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METHODOLOGY Open Access
HIV taken by STORM: Super-resolution
fluorescence microscopy of a viral infection
Cândida F Pereira2,3,4†, Jérémie Rossy1†, Dylan M Owen1, Johnson Mak2,5,6* and Katharina Gaus1*
Abstract

Background: The visualization of viral proteins has been hindered by the resolution limit of conventional
fluorescent microscopes, as the dimension of any single fluorescent signal is often greater than most virion particles.
Super-resolution microscopy has the potential to unveil the distribution of proteins at the resolution approaching
electron microscopy without relying on morphological features of existing characteristics of the biological specimen
that are needed in EM.

Results: Using direct stochastic optical reconstruction microscopy (dSTORM) to achieve a lateral resolution of 15–
20 nm, we quantified the 2-D molecular distribution of the major structural proteins of the infectious human
immunodeficiency virus type 1 (HIV-1) before and after infection of lymphoid cells. We determined that the HIV-1
matrix and capsid proteins undergo restructuring soon after HIV-1 infection.

Conclusions: This study provides the proof-of-concept for the use of dSTORM to visualize the changes in the
molecular distribution of viral proteins during an infection.

Keywords: HIV, Super-resolution microscopy, Electron microscopy, Viruses, Dynamic movement, Protein
rearrangement
Background
The human immunodeficiency virus type 1 (HIV-1) is ap-
proximately spherical with a mean diameter of 125±14 nm
[1-3]. Its main structural components are a lipid bilayer
containing envelope glycoproteins, a matrix shell located
beneath the viral lipid membrane and a capsid core with a
cone shaped geometry [1-3]. After fusion of HIV-1 with the
target cell, it is postulated that the matrix shell is retained at
the plasma membrane while the capsid core undergoes a
dramatic disassembly process that facilitates the reverse
transcription of the viral genome [3-5]. Fluorescent labeling
of HIV-1 proteins has provided valuable insights into their
sub-cellular localization in infected cells [6,7]. However, the
molecular mechanisms of cell entry and replication are diffi-
cult to detect since the viral particle is smaller than the
resolution limit of conventional fluorescent microscopes.
Electron microscopy techniques have provided structural
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reproduction in any medium, provided the or
insights of HIV-1 [1,2,7] but remain technically demanding
and are prone to introduce artifacts.
The development of far-field super-resolution light mi-

croscopy methods such as stochastic optical reconstruc-
tion microscopy (STORM) [8] and photoactivatable
localization microscopy (PALM) [9] enable the localization
of individual photoswitchable protein-labeled molecules
with a spatial resolution of tens of nanometers. The more
recently developed direct STORM (dSTORM) combines
standard immunocytochemistry, total internal reflection
fluorescence (TIRF) microscopy and reversible photo-
switching of conventional organic fluorochromes such as
Cy5 and Alexa 647 to further improve the quality of sig-
nals [10]. This technique has a tremendous potential for
the visualization of the molecular organization of viral
proteins during an infection, particularly if tagging with
fluorescent proteins compromises virus infectivity. Previ-
ously studies have used super-resolution techniques to
visualize clusters of viral proteins artificially transfected
into cell lines [11-13]. In this study we have used
dSTORM to provide one of the first the molecular distri-
bution of matrix and capsid proteins in infectious HIV-1
particles before and after a real infection of lymphoid cells.
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Results and discussion
We used dSTORM to visualize matrix and capsid pro-
teins in cell-free HIV-1 virions and in infected lymphoid
cells. Similar to previously describe [7,14], we first gener-
ated HIV-1 particles that contained the green fluorescent
protein-viral protein R fusion protein (HIVGFP-Vpr),
which allows us to visualize particles with conventional
fluorescence microscopy. The same virion preparation
was then either evenly spread onto glass coverslips or
used to infect lymphocytes. Importantly, non-interna-
lized viral particles were removed from the surface of the
target cells by pronase treatment twenty minutes after
the virus was allowed to enter the target cells. This was
confirmed by incubation of the target cells with an enve-
lope-deficient HIV-1, which was unable to enter the tar-
get cells and therefore was cleaved by the pronase and
consequently no viral protein could be detected in these
samples (Figure 1). Therefore, all matrix and capsid pro-
tein clusters associated with the lymphocytes were inter-
nalized. Infected cells were fixed and plated onto glass
coverslips by cytospin centrifugation. Both samples were
(a)

(c)

Figure 1 Pronase treatment removes non-internalized virus particles
(b, d) HIVΔenvGFP-Vpr for 2 h at 17°C to allow binding of the virions to the ce
particles and incubated for 20 min at 37°C to allow virus entry into the cell
with PBS (a-b) while the other half was treated with pronase (c-d) to remo
counterstained, mounted and visualized by widefield microscopy followed
provided images were derived from a volume compression of a z stack of
representative of 3 independent experiments.
immuno-stained with antibodies recognizing either the
matrix or caspid protein.
We first compared conventional to super-resolution

images. In TIRF images, HIV-1 proteins in infected T-
lymphocytes appeared as bright punctuate structures
(Figure 2a). In dSTORM, the stochastic activation of
fluorophores allows the analysis of the point-spread
function (PSF) of individual proteins. In addition to the
x-y localization, the fitting algorithms also return the
localization precision, number of photons emitted per
molecules, and background values associated with each
molecule. These characteristics allow us to apply strin-
gent conditions for single molecule detection [15] and
standardize the image quality across the experimental
conditions. When the molecular coordinates of the indi-
vidual matrix proteins are plotted in an image, it
becomes apparent that dSTORM revealed a greater het-
erogeneity in distribution of the same protein than in
TIRF images (Figure 2b). The increase in resolution
achieved with dSTORM is illustrated by the overlay of
the two images with protein clusters in dSTORM
(b)

(d)

from the cell surface. MT-2 cells were infected with (a, c) HIVGFP-Vpror
lls. Afterwards the cells were washed to remove unbound virus
s. The samples were then split and half of the cells were incubated
ve non-internalized virus particles. Subsequently, all samples were fixed,
by deconvolution. GFP is shown in green and nuclei in blue. The
28 images taken at a 0.3-μm step size. Scale bar, 5 μm. Images are



Figure 2 Super-resolution imaging of individual molecules of infectious HIV-1 before and after entry into lymphocytes. (a-c)
Conventional total internal reflection fluorescence (TIRF) image (a), corresponding dSTORM image (b) and overlay of the TIRF (white) and dSTORM
(red) images (c) of the HIV-1 matrix protein 20 minutes after synchronized entry into the lymphoid cell line MT-2. (d) Histogram of the localization
precision values of molecular coordinates localized by dSTORM corresponding to the data set shown in a-c. Localization precision corresponds to
one sigma of the Gaussian distribution of the point spread function that is fitted to individual molecules and is also affected by photons and
noise level. Dashed line indicates mean. (e-h) Cluster analysis of the matrix protein in cell-free virions based on Ripley’s K-function converts the
point distribution of molecular coordinates (e) into a cluster map with highly to less clustered regions colored red to blue (f). Cluster statistics
such as number, size and associated molecules were extracted from thresholded images (g). By overlaying the TIRF image of GFP-Vpr (green) with
the binary cluster map, the association of viral proteins with the reverse transcription complex after cell entry was quantified (h). Scale bars, 5 μm
in panels in a-b; 1 μm in panel c and 2 μm in panels e-h. (i) Quantitative analysis of the diameter of the molecular clusters of capsid proteins in
cell-free virions and 20 min post infection into MT-2 cells. Error bars represent the standard deviation of the mean from 26–173 clusters per
sample from a representative from two experiments. *** = p< 0.001; ns = non-significant.
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appearing significantly smaller than the conventional
image (Figure 2c). The molecular localization precision
of the dSTORM approach was 15–20 nm (Figure 2d).
To quantify the distribution and heterogeneity of viral

proteins, we used a variation on Ripley’s K- function ana-
lysis [16]. As shown for the matrix protein in cell-free
HIV-1 (Figure 2e-h), the single molecule dSTORM
image was converted into a pseudo-colored cluster map
that is based on the number of other molecules within a
50 nm radius, normalized to the overall particle density
(Figure 2f). The contours describing each cluster were
extracted and the number of clusters and cluster sizes
determined (Figure 2g). To identify the replicating
viruses that are travelling to the nucleus we used the
GFP-Vpr fusion protein, which is incorporated into the
virus particles and remains associated with the replicat-
ing viruses during intracellular trafficking [7]. GFP-Vpr
was therefore used to identify ‘double positive’ viral pro-
tein clusters that were associated with the viral replica-
tion machinery and contained the matrix or capsid
protein (Figure 2h).
This analysis allowed us to accurately measure the

sizes of matrix and capsid protein clusters co-localized
with GFP-Vpr in cell-free virons and in infected cells
(Figure 2i). In cell-free virions, the size of the matrix pro-
tein clusters are within the expected range of 106–
183 nm [1] and, as expected, the size of the capsid pro-
tein clusters are significantly smaller than the matrix
protein clusters (p< 0.0001, Figure 2i). Twenty minutes
post infection of T lymphocytes, the matrix protein
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clusters and the capsid protein clusters were similar in
size (Figure 2i), which indicates that upon infection the
capsid protein clusters showed a significantly large frac-
tional increase in size (236%) when compared with the
matrix protein clusters. This single molecule imaging ap-
proach hence allowed us to follow the restructuring of
the matrix shell and capsid core during infection, which
may reflect the structural rearrangements that facilitate
the HIV-1 reverse transcription process, such as virion
uncoating.

Conclusion
We were able to quantify the size of the HIV-1 matrix
shell and capsid core by dSTORM and these results were
in agreement with the known HIV organization seen by
EM [1,2,17]. Furthermore, this approach provided new
information showing that upon cell entry, the size of the
virion matrix shell and capsid core increased significantly
when compared to cell-free HIV-1 virions, which indi-
cates that the HIV particles underwent a dramatic re-
arrangement immediately after entry into the target cell.
In summary, this study validates the use of dSTORM to
assess the molecular distribution of viral proteins during
the life-cycle of an infectious virus, and it opens up new
possibilities to study the distribution and re-distribution
of viral proteins at the early phase of viral infection.

Methods
Cells and virus
MT-2 cells (obtained through the AIDS Research and
Reference Reagent Program, Division of AIDS, NIAID,
NIH from D. Richman) [18,19] were cultured in Rosewell
Park Memorial Institute (RPMI) 1640 medium (Invitro-
gen) supplemented with 10% vol/vol heat-inactivated
fetal calf serum (FCS; Invitrogen, Mount Waverley, Vic-
toria, Australia) and penicillin/streptomycin. 293 T cells
were maintained in Dulbecco’s modified Eagle medium/
high modified (with 4500 mg/l dextrose and 4 mM L-
glutamine) medium (DMEM; Invitrogen), supplemented
with 10% (vol/vol) heat-inactivated cosmic calf serum
(CCS; Hyclone, Tauranga, New Zealand), 100 U/ml of
penicillin and 100 mg/ml of streptomycin (Invitrogen).
The pNL4-3 proviral DNA (obtained through the

AIDS Research and Reference Reagent Program, Division
of AIDS, NIAID, NIH from M. Martin [20]) contains the
NL4-3 infectious molecular clone of HIV-1. The pNL4-
3Δenv proviral DNA (obtained through the AIDS Re-
search and Reference Reagent Program, Division of
AIDS, NIAID, NIH from N. Landau [21,22]) contains an
envelope defective-pNL4-3 molecular clone of HIV-1.
HIV-1 particles were produced by poly(ethylenimine)
(PEI; Polysciences Inc., Warrington, PA, USA) transfec-
tion of 293 T cells with pNL4-3 or pNL4-3Δenv proviral
DNA and GFP-Vpr plasmid (kindly provided by T. Hope,
Northwestern University) to generate GFP-Vpr-labeled
HIV-1 (HIVGFP-Vpror HIVΔenvGFP-Vpr). Forty hours post-
transfection viral particles were purified, concentrated
and quantified as previously described [14]. Briefly,
supernatant from 293 T cells was filtered and viral parti-
cles were concentrated by ultracentrifugation through a
20% sucrose cushion at 100,000 x g for 1 h at 4°C using
an L-90 ultracentrifuge (SW 41 rotor; Beckman, Fuller-
ton, CA, USA) and virus pellets were resuspended in 1x
phosphate buffered saline (PBS; Invitrogen) and quanti-
fied using a HIV-1 antigen (p24 CA) micro enzyme-
linked immunosorbent assay (ELISA) (Vironostika: Bio-
merieux, Boxtel, The Netherlands).
Infection of lymphoid cells
Synchronized infections were performed as described
previously [23]. Briefly, MT-2 cells were infected with
HIVGFP-Vpr (normalized to 1000 ng of p24 per million
cells) by spinoculation at 17°C for 2 h at 1,200 x g. After-
wards, the cells were washed twice with PBS to remove
unbound virus and incubated with warm media at 37°C,
5% CO2 for 20 min to initiate infection. Afterwards, the
cells were washed, treated with 2 mg/ml of protease
from Streptomyces griseus (pronase E; Sigma-Aldrich,
Castle Hill, NSW, Australia) for 10 min on ice and
washed extensively with PBS containing 20% FCS. The
cells were then fixed with 4% formaldehyde (Poly-
sciences) in 0.1 M pipes buffer, pH 6.8, washed with PBS
and cytospined onto glass coverslips. Cell-free viruses
(same batch as used for the infection of lymphoid cells)
were also fixed with formaldehyde in pipes buffer, evenly
spread on glass slides to achieve optimal sample thick-
ness, incubated at 4°C for 16 h and washed twice with
PBS.
Immunofluorescence staining
Cells and virus were permeabilized and stained with
mouse anti-matrix (SVM-33) antibody (MH-SVM33C9,
ATCC, Manassas, VA (Akzo Nobel N.V.) or mouse anti-
capsid (AG3.0) antibody (obtained through the AIDS Re-
search and Reference Reagent Program, Division of
AIDS, NIAID, NIH from J. Allan) [24] and goat Cy5-
conjugated anti-mouse secondary antibody (Jackson
ImmunoResearch, USA).
Image acquisition and analysis
Antibody stained cells were imaged in an oxygen scaven-
ging buffer (50 μ g/ml glucose oxidase, 25 μ g/ml horse-
radish peroxidase, 75 mM β-mercaptoethylamine,
25 mM Hepes, 25 mM glucose, 5% glycerol in PBS, pH
8) in an open Chamlide™ chamber (Live Cell Instrument,
Seoul, Korea). Cells were imaged with surface-immobi-
lized 100 nm colloidal gold beads (BBInternational,
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Cardiff, UK) that allow correction for sample drift during
the acquisition.
dSTORM images were acquired on a prototype PALM

microscope (Carl Zeiss GmbH, Jena, Germany) with
TIRF illumination. In dSTORM, the carbocyanine dye
Cy5 is stochastically converted to a long-lived dark state
(‘off ’) when excited using 633 nm (15 mW) laser radi-
ation and switched back ‘on’ by exposure to low inten-
sities of 488 nm (0.1–1 mW) laser light when the sample
is immersed in a oxygen depleted buffer containing a re-
ducing agent [10]. By adjusting the intensity of the
488 nm laser, the density of fluoroescent molecules was
approximately kept constant during acquisition and
across samples. Images of 5–6 cells per sample from two
different experiments were captured using an Andor
iXon DU-897D EMCCD camera (Andor Technology Plc,
Belfast, UK), giving a pixel size of 100 nm at the sample
plane.
dSTORM images were reconstructed from a series of

20,000 TIRF images using Zeiss Zen software. Molecular
clustering was analyzed using Getis and Franklins 2nd

order analysis as previously described [25]. Localization
precision corresponds to one sigma of the Gaussian dis-
tribution of the point spread function that is fitted to in-
dividual molecules and is also affected by photons and
noise level [16]. Data was cropped so as to exclude
points with localization precision worse than 50 nm. A
10 × 10 μm region is then selected for analysis and ren-
dered into cluster maps with 7 nm/pixel resolution.
Cluster maps were threshold to create a binary map from
which only clusters that significantly overlapped with a
TIRF image of GFP-Vpr were selected and analyzed
using ImageJ [26].
Pronase treatment efficiency
MT-2 cells were infected with HIVGFP-Vpr or HIVΔenvGFP-

Vpr as described above and afterwards the samples were
split. Half of the cells were treated with pronase to re-
move non-internalized virus as described above and half
of the cells were incubated with PBS. The cells were then
cytospined onto glass slides, counterstained with
Hoechst 33258 (Invitrogen), mounted in Fluoromount-G
(Electron Microscopy Sciences, Hatfield, PA) and images
were captured in a z series on a charge-coupled device
(CCD) camera (CoolSnap HQ; Photometrics, Tucson,
AZ) through a 100 × 1.4 numerical aperture (NA) oil
immersion lens on a DeltaVision microscope (Applied
Precision, Issaquah, WA) and deconvolved using soft-
WoRx deconvolution software (Applied Precision).
Statistical analysis
Data derived from the diameter of 26–173 molecular
clusters per sample was analyzed by paired two-tailed
Student’s t test. A p value< 0.001 was considered highly
statistically significant for all tests.
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