38y V"0~ = £ (9.16)

7-94(7-') 0)2 77—g(‘t) '

Thus, recalling the definition (9.10) of ¢, we see that the first line of the right-hand side
of (9.14) is precisely the contribution of A(a)! to ¢q.

Page 29 of 47
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The contribution of A(a)?, is computed similarly. We have

10
tra@ @ V7O = gy [T (145710 Ay [ (1437'0") L+ 2ig”)

n>0 i=1

D , 2
_ %c,gn,g(r), (9.17)

trA(a )3gy’(°) L(0 c/24_quH I 1 - 21—[( 1 g 1) 1 - rig")

n>0
91(z, 2)2
T n(r)ng”g(f)’ (9.18)
assuming, as we may, that v’ = v in (9.13). This shows that the second line of the right-
hand side of (9.14) represents the contribution of A(a) to ¢,. The identity is proved.

[}

Armed with Proposition 9.2, we henceforth regard ¢, = ¢¢(t, z) as a holomorphic func-
tion on H x C. We would like to show that ¢, is a weak Jacobi form. This is accomplished
by giving an expression in terms of the standard weak Jacobi forms ¢ ; and ¢_o,1 (cf. Sect.
3). With this in mind, define

1 /2 (/2
Fg(l’) = EAz(‘L’/Z)n;g?g(T) — —AZ( /2+1/2)T
45 Deng() — Aa(r)Cgn () 9.19)

for g as in Proposition 9.2, and recall the definition (8.10) of x,.

Proposition 9.3 Let X be a projective complex K3 surface and let o € Stab®(X). Then for
ge Auty(DP(X), o), we have

1
$e(7,2) = 15 xg$01(7. 2) + Fg(1)p-21(7, 2). (9.20)

Proof Replacing F,y(r) with the right-hand side of (9.19), the right-hand side of (9.20)
becomes

/2, ) - —Az( /2417212
ng(7) n-¢(7)

1
+5Pgng(T)¢-21(7, 2) — Aa(T)Cogn—g (1)p-21(7, 2). (9.21)

1 1
ﬁXg¢0,1(T: z) + §A2(T/2) ¢-21(1, 2)

Now subtract ﬁO(j)o,l, where 0 is written as in Lemma 8.3 [i.e., the left-hand side of (8.13)].
After some rearrangement, we obtain

2
_ 2
+ (i%l(r, 2) - %1\2(7/2 +1/2)¢-21( Z)) %

1 1
+56-21(7,2)Dgng(7) — (ﬁfbm(f, z) + Aa(1)p-21(7, Z)) Cgnyglr),  (9.22)

and the identities of Lemma 3.2 show that this is exactly (9.14). |
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Applying Proposition 3.1 with m = 1 to (9.20), we see that ¢, is a weak Jacobi form of
level N so long as Fy is a modular form of weight 2 for T'o(N).

Proposition 9.4 Let X be a projective complex K3 surface and let o € Stab®(X). Then
for g € Auty(DP(X), o) the function F, is a modular form of weight 2 for T'o(Ny), for some
positive integer Ng.

Proof As in the definition (9.10) of ¢, and the proof of Proposition 9.1, we use Proposition
4.1 to identify G = Auty(DP(X), o) with a subgroup of SO(a) (recall that a = H(X,Z)
C), and we choose a Leech marking ¢ for (X, o), in order to identify g as an element of
G = Aut(A(—1)), for a suitable copy of A(—1) in a. Then n+,(7) and C_, depend only on
the conjugacy class of g in G >~ Coo, and D, is determined by the conjugacy class [g] C G
up to sign [cf. (9.13)]. The values C_; and Dy, and the Frame shapes 7.+, that determine
the n14(7) [cf. (8.14)] may be read off from Table 3.

Now the proof is essentially a case-by-case check of the relevant classes of Cog (rather
than, say, all the groups Gy in Awt(H(X, 7)) = O(l4,20)), but we can use the results
of [43] to simplify this further, replacing the explicit calculation of modular forms with
simple checks on properties of the invariance groups I'y of the functions T§(2t) [cf. (8.6),
Theorem 8.4].

As a first step toward this goal, observe that if D, # 0 then 14(7) is an eta product of
weight 2, meaning that 3", ok = 4 for g = [[,,-o m*". Indeed, 3, ki is exactly
the rank of A$, and it was pointed out in the sentence following (9.13) that Dy vanishes
when A$ has rank larger than 4.

It follows that the third summand in the definition (9.19) of F¢(7) is a modular form of
weight 2, and some level, for each g. So we may consider Fé(t) = Fy(t) — %Dgng(r) (the
prime here does not denote differentiation).

Next, we apply Lemma 8.3 to rewrite C_,n_4(7) in terms of the functions

U:I:g("-')
tio(T) := . (9.23)
T s, 2)
[cf. (8.11)]. Since g has fixed points in a by hypothesis, C; = 0 [cf. (8.5)]. Thus we obtain
T T
2+ (5) = t¢ (5) + Cogn-e() =0 (9.24)

from Lemma 8.3. Solving for C_yn_,(7) in (9.24), substituting the result into (9.19), and
noting the identities ,(t + 1/2) = —£_4(7) and A4(r) = 4A2(27) + 2A2(7), we see that
ifFé’(r) = Fé(r) — 2xgA2(7), then

FJ(x) = 71 (tg (%) Aq (%) +t (T er 1) Ag (t ;’ 1)) (9.25)

The function 2 x4y A2(7) is a modular form for I'g(M) whenever M is even, so we may focus

onF’.

Seffg(r) = %tg(r)A4(r). Then f,(7) is a weakly holomorphic modular form of weight 2
and some level, since £;(7) is a principal modulus for a genus zero group containing some
I'o(N), according to (8.11) and Theorem 8.4. Precisely, for Iy the invariance group of £, (z)
(i.e., as in Theorem 8.4), the function Je is a weakly holomorphic modular form of weight
2 for 'y N To(4).

The relevance of f,, apparent from (9.25), is that we have Fg” = T>(2)fg, where Ty(2)
denotes the second-order Hecke operator on modular forms of weight k for I'o(M), for



Duncan and Mack-Crane Res Math Sci(2016)3:1 Page 32 of 47

any even M,

(T2 )(z) == % (f (%) +f (T er 1)) (9.26)

(cf. e.g., SIX.6 of [80]). From this, we conclude that Fé’ is a weakly holomorphic modular
form of weight 2 for I'o(N”), where N’ is the least common multiple of 4 and the level of
tg.

We require to show that Fé’ is actually a (holomorphic) modular form, i.e., has no poles
at cusps. There is no loss in considering

4Fé’(2r) = to(T)Aa(1) — t_g(1) A4 (r + %) (9.27)

instead. Note that A4(t) and A4(t + 1/2) are both modular forms of weight 2 for I'g(4),

(1) 1/2 . Recall that I'g(4) has three orbits on @ = QU{o0},

represented by 1, 1/2, and 1/4 (the infinite cusp is represented by 1/4). Table 1 presents
the asymptotic behavior of A4(7) and A4(r + 1/2) at these three cusps of I'g(4).
The function Fg/,’ cannot haveapoleata € Q unless one or both of t+g do. The functions

since I'g(4) is normalized by

t+gq are principal moduli for groups I'+, according to Theorem 8.4, so they can only have
poles at points o € @ such that « € TI'ty00. Comparing (9.27) with Table 1, we see that
our task has been reduced to verifying, for arbitrary « € @, that

1. Ifa € Fgooand I'_goo then & = 1/4 mod T'o(4),
2. Ifa eTgooand o ¢ T'_goo thena = 1/2 mod I'g(4), and
3. fa ¢ Tyooanda € I'_goothena =1 mod I'y(4).

The verification of these statements can now be handled directly using the descriptions
of the groups '+, appearing in Appendix A.

Observe that the verification of the statements 1, 2, and 3 is generally quite easy. For
example, if C_; = 0 (which is the case for most conjugacy classes) then we necessarily
have I'y = I'_, since (9.24) implies that , and ¢_, coincide, up to an additive constant.
Then the conditions 2 and 3 become vacuous, and we require only to check thatif y € Ty
and yoo = ‘E’ for a,c € Z with (a,c¢) = 1, then ¢ = 0 mod 4. The remaining cases are
handled similarly. ]

Together, Propositions 9.3 and 9.4 prove our main theorem.

Theorem 9.5 Let X be a projective complex K3 surface and let o € Stab®(X). Then for
g € Autg(DP(X), o) the function ¢q is a Jacobi form of weight 0, index 1, and some level.

Taking g to be the identity in Theorem 9.5 produces a Jacobi form ¢, of weight 0, index
1, and level 1; it must be the K3 elliptic genus, up to a constant. The constant can be
determined by setting z = 0. Taking z = 0 in (3.16) and (3.17), and applying (9.20), we see
that in fact it is exactly the K3 elliptic genus, but expressed in a rather non-standard way:

Table 1 Modular forms of level four at cusps

Aq(T) Ay(r+1/2)
1 1/2+0(q) 1/2 4+ 0(q)
1/2 0(9) —1/2+0(9)

1/4 -1/8+0(q"%) 0(a'*)
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Zis(g) = L08@27 A2 19402 AG/2) oy Paln2)? ART)
k3(7,2) = 295(1, 02 AT)A(T/2) 2 0a(r, 002 A7) 92(7, 002 A(r)
(9.28)

Explicit expressions for the ¢ are recorded in Table 3. Coincidences with the weight zero
weak Jacobi forms of Mathieu moonshine, and with the K3 sigma model twining genera
computed in [68] are recorded in Table 8. Observe that every twining genus appearing in
[68] appears also in Table 8. This leads us to the following conjecture.

Conjecture 9.6 The twined elliptic genus attached to a supersymmetry-preserving auto-
morphism g € G of the supersymmetric non-linear K3 sigma model determined by
[T = Px @ Pz coincides with ¢,.

10 Umbral moonshine

In addition to twined K3 elliptic genera, a number of which coincide with weak Jacobi
forms of Mathieu moonshine (cf. Table 8), graded traces on Vts“u, defined by U(1) elements
corresponding to higher dimensional subspaces of a recover functions arising from umbral
moonshine, as we will now explain.

In [18], to each lambency ¢ € {2, 3,4, 5,7, 13} is associated a Jacobi form Z © of weight 0
and index £ — 1. In [19], this is expanded to a correspondence associating to each Niemeier
lattice with root system X a lambency ¢ and a meromorphic Jacobi form % of weight
1, with index given by the Coxeter number of X. For lambencies £ occurring in [18], we
recover Z© from X according to the rule

d(r,2)?
B X, 10.1
Yot 2amep P Ho-
upon taking X = A} _; forn = 24/(¢ — 1).
Ford € {2,4, 6,8, 10, 12}, define a corresponding ¢ by £ = % + 1. Identify a = A ®7 C.

Choose a 2d-dimensional real vector space I[1 < A ®z R C a and let {aft} be bases
+

ZO(z,z2) =

for isotropic subspaces a¥ < a constituting a polarization ¢ = a~ @ a*t. Assume that

(a;, a]f") = J;; and

N ®r C = Span {a;,a] |1 <i<d}. (10.2)
Define an associated U(1) element ; € V*%, with V*% asin (8.1), realized usinga = a~ @a™,
by setting

1 d

=3 > a7 (=1/2)af (=1/2)v. (10.3)

i=1

Then ; has level d according to Lemma 6.1.
Recall from Sect. 7 that g —> g denotes the natural isomorphism relating G = Aut(A) to
the naturally corresponding copy G of Cog in Spin(a). If g € G is chosen so that g restricts

st

to the identity on IT, then the action of g on V; commutes with that of J(0) := j(g),tw, and

we may define
#(2) 1= ey @) Vg0, (10.4)

Cf. (9.10).
To describe the ¢g) explicitly choose a g in G with g| = Id. Assume that the aii are
eigenvectors for g and write
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10
g=[]e (10.5)
where X; = %(a;a;r - a;La;) asin (7.9), and the «; € 27 (QQ are chosen so that A?El = eH2uil
is the eigenvalue for the action of g on aii. We may assume that o; = 0for 1 < i < d since
g fixes the corresponding ali by hypothesis. Set v; := % and define
12

o =[] (vi—vi_l). (10.6)

i=d+1
Similar to the discussion around (9.13), if v := H;lid 41 Vi then
12

o' =v I] (1 - )\;1), (10.7)
i=d+1
SO Dg) vanishes ifand only if g has a fixed point in its action on the orthogonal complement
of IT in A. In particular, Dg) vanishes whenever the sublattice of A fixed by g has rank
larger than 2d.
By a method directly similar to the proof of Proposition 9.2, we obtain the following

explicit expression for ¢§l).

Proposition 10.1 Letd € {2,4,6,8,10,12} and { = % + 1. Let T1 be a 2d-dimensional
subspace of A ®z R. If g € G and g|ln = 1d, then

o0z ) = _ L 9a(1,2)? 0g(1/2)  93(r,2)? n4(x/2)
£ 2\ 9a(r, 04 ng(r)  93(r, 004 ng(7)

1 " (T, 2)4 92(t, 2)*
+§(( 1)ZWDg ng(t) — mc_gn_g(r)) (10.8)

2T and y = e¥™2, In particular, ¢g) is the Fourier expansion of

after substituting q = e
a holomorphic function ¢g)(r, z) on H x C, invariant under (t,z) — (t + m, z + n), for

m,n € 7.

On the strength of Proposition 10.1, we may henceforth regard (b([) ¢ (r, z) as a
holomorphic function on H x C. As in Sect. 9, we would like to show that ¢g is a weak
Jacobi form, and this is accomplished by giving an expression in terms of the standard weak
Jacobi forms ¢g1 and ¢_y 1 (cf. Sect. 3), and some particular modular forms depending on
g. With this in mind, define

ne(t/ ))+A2(r/2+1/2)1 ((/)) (—2A2(7)Y C_gn_g(7)
N-g

Fjg(t) = —Aa(z /2)1
(10.9)
for j > 0 and g as in Proposition 10.1.

Proposition 10.2 Let ¢ and g be as in Proposition 10.1. Then Fog is constant, and there
exists a positive integer N such that Fyjg € Maj(T'o(N)) for 0 <j < L.

Proof The proof is very similar to that of Proposition 9.4. That is to say, it is ultimately
a case-by-case check, but we use the results of [43] to replace the explicit calculation
of modular forms with simple checks on properties of the invariance groups I'y of the
functions T;(Zr) [cf. (8.6), Theorem 8.4].
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To begin, consider Fo,. With £, as defined by (9.23), we have
Fog(t) = —t4(t/2) + t_g(1/2) — C_gn_g(7). (10.10)

Note that g has fixed points in its action on a, by hypothesis, so C; = 0. So (9.24) holds,
according to Lemma 8.3. Comparing (9.24) to (10.10), we see that Fo4(t) = 2x,. In
particular, Fo4 is constant, as required.

Now let 0 < j < £. Applying Lemma 8.3 to rewrite C_zn_,(7) in terms of £.¢, and also

using £, (7 + 1/2) = —t_4(7), we have Fyjg(1) = 2]g(t) +2xg(— 2A4(7)Y, where
, _ 741 T+1
Fy (1) == ( ) Gy ( ) +1i ( 5 ) Gyj ( ) (10.11)
Goj(7) i= —Aa(t) + (—2A2(27)). (10.12)
We require to show that F2,j, g(r) is a modular form for some I'g(N).
So set
S2jg(T) = 2t4 (1) Go(7) (10.13)

and observe that fy;¢(7) is a weakly holomorphic modular form of weight 2j for some
I'o(N), since the invariance group of £, contains some I'g(N). Also, F. 2] < = T5(2)f2)g
where T (2) denotes the second-order Hecke operator on modular forms of weight k for
Co(M), for any even M. [cf. (9.26)]. So F. 2] ¢ is a weakly holomorphic modular form of
weight 2j for some I'g(N), and it remains to verify that Péj, < has no poles at cusps.

To this end, observe

Fé(Zr) = tg(1)Goj(1) — t—g(7)Go; ('C + %) , (10.14)

and note that both Gy;(r) and Gaj(t + 1/2) are modular forms of weight 2; for T'o(4).
Table 2 is the appropriate analogue of Table 1, presenting the asymptotic behavior of
Gaj(7) and Gaj(t + 1/2) at the three cusps of I'o(4).

]ust as for Fy " in the proof of Proposition 9.4, the function F ¢ cannot have a pole at
a € Q unless one or both of £+, do, and the £+, can only have poles at points « € Q
such that « € I'1y00. Comparing (10.14) with Table 2 we see that we require to verify, for
arbitrary o € Q, that

1. Ifa € [gooand I'_goo then & = 1/4 mod T'y(4),
2. Ifa eTgooand o ¢ T'_goo thena = 1/2 mod I'g(4), and
3. fa ¢ Tgooanda € I'_goo thena =1 mod I'o(4).

But these statements have been verified already, for any ¢ € G such that the rank of
A$ is at least 4, in the course of the proof of Proposition 9.4. Since IT has dimension
2d = 4(¢ — 1) > 4, the proof of the proposition is complete. ]

Table 2 Modular forms of level four at cusps

Ga(7) Gyi(t+1/2)
1 (=2 =1)127 + 0@ (=2 =1)1277 4+ 0(q)
172 Olq) (1= (=2)) 127 + 0@

1/4 (1—(=2)) 487 +0(q') 0(q')
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Proposition 10.3 Let £ and g be as in Proposition 10.1. Then we have

1 B
¢, 2) = —EDS)ng(rw_z,l(r, 2)!

o, 1fe-1\ 1 i1 ‘
+Z(—1)’§( j )WF%g(T)(f)O,I(T:Z) ¢_21(r,z). (10.15)
=0

Proof Recall d = 2(¢ — 1) and apply the identities of Lemma 3.2 to the expression (10.8)
for qbg), replacing the theta quotients with the left-hand sides of (3.19)—(3.22), to find

1 ng(/2)
ng(f)

-1
- (i¢0’l(r’ 2) = A2(t/2 +1/2)p-2.1(x, z)) 1=(c/2)
12 e

o0 (z,2) = —%( (%ml(r, 2) = Aa(t/2¢1(, z))

1
+5 ( —¢-21(5,2)" 1Dy (1)
1 -1
- (Eqso,l(r, 2+ 285(0)p_s (x, z>) Cgng(®) ) (10.16)

Applying the binomial theorem to each term, we find that the coefficient of d)é;j _ld/;m
forj < £ — 1 in the resulting expansion is

1/¢0-1 ng(t/Z)
—5( )126, r(-Aa(e/2) TS

+5(€_.1) ! (Az(r/2+1/2)y—” (/%)

jo) 126771 1N—g(7)
_% (Z ; 1) 12Z_L,_l(21\2(r))/c_gn_g(r)
= (—1)1%(6 ; 1) 12i1 T Fojg (7). (10.17)
The coefficient of qbf_z’ll is similar, with the additional term —%Dg)ng(t). O

Theorem 10.4 Let d € {2,4,6,8,10,12} and ¢ = % + 1. Let T1 be a 2d-dimensional
subspace of A @z R. Ifg € G and g\ln = 1d, then q{éz) is a weak Jacobi form of weight 0 and
index £ — 1, with some level depending on g.

Proof Proposition 10.3 shows that q)g) is a homogeneous polynomial in ¢g; and ¢_z
of the form required by Proposition 3.1. Proposition 10.2 verifies that all the coefficients
in this expression have the correct modular properties, except for —%Dg)ng(r), which

appears as the coefficient of d)f_zll. So the required result follows from Proposition 3.1, as

soon as we verify that D pY

¢ 1g(7) is a modular form of weight d = 2(¢ — 1) for some I'g(N),
but this follows from the definition of Dg). For it is apparent from (10.6) that Dg) can
only be non-zero when the rank of A¢ is precisely 2d = 4(¢ —1). On the other hand, if the
Frame shape of g takes the form ; = [[,,o ", then rank(A) = >, ok which is
exactly 5 times the weight of 74 (7) = [],,-¢ n(mr)k”‘ So ng(7) has weight d, or D([) 0.

In either case, Dg)ng(r) € My—_1)(To(N)) for some N. This completes the proof. O
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Taking g to be the identity in Theorem 9.5 produces a Jacobi form d)éé) of weight 0, index
¢ — 1, and level 1. This construction recovers the extremal weak Jacobi forms Z() of [18]
for¢ € {2,3,4,57}.

Proposition 10.5 Ifd € (2,4, 6,8, 12} then ¢\ = 470

Explicit expressions for the ¢§l) are recorded in Tables 3, 4, 5, 6 and 7. Coincidences
with the weight zero weak Jacobi forms of umbral moonshine are recorded in Tables 8, 9,
10, 11 and 12.

Note that ¢£6), corresponding to d = 10, does not correspond to a weak Jacobi form
arising in [18]. However, ¢(36) maps naturally to the meromorphic Jacobi form % for
X = A‘SLD4 via the construction in §4.3 of [19]. Note that the ¢ for which qﬁy) recovers the
weight 0 Jacobi form of umbral moonshine correspond to pure A-type root systems X. It
is natural to ask if some modification of our methods can recover the Z() corresponding

to the remaining pure A-type root systems (at £ = 9, 13, 25).

11 Sigma models

In this section, we describe an isomorphism of graded vector spaces relating V*% and
its canonically twisted module Vtsvi to the vector spaces underlying the NS-NS and R-R
sectors of an explicitly constructed super conformal field theory arising from a particular,
distinguished supersymmetric non-linear K3 sigma model. This model was constructed
by Wendland in [107]. Its automorphism group is exceptionally large, as is demonstrated
in [65].

In preparation for a description of the relevant sigma model, let ' < C? be a lattice of
rank 4 that spans C? (i.e. ' ~ Z* and I’ @ R = C?). Then the quotient T = C?/T is a
complex 2-torus. The Kummer involution of T is the automorphism induced by the map
Kk : x — —x on C2. A minimal resolution X — T'/(«) of the quotient (there are 16 points
of T fixed by «) is a complex K3 surface and is projective exactly when T is.

We consider the special case that I' is the Dy lattice [cf. (2.4)]. More precisely, write
V for C? regarded as a real vector space of dimension 4. Equip V' with the symmetric
R-bilinear form (, ), such thate; = (1,0), e; = (5, 0), e3 = (0, 1), and e4 = (0, i) form an
orthonormal basis, and set

4
.= [Z”iei|ni € Z, Zm =0 mod2;. (11~1)
i=1

Then I' is a copy of the Dy root lattice in V.
Following [65], the Neveu—Schwarz (NS) sector (or rather, the NS-NS sector) of the
supersymmetric torus model attached to 7 = V/I" may be described as

Hrnsns = D AT @20 @ VE,, ®AT @, 0% @ VE,, (11.2)
i€{0,Lwd)

when the y; are chosen so that I'* = y ' + v is the dual lattice to I'.

ie{0,Lw,o

4
= [Znieﬂni € %Z, n =ny = n3 =ng mod 1}, (11.3)
i=1
Note that I'*/T is a copy of the Klein four-group.
In (11.2), we write A(I' ®z C) for the Clifford module super vertex operator algebra
attached to the (4-dimensional) complex vector space I' ®7 C via the construction recalled
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in Sect. 5, we write Vr,, for the module over the lattice vertex operator algebra Vr
determined by the coset I' + y;, and we use superscripts £ and R to distinguish the
left-movers and right-movers, respectively. The complex structure on V arising from the
identification V = C? reflects the choice of B-field made in [65]. In the Ramond—Ramond
sector, we have

Hirr= P AC@z0E ®VE, ®AT @, 0F @ VE,,. (11.4)

ie{0,1,0,0}

In order to obtain the vector space underlying the minimal resolution X — T'/(k), we
should construct the Z/2-orbifold of Hr corresponding to a lift & of ¥ to Aut(H ), which
means taking &-fixed points of Hr together with &-fixed points of a suitable & -twisted
module for H 7. This leads to

+
HxNs-Ns = @ (A(F ®zC)* ® V1§+Vi QAT ®z0)* @ Vrﬁ},l.)

ie{0,1,w,d}
+
o P (Are:0feVh,.eAre:OF e VR, .,)
ie{0,Lw,o}
(11.5)
+
Har= P (AT @204 8 Ve, 0Ar 2 OF @ VE,,)
i€{0,1,w,0}
+
o P (Are.0f Ve, 84T 0Re VE,,,)
i€{0,1,w,0}
(11.6)

for the NS-NS and R-R sectors of Hy, where the Vr,,, +w are certain twisted modules for
Vr and the superscript + denotes £ -fixed points

At first glance, it now appears that a detailed investigation of the structure of Hx will
require a review of the construction of lattice vertex algebras and their twisted modules,
but we will refrain from doing that here in favor of using an equivalent description in
terms of Clifford modules.

For this reformulation, let ¢ be a complex vector space of dimension 8 equipped with a
non-degenerate bilinear form. Then we have the Clifford module super vertex operator
algebra A(e) and it’s canonically twisted module A(e)ny as described in Sect. 5. According
to the boson-fermion correspondence (see [37,61], and also [54] for the particular case of
relevance here), we have an isomorphism of vertex operator algebras A(¢)® ~ Vi which
extends to isomorphisms between the irreducible A(e)°-modules and the Vr,,. After

relabeling the y; if necessary, we may assume

A(e)o = VI‘+y0;
A(e)l = Vr+}/1;
Ay = Vi,

ARy = Viy,:

(11.7)

We seek some resonance with the notation of §6 of [44] for it will develop that the
discussion there is very closely related to our present situation. So let us define
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Uy := A(e)°,
U, = Ae)},
' . (11.8)
Uy = A(e)g,
U == Ae)p
so that U; ~ Vr4,, as Up-modules. Note the isomorphisms
Ae) = Uy ® Uy ~ A(I' ®z C) ® A(I" ®z C), (11.9)
A()tw = Uy, ® Uy = AT ®7 C)tw @ A" @z C)y. (11.10)
Thus, we have isomorphisms
Hrnsns > P (oo th) @U@ U, (11.11)
i€{0,Lo,0)
Hrrr> P Uo®Us)@Ui® U, (11.12)
i€{0,Lo,»)

of Uy ® Uy ® Up-modules, for the supersymmetric torus model attached to 7. Now the
Uy ® Up-module structure on @; U; ® U; naturally extends to a vertex operator algebra
structure as is explained in detail in [54]. In fact, this vertex operator algebra is isomorphic
to the lattice vertex algebra V] for L a copy of the Eg lattice (cf. Sect. 2), and the vertex
operator algebra isomorphism V; >~ @; U; ® U; reflects the coincidence
L= JT+y) e[+ (11.13)
L

expressing the Eg root lattice as a union of cosets for Ds @ Dy.

Thus, we may interpret (11.11) as an isomorphism of super vertex operator algebras,
with each side isomorphic to A(¢) ® V7, once we equip H1Ns-Ns, as defined in (11.2), with
the diagonal Virasoro element

o =0 ®1+1® 0%, (11.14)

writing here w* for the Virasoro element of A(I' ®z C)* ® VFL, and similarly for w”.
With this understanding, we may regard (11.12) as an isomorphism of the corresponding
canonically twisted modules.

Observe that A(e) @ V7 is precisely the super vertex operator algebra denoted CV{ in
[44] (the symbols V{ denote a real form of @V{ ) and used there to constructan N = 1
super vertex operator algebra whose automorphism group is the largest simple Conway
group, Co; = Cog/{x1d} [cf. (2.7)].

The construction of Hy involves a lift of the Kummer involution A +— —A from L to
V1, but according to [54] we may realize such an automorphism explicitly in the Uy ® Up-
module description as 1 ® 6, where 6 denotes the parity involution on A(e) & A(e)tw,
fixing Uy and Uy, and negating U; and U;. Now we may replace Vryy,tw @ Vriy,tw
with U; ® U;, in the description of Hy, where {0, 1, w, @} is equipped with the obvious
4-group structure. Comparing with [65], we see that the orbifolding symmetry &, lifting
the Kummer involution on 7, should act as 6 ® 1 ® # on Hr and as 0 ® 6 ® 1 on its
K -twisted module, and in this way we arrive at the isomorphisms

HxNs-Ns 2 Uooo ® Uowe D U111 ® Ut D Uwow @ Uwwo ® Usie ® Use1, (11.15)
Hxr-R > Uwoo @ Upwo @ Us11 ® Usws ® Uoow @ Uowo ® U11o @ Uie1,  (11.16)
where Ujj is a shorthand for U; ® U; ® Uy [cf. (11.8)].
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Observe that the right-hand side of (11.15) is precisely the Uy ® Uy ® Up-module
description given in (6.4.7) of [44] for the super vertex operator algebra denoted there
by ¢ V/%. A suitably chosen vector T € Uj1; equips ¢ V/? with a representation of the
Neveu—Schwarz super Lie algebra with central charge 12, and a main result of [44] is that
the subgroup of Aut(c V/") composed of elements that fix 7 is exactly Co;.

We intend to use (11.16) to relate Hy r-r to Vts“u, To this purpose, recall the Dy triality,
which, at the level of lattices, is the fact that I'* [cf. (11.3)] admits an automorphism of
order 3 that stabilizes the type D, sublattice I" [cf. (11.1)], and cyclically permutes its three
non-trivial cosets I' + y;. At the level of vertex operator algebras and their modules, this
translates to the existence of an automorphism o of Uy, and invertible maps o : U; > U,
for i € {1, w, @}, such that

oY(a z)c=Y(oa z)oc (11.17)

fora € Uy and ¢ € U;, for i € {1, w, ®}. See [54] for full details on this. Since o must
fix the Virasoro element of Uy, the identity (11.17) implies that the maps o : U; — U,
are isomorphisms of Virasoro modules. So in particular, the graded dimensions of the U;
coincide, for i € {1, w, ®}.

Choosing a decomposition a = e; @ ez @ e3, with each ¢; a copy of C8, non-degenerate
with respect to the bilinear form on g, leads to identifications

A =AC) @A) @A@R) = B Uy (11.18)
ij,ke{0,1}

A@w = Ale)w ® Al @ Ales)w >~ P Ui (11.19)
ij,ke{w o}

where Uyr = U; ® U;j ® Uy, as in (11.15) and (11.16). Consequently, applying (8.1), we
obtain isomorphisms of Uygo-modules,

VS~ Ungo @ Uptn @ Uion ® Ui10 ® Usww D Uniw D Unws © Usiis (11.20)
Vts“u/ >~ U0 @ Uo1o ® Uoor ® U111 D Uwww D Uwas D Usws D Uvws- (11.21)

Now consider the images of (11.20) and (11.20) under o ® o ® o, where o denotes the
triality maps of (11.17). The result is the right-hand sides of (11.15) and (11.16).
Thus we have proven the following, final result of the paper.

Proposition 11.1 The distinguished super vertex operator algebra V*° is isomorphic to

Hx ns-Ns as a Virasoro module, when the latter is equipped with the diagonal Virasoro

element, wP. Similarly, Vtsf, is isomorphic as a Virasoro module to Hx,r g.
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Appendix A: Computations

Table 3 records all the necessary information to compute ¢, and Fy for all conjugacy
classes of Coy fixing a rank 4 sublattice of the Leech lattice, including, in particular, the
Frame shapes .+ and the traces C_g and D,. The trace x, can be read off from the Frame
shape 7, as the exponent of 1, and the rank rk A¢ of the sublattice fixed by g is the sum of
the exponents (counting signs) in 7.

Table 3 Data for the computation of ¢, = ¢§2)
Cog Coy g g C_¢ D, | %
1A 1A 124 vl 4096 0 2— 4+
28 2A 1828 2 0 0 4- 4
2C 2A vl 1828 0 0 4— 4—
2D 2C 212 212 0 0 42— 42—
3B 38 1636 ze 64 0 643 124

9 3¢9
3C 3C = % -8 0 6— 12+4
3D 3D 38 g 16 0 613 1213+

1

48 4A L 4 256 0 (842 84

8 8
4D 48 & & 0 +64 8— 8—
4E 4C 142244 ze 0 0 8— 8—
4F 4C e 142244 0 0 8— 8—
4G 4D 2444 2444 0 0 82— 82—
4H 4F 46 46 0 0 84— 84—
5B 58 1454 Catts 16 0 1045 20+
5C 5C e s —4 4255 10— 20+4

2°3%! 142'6° 1 1
6G 6C 3 - 0 0 124341 124341
6H 6C rze 236 0 124341 124341

1

6l 6D Ll 28 72 0 (12 +12)23 12412
6K 6E 122232 25 0 0 1243 1243
6L 6E z8 12223262 0 +48 1243 1243

3g3 146
6M 6F 3% = 0 +54 12— 12—
60 6G 2363 236° 0 0 122+34 3 1224301
6P 6l 6* 6* 0 +36 12|6— 12|6—
7B 7B 1373 ZACS 8 0 1447 28+

404 4 1 1
8C 3B 8 21—? 0 +16 (16]24)2% (16]2-H)>4

1

8D 8C I v 32 +8 (16-)°2 16+
8G 8E 12214182 248 0 0 16— 16—
8H 8E 2o 12214182 0 4322 16— 16—
8l 8F 4282 4282 0 +16 16]4— 16]4—

393 322193
9C aC = 2 4 +9 1849 36+
10F 10D 250 ralo 0 £20V5  20+541 204501
106 10 12)¢ 2sl0 0 45 204541 204543

1

10H 10E AREIA v 210° 20 +5¢/5 (20 + 2022 20+ 20

22
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Table 3 continued
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Cog Coy TTg Mg C_¢ D, |
10J 10F 22102 22102 0 420 201245 201245
nA - 1A 12112 22 4 +11 2+ 11 444
1

121 128 A SaPe 16 +12 24+)23 24+

1 1
2L 1M 1232 zelz 0 1643 Q4124+ 12%F (2412 + 1227
N 2 2P reg 0 +2443 244341 2u+341
120 12 g 234 0 48v3 244341 24+341
12P 12J 21416112! 214161121 0 +24 2412+3 2412+3
14C 148 17217140 214 0 +14 28+7 28+7
15D 15D 1'3lslis! 281050 4 +15 30+3,515 60-+

Also recorded in Table 3 are the invariance groups '+, of the ., arising in Proposition
9.4. Our notation for the I'y is the same as in [43] and may be described as follows. We
follow the conventions of [57], so that when / is the largest divisor of 24 such that /2 divides
nh, the symbol n|h— denotes the subgroup of index % in I'g(n/h) defined in [29] (see [55]
for an analysis of the groups n|/i—, and their extensions by Atkin—Lehner involutions). So
124 3, for example, denotes the group obtained by adjoining an Atkin—Lehner involution

W3

7 ( 1% 3 d) to I'9(12), where 9ad — 12bc = 3. In addition to this, we use A and

ny to denote upper and lower triangular matrices, respectively,

1 1 10
AL.— h = 12.1
h 0 1 n 1 (12.1)

We then write 12 + 3 A %, for example, for the group generated by I'g(12) and the
product of W3 with A%, where W3 is an Atkin—Lehner involution for I'g(12), as in the
previous paragraph.

Note that I'; and I are related by conjugation by A%, for every g € Coo.

The data in Tables 4, 5, 6 and 7 enable the computation of gi)g), for ¢ € {3,4, 5,7}, where
the relevant conjugacy classes in Cog are those fixing sublattices of the Leech lattice with
rank at least 8, 12, 16, or 24, respectively.

Table 4 Data for the computation of ¢(g3’

Coo Co1 g Tg C_q Dy T, T,
1A 1A 124 vl 4096 0 2— 44
2B 2A 1828 2 0 0 4— 4—
2C 2A 2 1828 0 +256 4- 4
2D 2C 212 212 0 0 42— 42—
38 38 1636 28 64 0 6+3 124
3D 3D 38 & 16 +81 6/3 1213+
48 4A o d 256 £16 (8422 8+
4F 4C 142244 ze 0 0 8— 8—
4G 4D 2444 2444 0 +64 82— 82—
5B 5B 145 s 16 425 1045 20+
6K 6E 12223262 26 0 +36 1243 1243
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Table 5 Data for the computation of ¢(g4)

Cog Co; Ty T_g C_¢ Dg) I | g
1A 1A 124 v 4096 0 2— 4+
2B 2A 1828 2 0 0 4 4—
2D 2C 212 212 0 +64 42— 42—
38 3B 1636 zs 64 +27 6+3 124

Table 6 Data for the computation of ¢_f,5’

Coo Coy g g C_q Y Ty T,
1A 1A 124 vl 4096 0 2— 4+
2B 2A 1828 29 0 +16 4 4

Table 7 Data for the computation of ¢_f,7’

Cog Coy g T_g C_g Dg) | -,
1A 1A 124 P 4096 +1 2- 4+

Appendix B: Coincidences

Table 8 records instances in which ¢, coincides with (or is a simple linear combination of)
weight zero (weak) Jacobi forms Zé(,z) attached to elementsg € My4 by Mathieu moonshine,
being the £ = 2 case of umbral moonshine (cf. [18,19]). The functions Zg,z) are as defined
in [18]. We also indicate when ¢, recovers one of the twined K3 sigma model elliptic
genera that is computed explicitly in [68]. The notations ¢,z and ¢, are as in [68]. Since
there is a choice, we specify which D, produces the function in question. Observe that
every twined K3 sigma model elliptic genus appearing in [68] appears also in Table 8.

Table8 Coincidences with Mathieu moonshine and sigma model twining genera

Coog Co, D, g Ng
1A 1A 0 79 = ¢4 1
2B 2A 0 28 = pon 2
2C 2A 0 78+ 278 = ¢o 2
2D 2C 0 29 = g 4
3B 3B 0 78 = ¢ 3
3C 3C 0 —179 4378 = ¢3, 3
48 aA 0 78 = ¢oa 2
4D 4B 64 20 = s 4
0 . - -2+ 328 2
4F 4C 0 20 = ug 4
4F 4C 0 —129 4129+ 79 = s, 4
4G 4D 0 28 = pan 8
56 58 0 28 = g5 5

Page 43 of 47
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Table 8 continued
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Coo Coy D, g N,
w . o 52+ Y + Y 1 6
o o 0 1280+ 428 .
. e 0 12+ 328 = b .
oK 6k 0 75 = e 6
. 6E & :
o . 4 ~428+ 328+ 2 :
o o 4 -4+ 428 :
o " -5t —§28 + 28+ 328 :
5 7 : 7
8c 8 16 70 = uc 16
80 8 8 2 = ¢us 4
0 o : 120+ 422 ;
8G 8k 0 Zg(g,zq) = g 8
< . 9 126+ 128 = b ;
o 9C -9 b 9
o o 20 28 20
1A 1A 1 iy 1
121 12E 12 Zéi):%A 6
12° 12) 24 23, 24
14c 148 14 z 1(?/43 14
1°b 1°D 1 Zi% 15
Table9 Coincidences with umbral moonshine at{ =3

Coo Coy pY ¢ N,
1A 1A 0 278

2B 2A 0 278

2C 2A —256 273 4 478

3 5 0

o 0 2

4G 4D —64 ZZS;

58 B -5

o & = 22

Table 10 Coincidences with umbral moonshineat ¢ =4

Coo Co; ¢§4) N
1A 329

2D 2C 32

3B 3B 32
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Table 11 Coincidences with umbral moonshineat{ =5

Coo Co Y N Ng
1A 1A 0 475

2B 2A -16 4z5)

Table 12 Coincidences with umbral moonshineat{ =7

Coog Co; D};) ¢§g7) N,
1A 1A -1 67\

Tables 9 10, 11 and 12 present coincidences between the qbg) and the functions Zg) of

umbral moonshine, for £ € {3,4,5,7}. As in the case of £ = 2, the functions Zg) are as
defined in [18].
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