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Abstract

We use the unique canonically twisted module over a certain distinguished super
vertex operator algebra—the moonshine module for Conway’s group—to attach a
weak Jacobi form of weight zero and index one to any symplectic derived equivalence
of a projective complex K3 surface that fixes a stability condition in the distinguished
space identified by Bridgeland. According to work of Huybrechts, following
Gaberdiel–Hohenegger–Volpato, any such derived equivalence determines a
conjugacy class in Conway’s group, the automorphism group of the Leech lattice.
Conway’s group acts naturally on the module we consider. In physics, the data of a
projective complex K3 surface together with a suitable stability condition determines a
supersymmetric non-linear sigma model, and supersymmetry-preserving
automorphisms of such an object may be used to define twinings of the K3 elliptic
genus. Our construction recovers the K3 sigma model twining genera precisely in all
available examples. In particular, the identity symmetry recovers the usual K3 elliptic
genus, and this signals a connection to Mathieu moonshine. A generalization of our
construction recovers a number of Jacobi forms arising in umbral moonshine. We
demonstrate a concrete connection to supersymmetric non-linear K3 sigma models by
establishing an isomorphism between the twisted module we consider and the vector
space underlying a particular sigma model attached to a certain distinguished K3
surface.
Mathematics Subject Classification: 11F50, 14F05, 14J28, 17B69, 20C34, 20C35,
58J26

Contents
1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 Monstrous moonshine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 K3 surfaces and Jacobi forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Sigma models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Mathieu moonshine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Umbral moonshine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Derived equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Vertex algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 The Clifford module construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

© 2016 Duncan and Mack-Crane. This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

0123456789().,–: vol

http://crossmark.crossref.org/dialog/?doi=10.1186/s40687-015-0050-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Duncan and Mack-Crane Res Math Sci (2016) 3:1 Page 2 of 47

7 Lifting to the spin group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 The Conway moonshine module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Twining genera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Umbral moonshine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 Sigma models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix A: Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix B: Coincidences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Background
The main result of this paper is a construction which attaches weak Jacobi forms to
suitably defined autoequivalences of the bounded derived category of coherent sheaves
on a complex projective K3 surface.
The origins of our method extend back to the monstrous moonshine phenomenon,

initiated by the observations of McKay and Thompson [101,102], Conway–Norton [29],
and Queen [95]. The more recent Mathieu moonshine observation of Eguchi–Ooguri–
Tachikawa [51], and its extension [18,19,25] toNiemeier lattice root systems is also closely
related.
Our results also have physical significance. As we explain presently, they suggest that a

certain distinguished super vertex operator algebra is a universal object for supersymmet-
ric non-linear K3 sigma models. This represents a new role for vertex algebra in physics:
rather than serving as the “chiral half” of a particular, holomorphically factorizable super
conformal field theory, the super vertex operator algebra in question is, evidently, simul-
taneously related to a diverse family of super conformal field theories.

1.1 Monstrous moonshine

To explain the connection to monstrous moonshine, recall that an isomorphism of Rie-
mann surfaces

Tg : �g\̂H ∼−→ ̂C (1.1)

is attached to each conjugacy class [g] in the monster group M by the work [29] of
Conway–Norton. Here ̂C := C ∪ {∞} � P

1 denotes the Riemann sphere, we set

̂H := H ∪Q ∪ {∞}, (1.2)

forH = {τ ∈ C|�(τ ) > 0}, and �g is a discrete subgroup of SL2(R) that is commensurable
with the modular group SL2(Z). Actually, �g always lies between some �0(N ) and its
normalizer in SL2(R) [cf. Sect. 3 for �0(N ) and its normalizer], and the subgroup of

upper-triangular matrices in �g is generated by ±
(

1 1
0 1

)

for all g ∈ M. Further, Tg maps

the �g -orbit containing∞ ∈ ̂H to∞ ∈ ̂C. So Tg (restricted to H) admits a Fourier series
expansion

Tg (τ ) =
∑

n≥−1
cg (n)qn (1.3)

for some cg (n) ∈ C, where q = e2π iτ (we choose a square root of−1 in C and denote it i).
Moreover, cg (−1) = 1 and cg (0) = 0 for all g ∈ M.
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For g = e the identity inMwehave�e = SL2(Z), soTe(τ ) is almost the classical complex
elliptic j-invariant,

Te(τ ) = j(τ )− 744

= q−1 + 196,884q + 21,493,760q2 + 864,299,970q3 + 20,245,856,256q4 + · · ·
(1.4)

McKay’s original moonshine observation is that 196,884 = 1+ 196,883, where 196,883 is
the dimension of the first non-trivial irreducible representation ofM. Thompson extended
this [102] and posited the existence of a graded infinite-dimensional M-module

V � =
⊕

n≥−1
V �
n , (1.5)

such that J (τ ) := j(τ ) − 744 is the generating function of the dimensions of its homo-
geneous subspaces. The Tg of Conway–Norton [29] are explicit predictions for what the
graded traces of elements g ∈ M on V � should be

Tg (τ ) =
∑

n≥−1

(

trV �
n
g
)

qn. (1.6)

The M-module V � was constructed concretely by Frenkel–Lepowsky–Meurman [62–
64]. The identities (1.6) were established for all g ∈ M by Borcherds [10].
We refer to [40] for a recent review of moonshine, including a much fuller description

of the above developments, and many more references.
The most obvious connection between moonshine and this article starts with themul-

tiplicative moonshine observation of Conway–Norton (cf. §9 of [29]), considered in detail
by Queen [95], which attaches analogues of the Tg of (1.1) to elements of the Conway
group Co0, a twofold cover of the sporadic simple group Co1.
The Conway group may be realized explicitly as the automorphism group of the Leech

lattice �,

Co0 = Aut(�). (1.7)

We have � ⊗Z C � C
24 so Co0 comes equipped with a 24-dimensional representation

over C (cf. Sect. 2 for more on the Cok and �). Choose g ∈ Co0 and let ε1, . . . , ε24 be the
associated eigenvalues. Queen confirmed [95] (cf. also [81]) that

tg (τ ) := q−1
∏

n>0

24
∏

i=1

(

1− εiq2n−1
)

(1.8)

defines an isomorphism of Riemann surfaces �g\̂H → ̂C, as in (1.1), for some discrete
group �g < SL2(R), for any g ∈ Co0.
Note that, in contrast to Tg , the constant term in the Fourier expansion of tg is −χg ,

where

χg :=
∑

i
εi, (1.9)

and this value is generally non-vanishing. Define Ts
g , for g ∈ Co0, by setting

Ts
g (τ ) := tg (τ/2)+ χg = q−1/2 + O

(

q1/2
)

. (1.10)

Inour earlierwork [43],weobtained theConwaygroupanaloguesof the results of Frenkel–
Lepowsky–Meurman and Borcherds on monstrous moonshine mentioned above, con-
structing a graded infinite-dimensional Co0-module

V s� =
⊕

n≥−1
V s�
n/2, (1.11)
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and showing that

Ts
g (τ ) =

∑

n≥−1

(

trV s�
n/2

g
)

qn/2 (1.12)

for g ∈ Co0.
More than this, and in direct analogy with V �, the Co0-module V s� comes equipped

with a distinguished super vertex operator algebra structure (cf. Sect. 5 for a recap on
vertex algebra, and Sect. 8 for the construction and characterization of V s�).
The reader familiar with vertex algebra will no doubt also be aware of the modularity

results on trace functions attached to vertex operator algebras (cf. [35,90,111]) and super
vertex operator algebras (cf. [38,103,104]). The results of [35], for example, go a long way
to explaining why the right-hand side of (1.6) should define a holomorphic function on
H that is invariant for some congruence subgroup of SL2(Z). Interestingly, there is as
yet no conceptual understanding of why (1.6) should actually satisfy the much stronger
condition of defining an isomorphism as in (1.1), but see [47], or §6 of the review [40], for
a conjectural proposal to establish a theory that would achieve this.

1.2 K3 surfaces and Jacobi forms

In this article, we use the unique (up to equivalence) canonically twisted V s�-module to
attach a Jacobi form φg [cf. (9.10)] to a suitable derived autoequivalence g of a complex
projective K3 surface X . More precisely, we prove the following result in Sect. 9.

Theorem (9.5) Let X be a projective complex K3 surface and let σ be a stability condition
in Bridgeland’s space. If g is a symplectic autoequivalence of the derived category of coherent
sheaves on X that preserves σ , then φg is a weak Jacobi form of weight 0, index 1, and some
level.

Jacobi forms (cf. [52] or Sect. 3) are 2-variable analogues of modular forms, admitting
transformation formulas under a group of the formSL2(Z)�Z

2 (or a finite index subgroup
thereof), that aremodeledon thoseof the classical Jacobi theta functionsϑi(τ , z) [cf. (3.14)].
Jacobi forms also appear as Fourier coefficients of Siegelmodular forms (cf. [53]). Roughly,
a Jacobi form has level if it is required to transform only under some congruence subgroup
� < SL2(Z), and the term weak refers to certain growth conditions at the cusps of �.
See Sect. 4 for a brief review of K3 surfaces, their symplectic derived autoequivalences,

and stability conditions, and see Sect. 5 for the notion of canonically twisted module over
a super vertex operator algebra.
Note that the appearance of Jacobi forms in vertex algebra goes back to thework of Kac–

Peterson [79] (cf. also [78]) on basic representations of affine Lie algebras. (In particular,
it actually predates Borcherds’ introduction of the notion of vertex algebra in [9]). More
general resultswere established recently in [82], by applying earlierwork [89] ofMiyamoto.
Cf. also [36]. Vertex algebraic constructions were used to attach Jacobi forms to conjugacy
classes in the sporadic simple group of Rudvalis in [45,46].
What is the meaning of the functions φg of Theorem 9.5? One answer to this question

is furnished by physics. More specifically, Theorem 9.5 can be interpreted as a state-
ment about supersymmetric non-linear sigma models on K3 surfaces. For as explained by
Huybrechts in [75], the analyses of [2,4,91] (cf. [68] for a concise account) suggest the con-
jecture that the pairs (X, σ ) withX and σ as in Theorem 9.5 are in natural correspondence
with the supersymmetric non-linear sigma models on complex projective K3 surfaces.
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1.3 Sigmamodels

Witten introduced [83,108] a construction which attaches a weak Jacobi form for SL2(Z)
to any supersymmetric non-linear sigma model, called the elliptic genus of the model in
question. It turns out [cf. (9.28)] that φg is exactly the K3 elliptic genus when g = e is the
identity autoequivalence (in particular, both φe and the K3 elliptic genus are independent
of the choices of X and σ ).
Generalizing this, the analysis of [68] suggests that we can expect to obtain a Jacobi

form with level, called a twined elliptic genus, from any supersymmetry-preserving auto-
morphism of a supersymmetric non-linear sigma model. In terms of the pairs (X, σ ), such
automorphisms should correspond to symplectic autoequivalences that preserve σ . Thus,
it is natural to compare the φg to twined elliptic genera of supersymmetric non-linear K3
sigma models.
Unfortunately, it is generally a difficult matter to compute twined K3 elliptic gen-

era, for the Hilbert spaces attached to supersymmetric non-linear K3 sigma models are
only known in a few special cases. However, it has been shown recently by Gaberdiel–
Hohenegger–Volpato [68] (cf. also [75]) that any group of supersymmetry-preserving
automorphisms of such a model can be embedded in the Conway group Co0 (actually,
Co0 here can be replaced by Co1, but it seems to be more natural to regard Co0 as the
operative group). More specifically (and subject to some assumptions about the moduli
space of K3 sigma models), the groups of supersymmetry-preserving automorphisms of
K3 sigma models are exactly the subgroups of Co0 that pointwise fix a 4-dimensional
subspace of �⊗Z R, according to [68].
Thus, there is hope that a suitably defined Co0-module may be used to recover all the

twined K3 elliptic genera, bypassing the explicit construction of super conformal field
theories attached to K3 sigma models. The present work furnishes strong evidence that
this is indeed the case, and thatV s�

tw is precisely theCo0-module to consider. Indeed, about
half of the conjugacy classes in Co0 that fix a 4-space in � ⊗Z R appear in the explicit
computations of [68,69,106], and we find precise agreement with the φg , defined via V s�

tw,
in every case.
This leads us to the following conjecture, indicating one precise sense in which V s� may

serve as a universal object for K3 sigma models.

Conjecture (9.6) The twined elliptic genus attached to any supersymmetry-preserving
automorphism of a supersymmetric non-linear K3 sigma model coincides with φg for some
g ∈ Co0 fixing a 4-space in �⊗Z R.

It will be interesting to see if V s� cannot ultimately shed light on more subtle aspects of
K3 sigma models, beyond their twined elliptic genera.
It is at first surprising that the central charge of V s� is twice that of the super conformal

field theories attached to K3 sigma models, i.e., 12 rather than 6. In Sect. 11, we give an
explanation for this discrepancy by demonstrating an isomorphism of Virasoro modules
betweenV s� and theNeveu–Schwarz sector of the super conformalfield theory attached to
a particular, distinguished K3 sigmamodel, which has been considered earlier in [65,107].
See Proposition 11.1. Note that we naturally obtain a Virasoromodule structure of central
charge 12 on the sigma model by taking the diagonal copy of the Virasoro algebra, within
the two commuting copies that act on left- and right-movers, respectively.
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For concreteness, we have chosen to formulate our main results in terms of derived
categories of coherent sheaves, and their stability conditions, rather than sigma models.
We refer the reader to [3,12,39] for introductory expositions of the deep connection
between these notions.

1.4 Mathieu moonshine

It is a striking fact that theK3elliptic genus is involved in another,more recently discovered
moonshine phenomenon, which is, at first glance, seemingly unrelated to the monster.
Namely, it was observed by Eguchi–Ooguri–Tachikawa [51] that if the K3 elliptic genus
ZK3 = φe is written in the form

ZK3(τ , z) = 24μ(τ , z)
ϑ1(τ , z)2

η(τ )3
+H (2)(τ )

ϑ1(τ , z)2

η(τ )3
, (1.13)

where η is the Dedekind eta function [cf. (3.5)], ϑ1 is the usual Jacobi theta function [cf.
(3.14)], and μ denotes the Appell–Lerch sum

μ(τ , z) := iy1/2

ϑ1(τ , z)
∑

n∈Z
(−1)n y

nqn(n+1)/2

1− yqn
, (1.14)

where q = e2π iτ and y = e2π iz , then q1/8H (2)(τ ) is a power series in q with integer
coefficients,

H (2)(τ ) = −2q−1/8 + 90q7/8 + 462q15/8 + 1540q23/8

+ 4554q31/8 + 11592q39/8 + · · · , (1.15)

and the coefficient of each non-polar term appearing in (1.15) is twice the dimension of
an irreducible representation of the largest sporadic simple group of Mathieu, M24 (the
meaning of the superscript (2) will be elucidated presently).
Inspired by the monstrous antecedent, it is natural to conjecture the existence of a

graded infinite-dimensionalM24-module

Ǩ (2) =
⊕

n>0
Ǩ (2)
n−1/8, (1.16)

such that H (2)(τ ) = −2q−1/8 +∑n>0 dim(Ǩ (2)
n−1/8)qn−1/8, and investigate the series

H (2)
g (τ ) := −2q−1/8 +

∑

n>0

(

trǨ (2)
n−1/8

g
)

qn−1/8 (1.17)

for g ∈ M24.
The work of Cheng [22], Eguchi–Hikami [50], and Gaberdiel–Hohenegger–Volpato

[66,67] determined precise candidates for (1.17), and found, moreover, that if χg denotes
the number of fixed points of g ∈ M24 in its unique (up to equivalence) non-trivial
permutation action on 24 points, then

Z(2)
g (τ , z) := χgμ(τ , z)

ϑ1(τ , z)2

η(τ )3
+H (2)

g (τ )
ϑ1(τ , z)2

η(τ )3
(1.18)

is a weak Jacobi form of weight 0 and index 1, with some level depending on g .
The groupM24 appears naturally as a subgroup of Co0, in such a way that the definition

of χg just given coincides with (1.9) for g ∈ M24 < Co0, so we may compare the φg of
Theorem9.5 to theweak Jacobi formsZ(2)

g ofMathieumoonshine. Interestingly,φg = Z(2)
g

for g in all but 7 of the 26 conjugacy classes ofM24. Cf. Table 8. The conjugacy classes of
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M24 for which φg �= Z(2)
g are those named 3B, 6B, 12B, 21A, 21B, 23A, and 23B in [32].

Note that φg is not even defined for g in any of the last 5 of these, since such elements of
Co0 do not pointwise fix a 4-space in �⊗Z R.
Regarding the M24-module Ǩ (2) of (1.16), Gannon has proven [70] that the candidate

H (2)
g determined in [22,50,66,67] are indeed the graded trace functions attached to a

graded M24-module, but there is, as yet, no analogue for Ǩ (2) of the vertex algebraic
constructions of V � or V s�. The fact that φg recovers Z(2)

g for so many g ∈ M24 suggests
that V s� may play an important role in determining such a concrete construction.
See [23] for a detailed review of Mathieu moonshine, including explicit descriptions of

theH (2)
g . TheH (2)

g are examples of mock modular forms of weight 1/2, a notion which has
arisen fairly recently, thanks to the foundational work of Zwegers [112] on Ramanujan’s
mock theta functions [96,97], contemporaneous work [15] of Bruinier–Funke on har-
monic Maass forms, and subsequent contributions by Bringmann–Ono [14] and Zagier
[110]. We refer to [94,110] for introductory accounts of mock modular forms. The H (2)

g
for g ∈ M24 have been constructed uniformly in [24], and related results appear in [13].

1.5 Umbral moonshine

The superscripts in Ǩ (2),H (2)
g , andZ(2)

g indicate thatMathieumoonshine is but one case of
a more generally defined theory. Indeed, the observations of [51] were extended in [18,19]
(cf. also [25]), to an association of (vector-valued) mock modular forms H ()

g = (H ()
g,r ) to

conjugacy classes [g] in finite groupsG() (withG() = M24 for  = 2), for certain symbols
, called lambencies. The resulting collection of relationships between finite groups and
mock modular forms is now known as umbral moonshine.
The lambencies of [19] are in correspondence with the 23 (non-empty) simply laced

root systems that arise in even self-dual positive-definite lattices of rank 24. These are
the so-called Niemeier root systems (cf. Sect. 2). For example, if n is a divisor of 24 and
k = 24/n, then  = n + 1 corresponds to the union of k copies of the An root system,
denoted Ak

n. In particular,  = 2 corresponds to A24
1 .

The group G() is, by definition, the outer automorphism group of the self-dual lattice
N () whoseNiemeier root system corresponds to . That is,G() := Aut(N ())/W () where
W () is the normal subgroup of Aut(N ()) generated by reflections in root vectors. Note
that all of these groups G() embed in Co0.
According to the McKay correspondence [56,88], the irreducible simply laced root

systems are in correspondence with certain surface singularities called duVal singularities
(cf. e.g., [49]). Thus, the governing role of simply laced root systems in umbral moonshine
suggests a geometric interpretation involving non-smooth K3 surfaces equipped with
configurations of du Val singularities. Evidence in support of this idea is developed in [20].
A number of the weak Jacobi forms φg constructed here appear also in [20].
As in the case that  = 2, the particular properties of the mock modular forms H ()

g
support the existence of graded infinite-dimensional G()-modules

Ǩ () =
⊕

r∈I ()

⊕

n∈Z
r2−4mn≤0

Ǩ ()
r,n−r2/4m, (1.19)

such that

H ()
g,r (τ ) = −2q−1/4mδr,1 +

∑

n

(

trǨ ()
r,n−r2/4m

g
)

qn−r2/4m (1.20)
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for g ∈ G() and r ∈ I (), where m is a certain positive integer depending on  and I () is
a certain subset of {1, . . . , m − 1} (we refer the reader to [19,25] or §9 of [40] for a fuller
discussion of Ǩ () and its relation to G() and the H ()

g ).
The existence of G()-modules Ǩ () satisfying (1.20) is one of the main conjectures

of umbral moonshine, and has now been proven [41] for all Niemeier root systems. A
concrete, vertex algebraic construction of Ǩ () has been established recently [42] for the
special case that  = 30+6, 10, 15,which is the lambency corresponding to the root system
E3
8 . Vertex algebraic constructions of G()-modules closely related to the Ǩ () appear in

[48] for the lambencies corresponding to A8
3, A

6
4, A

4
6, and A2

12, and in [17] for D4
6, D

3
8, D

2
12,

and D24.
In the case of Ak

−1, where k(− 1) = 24, the mock modular forms H ()
g , together with

certain characters χg and χ̄g ofG(), can be used to define weak Jacobi formsZ()
g of weight

0 and index − 1 (and some level depending on g), in a natural way (see §4 of [18] for the
details of this construction).
In Sect. 10, we present a natural generalization of the construction of φg in Sect. 9, and in

so doing attach aweak Jacobi formφ
()
g , of weight 0 and index −1, to any element g ∈ Co0

that fixes a 2d-dimensional subspace of�⊗ZR, where d = 2(−1). Interestingly,many of
the Z()

g of umbral moonshine are realized as (scalar multiples of) φ()
g for suitable g ∈ Co0.

Thus, we have evidence thatV s� may be an important device for realizing a number of the
Ǩ () explicitly. The particular coincidences between Z()

g and φ
()
g are recorded in Sect. B,

Tables 8, 9, 10, 11 and 12.
Surprisingly,V s� can be used to attachmockmodular forms to conjugacy classes in finite

groups beyond those arising as G() for some lambency . Indeed, in [16] the canonically
twisted V s�-module V s�

tw is used to attach 2-vector-valued mock modular forms of weight
1/2 to conjugacy classes in any subgroup of Co0 fixing a 2-space in � ⊗Z R. In this
way, mock modular forms are attached to the conjugacy classes of the sporadic Mathieu
groups M23 and M12, McLaughlin’s sporadic group McL, and the sporadic group HS of
Higman and Higman–Sims (cf. [71,72,100]). An association of mock modular forms to
conjugacy classes in subgroups of Co0 fixing 3-spaces in�⊗Z R is also considered in [16].
Consequently, mock modular forms (of a different kind) are attached to M22 and M11.
See [21] (and its prequel [8]) for an extension of this method to subgroups of Co0 that fix
a line in �⊗Z R. This analysis associates mock modular forms (of yet another variety) to
the sporadic groups Co2, Co3, andM24.
It is evident from the above-mentioned results thatV s� should play an important role in

umbral moonshine. Thus, the close relationship between Conway moonshine and mon-
strous moonshine serves to motivate the possibility that monstrous and umbral moon-
shine are related in a deep and direct way, potentially sharing a common origin. The
results of [93] also motivate this point of view. See the introduction to [18] for related
discussion.

1.6 Organization

We now describe the structure of the paper. Since the main result involves a number of
different topics, not typically seen together in a single work, we begin with a number of
brief preliminary sections. We recall some basic facts about even self-dual lattices, and
also discuss the Conway group in Sect. 2. We then recall modular forms, Jacobi forms,
and certain special examples of such functions in Sect. 3.We review themain results from
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[75] on derived equivalences of K3 surfaces in Sect. 4. In Sect. 5, we recall basic definitions
in vertex algebra theory, and give a brief description of the Clifford module (a.k.a. free
fermion) super vertex algebra construction in Sect. 6.
The results of our earlierwork [43] play an important role here, andwe review these next,

recalling some useful formulas relating to spin modules in Sect. 7, and the construction
of the distinguished super vertex operator algebra V s� in Sect. 8.
In Sect. 9, we establish our main result: a mechanism which attaches a weak Jacobi

form to any symplectic derived equivalence of a K3 surface that fixes a suitable stability
condition. See Theorem 9.5.
We also formulate a conjecture relating the Jacobi forms so arising to twined elliptic

genera of K3 sigmamodels. In brief, all the examples of twined K3 elliptic genera available
in the literature are recovered from our construction. This suggests that the super vertex
operator algebra V s� serves as a universal object for K3 sigma models.
The construction of Sect. 9 easily generalizes so as to recover a number of weak Jacobi

forms of umbral moonshine. We discuss this in detail in Sect. 10.
We give some deeper evidence for the conjectural relationship between V s� and K3

sigma models in Sect. 11, by exhibiting an isomorphism of graded vector spaces between
V s� and the super conformal field theory arising from a certain distinguished K3 sigma
model.
We present data necessary for the computation of all the Jacobi forms appearing in this

work in Sect. A. We record coincidences between these Jacobi forms and other functions
appearing in the context of K3 sigma models, and umbral moonshine, in Sect. B.
As mentioned earlier, we choose a square root of −1 in C and denote it by i. We also

set e(x) := e2π ix.

2 Lattices
An integral lattice is a free Z-module of finite rank, L � Z

n, equipped with a symmetric
bilinear form 〈·, ·〉 : L⊗ZL :→ Z. An excellent general reference for lattices is [31]. Given a
field k of characteristic zero, the bilinear form 〈·, ·〉 extends naturally to the n-dimensional
vector space L ⊗Z k over k . The signature of L is the pair (r, s) where r is the maximal
dimension of a positive-definite subspace of L⊗Z R and s is the maximal dimension of a
negative-definite subspace of L⊗Z R. Call n the rank of L, and say L is non-degenerate if
n = r+s. Say L is positive-definite if s = 0, and negative-definite if r = 0. Say L is indefinite
if rs �= 0.
Define the dual of L by setting

L∗ := {γ ∈ L⊗Z Q|〈λ, γ 〉 ∈ Z, for all λ ∈ L} . (2.1)

Certainly L∗ contains L. Say that L is self-dual if L∗ = L. Observe that a self-dual lattice is
necessarily non-degenerate.
Given λ ∈ L call 〈λ, λ〉 the square-length of λ. A lattice L is called even if all of its square-

lengths are even integers. The set of vectors of square-length±2 in an even lattice is called
its root system.
Write R

r,s for a real vector space of dimension n = r + s, with elements denoted
x = (x1, . . . , xn), equipped with the bilinear form:

〈x, y〉 =
r
∑

i=1
xiyi −

n
∑

i=r+1
xiyi. (2.2)
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Write Ir,s for the lattice in R
r,s composed of vectors x = (xi) with integer coordinates.

Observe that Ir,s is self-dual. One often writes Z
n for In,0. Assuming r = s mod 8, define

an even self-dual lattice IIr,s in R
r,s by setting

IIr,s :=
⎧

⎨

⎩

x ∈ Z
n ∪ (Z+ 1

2
)n ⊂ R

r,s

∣

∣

∣

∣

∣

r
∑

i=1
xi =

n
∑

i=r+1
xi mod 2

⎫

⎬

⎭

(2.3)

(cf. e.g., [30]). Taking r = 8 and s = 0, we obtain the E8 root lattice, commonly denoted E8.
It is the unique (up to isomorphism) even self-dual lattice of signature (8, 0). The lattice
II1,1 is often denoted U , and sometimes called the hyperbolic plane.
We refer to Chapter V of [98] for a proof of the following fundamental result.

Theorem 2.1 Suppose that L is a non-even self-dual integral lattice with signature (r, s).
If rs �= 0 then L � Ir,s. Suppose that L is an even self-dual lattice with signature (r, s). Then
r = s mod 8. If rs �= 0 then L � IIr,s.

Note that the right-hand side of (2.3) defines an integral self-dual lattice so long as
r + s = 0 mod 4. The lattice of rank n = 0 mod 4 obtained by taking r = n and s = 0
in (2.3) is called the spin lattice of rank n, and we denote it D+n . The Dn root lattice is the
intersection In,0 ∩ IIn,0 (for any positive n), and is an even lattice of index 2 in D+n

Dn :=
{

x ∈ Z
n ⊂ R

n,0

∣

∣

∣

∣

∣

n
∑

i=1
xi = 0 mod 2

}

. (2.4)

We have isomorphisms D+4 � Z
4 and D+8 � E8, and D+12 is the unique (up to isomor-

phism) self-dual lattice of signature (12, 0) having no vectors with square-length 1. The
lattices D+16 and E⊕28 are the only even self-dual lattices of signature (16, 0).
According to Theorem 2.1, we have

L⊕U � II25,1 (2.5)

for L = E⊕38 . But there are in fact 24 choices for L (up to isomorphism) that solve (2.5),
according to Niemeier’s classification [92] of even self-dual definite lattices of rank 24 (cf.
also [105] andChapter 16 of [31]). Distinguished amongst these is the Leech lattice, named
for its discoverer (cf. [84,85]) and denoted here by �, which is the unique even self-dual
lattice of signature (24, 0) with an empty root system (i.e., no vectors of square-length 2).
The uniqueness of the Leech lattice was proven by Conway [27]. Conway also investi-

gated its automorphism group [26,28] and discovered three new sporadic simple groups
in the course of this, Co1, Co2, and Co3. Define the Conway group by setting

Co0 := Aut(�). (2.6)

Then Co0 is not simple, for its center is non-trivial, generated by − Id. But the quotient
group

Co1 := Co0/{± Id} (2.7)

is simple, and is the largest sporadic simple Conway group. The groups Co2 and Co3 may
be realized as the stabilizers in Co0 of vectors in � with square-length equal to 4 or 6,
respectively.
Given a latticeLwith signature (r, s), writeL(−1) for the lattice of signature (s, r) obtained

by multiplying the bilinear form on L by−1. Then, for example, if L is even self-dual with
signature (k, 16+ k) for some positive integer k , we have
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L � IIk,16+k � E8(−1)⊕2 ⊕U⊕k , (2.8)

as a consequence of Theorem 2.1.
We call �(−1) the negative-definite Leech lattice.
An embedding of lattices K → L is an embedding of abelian groups ι : K → L such that

〈λ,μ〉K = 〈ι(λ), ι(μ)〉L for λ,μ ∈ K . A primitive embedding is an embedding ι : K → L
such that the quotient group L/ι(K ) is torsion free.

3 Modular forms
Here we recall some basic facts about modular forms and Jacobi forms. For τ ∈ H and
z ∈ C, we use the notation q := e(τ ) and y := e(z), where e(x) := e2π ix.
Recall (cf. e.g., [80,99]) that a holomorphic function f : H → C is a called anunrestricted

modular form of weight k for a group � < SL2(R) if

f
(

aτ + b
cτ + d

)

1
(cτ + d)k

= f (τ ) (3.1)

for all
(

a b
c d

)

∈ �. Assume for simplicity that � is commensurable with SL2(Z). Then

the action of � on H extends naturally to ̂Q := Q ∪ {∞}, and the orbits of � on ̂Q are
called its cusps. The orbit containing∞ is called the infinite cusp of �, and the modular
group SL2(Z) has only the infinite cusp.
Say that f as in (3.1) is a weakly holomorphic modular form if it has at most exponential

growth at cusps. This amounts to the condition that if σ ∈ SL2(Z) then f (στ ) admits a
Laurent expansion in q1/w , for some positive integer w. If the Laurent expansions of the
f (στ ) are actually Taylor series in q1/w , so that f (στ ) = O(1) as �(τ ) → ∞, then we
say that f is a modular form. A cusp form satisfies f (στ ) → 0 as �(τ ) → ∞, for every
σ ∈ SL2(Z).
Write Mk (�) for the space of modular forms of weight k for �. Write Sk (�) for the

subspace of cusp forms.
The Eisenstein series Ek are a family ofmodular forms for the full modular group SL2(Z).

For k even and greater than 2, the Eisenstein series Ek is defined by

Ek (τ ) :=
∑

m,n∈Z
(m,n) �=(0,0)

1
(mτ + n)k

, (3.2)

and admits a Fourier expansion

Ek (τ ) = 1+ 2
ζ (1− k)

∑

n>0
σk−1(n)qn, (3.3)

where σs(n) :=∑d|n ds. When k = 2, the series in (3.2) is not absolutely convergent, but
converges conditionally to (3.3), and we define E2 by (3.3). The conditional convergence
prevents E2 from being a modular form, but it is a quasi-modular form, satisfying

E2
(

aτ + b
cτ + d

)

1
(cτ + d)2

+ 3
π2

2π ic
(cτ + d)

= E2(τ ) (3.4)

for
(

a b
c d

)

∈ SL2(Z) (cf. e.g., Proposition 6 of [109]).
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Wemake extensive use of the Dedekind eta function, a modular form of weight 1
2 (with

non-trivial multiplier), defined by

η(τ ) := q1/24
∏

n>0
(1− qn). (3.5)

Related is Ramanujan’s Delta function, a cusp form of weight 12 for SL2(Z), defined by

�(τ ) := η(τ )24 . (3.6)

In this work, a modular form with level is a modular form for some �0(N ),

�0(N ) :=
{(

a b
c d

)

∈ SL2(Z)|c = 0 mod N
}

. (3.7)

Note that if f (τ ) is a modular form with level N (i.e., a modular form for �0(N )), then
f (hτ ) is a modular form with level hN .
The functions �N are a family of modular forms of weight 2 with level, defined by

�N (τ ) := N
2π i

d
dτ

log
(

η(Nτ )
η(τ )

)

= N
24

(NE2(Nτ )− E2(τ )) . (3.8)

One easily checks using (3.4) that �N ∈ M2(�0(N )).
For later use, we note the basic identities,

�4(τ ) = 4�2(2τ )+ 2�2(τ ), �4(τ + 1/2) = 8�2(2τ )− 2�2(τ ). (3.9)

In particular, �4(τ + 1/2) is also a modular form for �0(4). Really, this is unsurprising

because�0(4) is normalizedby thematrix
(

1 1/2
0 1

)

.More generally,wehave the following

beautiful description of the full normalizer of �0(N ) from [29].
Given a positive integer N , let h denote the largest divisor of 24 such that h2 divides N .

Set n = N/h. Then the normalizer of �0(N ) in SL2(R) is composed of the matrices

1√
e

(

ae b/h
cn de

)

(3.10)

where e is an exact divisor of n/h (i.e., e|(n/h) and (e, n/eh) = 1), and a, b, c, d ∈ Z are
chosen so that ade2 − bcn/h = e.
We write�0(n|h) for the set of matrices (3.10) with e = 1. It is a subgroup of SL2(R) that

is conjugate to �0(n/h). For a fixed non-trivial exact divisor e|(n/h), the matrices (3.10)
comprise an Atkin–Lehner involution of �0(n|h) (really, an Atkin–Lehner involution is
a coset of �0(n|h) in its normalizer, an involution in the sense that it defines an order 2
element of the quotient group N (�0(n|h))/�0(n|h)).
Assumenow that� is a subgroupof SL2(Z).Wecall a holomorphic functionφ : H×C →

C an unrestricted Jacobi form of weight k and indexm for � if it satisfies

φ

(

aτ + b
cτ + d

,
z

cτ + d

)

1
(cτ + d)k

e
(

−m cz2

cτ + d

)

= φ(τ , z), (3.11)

φ(τ , z + λτ + μ)qmλ2y2mλ = φ(τ , z), (3.12)

for
(

a b
c d

)

∈ � and (λ,μ) ∈ Z
2, where q = e(τ ) and y = e(z). For φ an unrestricted Jacobi

form and σ ∈ SL2(Z), we have

φ(στ , z) =
∑

n,r∈Z
cσ (n/w, r)qn/wyr (3.13)
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for some cσ (n, r) ∈ C. Say thatφ is aweak Jacobi form if cσ (n/w, r) = 0whenever n/w < 0,
for all σ ∈ SL2(Z). Note that cσ (n/w, r) differs from cσ ′ (n/w, r) only by a root of unity
when σ ′σ−1 ∈ �. So it suffices to check the cσ (n/w, r) for just one representative σ of
each right coset of � in SL2(Z).
Good references for Jacobi forms include [34] and [52]. Jacobi forms occur naturally as

Fourier coefficients of Siegel Modular forms (cf. [52,53]), but that manifestation will not
play an explicit role here.
In this work, a weak Jacobi form with level N is a weak Jacobi form for �0(N ).
Particularly useful for writing Jacobi forms down explicitly are the four Jacobi theta

functions, defined as

ϑ1(τ , z) := −i
∑

n∈Z
(−1)nyn+1/2q(n+1/2)2/2,

ϑ2(τ , z) :=
∑

n∈Z
yn+1/2q(n+1/2)2/2,

ϑ3(τ , z) :=
∑

n∈Z
ynqn

2/2,

ϑ4(τ , z) :=
∑

n∈Z
(−1)nynqn2/2,

(3.14)

and admitting the product formulas

ϑ1(τ , z) = −iq1/8y1/2 (1− y−1
)
∏

n>0

(

1− y−1qn
)

(1− yqn) (1− qn) ,

ϑ2(τ , z) = q1/8y1/2
(

1+ y−1
)
∏

n>0

(

1+ y−1qn
)

(1+ yqn) (1− qn) ,

ϑ3(τ , z) =
∏

n>0

(

1+ y−1qn−1/2
) (

1+ yqn−1/2
)

(1− qn) ,

ϑ4(τ , z) =
∏

n>0

(

1− y−1qn−1/2
) (

1− yqn−1/2
)

(1− qn) ,

(3.15)

according to the Jacobi triple product identity.
The first examples of weak Jacobi forms with level 1 are φ0,1 and φ−2,1, defined by

φ0,1(τ , z) := 4
(

ϑ2(τ , z)2

ϑ2(τ , 0)2
+ ϑ3(τ , z)2

ϑ3(τ , 0)2
+ ϑ4(τ , z)2

ϑ4(τ , 0)2

)

(3.16)

and

φ−2,1(τ , z) := −ϑ1(τ , z)2

η(τ )6
. (3.17)

The subscripts indicate weight and index, respectively. Note that φ0,1(τ , 0) = 12 and
φ−2,1(τ , 0) = 0, which is consistent with the facts that all modular forms of weight 0 are
constant, and all modular forms of negative weight are 0.
Proposition 6.1 of [1] states that any weak Jacobi form of even weight can be written as

a polynomial in φ0,1 and φ−2,1 with modular form coefficients. We record the following
special cases of this for use later on.

Proposition 3.1 A holomorphic function φ : H×C → C is a weak Jacobi form of weight
0 and index m for � if and only if there exists C ∈ C and modular forms F2j ∈ M2j(�), for
1 ≤ j ≤ m, such that
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φ(τ , z) = Cφ0,1(τ , z)m +
m
∑

j=1
F2j(τ )φ−2,1(τ , z)jφ0,1(τ , z)m−j . (3.18)

We conclude this section with formulas that illustrate (3.18) explicitly for the particular
combinations of Jacobi theta functions appearing in (3.16) and (3.17).

Lemma 3.2 We have the following identities.

φ−2,1(τ , z) = −ϑ1(τ , z)2

η(τ )6
(3.19)

1
12

φ0,1(τ , z)+ 2�2(τ )φ−2,1(τ , z) = ϑ2(τ , z)2

ϑ2(τ , 0)2
(3.20)

1
12

φ0,1(τ , z)−�2(τ/2+ 1/2)φ−2,1(τ , z) = ϑ3(τ , z)2

ϑ3(τ , 0)2
(3.21)

1
12

φ0,1(τ , z)−�2(τ/2)φ−2,1(τ , z) = ϑ4(τ , z)2

ϑ4(τ , 0)2
(3.22)

Note that the first identity of Lemma 3.2 is just the definition of φ−2,1 [cf. (3.17)].

Proof Let �(N ) denote the principal congruence group of level N , being the kernel of the
natural map SL2(Z)→ SL2(Z/NZ). First, we will show that

ϑi(τ , z)2

ϑi(τ , 0)2
(3.23)

is a Jacobi form for �(2) of weight 0 and index 1, for i ∈ {2, 3, 4}. The transformations

ϑ2(τ , z + 1)2

ϑ2(τ , 0)2
= ϑ2(τ , z)2

ϑ2(τ , 0)2
and

ϑ2(τ , z + τ )2

ϑ2(τ , 0)2
= q−1y−2 ϑ2(τ , z)2

ϑ2(τ , 0)2
(3.24)

can be seen by explicit computation using (3.14). Thus, (3.23) transforms properly under
Z
2 in the case that i = 2. If S and T are the standard generators for the modular group,

then �(2) is generated by T 2 : τ �→ τ + 2 and ST 2S : τ �→ −τ
2τ−1 (see §6 of [58]), so the

required transformations under �(2) are

ϑ2(τ + 2, z)2

ϑ2(τ + 2, 0)2
= ϑ2(τ , z)2

ϑ2(τ , 0)2
and

ϑ2
( −τ
2τ−1 ,

z
2τ−1
)2

ϑ2
( −τ
2τ−1 , 0

)2 = e
4π iz2
2τ−1 ϑ2(τ , z)2

ϑ2(τ , 0)2
. (3.25)

The first can be seen explicitly from (3.14), and the second follows from acting successively
with T and S, using Jacobi’s imaginary transformations

ϑ2

(

−1
τ
,
z
τ

)

= √−iτ eπ iz2/τ ϑ4(τ , z) and ϑ4

(

−1
τ
,
z
τ

)

= √−iτ eπ iz2/τ ϑ2(τ , z).

(3.26)

The required form for the Fourier expansion can also be seen from (3.14). Thus (3.23) is
a Jacobi form for �(2) of weight 0 and index 1 for i = 2.
Similar arguments handle the cases that i = 3 and i = 4. For i = 3, we use another of

Jacobi’s imaginary transformations,

ϑ3

(

−1
τ
,
z
τ

)

= √−iτ eπ iz2/τ ϑ3(τ , z). (3.27)

As recorded in [33], the group �(2) is a genus 0 congruence subgroup of SL2(Z) with
3 inequivalent cusps. By Theorem 2.23 of [99], the dimension of the space of weight 2
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modular forms on �(2) is 2, and the dimension of the space of weight 0 modular forms
on �(2) is 1 (i.e., spanned by a constant function). Proposition 6.1 of [1] shows that the
dimension of the space of weight 0, index 1 Jacobi forms on �(2) must therefore be 3.
Now the proof of the required identities is reduced to checking the agreement of Fourier
coefficients up to O(q). ��

4 Derived equivalences
Let X be a complex K3 surface; i.e., a compact connected complex manifold of dimension
2 with �2

X � OX and H1(X,OX ) = 0 (good references for K3 surfaces include [5,7]).
Then the intersection form ( . ) equips the integral singular cohomology group H2(X,Z)
with the structure of an even self-dual lattice of signature (3, 19), so we have H2(X,Z) �
E8(−1)⊕2 ⊕U⊕3 according to (2.8).
Write ˜H (X,Z) = (˜H (X,Z), 〈 , 〉) for the Mukai lattice of X , being the lattice obtained

from

H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) (4.1)

by reversing the sign of the pairings between H0(X,Z) and H4(X,Z), so that

〈λ,μ〉 = (λ2.μ2)− (λ0.μ4)− (λ4 .μ0) (4.2)

for λ = λ0 + λ2 + λ4 ∈ ˜H (X,Z) with λk ∈ Hk (X,Z), &c. Then ˜H (X,Z) is self-dual and
even with signature (4, 20).
˜H (X,Z) � E8(−1)⊕2 ⊕U⊕4 (4.3)

A Hodge structure of weight 2 on a lattice L is a direct sum decomposition

L⊗Z C = L0,2 ⊕ L1,1 ⊕ L2,0 (4.4)

of the complex vector space enveloping L into complex subspaces Lp,q < L⊗Z C such that
the R-linear complex conjugation v �→ v̄ on L⊗Z C that fixes the subset L⊗Z R induces
R-linear isomorphisms Lp,q � Lq,p.
If X is a complex K3 surface, then we naturally obtain a weight 2 Hodge structure
˜H (X,Z)⊗Z C = ˜H2,0(X)⊕ ˜H1,1(X)⊕ ˜H0,2(X) (4.5)

on the Mukai lattice of X , by setting
˜H2,0(X) := H2,0(X),
˜H1,1(X) := H0,0(X)⊕H1,1(X)⊕H2,2(X), (4.6)
˜H0,2(X) := H0,2(X),

where the Hp,q(X) = Hp,q(X,C) are the Dolbeaut cohomology groups of X . Say that an
automorphism g of the lattice ˜H (X,Z) is a symplectic Hodge isometry of ˜H (X,Z) if the C-
linear extensionof g to˜H (X,Z)⊗ZCfixes˜H2,0(X) (andhence also˜H0,2(X)) pointwise.Note
that ˜H2,0(X) and ˜H0,2(X) are isotropic with respect to the bilinear form on ˜H (X,Z)⊗Z C

induced from ˜H (X,Z). The intersection

PX := (˜H2,0(X)⊕ ˜H0,2(X)) ∩ ˜H (X,Z)⊗Z R (4.7)

is a positive-definite 2-dimensional subspace of ˜H (X,Z)⊗Z R.
Following [75], we write Auts(˜H (X,Z)) for the group of symplectic Hodge isometries of

the Mukai lattice ˜H (X,Z) of a complex K3 surface X . Note that any symplectic automor-
phism of X of finite order naturally induces a symplectic Hodge isometry of ˜H (X,Z), via
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the induced action of g on H∗(X,Z) (cf. §1.2 of [75]), but for general X not all symplectic
Hodge isometries arise in this way (cf. §1.4 of [75]).
Assume now that X is projective, admitting an embedding in some complex projective

space P
n. Write Db(X) for the bounded derived category of coherent sheaves on X and let

Aut(Db(X)) denote the group of isomorphism classes of exact C-linear autoequivalences
of Db(X) (see [6,73] for detailed expositions of this theory). The induced action of an
exact autoequivalence of Db(X) on ˜H (X,Z)—cf. the discussion in §1.2 in [11]—defines a
morphismof groups fromAut(Db(X)) to the automorphism group (i.e., orthogonal group)
of ˜H (X,Z), and we write Auts(Db(X)) for the subgroup of symplectic autoequivalences,
being those elements of Aut(Db(X)) that map to symplectic Hodge isometries of ˜H (X,Z).

Auts
(

Db(X)
)

→ Auts(˜H (X,Z)) (4.8)

Let Stab(X) denote the space of stability conditions on Db(X). (See [74] for a nice intro-
duction to stability conditions.) Write Stab◦(X) for the distinguished connected compo-
nent of Stab(X) introduced and first analyzed by Bridgeland in [11]. Given σ ∈ Stab◦(X),
say that an autoequivalence in Auts(Db(X)) is σ -positive if its induced action on Stab(X)
fixes σ , and write Auts(Db(X), σ ) for the group of all (isomorphism classes of) σ -positive
exact C-linear autoequivalences of Db(X).
Set ˜H1,1(X,Z) := ˜H1,1(X) ∩ ˜H (X,Z) [cf. (4.6)]. To each σ ∈ Stab(X) is attached a

central charge Z, which may be regarded as a morphism of groups ˜H1,1(X,Z) → C, or
equivalently, via Poincaré duality, as an element of ˜H1,1(X,Z)⊗Z C. According to §1.3 of
[75], the real subspace of ˜H1,1(X,Z)⊗Z R spanned by the real and imaginary parts of Z,

PZ := R�(Z)⊕ R�(Z) < ˜H1,1(X,Z)⊗Z R, (4.9)

is positive with respect to the induced bilinear form from ˜H (X,Z), when Z is the cen-
tral charge of a stability condition in Stab◦(X). For such a Z ∈ ˜H1,1(X,Z) ⊗Z C, define
Auts(˜H (X,Z), Z) to be the subgroup of symplectic Hodge isometries of ˜H (X,Z) whose
R-linear extensions to ˜H (X,Z) ⊗Z R fix the subspace PZ pointwise; such an isometry is
called PZ-positive.
Recall the natural map (4.8). Huybrechts has shown that this map induces an isomor-

phism between the group of σ -positive symplectic autoequivalences of Db(X) and the
group of PZ-positive symplectic Hodge isometries of ˜H (X,Z) when Z is the central charge
of a stability condition σ in Stab◦(X).

Proposition 4.1 ([75]) Let X be a projective complex K3 surface, let σ ∈ Stab◦(X) and let
Z be the central charge of σ . Then the natural mapAuts(Db(X))→ Auts(˜H (X,Z)) induces
an isomorphism of groups

Auts
(

Db(X), σ
) ∼−→ Auts(˜H (X,Z), Z). (4.10)

We have mentioned that PX and PZ are positive-definite 2-dimensional subspaces of
˜H (X,Z)⊗Z R. They are orthogonal [compare (4.7) with (4.9)], and ˜H (X,Z) has signature
(4, 20) [cf. (4.3)], so

� := PX ⊕ PZ (4.11)

is amaximal positive-definite subspace of ˜H (X,Z)⊗ZR. As explained in [75], the intersec-
tion�⊥ ∩˜H (X,Z) contains no vectors δ with 〈δ, δ〉 = −2. For, on one hand, if 〈δ, δ〉 = −2
and δ ∈ P⊥X , then δ ∈ ˜H1,1(X,Z). On the other hand, it is proven in Proposition 13.2 of
[11] that if δ ∈ ˜H1,1(X,Z) and 〈δ, δ〉 = −2, then 〈Z, δ〉 �= 0.
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Note that anypositive-definite 4-dimensional subspaceof˜H (X,Z)⊗ZR, and inparticular
� = PX ⊕ PZ , is naturally oriented. For if ς is a non-zero element of H2,0(X), then the
4-tuple (�(ς ),�(ς ),�(Z),�(Z)) defines an oriented basis, and the resulting orientation
depends neither on ς nor on Z (cf. §4.5 of [76]).
Given X and σ ∈ Stab◦(X) as above, define

G� := Auts
(

Db(X), σ
)

, (4.12)

and use the natural isomorphism (4.10) to identify G� with Auts(˜H (X,Z), Z). Also define
�� to be the sublattice of ˜H (X,Z) composed of vectors orthogonal to the sublattice of
˜H (X,Z) that is fixed by G�, so that

�� :=
(

˜H (X,Z)G�

)⊥ ∩ ˜H (X,Z). (4.13)

Then �� is an even, negative-definite lattice of rank at most 20, naturally admitting a
faithful action by G�. Moreover, according to the argument in §§B.1-2 of [68] (cf. also
§2.2 of [75]), the lattice �� admits a primitive embedding

ι : �� → �(−1) (4.14)

in the negative-definite Leech lattice (cf. Sect. 2), and the action of G� on �� extends
naturally to�(−1), in such a way that all vectors in ι(��)⊥∩�(−1) are fixed byG�. Thus,
the primitive embedding ι of (4.14) determines an embedding of groups,

ι∗ : G� → Aut(�), (4.15)

which we may use to identify G� with a subgroup of the Conway group, Co0 = Aut(�)
[cf. (2.6)]. The sublattice of � fixed by this copy of G� has rank at least 4.
Call a primitive embedding as in (4.14) a Leech marking of the data (X, σ ). We may

summarize the previous paragraph by saying that the group G� = Auts(Db(X), σ ) is
isomorphic to a subgroup of Co0 that fixes a rank 4 sublattice of �, and the choice of
Leech marking ι determines this subgroup completely. The main result of [75] states that
the converse is also true.

Theorem 4.2 ([75]) For X a projective complex K3 surface and σ ∈ Stab◦(X), the group
G� = Auts(Db(X), σ ) is isomorphic to a subgroup of Co0 whose action on the Leech lattice
fixes a sublattice of rank at least 4. Conversely, if G∗ is a subgroup of Co0 that fixes a rank 4
sublattice of the Leech lattice, then there exists a projective complex K3 surface X, a stability
condition σ ∈ Stab◦(X), and a Leech marking ι for (X, σ ) such that G∗ is a subgroup of
ι∗G�.

Recall from Sect. 2 that the center of Co0 is the group of order 2 generated by − Id, and
Co1 denotes the sporadic simple quotient groupCo1 = Co0/{± Id}. Observe that ifG∗ is a
subgroup ofCo0 that has a fixed point in its action on�, then the natural mapCo0 → Co1
induces an isomorphism between G∗ and its image in Co1. Thus, one may replace Co0
with Co1 in the statement of Theorem 4.2.

5 Vertex algebra
In this section,webriefly recall super vertexoperator algebras and their canonically twisted
modules. We refer to the texts [59,77,86] for more background on vertex algebra.
A super vector space is a simply a vector space with a Z/2-grading, V = V0̄ ⊕ V1̄. A

linear operator T : V → V is called even if T (Vj̄) ⊂ Vj̄ , and odd if T (Vj̄) ⊂ Vj+1.
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For V a super vector space and z a formal variable, write V ((z)) := V [[z]][z−1] for
the space of Laurent series in z with coefficients in V . Taking z to be even, we naturally
obtain a super structure V0̄((z)) ⊕ V1̄((z)) on V ((z)). Observe that the rational function
f (z, w) = (z − w)−1 naturally defines elements of C((z))((w)) and C((w))((z)) via for-
mal power series expansions, for we have f (z, w) = ∑n≥0 z−n−1wn in C((z))((w)) and
f (z, w) = −∑n≥0 w−n−1zn in C((w))((z)). These rules extend naturally so as to define
formal expansionmaps

V [[z, w]]
[

z−1, w−1, (z − w)−1
]

↙ ↓ ↘
V ((z))((w)) V ((w))((z)) V ((w))((z − w)).

(5.1)

A super vertex algebra is a super vector space V = V0̄ ⊕ V1̄ equipped with a vacuum
vector 1 ∈ V0̄, an even linear operator T : V → V , and a linear map

V → End(V )
[[

z±1
]]

a �→ Y (a, z) =
∑

n∈Z
a(n)z−n−1 (5.2)

which associates to each a ∈ V a vertex operator Y (a, z). These data should satisfy the
following axioms for any a, b, c ∈ V .

1. Y (a, z)b ∈ V ((z)) and if a ∈ V0̄ (resp. a ∈ V1̄) then a(n) is an even (resp. odd) operator
for all n;

2. Y (1, z) = IdV and Y (a, z)1 ∈ a+ zV [[z]];
3. [T, Y (a, z)] = ∂zY (a, z) and T1 = 0;
4. If a ∈ Vp(a) and b ∈ Vp(b) are Z/2 homogenous, there exists an element

f ∈ V [[z, w]]
[

z−1, w−1, (z − w)−1
]

depending on a, b, and c, such that

Y (a, z)Y (b, w)c, (−1)p(a)p(b)Y (b, w)Y (a, z)c, and Y (Y (a, z − w)b, w)c

are the formal expansions of f inV ((z))((w)),V ((w))((z)), andV ((w))((z−w)), respec-
tively [cf. (5.1)].

For V = V0̄ ⊕ V1̄ a super vertex operator algebra, let θ : V → V denote the parity
involution, acting as (−1)j on Vj̄ . A canonically twisted module for V is a super vector
spaceM = M0̄ ⊕M1̄ equipped with a linear map

V → End(M)
[[

z±1/2
]]

a �→ Ytw
(

a, z1/2
) =
∑

n∈ 1
2Z

a(n),twz−n−1, (5.3)

associating to each a ∈ V a canonically twisted vertex operator Ytw(a, z1/2), which satisfies
the following axioms for any a, b ∈ V, u ∈ M:

1. Ytw(a, z1/2)u ∈ M((z1/2)) and if a ∈ V0̄ (resp. a ∈ V1̄) then a(n),tw is an even (resp.
odd) operator for all n;

2. Ytw(1, z1/2) = IdM ;
3. If a ∈ Vp(a) and b ∈ Vp(b), there exists an element

f ∈ M
[[

z1/2, w1/2]] [z−1/2, w−1/2, (z − w)−1
]
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depending on a, b, and u, such that

Ytw
(

a, z1/2
)

Ytw
(

b, w1/2)u, (−1)p(a)p(b)Ytw
(

b, w1/2)Ytw
(

a, z1/2
)

u,

and Ytw
(

Y (a, z − w)b, w1/2)u

are the expansions of f in the spaces M((z1/2))((w1/2)), M((w1/2))((z1/2)), and
M((w1/2))((z − w)), respectively; and

4. If θ (a) = (−1)ma, then a(n),tw = 0 for n /∈ Z+ m
2 .

More details on twisted vertex operators can be found, e.g., in [60,87].
The Virasoro algebra V is the Lie algebra spanned by L(m), for m ∈ Z, and a central

element c, with Lie bracket

[L(m), L(n)] = (m− n)L(m+ n)+ m3 −m
12

δm+n,0c. (5.4)

A representation V → End(V ) of the Virasoro algebra is said to have central charge c if
the central element c acts as multiplication by c on V .
A super vertex operator algebra is a super vertex algebra V = V0̄ ⊕ V1̄ containing a

Virasoro element ω ∈ V0̄ such that if L(n) := ω(n+1) for n ∈ Z then

5. L(−1) = T ;
6. [L(m), L(n)] = (m− n)L(m+ n)+ m3−m

12 δm+n,0c IdV for some c ∈ C;
7. L(0) is a diagonalizable operator onV , with rational eigenvalues bounded below, and

finite-dimensional eigenspaces.

According to item 6, the components of Y (ω, z) generate a representation of the Virasoro
algebra on V with central charge c.
In this work, all super vertex operator algebras will have rational central charges. For V

such a super vertex operator algebra, let us write V =⊕n∈Q Vn for the decomposition of
V into eigenspaces1 for L(0)− c

24 .

Vn := {v ∈ V | (L(0)− c
24
)

v = nv
}

(5.5)

Similarly, if Vtw is a canonically twisted module for V , we also write L(n) for ω(n+1),tw [cf.
(5.3)], a linear operator on Vtw, and we write (Vtw)n for the eigenspace with eigenvalue n
for L(0)− c

24 .

(Vtw)n := {v ∈ Vtw|
(

L(0)− c
24
)

v = nv
}

(5.6)

For V a super vertex operator algebra, suppose to be given an element j ∈ V with
L(0)j = j such that if J (n) := j(n) then

[J (m), J (n)] = kδm+n,0 IdV (5.7)

in End(V ) for some k ∈ C. We call such an element j a U(1) element for V , and we
call k the level of j . The action of the operator J (0) = j(0) preserves the eigenspaces for
L(0) − c

24 by hypothesis, and may in addition be diagonalizable. In such a situation, we
write V = ⊕n,r Vn,r for the corresponding decomposition into bi-graded subspaces for
V .

1Note that Vn often denotes the L(0)-eigenspace with eigenvalue n elsewhere in the literature, and in (2.5) of [43], in
particular.
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Vn,r :=
{

v ∈ V | (L(0)− c
24
)

v = nv, J (0)v = rv
}

(5.8)

Similarly, for Vtw a canonically twisted V -module, we abuse notation slightly by writing
J (0) also for j(0),tw, an operator on Vtw, and define

(Vtw)n,r :=
{

v ∈ Vtw|
(

L(0)− c
24
)

v = nv, J (0)v = rv
}

. (5.9)

We will use the bi-gradings arising from suitably chosen U(1) elements in a certain
distinguished super vertex operator algebra to define weak Jacobi forms in Sects. 9 and
10.

6 The Cliffordmodule construction
We now briefly review the standard construction that attaches a super vertex operator
algebra, and a canonically twisted module for it, to a vector space equipped with a non-
degenerate symmetric bilinear form. We refer to [54] for a very thorough treatment, and
to [43] for a fuller description using the same notation that is employed here.
Let a be a finite-dimensional complex vector space equipped with a non-degenerate

symmetric bilinear form 〈·, ·〉, and for each n ∈ Z let a(n+ 1
2 ) be a vector space isomorphic

to a, with a chosen isomorphism a→ a(n+ 1
2 ), denoted u �→ u(n+ 1

2 ). Set

â− :=
⊕

n<0
a
(

n+ 1
2
)

(6.1)

and defineA(a) to be a copy of the regular left module for the exterior algebra of the vector
space â−,

A(a) :=
∧

(â−)v. (6.2)

For u ∈ a and m ∈ Z, we regard u(m + 1
2 ) as an operator on A(a) by letting u(m + 1

2 )
act by left multiplication in casem < 0. Form ≥ 0, the action of u(m+ 1

2 ) is determined
by the rules

u
(

m+ 1
2
)

v
(

n+ 1
2
)

a = −v (n+ 1
2
)

u
(

m+ 1
2
)

a− 2δm+n+1,0〈u, v〉a,
u(m+ 1

2 )v = 0, (6.3)

for v ∈ a, n < 0, and a ∈ A(a). Then for u ∈ a the vertex operator attached to u(− 1
2 )v is

defined by setting

Y
(

u(− 1
2 )v, z
)

:=
∑

n∈Z
u
(

n+ 1
2
)

z−n−1. (6.4)

Theorem 4.4.1 of [59] ensures that this specification extends uniquely to a super vertex
algebra structure on A(a).
Choose an orthonormal basis {ei : 1 ≤ i ≤ dim(a)} for a. Then

ω := −1
4

dim(a)
∑

i=1
ei
(− 3

2
)

ei
(− 1

2
)

v (6.5)

serves as a Virasoro element for A(a), equipping it with the structure of a super vertex
operator algebra with central charge c = 1

2dim a.
A similar construction produces a canonically twisted module for A(a) [cf. (5.3)], which

we call A(a)tw. We recall this now, assuming for the sake of simplicity that dim a is even.
For each n ∈ Z, let a(n) be a vector space isomorphic to a, with a chosen isomorphism

a → a(n) denoted u �→ u(n). Suppose also to be given isotropic subspaces a± < a such
that a = a− ⊕ a+. Such a decomposition is called a polarization of a. Now set
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â−tw := a−(0)⊕
⊕

n<0
a(n), (6.6)

where a±(0) is the image of a± under the isomorphism u �→ u(0), and define A(a)tw to be
a regular left module for the exterior algebra of the vector space â−tw, so that

A(a)tw :=
∧
(

â−tw
)

vtw . (6.7)

Similar to before, we regard u(m) as an operator on A(a)tw by letting u(m) act by left
multiplication in casem < 0. Form ≥ 0, the action of u(m) is determined by the rules

u(m)v(n)a = v(n)u(m)a− 2δm+n,0〈u, v〉a, u(m)vtw = 0⇐ m > 0 or u ∈ a+, (6.8)

for v ∈ a, n ≤ 0, and a ∈ A(a)tw. For u ∈ a, the twisted vertex operator attached to u(− 1
2 )v

is defined by setting

Ytw(u(− 1
2 )v, z) :=

∑

n∈Z
u(n)z−n−1/2. (6.9)

This specification extends uniquely to a canonically twisted A(a)-module structure on
A(a)tw, according to the discussion in §2.2 of [60]. In particular, the twisted vertex operator

Ytw
(

ω, z1/2
) =
∑

n∈Z
L(n)z−n−2 (6.10)

equips A(a)tw with a representation of the Virasoro algebra, and the action of L(0) :=
ω(1),tw is diagonalizable. An explicit computation yields that the eigenvalues of L(0)− c

24
on A(a)tw are contained in Z+ 1

24 dim a, so that

(A(a)tw)n = 0⇐ n /∈ Z+ 1
24

dim a. (6.11)

[cf. (5.6)].
The super vertex operator algebra A(a) admits various U(1) elements [cf. (5.7)]. For

example, if isotropic vectors a±1 , . . . , a
±
d ∈ a are chosen (for some d ≤ 1

2 dim a) such that
〈a±i , a∓j 〉 = δi,j , then

j := 1
2

d
∑

i=1
a−i (−1/2)a+i (−1/2)v ∈ A(a) (6.12)

is a U(1) element with level d. Moreover, the action of J (0) := j(0) on A(a) is diagonal,
with integer eigenvalues, and similarly for J (0) := j(0),tw as an operator on A(a)tw. Since it
will be useful later in the article, we record a more detailed statement as follows for future
use.

Lemma 6.1 Let j as in (6.12). Then j is a U(1) element for A(a)0 with level d. We have
J (0)v = 0 and J (0)vtw = d

4 vtw . Also, [J (0), a
±
i (r)] = ±a±i (r) for all 1 ≤ i ≤ d and r ∈ 1

2Z,
and if u ∈ a is orthogonal to Span{a±1 , . . . , a±d }, then J (0) commutes with u(r) for all r ∈ 1

2Z.

Proof The lemma follows from standard vertex algebra computations. For example, sup-
pose a = u(− 1

2 )v(− 1
2 )v for some u, v ∈ a, and a(n),tw ∈ End(A(a)tw) is the coefficient of

z−n−1 in Ytw(a, z1/2) : A(a)tw → A(a)tw((z)). Then we have

a(0),tw =
∑

r∈Z
: u(−r)v(r) : (6.13)
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where : : denotes the fermonic normal ordering, defined so that

: u(−r)v(r) : =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u(−r)v(r) for r > 0,
1
2 (u(0)v(0)− v(0)u(0)) for r = 0,

−v(r)u(−r) for r < 0.

(6.14)

For a(0) : A(a) → A(a), we should replace Z with Z+ 1
2 in the summation in (6.13). The

required relations follow from (6.3) and (6.8). ��
Define the Clifford algebra associated to a and 〈·, ·〉 by setting

Cliff(a) := T (a)/I, (6.15)

where T (a) is the tensor algebra of a and I is the ideal generated by the u⊗u+〈u, u〉1 for
u ∈ a.Givenui ∈ a, writeu1 . . .uk for the imageofu1⊗· · ·⊗uk ∈ T (a) inCliff(a). Then the
relations (6.8) ensure that Cliff(a) acts naturally onA(a)tw, via u1 . . . uk �→ u1(0) . . . uk (0),
for ui ∈ a.
The Cliff(a)-submodule of A(a)tw generated by vtw is the unique (up to isomorphism)

non-trivial irreducible representation of Cliff(a). We denote this subspace of A(a)tw by
CM. We have

A(a)tw �
∧

(

⊕

n<0
a(n)
)

⊗ CM, CM �
∧

(a−(0))vtw . (6.16)

7 Lifting to the spin group
Let a be a complex vector space equipped with a non-degenerate symmetric bilinear
form 〈·, ·〉, as in Sect. 5. To recall the definition of the spin group of a, denoted Spin(a), we
remind that themain anti-automorphism α of Cliff(a) is defined by setting α(u1 . . . uk ) :=
uk . . . u1 for ui ∈ a. The group Spin(a) is composed of the even, invertible elements
x ∈ Cliff(a) with α(x)x = 1 such that xux−1 ∈ a whenever u ∈ a.
Set

x(u) := xux−1 (7.1)

for x ∈ Spin(a) and u ∈ a. Then u �→ x(u) is a linear transformation on a belonging to
SO(a) and the assignment x �→ x(·) defines a surjective map Spin(a)→ SO(a) with kernel
{±1}.

1→ {±1} → Spin(a) → SO(a)→ 1

x �→ x(·) (7.2)

The group Spin(a) acts naturally on A(a) and A(a)tw. Explicitly, if a ∈ A(a) has the form
a = u1(−n1 + 1

2 ) · · ·uk (−nk + 1
2 )v for some ui ∈ a and ni ∈ Z

+, then

xa = u′1
(−n1 + 1

2
)

. . .u′k
(−nk + 1

2
)

v, (7.3)

for x ∈ Spin(a), where u′i := x(ui) [cf. (7.1)]. Evidently, −1 is in the kernel of this assign-
ment Spin(a)→ Aut(A(a)), so the action factors through SO(a).
For A(a)tw, we use (6.16) to identify the elements of the form

u1(−n1) . . . uk (−nk )⊗ y (7.4)

as a spanning set, where ui ∈ a and ni ∈ Z
+ as above, and y ∈ CM [cf. (6.16)]. The

image of such an element under x ∈ Spin(a) is given by u′1(−n1) · · ·u′k (−nk )⊗ xy, where
u′i := x(ui) as before. Since CM is a faithful Spin(a)-module, so too is A(a)tw.
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In terms of the vertex operator correspondences, we have

Y (xa, z)xb = xY (a, z)b =
∑

n∈Z
x(a(n)b)z−n−1,

Ytw
(

xa, z1/2
)

xc = xYtw
(

a, z1/2
)

c =
∑

n∈ 12Z
x
(

a(n),twc
)

z−n−1, (7.5)

for x ∈ Spin(a), a, b ∈ A(a), and c ∈ Atw(a).
Say that ĝ ∈ Spin(a) is a lift of an element g ∈ SO(a) if ĝ has the same order as g , and

ĝ(·) = g [cf. (7.1)]. More generally, say that ̂G < Spin(a) is a lift of a subgroup G < SO(a)
if the natural map (7.2) induces an isomorphism ̂G ∼−→ G.
Suppose we are given an identification a = � ⊗Z C where � is the Leech lattice (cf.

Sect. 2). In this situation, we set G := Aut(�), a copy of the Conway group Co0 which we
may naturally regard as a subgroup of SO(a). Proposition 3.1 in [43] demonstrates that
there is a unique lift of G < SO(a) to Spin(a).

Proposition 7.1 ([43]) If a = �⊗Z C and G = Aut(�) < SO(a), then there is a unique
subgroup ̂G < Spin(a) such that the natural map Spin(a) → SO(a) induces an isomor-
phism ̂G ∼−→ G.

With ̂G ∼−→ G = Aut(�) � Co0 as in Proposition 7.1, write

g �→ ĝ (7.6)

for the inverse isomorphism, G ∼−→ ̂G.
Assuming an identification a = �⊗Z C, we now construct some elements of ̂G � Co0

explicitly. Let g ∈ G = Aut(�) and choose a basis {a±i } for a, consisting of eigenvectors
for g , such that the a± := Span

C
{a±i } are isotropic subspaces of a, and 〈a±i , a∓j 〉 = δi,j .

Write λi for the eigenvalue of g attached to a+i .

g(a±i ) = λ±1i a±i (7.7)

Then a = a− ⊕ a+ is a g-invariant polarization of a, and we may assume that

z :=
12
∏

i=1
e

π
2 Xi (7.8)

belongs to ̂G, where

Xi := i
2
(

a−i a
+
i − a+i a

−
i
) ∈ Cliff(a). (7.9)

For if z /∈ ̂G for our first choice of basis {a±i }, then−z ∈ ̂G, and z gets replaced with−z in
(7.8) once we swap a−i with a+i for some i. We call z as in (7.8) the lift of − Ida associated
to the polarization a = a− ⊕ a+.
Note that X2

i = −1, so eαXi = (cosα)1 + (sin α)Xi in Cliff(a) for α ∈ R. Also, Xia±i =
±ia±i = −a±i Xi, and Xi commutes with Xj and a±j when i �= j. This entails (cf. e.g., §3.1
of [43]) that the lift ĝ of g to ̂G < Spin(a) is given explicitly by

ĝ =
12
∏

i=1
eαiXi , (7.10)

for some αi ∈ 2πQ such that λi = e2αii [cf. (7.7)].
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We can now compute the trace of ĝ as an operator on the Spin(a)-module CM [cf.
(6.16)]. Indeed, since Xivtw = ivtw, and the 212 monomials

a−i1 (0) . . . a
−
ik (0)vtw (7.11)

with 1 ≤ i1 < · · · < ik ≤ 12 furnish a basis for CM, we have

trCM ĝ = ν

12
∏

i=1

(

1+ λ−1i

)

=
12
∏

i=1

(

νi + ν−1i

)

(7.12)

for νi := eαii and ν :=∏12
i=1 νi.

Suppose thatV is a real vector space contained in a, such that a = V⊗RC, and such that
〈·, ·〉 restricts to anR-valued bilinear form onV (e.g., a = �⊗ZC andV = �⊗ZR). Then
a choice of orientation R

+ω ⊂∧24(V ) on V also determines a lift of− Ida to Spin(a), for
given an ordered basis {ei} of V satisfying 〈ei, ej〉 = ±δi,j and

e1 ∧ · · · ∧ e24 ∈ R
+ω, (7.13)

we obtain one of the two lifts of − Ida to Spin(a) by setting

z′ := e1 . . . e24 ∈ Cliff(a). (7.14)

We call z′ the lift of − Ida associated to the orientation R
+ω. Evidently, a change in

orientation replaces z′ with −z′.
We see now from Proposition 7.1 that � is naturally oriented. For setting a = �⊗Z C

andV = �⊗ZR ⊂ a, and takingG = Aut(�) < SO(a) and̂G < Spin(a) as in Proposition
7.1, we may choose the preferred orientation on V to be the one for which the associated
lift z′ of− Ida [cf. (7.14)] belongs tôG. By the same token, there is a preferred SO(a)-orbit
of polarizations a = a− ⊕ a+ of a = �⊗Z C, being the one for which an associated lift z
[cf. (7.8)] belongs to ̂G.
Recall that the construction ofA(a)tw depends upon a choice of polarization a = a−⊕a+

[cf. (6.6)]. If z is the lift associated to a = a− ⊕ a+ [cf. (7.8)], then we have

zvtw = vtw (7.15)

(since dim a = 0 mod 4). Thus z acts with order two on A(a)tw. We write

A(a)tw = A(a)0tw ⊕ A(a)1tw (7.16)

for the decomposition into eigenspaces for z, where z acts as (−1)j Id on A(a)jtw. The
element z is central so the action of Spin(a) on A(a)tw preserves the decomposition (7.16).
From the description (7.3), we see that writing A(a)j for the (−1)j eigenspace of either z

or −z recovers the super space decomposition of A(a).

A(a) = A(a)0 ⊕ A(a)1 (7.17)

8 The Conwaymoonshinemodule
We now recall the main construction from [43].
Assume henceforth that a is a 24-dimensional vector space over C, equipped with a

bilinear form 〈·, ·〉 : a ⊗ a → C that is symmetric and non-degenerate. Suppose also to
be chosen a lift z′ ∈ Spin(a) of − Ida (in practice, z′ will be the lift of − Ida associated to
an orientation on some real vector space V ⊂ a, as in 7.14). Then for a = a− ⊕ a+ a
polarization such that z = z′ [cf. (7.8)] we set

V s� := A(a)0 ⊕ A(a)1tw , V s�
tw := A(a)1 ⊕ A(a)0tw , (8.1)
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whereA(a) andA(a)tw are constructed as in Sect. 5, and the subspacesA(a)j andA(a)jtw are
as in (7.17) and (7.16), respectively. According to [43], The A(a)0-module V s� is naturally
a super vertex operator algebra, and V s�

tw is naturally a canonically twisted module for V s�.

Proposition 8.1 ([43]) The A(a)0-module structure on V s� extends uniquely to a super
vertex operator algebra structure on V s�, and the A(a)0-module structure on V s�

tw extends
uniquely to a canonically twisted V s�-module structure.

The super vertex operator algebra V s� is distinguished. The following abstract charac-
terization of V s� has been established in [43] (cf. Theorem 5.15 of [44]).

Theorem 8.2 ([43]) The super vertex operator algebra V s� is the unique self-dual C2-
cofinite rational super vertex operator algebra of CFT type with central charge 12 such that
L(0)u = 1

2u for u ∈ V s� implies u = 0.

We refer to [43] for the precise meanings of the terms self-dual, C2-cofinite, rational,
and CFT type. Briefly, a super vertex operator algebra V is rational if any V -module
can be written as a direct sum of irreducible V -modules. We say that V is self-dual if
it is irreducible as a module over itself, and if V is the only irreducible V -module up to
isomorphism. As explained in [43], Theorem 8.2 identifies V s� as an analogue for super
vertex operator algebras of the extended binary Golay code, of the Leech lattice � (cf.
Sect. 2), and (conjecturally) of themoonshinemodule vertex operator algebraV � (cf. Sect.
1.1).
As explained in Sect. 7, the spin group Spin(a) acts naturally on the A(a)j and A(a)jtw,

so it acts naturally on V s� and V s�
tw. In particular, given an identification a = �⊗Z C, we

naturally obtain actions of the Conway groupCo0 onV s� andV s�
tw, becauseG = Aut(�) <

SO(a) admits a unique lift ̂G < Spin(a), according to Proposition 7.1.
Since it will be useful in the sequel, we now recall (cf. §4.3 of [43]) explicit expressions

for the graded traces of elements of ̂G � Co0 on V s� and V s�
tw. In preparation for this,

define ηg (τ ) for g ∈ G = Aut(�) by setting

ηg (τ ) := q
∏

n>0

12
∏

i=1

(

1− λ−1i qn
)

(1− λiqn) , (8.2)

where the λ±1i are the eigenvalues for g acting on a, as in (7.7), and define Cg by setting2

Cg := trCM ẑg. (8.3)

[cf. (7.6)]. Note that

ηg (τ/2)
ηg (τ )

= q−1/2
∏

n>0

12
∏

i=1

(

1− λ−1i qn−1/2
)

(

1− λiqn−1/2
)

. (8.4)

Also,

Cg = ν

12
∏

i=1

(

1− λ−1i

)

=
12
∏

i=1

(

νi − ν−1i

)

(8.5)

according to (7.12), where the ν and νi are as in (7.12), the νi being square roots of the λi.
So in particular, Cg is determined up to sign by the eigenvalues of g , and Cg = 0 exactly
when g has a non-zero fixed point in a.

2Note that Cg is denoted Cĝ in [43].
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For g ∈ G define

Ts
g (τ ) := trV s� ẑgqL(0)−c/24 , (8.6)

Ts
g,tw(τ ) := trV s�

tw
ẑgqL(0)−c/24 . (8.7)

We obtain the explicit formulas

Ts
g (τ ) =

1
2

(

ηg (τ/2)
η(τ )

+ η−g (τ/2)
η−g (τ )

+ Cgηg (τ )− C−gη−g (τ )
)

, (8.8)

Ts
g,tw(τ ) =

1
2

(

ηg (τ/2)
η(τ )

− η−g (τ/2)
η−g (τ )

+ Cgηg (τ )+ C−gη−g (τ )
)

, (8.9)

from Lemma 4.6 of [43] [or by direct calculation using (8.1), (8.2), and (8.3)].
Define also

χg := tra g (8.10)

so that χg =∑12
i=1(λi + λ−1i ) for λi as in (7.7). In [43], the following alternative identities

are proved:

Ts
g (τ ) =

ηg (τ/2)
ηg (τ )

+ χg , (8.11)

Ts
g,tw(τ ) = Cgηg (τ )− χg . (8.12)

Both the equivalence of (8.8) with (8.11) and of (8.9) with (8.12) follow from the following
non-trivial identity, which is the content of the main technical lemma (Lemma 4.8) of
[43].

Lemma 8.3 ([43]) For g ∈ G = Aut(�) we have

2χg − η−g (τ/2)
η−g (τ )

+ ηg (τ/2)
ηg (τ )

+ C−gη−g (τ )− Cgηg (τ ) = 0. (8.13)

The main result of [43] is that Ts
g is the normalized principal modulus for a genus zero

group �g < SL2(R), and Ts
g,tw is also a principal modulus, so long as Cg �= 0. From the

explicit descriptions of the �g in Table 1 of [43], we see that Ts
g (2τ ) is invariant for some

�0(N ), with N depending on g , for every g ∈ Co0.

Theorem 8.4 ([43]) Let g ∈ Co0. Then Ts
g (2τ ) is the normalized principal modulus for a

genus zero group �g < SL2(R) that contains some �0(N ). If g has a fixed point in its action
on the Leech lattice, then the function Ts

g,tw(τ ) is constant, with constant value−χg . If g has
no fixed points, then Ts

g,tw(τ ) is a principal modulus for a genus zero group �g,tw < SL2(R).

The groups �g and �g,tw are described explicitly in [43].
Note that the characteristic polynomial for the action of an element g ∈ G on a can

always be written in the form
∏

m>0(1− xm)km for some non-negative integers km, all but
finitelymany being zero (cf. §4.3 of [43]). It follows from (8.2) that ηg (τ ) =∏m>0 η(mτ )km .
The formal product

πg :=
∏

m>0
mkm (8.14)

is called the Frame shape of g .

9 Twining genera
In this section, we establish the main results of the paper.
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Let X be a projective complex K3 surface and let σ = (P , Z) be a stability condition
in Bridegland’s space Stab◦(X) (cf. Sect. 4). Presently, we will attach a formal series φg ∈
C[y±1][[q]] to any g ∈ G� = Auts(Db(X), σ ) by computing the graded trace of a suitable
automorphism of the canonically twisted module V s�

tw for the distinguished super vertex
algebra V s� that was reviewed in Sect. 8 (and studied in detail in [43]). It will develop (see
Theorem 9.5) that φg is a weak Jacobi form of weight zero and index one, with some level
(cf. Sect. 3).
In order to define φg , we require explicit realizations of V s� and V s�

tw. In preparation for
this, we take a = ˜H (X,Z) ⊗Z C to be the complex vector space enveloping the Mukai
lattice. Once and for all, we choose an orientation on ˜H (X,Z)⊗Z R ⊂ a,

R
+ω ⊂

24
∧
(

˜H (X,Z)⊗Z R
)

, (9.1)

and we let z′ [cf. (7.14)] denote the corresponding lift of − Ida to Spin(a). Then, for a
polarization a = a− ⊕ a+ such that z = z′ [cf. (7.8)], we identify

V s� = A(a)0 ⊕ A(a)1tw , V s�
tw = A(a)1 ⊕ A(a)0tw , (9.2)

as in Sect. 8.
As in (6.10) we write Ytw(ω, z1/2) = ∑n∈Z L(n)z−n−2 for the twisted module vertex

operator V s�
tw → V s�

tw((z)) attached to the Virasoro element ω ∈ V s� [cf. (6.5)]. Then L(0)
acts diagonalizably on V s�

tw with eigenvalues in Z + 1
2 , thus L(0) − c

24 defines an integer
grading on V s�

tw, since the central charge of V s� is c = 1
2 dim(a) = 12.

The data of X and Z enable us to define a U(1) element (cf. Sect. 5), and hence a second
integer grading on V s�

tw. To see this, first recall the spaces PX [cf. (4.7)] and PZ [cf. (4.9)]
from Sect. 4. Let ς be a non-zero element of H2,0(X), and choose vectors

xX ∈ R�(ς ), yX ∈ R�(ς ), xZ ∈ R�(Z), yZ ∈ R�(Z) (9.3)

of norm one with respect to 〈·, ·〉, so that {xX , yX , xZ, yZ} is an orthonormal basis for
� = PX ⊕ PZ . Now set

a±X := 1√
2
(xX ± iyX ), a±Z := 1√

2
(xZ ± iyZ), (9.4)

so that the a±X and a±Z are isotropic, satisfying 〈a±X , a∓X 〉 = 〈a±Z , a∓Z 〉 = 1. Then

j := 1
2
a−X
(− 1

2
)

a+X
(− 1

2
)

v + 1
2
a−Z
(− 1

2
)

a+Z
(− 1

2
)

v (9.5)

is a U(1) element of level 4 for V s� [cf. (6.12)]. Write J (n) ∈ End(V s�
tw) for the coefficient

of z−n−1 in the twisted vertex operator attached to j ,

Ytw
(

j , z1/2
) =
∑

n∈Z
J (n)z−n−1. (9.6)

According to (6.11), Lemma 6.1, and the fact that dim a = 24, the operators L(0)− c
24 and

J (0) equip V s�
tw with an integral bi-grading

V s�
tw =
⊕

n,r∈Z
n≥0

(

V s�
tw

)

n,r
, (9.7)

with finite-dimensional homogenous subspaces,
(

V s�
tw

)

n,r
:=
{

v ∈ V s�
tw|(L(0)− c

24 )v = nv, J (0)v = rv
}

. (9.8)
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Now recall �� < ˜H (X,Z) [cf. (4.13)] and let ι : �� → �(−1) be a Leech marking of
(X, σ ) [cf. (4.14)]. Choose a copy of the negative-definite Leech lattice �(−1) in a such
that a = �(−1)⊗Z C and �� ⊂ �(−1), and assume also that ι(γ ) = γ . Set

G := Aut(�(−1)), (9.9)

a copy of the Conway group Co0 in SO(a), and let ̂G be the lift of G to Spin(a) whose
existence and uniqueness is guaranteed by Proposition 7.1. Recall that we write g �→ ĝ
for the isomorphism G → ̂G. We may assume that z′ ∈ ̂G [cf. (9.1)], for if this is not true
for our first choice of �(−1), then it becomes true once we replace �(−1) with its image
under the reflection in the hyperplane defined by a non-zero vector in �.
As explained in Sect. 4, the Leechmarking ι induces an embedding of groups ι∗ : G� →

G [cf. (4.15)]. Using this map to regard G� as a subgroup of G, we suppress it from
notation. Thus, to each g ∈ G� ⊂ G is associated a corresponding element ĝ ∈ ̂G. We
now define φg ∈ C[y±1][[q]] by setting

φg := − trV s�
tw
ẑgyJ (0)qL(0)−c/24 , (9.10)

where z = z′ is the central element of ̂G.
Our notation φg obscures the choice of Leech marking for (X, σ ). We now show that

this convention entails no ambiguity.

Proposition 9.1 The series φg is independent of the choice of Leech marking ι.

Proof Suppose that �(−1) ⊂ a is chosen as above, having full rank a = �(−1) ⊗Z C

in a, containing �� as a primitive sublattice, and such that z′ ∈ ̂G, for ̂G the unique
lift of G := Aut(�(−1)) � Co0 to Spin(a), and z′ the lift of − Ida associated to the
chosen orientation (9.1) on ˜H (X,Z) ⊗Z R. A second choice of Leech marking leads to a
second copy of the negative-definite Leech lattice, �′(−1) ⊂ a, with a = �′(−1) ⊗Z C

and �� < �(−1) ∩ �′(−1). Set G′ := Aut(�′(−1)) and write ̂G′ for the unique lift of
G′ � Co0 to Spin(a), and assume, as we may, that z′ ∈ ̂G′.
We have g ∈ G ∩G′. Write ĝ and ĝ ′ for the respective lifts to Spin(a), determined by ̂G

and ̂G′. We have ĝ = ±ĝ ′, and we require to show that, in fact, ĝ = ĝ ′.
Lethbe anorthogonal transformationofa that restricts to an isomorphismh : �(−1) ∼−→

�′(−1). By our hypothesis that z′ ∈ ̂G ∩ ̂G′, we have h ∈ SO(a). Since �� is a primitive
sublattice of �(−1) ∩�′(−1), we may choose h so that it restricts to the identity on ��.
Then h commutes with g , because g acts trivially on �⊥�. More than this, any lift̂h of h to
Spin(a) commutes with ĝ , because we have ĝ =∏12

i=1 eαiXi [cf. (7.10)], for some basis {a±i }
of eigenvectors for g , as in (7.7), with Xi as in (7.9), and we may assume that αi �= 0 only
when a±i ∈ ��⊗Z C. Then̂hXi = Xîh whenever αi �= 0, and sôĥg = ĝ̂h. NoŵĥĜh−1 is a
lift ofG′ to Spin(a), so it must bêG′ by Proposition 7.1. Sôĥĝh−1 is the lift ĝ ′ of hgh−1 = g
to ̂G′, so ĝ ′ =̂ĥĝh−1 = ĝ , as we required to show. ��

The coefficients of the φg may be computed explicitly, in direct analogy with (8.9). With
this purpose in mind, we define constants Dg as follows.
Given g ∈ G�, choose a polarization a = a− ⊕ a+ for a = ˜H (X,Z)⊗Z C such that a± is

spanned by (isotropic) eigenvectors a±i for g , constituting a pair of dual bases in the sense
that 〈a−i , a+j 〉 = δi,j (cf. the discussion in Sect. 8). We may assume that

a±11 = a±X , a±12 = a±Z , (9.11)
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since a±X and a±Z are fixed by g , by hypothesis. We may also assume that the lift of − Ida
associated to the polarization a = a− ⊕ a+coincides with z′ [cf. (9.1)], for if not, then
replace a±i with a∓i , for some i ∈ {1, . . . , 10}.
Write λ±1i for the eigenvalue of g attached to a±i . Set Xi := i

2 (a
−
i a

+
i − a+i a

−
i ) as in (7.9).

Then, according to the discussion in Sect. 7, we have

ĝ =
10
∏

i=1
eαiXi , (9.12)

for some αi ∈ 2πQ satisfying λ±1i = e±2αii. We now set νi := eαii, for 1 ≤ i ≤ 10, and
define

Dg :=
10
∏

i=1

(

νi − ν−1i

)

. (9.13)

Observe that if ν′ :=∏10
i=1 νi then Dg = ν′

∏10
i=1(1− λ−1i ). So Dg vanishes if and only if

g has a fixed point in its action on ��. In particular, Dg vanishes whenever the sublattice
of � fixed by g has rank larger than 4.
We are now prepared to present an explicit expression for φg .

Proposition 9.2 Let X be a projective complex K3 surface and let σ ∈ Stab◦(X). Then for
g ∈ G� = Auts(Db(X), σ ) and φg defined by (9.10), we have

φg = −1
2

(

ϑ4(τ , z)2

ϑ4(τ , 0)2
ηg (τ/2)
ηg (τ )

− ϑ3(τ , z)2

ϑ3(τ , 0)2
η−g (τ/2)
η−g (τ )

)

+1
2

(

ϑ1(τ , z)2

η(τ )6
Dgηg (τ )− ϑ2(τ , z)2

ϑ2(τ , 0)2
C−gη−g (τ )

)

(9.14)

after substituting q = e2π iτ and y = e2π iz. In particular, φg is the Fourier expansion of
a holomorphic function φg (τ , z) on H × C, invariant under (τ , z) �→ (τ + m, z + n), for
m, n ∈ Z.

Proof The required identity (9.14) may be obtained via direct calculation. We use the
decomposition V s� = A(a)1⊕A(a)0tw along with the formulas (8.2) and (8.3). We also use
Lemma 6.1, and the product formulas (3.15) for the Jacobi theta functions ϑi.
For the contribution of A(a)1 to φg , note that

trA(a) ĝyJ (0)qL(0)−c/24

= q−1/2
∏

n>0

(

1+ y−1qn−1/2
)2 (1+ yqn−1/2

)2
10
∏

i=1

(

1+ λ−1i qn−1/2
)

(

1+ λiqn−1/2
)

= ϑ3(τ , z)2

ϑ3(τ , 0)2
η−g (τ/2)
η−g (τ )

(9.15)

since λ11 = λ12 = 1 according to the convention (9.11). Similarly,

trA(a) ẑgyJ (0)qL(0)−c/24 = ϑ4(τ , z)2

ϑ4(τ , 0)2
η−g (τ/2)
η−g (τ )

. (9.16)

Thus, recalling the definition (9.10) of φg , we see that the first line of the right-hand side
of (9.14) is precisely the contribution of A(a)1 to φg .
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The contribution of A(a)0tw is computed similarly. We have

trA(a) ĝyJ (0)qL(0)−c/24 = qyν
∏

n>0

(

1+ y−1qn−1
)2 (1+ yqn)2

10
∏

i=1

(

1+ λ−1i qn−1
)

(1+ λiqn)

= ϑ2(τ , z)2

ϑ2(τ , 0)2
C−gη−g (τ ), (9.17)

trA(a) ẑgyJ (0)qL(0)−c/24 = qyν
∏

n>0

(

1− y−1qn−1
)2 (1− yqn)2

10
∏

i=1

(

1− λ−1i qn−1
)

(1− λiqn)

= −ϑ1(τ , z)2

η(τ )6
Dgηg (τ ), (9.18)

assuming, as we may, that ν′ = ν in (9.13). This shows that the second line of the right-
hand side of (9.14) represents the contribution of A(a)0tw to φg . The identity is proved.

��

Armedwith Proposition 9.2, we henceforth regard φg = φg (τ , z) as a holomorphic func-
tion on H×C. We would like to show that φg is a weak Jacobi form. This is accomplished
by giving an expression in terms of the standard weak Jacobi forms φ0,1 and φ−2,1 (cf. Sect.
3). With this in mind, define

Fg (τ ) := 1
2
�2(τ/2)

ηg (τ/2)
ηg (τ )

− 1
2
�2(τ/2+ 1/2)

η−g (τ/2)
η−g (τ )

+1
2
Dgηg (τ )−�2(τ )C−gη−g (τ ) (9.19)

for g as in Proposition 9.2, and recall the definition (8.10) of χg .

Proposition 9.3 Let X be a projective complex K3 surface and let σ ∈ Stab◦(X). Then for
g ∈ Auts(Db(X), σ ), we have

φg (τ , z) = 1
12

χgφ0,1(τ , z)+ Fg (τ )φ−2,1(τ , z). (9.20)

Proof Replacing Fg (τ ) with the right-hand side of (9.19), the right-hand side of (9.20)
becomes

1
12

χgφ0,1(τ , z)+ 1
2
�2(τ/2)

ηg (τ/2)
ηg (τ )

φ−2,1(τ , z)− 1
2
�2(τ/2+ 1/2)

η−g (τ/2)
η−g (τ )

φ−2,1(τ , z)

+1
2
Dgηg (τ )φ−2,1(τ , z)−�2(τ )C−gη−g (τ )φ−2,1(τ , z). (9.21)

Now subtract 1
24 0φ0,1, where 0 is written as in Lemma 8.3 [i.e., the left-hand side of (8.13)].

After some rearrangement, we obtain

−
(

1
24

φ0,1(τ , z)− 1
2
�2(τ/2)φ−2,1(τ , z)

)

ηg (τ/2)
ηg (τ )

+
(

1
24

φ0,1(τ , z)− 1
2
�2(τ/2+ 1/2)φ−2,1(τ , z)

)

η−g (τ/2)
η−g (τ )

+1
2
φ−2,1(τ , z)Dgηg (τ )−

(

1
24

φ0,1(τ , z)+�2(τ )φ−2,1(τ , z)
)

C−gη−g (τ ), (9.22)

and the identities of Lemma 3.2 show that this is exactly (9.14). ��
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Applying Proposition 3.1 with m = 1 to (9.20), we see that φg is a weak Jacobi form of
level N so long as Fg is a modular form of weight 2 for �0(N ).

Proposition 9.4 Let X be a projective complex K3 surface and let σ ∈ Stab◦(X). Then
for g ∈ Auts(Db(X), σ ) the function Fg is a modular form of weight 2 for �0(Ng ), for some
positive integer Ng .

Proof As in the definition (9.10) ofφg , and the proof of Proposition 9.1, we use Proposition
4.1 to identifyG� = Auts(Db(X), σ ) with a subgroup of SO(a) (recall that a = ˜H (X,Z)⊗Z

C), and we choose a Leech marking ι for (X, σ ), in order to identify g as an element of
G = Aut(�(−1)), for a suitable copy of �(−1) in a. Then η±g (τ ) and C−g depend only on
the conjugacy class of g in G � Co0, and Dg is determined by the conjugacy class [g] ⊂ G
up to sign [cf. (9.13)]. The values C−g and Dg , and the Frame shapes π±g that determine
the η±g (τ ) [cf. (8.14)] may be read off from Table 3.
Now the proof is essentially a case-by-case check of the relevant classes of Co0 (rather

than, say, all the groups G� in Aut(˜H (X,Z)) = O(II4,20)), but we can use the results
of [43] to simplify this further, replacing the explicit calculation of modular forms with
simple checks on properties of the invariance groups �g of the functions Ts

g (2τ ) [cf. (8.6),
Theorem 8.4].
As a first step toward this goal, observe that if Dg �= 0 then ηg (τ ) is an eta product of

weight 2, meaning that
∑

m>0 km = 4 for πg = ∏m>0 mkm . Indeed,
∑

m>0 km is exactly
the rank of �g , and it was pointed out in the sentence following (9.13) that Dg vanishes
when �g has rank larger than 4.
It follows that the third summand in the definition (9.19) of Fg (τ ) is a modular form of

weight 2, and some level, for each g . So we may consider F ′g (τ ) := Fg (τ )− 1
2Dgηg (τ ) (the

prime here does not denote differentiation).
Next, we apply Lemma 8.3 to rewrite C−gη−g (τ ) in terms of the functions

t±g (τ ) := η±g (τ )
η±g (2τ )

. (9.23)

[cf. (8.11)]. Since g has fixed points in a by hypothesis, Cg = 0 [cf. (8.5)]. Thus we obtain

2χg + tg
(τ

2

)

− t−g
(τ

2

)

+ C−gη−g (τ ) = 0 (9.24)

from Lemma 8.3. Solving for C−gη−g (τ ) in (9.24), substituting the result into (9.19), and
noting the identities tg (τ + 1/2) = −t−g (τ ) and �4(τ ) = 4�2(2τ )+ 2�2(τ ), we see that
if F ′′g (τ ) := F ′g (τ )− 2χg�2(τ ), then

F ′′g (τ ) =
1
4

(

tg
(τ

2

)

�4
(τ

2

)

+ tg
(

τ + 1
2

)

�4

(

τ + 1
2

))

. (9.25)

The function 2χg�2(τ ) is a modular form for �0(M) wheneverM is even, so wemay focus
on F ′′g .
Set fg (τ ) := 1

2 tg (τ )�4(τ ). Then fg (τ ) is a weakly holomorphic modular form of weight 2
and some level, since tg (τ ) is a principal modulus for a genus zero group containing some
�0(N ), according to (8.11) and Theorem 8.4. Precisely, for�g the invariance group of tg (τ )
(i.e., as in Theorem 8.4), the function fg is a weakly holomorphic modular form of weight
2 for �g ∩ �0(4).
The relevance of fg , apparent from (9.25), is that we have F ′′g = T2(2)fg , where Tk (2)

denotes the second-order Hecke operator on modular forms of weight k for �0(M), for
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any evenM,

(Tk (2)f )(τ ) := 1
2

(

f
(τ

2

)

+ f
(

τ + 1
2

))

. (9.26)

(cf. e.g., §IX.6 of [80]). From this, we conclude that F ′′g is a weakly holomorphic modular
form of weight 2 for �0(N ′), where N ′ is the least common multiple of 4 and the level of
tg .
We require to show that F ′′g is actually a (holomorphic) modular form, i.e., has no poles

at cusps. There is no loss in considering

4F ′′g (2τ ) = tg (τ )�4(τ )− t−g (τ )�4

(

τ + 1
2

)

(9.27)

instead. Note that �4(τ ) and �4(τ + 1/2) are both modular forms of weight 2 for �0(4),

since �0(4) is normalized by
(

1 1/2
0 1

)

. Recall that �0(4) has three orbits on̂Q = Q∪{∞},
represented by 1, 1/2, and 1/4 (the infinite cusp is represented by 1/4). Table 1 presents
the asymptotic behavior of �4(τ ) and �4(τ + 1/2) at these three cusps of �0(4).
The function F ′′g cannot have a pole at α ∈ ̂Q unless one or both of t±g do. The functions

t±g are principal moduli for groups �±g according to Theorem 8.4, so they can only have
poles at points α ∈ ̂Q such that α ∈ �±g∞. Comparing (9.27) with Table 1, we see that
our task has been reduced to verifying, for arbitrary α ∈ ̂Q, that

1. If α ∈ �g∞ and �−g∞ then α = 1/4 mod �0(4),
2. If α ∈ �g∞ and α /∈ �−g∞ then α = 1/2 mod �0(4), and
3. If α /∈ �g∞ and α ∈ �−g∞ then α = 1 mod �0(4).

The verification of these statements can now be handled directly using the descriptions
of the groups �±g appearing in Appendix A.
Observe that the verification of the statements 1, 2, and 3 is generally quite easy. For

example, if C−g = 0 (which is the case for most conjugacy classes) then we necessarily
have �g = �−g , since (9.24) implies that tg and t−g coincide, up to an additive constant.
Then the conditions 2 and 3 become vacuous, and we require only to check that if γ ∈ �g
and γ∞ = a

c for a, c ∈ Z with (a, c) = 1, then c = 0 mod 4. The remaining cases are
handled similarly. ��
Together, Propositions 9.3 and 9.4 prove our main theorem.

Theorem 9.5 Let X be a projective complex K3 surface and let σ ∈ Stab◦(X). Then for
g ∈ Auts(Db(X), σ ) the function φg is a Jacobi form of weight 0, index 1, and some level.

Taking g to be the identity in Theorem 9.5 produces a Jacobi form φe of weight 0, index
1, and level 1; it must be the K3 elliptic genus, up to a constant. The constant can be
determined by setting z = 0. Taking z = 0 in (3.16) and (3.17), and applying (9.20), we see
that in fact it is exactly the K3 elliptic genus, but expressed in a rather non-standard way:

Table 1 Modular forms of level four at cusps

�4(τ) �4(τ + 1/2)
1 1/2+ O(q) 1/2+ O(q)

1/2 O(q) −1/2+ O(q)

1/4 −1/8+ O
(

q1/4
)

O
(

q1/4
)
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ZK3(τ , z) = 1
2

ϑ3(τ , z)2

ϑ3(τ , 0)2
�(τ )2

�(2τ )�(τ/2)
− 1

2
ϑ4(τ , z)2

ϑ4(τ , 0)2
�(τ/2)
�(τ )

− 211
ϑ2(τ , z)2

ϑ2(τ , 0)2
�(2τ )
�(τ )

.

(9.28)

Explicit expressions for theφg are recorded inTable 3.Coincidenceswith theweight zero
weak Jacobi forms of Mathieu moonshine, and with the K3 sigma model twining genera
computed in [68] are recorded in Table 8. Observe that every twining genus appearing in
[68] appears also in Table 8. This leads us to the following conjecture.

Conjecture 9.6 The twined elliptic genus attached to a supersymmetry-preserving auto-
morphism g ∈ G� of the supersymmetric non-linear K3 sigma model determined by
� = PX ⊕ PZ coincides with φg .

10 Umbral moonshine
In addition to twined K3 elliptic genera, a number of which coincide with weak Jacobi
forms of Mathieu moonshine (cf. Table 8), graded traces on V s�

tw defined by U(1) elements
corresponding tohigher dimensional subspaces of a recover functions arising fromumbral
moonshine, as we will now explain.
In [18], to each lambency  ∈ {2, 3, 4, 5, 7, 13} is associated a Jacobi form Z() of weight 0

and index −1. In [19], this is expanded to a correspondence associating to eachNiemeier
lattice with root system X a lambency  and a meromorphic Jacobi form ψX of weight
1, with index given by the Coxeter number of X . For lambencies  occurring in [18], we
recover Z() from ψX according to the rule

Z()(τ , z) = −i ϑ1(τ , z)2

ϑ1(τ , 2z)η(τ )3
ψX (τ , z), (10.1)

upon taking X = An
−1 for n = 24/(− 1).

For d ∈ {2, 4, 6, 8, 10, 12}, define a corresponding  by  = d
2 + 1. Identify a = �⊗Z C.

Choose a 2d-dimensional real vector space � < � ⊗Z R ⊂ a and let {a±i } be bases
for isotropic subspaces a± < a constituting a polarization a = a− ⊕ a+. Assume that
〈a−i , a+j 〉 = δi,j and

�⊗R C = Span
{

a−i , a
+
i |1 ≤ i ≤ d

}

. (10.2)

Define an associatedU(1) element j ∈ V s�, withV s� as in (8.1), realized using a = a−⊕a+,
by setting

j := 1
2

d
∑

i=1
a−i (−1/2)a+i (−1/2)v. (10.3)

Then j has level d according to Lemma 6.1.
Recall from Sect. 7 that g �→ ĝ denotes the natural isomorphism relatingG = Aut(�) to

the naturally corresponding copŷG of Co0 in Spin(a). If g ∈ G is chosen so that g restricts
to the identity on�, then the action of ĝ onV s�

tw commutes with that of J (0) := j(0),tw, and
we may define

φ
()
g (τ , z) := − trV s�

tw
ẑgyJ (0)qL(0)−c/24 . (10.4)

Cf. (9.10).
To describe the φ

()
g explicitly choose a g in G with g |� = Id. Assume that the a±i are

eigenvectors for g and write
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ĝ =
10
∏

i=1
eαiXi , (10.5)

whereXi = i
2 (a

−
i a

+
i −a+i a

−
i ) as in (7.9), and the αi ∈ 2πQ are chosen so that λ±1i = e±2αii

is the eigenvalue for the action of g on a±i . Wemay assume that αi = 0 for 1 ≤ i ≤ d since
g fixes the corresponding a±i by hypothesis. Set νi := eαii and define

D()
g :=

12
∏

i=d+1

(

νi − ν−1i

)

. (10.6)

Similar to the discussion around (9.13), if ν′ :=∏12
i=d+1 νi then

D()
g = ν′

12
∏

i=d+1

(

1− λ−1i

)

, (10.7)

soD()
g vanishes if and only if g has a fixed point in its action on the orthogonal complement

of � in �. In particular, D()
g vanishes whenever the sublattice of � fixed by g has rank

larger than 2d.
By a method directly similar to the proof of Proposition 9.2, we obtain the following

explicit expression for φ
()
g .

Proposition 10.1 Let d ∈ {2, 4, 6, 8, 10, 12} and  = d
2 + 1. Let � be a 2d-dimensional

subspace of �⊗Z R. If g ∈ G and g |� = Id, then

φ
()
g (τ , z) = −1

2

(

ϑ4(τ , z)d

ϑ4(τ , 0)d
ηg (τ/2)
ηg (τ )

− ϑ3(τ , z)d

ϑ3(τ , 0)d
η−g (τ/2)
η−g (τ )

)

+1
2

(

(−1) ϑ1(τ , z)d

η(τ )3d
D()
g ηg (τ )− ϑ2(τ , z)d

ϑ2(τ , 0)d
C−gη−g (τ )

)

(10.8)

after substituting q = e2π iτ and y = e2π iz. In particular, φ()
g is the Fourier expansion of

a holomorphic function φ
()
g (τ , z) on H × C, invariant under (τ , z) �→ (τ +m, z + n), for

m, n ∈ Z.

On the strength of Proposition 10.1, we may henceforth regard φ
()
g = φ

()
g (τ , z) as a

holomorphic function on H × C. As in Sect. 9, we would like to show that φ
()
g is a weak

Jacobi form, and this is accomplished by giving an expression in terms of the standardweak
Jacobi forms φ0,1 and φ−2,1 (cf. Sect. 3), and some particular modular forms depending on
g . With this in mind, define

F2j,g (τ ) := −�2(τ/2)j
ηg (τ/2)
ηg (τ )

+�2(τ/2+ 1/2)j
η−g (τ/2)
η−g (τ )

− (−2�2(τ ))jC−gη−g (τ )

(10.9)

for j ≥ 0 and g as in Proposition 10.1.

Proposition 10.2 Let  and g be as in Proposition 10.1. Then F0,g is constant, and there
exists a positive integer N such that F2j,g ∈ M2j(�0(N )) for 0 < j < .

Proof The proof is very similar to that of Proposition 9.4. That is to say, it is ultimately
a case-by-case check, but we use the results of [43] to replace the explicit calculation
of modular forms with simple checks on properties of the invariance groups �g of the
functions Ts

g (2τ ) [cf. (8.6), Theorem 8.4].



Duncan and Mack-Crane Res Math Sci (2016) 3:1 Page 35 of 47

To begin, consider F0,g . With tg as defined by (9.23), we have

F0,g (τ ) = −tg (τ/2)+ t−g (τ/2)− C−gη−g (τ ). (10.10)

Note that g has fixed points in its action on a, by hypothesis, so Cg = 0. So (9.24) holds,
according to Lemma 8.3. Comparing (9.24) to (10.10), we see that F0,g (τ ) = 2χg . In
particular, F0,g is constant, as required.
Now let 0 < j < . Applying Lemma 8.3 to rewrite C−gη−g (τ ) in terms of t±g , and also

using tg (τ + 1/2) = −t−g (τ ), we have F2j,g (τ ) = F ′2j,g (τ )+ 2χg (−2�2(τ ))j , where

F ′2j,g (τ ) := tg
(τ

2

)

G2j
(τ

2

)

+ tg
(

τ + 1
2

)

G2j

(

τ + 1
2

)

, (10.11)

G2j(τ ) := −�2(τ )j + (−2�2(2τ ))j . (10.12)

We require to show that F ′2j,g (τ ) is a modular form for some �0(N ).
So set

f2j,g (τ ) := 2tg (τ )G2j(τ ) (10.13)

and observe that f2j,g (τ ) is a weakly holomorphic modular form of weight 2j for some
�0(N ), since the invariance group of tg contains some �0(N ). Also, F ′2j,g = T2j(2)f2j,g ,
where Tk (2) denotes the second-order Hecke operator on modular forms of weight k for
�0(M), for any even M. [cf. (9.26)]. So F ′2j,g is a weakly holomorphic modular form of
weight 2j for some �0(N ), and it remains to verify that F ′2j,g has no poles at cusps.
To this end, observe

F ′g (2τ ) = tg (τ )G2j(τ )− t−g (τ )G2j

(

τ + 1
2

)

, (10.14)

and note that both G2j(τ ) and G2j(τ + 1/2) are modular forms of weight 2j for �0(4).
Table 2 is the appropriate analogue of Table 1, presenting the asymptotic behavior of
G2j(τ ) and G2j(τ + 1/2) at the three cusps of �0(4).
Just as for F ′′g in the proof of Proposition 9.4, the function F ′2j,g cannot have a pole at

α ∈ ̂Q unless one or both of t±g do, and the t±g can only have poles at points α ∈ ̂Q
such that α ∈ �±g∞. Comparing (10.14) with Table 2 we see that we require to verify, for
arbitrary α ∈ ̂Q, that

1. If α ∈ �g∞ and �−g∞ then α = 1/4 mod �0(4),
2. If α ∈ �g∞ and α /∈ �−g∞ then α = 1/2 mod �0(4), and
3. If α /∈ �g∞ and α ∈ �−g∞ then α = 1 mod �0(4).

But these statements have been verified already, for any g ∈ G such that the rank of
�g is at least 4, in the course of the proof of Proposition 9.4. Since � has dimension
2d = 4(− 1) ≥ 4, the proof of the proposition is complete. ��

Table 2 Modular forms of level four at cusps

G2j(τ) G2j(τ + 1/2)
1

(

(−2)j − 1
)

12−j + O(q)
(

(−2)j − 1
)

12−j + O(q)

1/2 O(q)
(

1− (−2)j) 12−j + O(q)

1/4
(

1− (−2)j) 48−j + O
(

q1/4
)

O
(

q1/4
)
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Proposition 10.3 Let  and g be as in Proposition 10.1. Then we have

φ
()
g (τ , z) = −1

2
D()
g ηg (τ )φ−2,1(τ , z)−1

+
−1
∑

j=0
(−1)j 1

2

(

− 1
j

)

1
12−j−1 F2j,g (τ )φ0,1(τ , z)−j−1φ−2,1(τ , z)j . (10.15)

Proof Recall d = 2(− 1) and apply the identities of Lemma 3.2 to the expression (10.8)
for φ

()
g , replacing the theta quotients with the left-hand sides of (3.19)–(3.22), to find

φ
()
g (τ , z) = −1

2

(

(

1
12

φ0,1(τ , z)−�2(τ/2)φ−2,1(τ , z)
)−1 ηg (τ/2)

ηg (τ )

−
(

1
12

φ0,1(τ , z)−�2(τ/2+ 1/2)φ−2,1(τ , z)
)−1 η−g (τ/2)

η−g (τ )

)

+1
2

(

− φ−2,1(τ , z)−1D()
g ηg (τ )

−
(

1
12

φ0,1(τ , z)+ 2�2(τ )φ−2,1(τ , z)
)−1

C−gη−g (τ )
)

. (10.16)

Applying the binomial theorem to each term, we find that the coefficient of φ
−j−1
0,1 φ

j
−2,1

for j < − 1 in the resulting expansion is

−1
2

(

− 1
j

)

1
12−j−1 (−�2(τ/2))j

ηg (τ/2)
ηg (τ )

+1
2

(

− 1
j

)

1
12−j−1 (−�2(τ/2+ 1/2))j

η−g (τ/2)
η−g (τ )

−1
2

(

− 1
j

)

1
12−j−1 (2�2(τ ))jC−gη−g (τ )

= (−1)j 1
2

(

− 1
j

)

1
12−j−1 F2j,g (τ ). (10.17)

The coefficient of φ−1
−2,1 is similar, with the additional term − 1

2D
()
g ηg (τ ). ��

Theorem 10.4 Let d ∈ {2, 4, 6, 8, 10, 12} and  = d
2 + 1. Let � be a 2d-dimensional

subspace of �⊗Z R. If g ∈ G and g |� = Id, then φ
()
g is a weak Jacobi form of weight 0 and

index − 1, with some level depending on g.

Proof Proposition 10.3 shows that φ
()
g is a homogeneous polynomial in φ0,1 and φ−2,1

of the form required by Proposition 3.1. Proposition 10.2 verifies that all the coefficients
in this expression have the correct modular properties, except for − 1

2D
()
g ηg (τ ), which

appears as the coefficient of φ−1
−2,1. So the required result follows from Proposition 3.1, as

soon as we verify thatD()
g ηg (τ ) is a modular form of weight d = 2(− 1) for some �0(N ),

but this follows from the definition of D()
g . For it is apparent from (10.6) that D()

g can
only be non-zero when the rank of�g is precisely 2d = 4(−1). On the other hand, if the
Frame shape of g takes the form πg = ∏m>0 mkm , then rank(�g ) = ∑m>0 km which is
exactly 1

2 times the weight of ηg (τ ) = ∏m>0 η(mτ )km . So ηg (τ ) has weight d, or D()
g = 0.

In either case, D()
g ηg (τ ) ∈ M2(−1)(�0(N )) for some N . This completes the proof. ��
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Taking g to be the identity in Theorem 9.5 produces a Jacobi form φ
()
e of weight 0, index

− 1, and level 1. This construction recovers the extremal weak Jacobi forms Z() of [18]
for  ∈ {2, 3, 4, 5, 7}.
Proposition 10.5 If d ∈ {2, 4, 6, 8, 12} then φ

()
e = d

2Z
().

Explicit expressions for the φ
()
g are recorded in Tables 3, 4, 5, 6 and 7. Coincidences

with the weight zero weak Jacobi forms of umbral moonshine are recorded in Tables 8, 9,
10, 11 and 12.
Note that φ

(6)
e , corresponding to d = 10, does not correspond to a weak Jacobi form

arising in [18]. However, φ
(6)
e maps naturally to the meromorphic Jacobi form ψX for

X = A4
5D4 via the construction in §4.3 of [19]. Note that the  for which φ

()
e recovers the

weight 0 Jacobi form of umbral moonshine correspond to pure A-type root systems X . It
is natural to ask if some modification of our methods can recover the Z() corresponding
to the remaining pure A-type root systems (at  = 9, 13, 25).

11 Sigmamodels
In this section, we describe an isomorphism of graded vector spaces relating V s� and
its canonically twisted module V s�

tw to the vector spaces underlying the NS-NS and R-R
sectors of an explicitly constructed super conformal field theory arising from a particular,
distinguished supersymmetric non-linear K3 sigma model. This model was constructed
by Wendland in [107]. Its automorphism group is exceptionally large, as is demonstrated
in [65].
In preparation for a description of the relevant sigma model, let � < C

2 be a lattice of
rank 4 that spans C

2 (i.e. � � Z
4 and � ⊗Z R = C

2). Then the quotient T = C
2/� is a

complex 2-torus. The Kummer involution of T is the automorphism induced by the map
κ : x �→ −x on C

2. A minimal resolution X → T/〈κ〉 of the quotient (there are 16 points
of T fixed by κ) is a complex K3 surface and is projective exactly when T is.
We consider the special case that � is the D4 lattice [cf. (2.4)]. More precisely, write

V for C
2 regarded as a real vector space of dimension 4. Equip V with the symmetric

R-bilinear form 〈 , 〉, such that e1 = (1, 0), e2 = (i, 0), e3 = (0, 1), and e4 = (0, i) form an
orthonormal basis, and set

� :=
{ 4
∑

i=1
niei|ni ∈ Z,

∑

ni = 0 mod 2
}

. (11.1)

Then � is a copy of the D4 root lattice in V .
Following [65], the Neveu–Schwarz (NS) sector (or rather, the NS-NS sector) of the

supersymmetric torus model attached to T = V /� may be described as

HT,NS-NS =
⊕

i∈{0,1,ω,ω̄}
A(� ⊗Z C)L ⊗ VL

�+γi ⊗ A(� ⊗Z C)R ⊗ VR
�+γi , (11.2)

when the γi are chosen so that �∗ =⋃i∈{0,1,ω,ω̄} � + γi is the dual lattice to �.

�∗ =
{ 4
∑

i=1
niei|ni ∈ 1

2Z, n1 = n2 = n3 = n4 mod 1
}

. (11.3)

Note that �∗/� is a copy of the Klein four-group.
In (11.2), we write A(� ⊗Z C) for the Clifford module super vertex operator algebra

attached to the (4-dimensional) complex vector space�⊗ZC via the construction recalled
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in Sect. 5, we write V�+γi for the module over the lattice vertex operator algebra V�

determined by the coset � + γi, and we use superscripts L and R to distinguish the
left-movers and right-movers, respectively. The complex structure on V arising from the
identificationV = C

2 reflects the choice of B-fieldmade in [65]. In the Ramond–Ramond
sector, we have

HT,R-R =
⊕

i∈{0,1,ω,ω̄}
A(� ⊗Z C)Ltw ⊗ VL

�+γi ⊗ A(� ⊗Z C)Rtw ⊗ VR
�+γi . (11.4)

In order to obtain the vector space underlying the minimal resolution X → T/〈κ〉, we
should construct the Z/2-orbifold ofHT corresponding to a lift κ̂ of κ to Aut(HT ), which
means taking κ̂-fixed points of HT together with κ̂-fixed points of a suitable κ̂-twisted
module forHT . This leads to

HX,NS-NS =
⊕

i∈{0,1,ω,ω̄}

(

A(� ⊗Z C)L ⊗ VL
�+γi ⊗ A(� ⊗Z C)R ⊗ VR

�+γi

)+

⊕
⊕

i∈{0,1,ω,ω̄}

(

A(� ⊗Z C)Ltw ⊗ VL
�+γi ,tw ⊗ A(� ⊗Z C)Rtw ⊗ VR

�+γi ,tw

)+

(11.5)

HX,R-R =
⊕

i∈{0,1,ω,ω̄}

(

A(� ⊗Z C)Ltw ⊗ VL
�+γi ⊗ A(� ⊗Z C)Rtw ⊗ VR

�+γi

)+

⊕
⊕

i∈{0,1,ω,ω̄}

(

A(� ⊗Z C)L ⊗ VL
�+γi ,tw ⊗ A(� ⊗Z C)R ⊗ VR

�+γi ,tw

)+

(11.6)

for the NS-NS and R-R sectors ofHX , where the V�+γi ,tw are certain twisted modules for
V� and the superscript + denotes κ̂-fixed points
At first glance, it now appears that a detailed investigation of the structure of HX will

require a review of the construction of lattice vertex algebras and their twisted modules,
but we will refrain from doing that here in favor of using an equivalent description in
terms of Clifford modules.
For this reformulation, let e be a complex vector space of dimension 8 equipped with a

non-degenerate bilinear form. Then we have the Clifford module super vertex operator
algebra A(e) and it’s canonically twisted module A(e)tw as described in Sect. 5. According
to the boson-fermion correspondence (see [37,61], and also [54] for the particular case of
relevance here), we have an isomorphism of vertex operator algebras A(e)0 � V� which
extends to isomorphisms between the irreducible A(e)0-modules and the V�+γi . After
relabeling the γi if necessary, we may assume

A(e)0 � V�+γ0 ,

A(e)1 � V�+γ1 ,

A(e)0tw � V�+γω ,

A(e)1tw � V�+γω̄ .

(11.7)

We seek some resonance with the notation of §6 of [44] for it will develop that the
discussion there is very closely related to our present situation. So let us define
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U0 := A(e)0,

U1 := A(e)1,

Uω := A(e)0tw ,

Uω̄ := A(e)1tw ,

(11.8)

so that Ui � V�+γi as U0-modules. Note the isomorphisms

A(e) = U0 ⊕U1 � A(� ⊗Z C)⊗ A(� ⊗Z C), (11.9)

A(e)tw = Uω ⊕Uω̄ � A(� ⊗Z C)tw ⊗ A(� ⊗Z C)tw . (11.10)

Thus, we have isomorphisms

HT,NS-NS �
⊕

i∈{0,1,ω,ω̄}
(U0 ⊕U1)⊗Ui ⊗Ui, (11.11)

HT,R-R �
⊕

i∈{0,1,ω,ω̄}
(Uω ⊕ Uω̄)⊗ Ui ⊗Ui, (11.12)

of U0 ⊗ U0 ⊗ U0-modules, for the supersymmetric torus model attached to T . Now the
U0 ⊗ U0-module structure on

⊕

i Ui ⊗ Ui naturally extends to a vertex operator algebra
structure as is explained in detail in [54]. In fact, this vertex operator algebra is isomorphic
to the lattice vertex algebra VL for L a copy of the E8 lattice (cf. Sect. 2), and the vertex
operator algebra isomorphism VL �⊕i Ui ⊗Ui reflects the coincidence

L =
⋃

i
(� + γi)⊕ (� + γi), (11.13)

expressing the E8 root lattice as a union of cosets for D4 ⊕ D4.
Thus, we may interpret (11.11) as an isomorphism of super vertex operator algebras,

with each side isomorphic toA(e)⊗VL, once we equipHT,NS-NS, as defined in (11.2), with
the diagonal Virasoro element

ωD := ωL ⊗ 1+ 1⊗ ωR, (11.14)

writing here ωL for the Virasoro element of A(� ⊗Z C)L ⊗ VL
� , and similarly for ωR.

With this understanding, we may regard (11.12) as an isomorphism of the corresponding
canonically twisted modules.
Observe that A(e) ⊗ VL is precisely the super vertex operator algebra denoted CV

f
L in

[44] (the symbols V f
L denote a real form of CV

f
L ) and used there to construct an N = 1

super vertex operator algebra whose automorphism group is the largest simple Conway
group, Co1 = Co0/{± Id} [cf. (2.7)].
The construction of HX involves a lift of the Kummer involution λ �→ −λ from L to

VL, but according to [54] wemay realize such an automorphism explicitly in theU0⊗U0-
module description as 1 ⊗ θ , where θ denotes the parity involution on A(e) ⊕ A(e)tw,
fixing U0 and Uω, and negating U1 and Uω̄. Now we may replace V�+γi ,tw ⊗ V�+γi ,tw
with Ui ⊗ Ui+ω in the description of HX , where {0, 1,ω, ω̄} is equipped with the obvious
4-group structure. Comparing with [65], we see that the orbifolding symmetry κ̂ , lifting
the Kummer involution on T , should act as θ ⊗ 1 ⊗ θ on HT and as θ ⊗ θ ⊗ 1 on its
κ̂-twisted module, and in this way we arrive at the isomorphisms

HX,NS-NS � U000 ⊕U0ωω ⊕U111 ⊕U1ω̄ω̄ ⊕Uω0ω ⊕Uωω0 ⊕Uω̄1ω̄ ⊕Uω̄ω̄1, (11.15)

HX,R-R � Uω00 ⊕ Uωωω ⊕Uω̄11 ⊕Uω̄ω̄ω̄ ⊕U00ω ⊕U0ω0 ⊕U11ω̄ ⊕ U1ω̄1, (11.16)

where Uijk is a shorthand for Ui ⊗Uj ⊗Uk [cf. (11.8)].
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Observe that the right-hand side of (11.15) is precisely the U0 ⊗ U0 ⊗ U0-module
description given in (6.4.7) of [44] for the super vertex operator algebra denoted there
by CV f �. A suitably chosen vector τ ∈ U111 equips CV f � with a representation of the
Neveu–Schwarz super Lie algebra with central charge 12, and a main result of [44] is that
the subgroup of Aut(CV f �) composed of elements that fix τ is exactly Co1.
We intend to use (11.16) to relateHX,R-R to V s�

tw. To this purpose, recall the D4 triality,
which, at the level of lattices, is the fact that �∗ [cf. (11.3)] admits an automorphism of
order 3 that stabilizes the typeD4 sublattice� [cf. (11.1)], and cyclically permutes its three
non-trivial cosets � + γi. At the level of vertex operator algebras and their modules, this
translates to the existence of an automorphism σ ofU0, and invertiblemaps σ : Ui �→ Uωi
for i ∈ {1,ω, ω̄}, such that

σY (a, z)c = Y (σa, z)σ c (11.17)

for a ∈ U0 and c ∈ Ui, for i ∈ {1,ω, ω̄}. See [54] for full details on this. Since σ must
fix the Virasoro element of U0, the identity (11.17) implies that the maps σ : Ui �→ Uωi
are isomorphisms of Virasoro modules. So in particular, the graded dimensions of the Ui
coincide, for i ∈ {1,ω, ω̄}.
Choosing a decomposition a = e1 ⊕ e2 ⊕ e3, with each ei a copy of C

8, non-degenerate
with respect to the bilinear form on a, leads to identifications

A(a) = A(e1)⊗ A(e2)⊗ A(e3) �
⊕

i,j,k∈{0,1}
Uijk , (11.18)

A(a)tw = A(e1)tw ⊗ A(e2)tw ⊗ A(e3)tw �
⊕

i,j,k∈{ω,ω̄}
Uijk , (11.19)

where Uijk = Ui ⊗ Uj ⊗ Uk , as in (11.15) and (11.16). Consequently, applying (8.1), we
obtain isomorphisms of U000-modules,

V s� � U000 ⊕U011 ⊕U101 ⊕U110 ⊕Uω̄ωω ⊕Uωω̄ω ⊕ Uωωω̄ ⊕Uω̄ω̄ω̄ , (11.20)

V s�
tw � U100 ⊕U010 ⊕U001 ⊕U111 ⊕ Uωωω ⊕Uωω̄ω̄ ⊕Uω̄ωω̄ ⊕Uωω̄ω̄ . (11.21)

Now consider the images of (11.20) and (11.20) under σ ⊗ σ ⊗ σ , where σ denotes the
triality maps of (11.17). The result is the right-hand sides of (11.15) and (11.16).
Thus we have proven the following, final result of the paper.

Proposition 11.1 The distinguished super vertex operator algebra V s� is isomorphic to
HX,NS-NS as a Virasoro module, when the latter is equipped with the diagonal Virasoro
element, ωD . Similarly, V s�

tw is isomorphic as a Virasoro module toHX,R-R.
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Appendix A: Computations

Table 3 records all the necessary information to compute φg and Fg for all conjugacy
classes of Co0 fixing a rank 4 sublattice of the Leech lattice, including, in particular, the
Frame shapes π±g and the tracesC−g andDg . The trace χg can be read off from the Frame
shape πg as the exponent of 1, and the rank rk�g of the sublattice fixed by g is the sum of
the exponents (counting signs) in πg .

Table 3 Data for the computation of φg = φ
(2)
g

Co0 Co1 πg π−g C−g Dg �g �−g

1A 1A 124 224

124
4096 0 2− 4+

2B 2A 1828 216

18
0 0 4− 4−

2C 2A 216

18
1828 0 0 4− 4−

2D 2C 212 212 0 0 4|2− 4|2−
3B 3B 1636 2666

1636
64 0 6+ 3 12+

3C 3C 39

13
1369

2339
−8 0 6− 12+ 4

3D 3D 38 68

38
16 0 6|3 12|3+

4B 4A 1848

28
48

18
256 0 (8+)! 1

2 8+
4D 4B 48

24
48

24
0 ±64 8− 8−

4E 4C 142244 2644

14
0 0 8− 8−

4F 4C 2644

14
142244 0 0 8− 8−

4G 4D 2444 2444 0 0 8|2− 8|2−
4H 4F 46 46 0 0 8|4− 8|4−
5B 5B 1454 24104

1454
16 0 10+ 5 20+

5C 5C 55

11
11105

2155
−4 ±25√5 10− 20+ 4

6G 6C 253461

14
142165

34
0 0 12+ 3! 1

2 12+ 3! 1
2

6H 6C 142165

34
253461

14
0 0 12+ 3! 1

2 12+ 3! 1
2

6I 6D 153164

24
2165

1531
72 0 (12+ 12)!

1
2 12+ 12

6K 6E 12223262 2464

1232
0 0 12+ 3 12+ 3

6L 6E 2464

1232
12223262 0 ±48 12+ 3 12+ 3

6M 6F 3363

1121
1166

2233
0 ±54 12− 12−

6O 6G 2363 2363 0 0 12|2+ 3! 1
2 12|2+ 3! 1

2

6P 6I 64 64 0 ±36 12|6− 12|6−
7B 7B 1373 23143

1373
8 0 14+ 7 28+

8C 8B 2484

44
2484

44
0 ±16 (16|2+)! 1

4 (16|2+)! 1
4

8D 8C 1484

2242
2284

1442
32 ±8 (16+)! 1

2 16+
8G 8E 12214182 234182

12
0 0 16− 16−

8H 8E 234182

12
12214182 0 ±32√2 16− 16−

8I 8F 4282 4282 0 ±16 16|4− 16|4−
9C 9C 1393

32
2332183

136293
4 ±9 18+ 9 36+

10F 10D 2352101

12
1221103

52
0 ±20√5 20+ 5! 1

2 20+ 5! 1
2

10G 10D 1221103

52
2352101

12
0 ±4√5 20+ 5! 1

2 20+ 5! 1
2

10H 10E 1351102

22
21103

1351
20 ±5√5 (20+ 20)!

1
2 20+ 20



Duncan and Mack-Crane Res Math Sci (2016) 3:1 Page 42 of 47

Table 3 continued

Co0 Co1 πg π−g C−g Dg �g �−g
10J 10F 22102 22102 0 ±20 20|2+ 5 20|2+ 5

11A 11A 12112 22222

12112
4 ±11 22+ 11 44+

12I 12E 123242122

2262
42122

1232
16 ±12 (24+)! 1

2 24+
12L 12H 112231122

42
2361122

113142
0 ±6√3 (24|2+ 12)!

1
4 (24|2+ 12)!

1
4

12N 12I 223241121

12
124162121

32
0 ±24√3 24+ 3! 1

2 24+ 3! 1
2

12O 12I 124162121

32
223241121

12
0 ±8√3 24+ 3! 1

2 24+ 3! 1
2

12P 12J 214161121 214161121 0 ±24 24|2+ 3 24|2+ 3

14C 14B 112171141 22142

1171
0 ±14 28+ 7 28+ 7

15D 15D 113151151 2161101301

113151151
4 ±15 30+ 3, 5, 15 60+

Also recorded in Table 3 are the invariance groups �±g of the t±g arising in Proposition
9.4. Our notation for the �g is the same as in [43] and may be described as follows. We
follow the conventions of [57], so thatwhenh is the largest divisor of 24 such thath2 divides
nh, the symbol n|h− denotes the subgroup of index h in �0(n/h) defined in [29] (see [55]
for an analysis of the groups n|h−, and their extensions by Atkin–Lehner involutions). So
12+3, for example, denotes the group obtained by adjoining an Atkin–Lehner involution

W3 = 1√
3

(

3a b
12c 3d

)

to �0(12), where 9ad− 12bc = 3. In addition to this, we use! 1
h and

n" to denote upper and lower triangular matrices, respectively,

! 1
h :=
(

1 1
h

0 1

)

, n" :=
(

1 0
n 1

)

. (12.1)

We then write 12 + 3 ! 1
2 , for example, for the group generated by �0(12) and the

product of W3 with ! 1
2 , where W3 is an Atkin–Lehner involution for �0(12), as in the

previous paragraph.
Note that �g and �−g are related by conjugation by! 1

2 , for every g ∈ Co0.
The data in Tables 4, 5, 6 and 7 enable the computation of φ()

g , for  ∈ {3, 4, 5, 7}, where
the relevant conjugacy classes in Co0 are those fixing sublattices of the Leech lattice with
rank at least 8, 12, 16, or 24, respectively.

Table 4 Data for the computation of φ
(3)
g

Co0 Co1 πg π−g C−g D(3)
g �g �−g

1A 1A 124 224

124
4096 0 2− 4+

2B 2A 1828 216

18
0 0 4− 4−

2C 2A 216

18
1828 0 ±256 4− 4−

2D 2C 212 212 0 0 4|2− 4|2−
3B 3B 1636 2666

1636
64 0 6+ 3 12+

3D 3D 38 68

38
16 ±81 6|3 12|3+

4B 4A 1848

28
48

18
256 ±16 (8+)! 1

2 8+
4E 4C 142244 2644

14
0 0 8− 8−

4G 4D 2444 2444 0 ±64 8|2− 8|2−
5B 5B 1454 24104

1454
16 ±25 10+ 5 20+

6K 6E 12223262 2464

1232
0 ±36 12+ 3 12+ 3
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Table 5 Data for the computation of φ
(4)
g

Co0 Co1 πg π−g C−g D(4)
g �g �−g

1A 1A 124 224

124
4096 0 2− 4+

2B 2A 1828 216

18
0 0 4− 4−

2D 2C 212 212 0 ±64 4|2− 4|2−
3B 3B 1636 2666

1636
64 ±27 6+ 3 12+

Table 6 Data for the computation of φ
(5)
g

Co0 Co1 πg π−g C−g D(5)
g �g �−g

1A 1A 124 224

124
4096 0 2− 4+

2B 2A 1828 216

18
0 ±16 4− 4−

Table 7 Data for the computation of φ
(7)
g

Co0 Co1 πg π−g C−g D(7)
g �g �−g

1A 1A 124 224

124
4096 ±1 2− 4+

Appendix B: Coincidences

Table 8 records instances in which φg coincides with (or is a simple linear combination of)
weight zero (weak) Jacobi formsZ(2)

g attached to elements g ∈ M24 byMathieumoonshine,
being the  = 2 case of umbral moonshine (cf. [18,19]). The functions Z(2)

g are as defined
in [18]. We also indicate when φg recovers one of the twined K3 sigma model elliptic
genera that is computed explicitly in [68]. The notations φnZ and φ̂nz are as in [68]. Since
there is a choice, we specify which Dg produces the function in question. Observe that
every twined K3 sigma model elliptic genus appearing in [68] appears also in Table 8.

Table8 Coincidences with Mathieumoonshine and sigmamodel twining genera

Co0 Co1 Dg φg Ng
1A 1A 0 Z (2)1A = φ1A 1

2B 2A 0 Z (2)2A = φ2A 2

2C 2A 0 −Z (2)1A + 2Z (2)2A = φQ 2

2D 2C 0 Z (2)2B = φ2B 4

3B 3B 0 Z (2)3A = φ3A 3

3C 3C 0 − 1
2Z

(2)
1A + 3

2Z
(2)
3A = φ̂3a 3

4B 4A 0 Z (2)2A = φ2A 2

4D 4B 64 Z (2)2B = φ2B 4

4D 4B −64 − 1
2Z

(2)
1A + 3

2Z
(2)
2A 2

4E 4C 0 Z (2)4B = φ4B 4

4F 4C 0 − 1
2Z

(2)
1A + 1

2Z
(2)
2A + Z (2)4B = φ̂4a 4

4G 4D 0 Z (2)4A = φ4A 8

5B 5B 0 Z (2)5A = φ5A 5
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Table 8 continued

Co0 Co1 Dg φg Ng
6G 6C 0 − 1

2Z
(2)
1A + 1

2Z
(2)
2A + 1

2Z
(2)
3A + 1

2Z
(2)
6A 6

6H 6C 0 1
2Z

(2)
3A + 1

2Z
(2)
6A 6

6I 6D 0 1
2Z

(2)
2A + 1

2Z
(2)
6A = φ̂6a 6

6K 6E 0 Z (2)6A = φ6A 6

6L 6E 48 −Z (2)3A + 2Z (2)6A 6

6L 6E −48 − 1
2Z

(2)
1A + 1

2Z
(2)
2A + Z (2)3A 6

6M 6F 54 − 1
2Z

(2)
2A + 3

2Z
(2)
6A 6

6M 6F −54 − 1
2Z

(2)
1A + Z (2)2A + 1

2Z
(2)
3A 6

7B 7B 0 Z (2)7AB 7

8C 8B 16 Z (2)4C = φ4C 16

8D 8C 8 Z (2)4B = φ4B 4

8D 8C −8 1
2Z

(2)
2A + 1

2Z
(2)
4A 8

8G 8E 0 Z (2)8A = φ8A 8

9C 9C 9 1
2Z

(2)
3A + 1

2Z
(2)
3B = φ̂9a 9

9C 9C −9 φ̂9b 9

10J 10F 20 Z (2)10A 20

11A 11A 11 Z (2)11A 11

12I 12E 12 Z (2)6A = φ6A 6

12P 12J 24 Z (2)12A 24

14C 14B 14 Z (2)14AB 14

15D 15D 15 Z (2)15AB 15

Table 9 Coincidences with umbral moonshine at � = 3

Co0 Co1 D(3)
g φ

(3)
g Ng

1A 1A 0 2Z (3)1A

2B 2A 0 2Z (3)2B

2C 2A −256 −2Z (3)2A + 4Z (3)2B

3B 3B 0 2Z (3)3A

3D 3D −81 2Z (3)3B

4B 4A −16 2Z (3)2B

4G 4D −64 2Z (3)4B

5B 5B −25 2Z (3)5A

6K 6E −36 2Z (3)6C

Table 10 Coincidences with umbral moonshine at � = 4

Co0 Co1 D(4)
g φ

(4)
g Ng

1A 1A 0 3Z (4)1A

2D 2C 64 3Z (4)2B

3B 3B 27 3Z (4)3A
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Table 11 Coincidences with umbral moonshine at � = 5

Co0 Co1 D(5)
g φ

(5)
g Ng

1A 1A 0 4Z (5)1A

2B 2A −16 4Z (5)2B

Table 12 Coincidences with umbral moonshine at � = 7

Co0 Co1 D(7)
g φ

(7)
g Ng

1A 1A −1 6Z (7)1A

Tables 9 10, 11 and 12 present coincidences between the φ
()
g and the functions Z()

g of
umbral moonshine, for  ∈ {3, 4, 5, 7}. As in the case of  = 2, the functions Z()

g are as
defined in [18].
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