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Well-posedness and asymptotic behavior a multidimensional model
of morphogen transport
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Abstract. Morphogen transport is a biological process, occurring in the tissue of living organisms, which
is a determining step in cell differentiation. We present rigorous analysis of a simple model of this process,
which is a system coupling parabolic PDE with ODE. We prove existence and uniqueness of solutions for
both stationary and evolution problems. Moreover, we show that the solution converges exponentially to
the equilibrium in C1,α × C0,α topology. We prove all results for arbitrary dimension of the domain. Our
results improve significantly previously known results for the same model in the case of one-dimensional
domain.

1. Introduction

Morphogen transport (MT) is a biological process occurring in the bodies of living
organisms. It is known that certain proteins (ligands) act as the morphogen—a concep-
tually defined substance which is responsible for the development of the shape, size
and other properties of the cells. According to the ‘French flag model’ of Wolpert [15]
morphogen molecules spread from a localized source through the tissue of newly born
individuals and after some time form stable gradients of concentrations. Receptors,
located on the surface of the cells, detect those gradients and pass to the kernels the
information about levels of morphogen concentration. Then according to these infor-
mation certain mechanisms begin synthesis of proteins, which finally results in cell
differentiation and specialization. Although the role of morphogen gradient in gene
expression seems to be widely accepted the exact kinetic mechanism of its formation
is still not known. (see [5,10] and [9]).

Recently, various models consisting of PDE–ODE systems were proposed to explain
MT. Those models assume that movement of morphogen molecules occurs by differ-
ent types of diffusion or by chemotaxis in the extracellular medium. Reactions with
receptors (reversible binding, transcytosis) and various possibilities of degradation
and internalization (of morphogens, receptors, morphogen-receptor complexes) are
also being considered (see [2,8,11,13]).
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For the case of morphogen Decapentaplegic (Dpp) acting in the wing disc of the
Drosophila Melanogaster individuals, several models have been proposed in [11]. In
this paper we will be concerned with model [LNW].B (Model B [11] p. 786). In
this model it is assumed that movement of morphogen molecules occurs by passive
diffusion while being affected by reactions of reversible binding with receptors and
degradation of morphogen-receptor complexes. Morphogen is being delivered to the
system by secretion from a source localized on one of the boundaries of the domain
� ⊂ R

n , which represents a fragment of the wing tissue. In mathematical terms the
model is a system of two differential equations (PDE+ODE equipped with initial and
boundary conditions), governing time evolution of the concentrations of free morpho-
gen and morphogen-receptor complexes.

In case of 1D domains a detailed mathematical analysis of this model was made in
[14] and [7].

In [14] the case � = (0,∞), with a nonlinear dynamic boundary condition at
x = 0 and vanishing boundary condition at x → ∞, is considered. Well-posedness
and L p(�) convergence of the solution to unique steady state were proved.

In [7] the case � = (0, 1), with nonhomogeneous, constant Neumann condition at
x = 0 and homogeneous Dirichlet condition at x = 1, is analyzed. Finding Lyapunov
functional allowed to prove well-posedness and L2(�) exponential convergence to the
unique equilibrium, with rate χ expressed explicitly by the parameters of the model.

The goal of this paper is to examine [LNW].B in the [7] setting for bounded domains
of arbitrary dimension n. Although n ∈ {1, 2, 3} is, from the biological point of view,
the only relevant case, we do not put this restriction on n (methods that we use do
not depend on the dimension). Using fixed point theorem and monotonicity of the
nonlinearity we prove that our model has a unique nonnegative steady state. Using
theory of analytic semigroups and comparison principle arguments we show exis-
tence of classical global solutions. We check that Lyapunov functional, obtained in
[7], also works for arbitrary n and thanks to appropriate semigroup estimates and
bootstrap arguments we improve the topology of the convergence to the equilibrium
from L2 × L2 to C1,α × C0,α without losing the exponential rate χ .

2. The model

We consider the system of differential equations governing the space and time
evolution of the concentration of free morphogen l and concentration of bounded
receptors s in an annular shape domain � ⊂ R

n . We assume that receptors are distrib-
uted uniformly in the tissue so after normalizing the total concentration of receptors
(free+bounded) is equal to 1. The model governs the following biological processes

• Passive diffusion of morphogens in the extracellular medium.
• Secretion of morphogens from the source on a subset �N of ∂�.
• Binding of morphogens to receptors.
• Unbinding of morphogens from receptors.
• Degradation of bounded morphogens.
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We equip the model with initial conditions l0, s0 and boundary conditions on
�D, �N - two disjoint parts of ∂�. On �N we consider nonhomogeneous, time inde-
pendent, nonnegative Neumann condition (flow of morphogen into the domain) while
on �D we put homogeneous Dirichlet condition (far from the source of morphogen
their impact on the whole process is negligible). After normalization we end up with
the following model

[LNW].B

∂t l − D�l = δs − l(1 − s), (t, x) ∈ (0,∞) × �

∂t s = −(δ + ε)s + l(1 − s), (t, x) ∈ (0,∞) × �

−D∇nl = −ν, (t, x) ∈ (0,∞) × �N

l = 0, (t, x) ∈ (0,∞) × �D

l(0) = l0, x ∈ �

s(0) = s0, x ∈ �

where we denote the derivative in the direction of the outer normal vector to �N by ∇n .

3. Results

In the whole paper we assume that

A1 n ∈ N, p > n ≥ 1.
A2 � ⊂ R

n is a bounded domain (open, connected) with (C1,1) boundary which
consists of two disjoint parts: ∂� = �D � �N .

A3 0 ≤ ν ∈ W 1−1/p
p (�N ).

A4 l0, s0 ∈ W 1
p(�); 0 ≤ l0(x), 0 ≤ s0(x) < 1, for x ∈ �; l0(x) = s0(x) = 0, for

x ∈ �D .

Under the above assumptions we first analyze the stationary problem and prove the
following

THEOREM 1. [LNW].B has unique nonnegative steady state (l∞, s∞), where
0 ≤ l∞ ∈ W 2

p(�) is the unique solution to

−D�l∞ = − εl∞
δ + ε + l∞

, x ∈ � (1a)

−D∇nl∞ = −ν, x ∈ �N (1b)

l∞ = 0, x ∈ �D. (1c)

and s∞ = l∞/(ε + δ + l∞).

The proof of existence is based on maximal regularity for uniformly elliptic opera-
tors in Sobolev spaces, compact embedding, comparison principle and Schauder fixed
point theorem. Uniqueness follows from monotonicity of the nonlinear part in (1a).
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We next turn to the evolution problem and establish its well-posedness.

THEOREM 2. [LNW].B has unique solution (l, s) such that

l − l∞ ∈ C([0,∞); W 1
p(�)) ∩ C1((0,∞); W 1

p(�)) ∩ C((0,∞); W 3
p(�)) (2a)

s ∈ C1([0,∞); W 1
p(�)). (2b)

Moreover for (t, x) ∈ [0,∞) × �

0 ≤ l(t, x), 0 ≤ s(t, x) < 1. (2c)

Local existence and uniqueness are obtained by putting system [LNW].B into the
semigroup framework and using general theory for abstract parabolic semilinear prob-
lems. Comparison principle allows us to deduce that (2c) is satisfied from which we
get that our solution is global.

We finally study the stability of the steady state and show that it attracts all trajec-
tories with the uniform exponential rate.

THEOREM 3. There exists a positive constant C depending on l0, s0, ν, δ, ε, D,�,

p such that for every t > 0

‖l(t) − l∞‖1,p + ‖s(t) − s∞‖1,p ≤ Ce−(χ/2)t , (3a)

‖l(t) − l∞‖2,p ≤ C max{1/
√

t, 1}e−(χ/2)t , (3b)

where

χ = min

{
Dλ1,

Dλ1(δ + ε)

2(Dλ1 + 2)
+ ε

2

}
(3c)

and λ1 is defined in Lemma 1.

By extending Lyapunov functional (derived in [7] for one dimensional interval) to
the case of arbitrary dimension we obtain estimates on the distance between solu-
tion and steady state in L2 × L2 topology. Using regularizing properties of the heat
semigroup we next bootstrap the topology of convergence to W 2

p × W 1
p .

REMARK. Using embedding W 2
p(�) × W 1

p(�) ⊂ C1,α(�) × C0,α(�) valid for
p > n, 0 ≤ α ≤ 1 − n/p we obtain topology of convergence as claimed in the
introduction.

4. Notation, semigroup estimates, Gronwall inequality

For x, y ∈ R we denote x ∨ y := max{x, y}, x ∧ y := min{x, y}, x+ := x ∨
0, x− := (−x) ∨ 0 and extend this notion to real-valued functions. If (V,≥) is par-
tially ordered vector space we denote its positive cone by V+ := {v ∈ V : v ≥ 0}.

We make standard convention that C denotes positive constant which may depend
on a subset of {l0, s0, ν, δ, ε, D,�, p} and may change its value from line to line.
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For 1 < q < ∞, α ∈ {1, 2, 3} we introduce the spaces W α
q,Bα (�):

W 1
q,B1(�) = {u ∈ W 1

q (�) : u|�D = 0}
W 2

q,B2(�) = {u ∈ W 2
q (�) : u|�D = 0, ∇nu|�N = 0}

W 3
q,B3(�) = {u ∈ W 3

q (�) : u|�D = 0, ∇nu|�N = 0, �u|�D = 0},
with standard Sobolev norms ‖.‖α,q .

We next recall some properties of the heat semigroup generated by laplacian with
appropriate boundary conditions.

LEMMA 1. For 1 < q < ∞ the Laplace operator � : Lq(�) ⊃ W 2
q,B2(�) →

Lq(�) generates an analytic, strongly continuous semigroup et�. For α, β ∈
{0, 1, 2, 3}, α ≤ β, 1 < q1 ≤ q2 < ∞ and t > 0 we have

‖et�u‖β,q ≤ C(t ∧ 1)(α−β)/2e−λ1t‖u‖α,q ≤ Ct (α−β)/2‖u‖α,q , u ∈ W α
q,Bα (4a)

‖et�u‖q2 ≤ C(t ∧ 1)−n/2(1/q1−1/q2)e−λ1t‖u‖q1 , u ∈ Lq1 (4b)

≤ Ct−n/2(1/q1−1/q2)‖u‖q1

where λ1 > 0 is the first eigenvalue of −� and C depends only on q, q1, q2,�.

Proof. Noticing that −λ1 = sup Re(σ (�)) we get from [12] following estimates

‖et�u‖q ≤ M0e−λ1t‖u‖q

‖t (� + λ1 I )et�u‖q ≤ M1e−λ1t‖u‖q

We have

‖et�u‖2,q ≤ C‖�et�u‖q ≤ C‖(� + λ1 I )et�u‖q + Cλ1‖et�u‖q

≤ C(M1/t + M0λ1)e
−λ1t‖u‖q ≤ C(t ∧ 1)−1e−λ1t‖u‖q

From [1] we have that

[Lq , W 2
q,B2 ]α/2 = W α

q,Bα , α ∈ {0, 1, 2, 3},
[Lq1, W 2

q1,B2 ]θ ⊂ Lq2 , θ ≥ n/2(1/q1 − 1/q2),

where for θ ∈ [0, 1] [., .]θ denotes complex interpolation functor, which is extended
for θ > 1 as described in [1]. From this estimates (4a) and (4b) follows. �

We next recall the singular Gronwall inequality

LEMMA 2. Assume that f ∈ C([0, T ); R
+) satisfies for every t ∈ [0, T ) following

inequality

f (t) ≤ a + b
∫ t

0
(t − s)−α f (s)dτ,
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where a, b are nonnegative constants and α ∈ [0, 1). Then there exists positive con-
stant C = C(b, α) such that for t ∈ [0, T )

u(t) ≤ aCebCt .

Moreover C(b, 0) = 1.

Proof. For proof (under more general assumptions) see Lemma 7.1.1 in [6]. �

5. Proof of Theorem 1

For x ≥ 0 let f (x) = ε
δ+ε+x . Consider the operator T : L p(�)+ → L p(�),

defined by T (u) = w where w ∈ W 2
p(�) is the unique solution of

−D�w + f (u)w = 0, x ∈ � (5a)

−D∇nw = −ν, x ∈ �N (5b)

w = 0, x ∈ �D (5c)

We will show that T has bounded range in L p(�)+ and is compact and continuous
(this via the Schauder theorem will imply existence of a solution of (1) in W 2

p(�)).
Using the fact that 0 ≤ f (x) ≤ ε

ε+δ
we get from maximal regularity of uniformly

elliptic differential operators in Sobolev spaces (see [4] for instance) the following
estimate

‖w‖W 2
p(�) ≤ C‖ν‖

W 1−1/p
p (�N )

which gives boundedness of the range of T in W 2
p(�) and therefore in L p(�). Com-

pactness of T follows from the compact imbedding W 2
p(�) ⊂⊂ L p(�). To show that

w ≥ 0 we multiply (5a) by w− and integrate by parts (notice that for p > nw ∈
W 2

p(�) ⊂ W 1
2 (�) hence w− ∈ W 1

2 (�)) to obtain

−D
∫

�

|∇w−|2 −
∫

�N

νw− −
∫

�

f (u)w2− = 0.

Since w = 0 on �D therefore w ≥ 0 in �.
Assume that un → u in L p(�). Let w = T (u), wn = T (un), then

−D�(wn − w) + f (un)(wn − w) + w( f (un) − f (u)) = 0, x ∈ �

−D∇n(wn − w) = 0, x ∈ �N

wn − w = 0, x ∈ �D

therefore

‖wn − w‖L p(�) ≤ C‖w( f (un) − f (u))‖L p(�)

≤ C‖w‖L∞(�)‖ f ′‖L∞(0,∞)‖un − u‖L p(�)



Vol. 12 (2012) Well-posedness and asymptotic behavior 359

which proves that T is continuous. Using Schauder fixed point theorem we obtain
existence of l∞ ∈ W 2

p(�) which solves (1).
To prove uniqueness, assume that l1∞, l2∞ are solutions of (1). Subtracting equa-

tions (1a) for l1∞, l2∞, multiplying by l1∞ − l2∞, integrating by parts and using the
monotonicity of function R+ � x → x f (x) we get

−D
∫

�

|∇(l1∞ − l2∞)|2 =
∫

�

( f (l1∞)l1∞ − f (l2∞)l2∞)(l1∞ − l2∞) ≥ 0,

which by (1c) implies l1∞ ≡ l2∞.

6. Proof of Theorem 2

To deal with nonhomogeneous boundary condition on �N we subtract from (l, s)
the stationary state (l∞, s∞). Setting (z1, z2) = (l − l∞, s − s∞) we arrive at

∂t z1 − D�z1 = δz2 − z1(1 − z2) + s∞z1 + l∞z2, (t, x) ∈ (0,∞) × �

(6a)

∂t z2 = −(δ + ε)z2 + z1(1 − z2) − s∞z1 − l∞z2, (t, x) ∈ (0,∞) × �

(6b)

−D∇nz1 = 0, (t, x) ∈ (0,∞) × �N

(6c)

z1 = 0, (t, x) ∈ (0,∞) × �D

(6d)

z1(0) = z10 = l0 − l∞, x ∈ � (6e)

z2(0) = z20 = s0 − s∞, x ∈ � (6f)

We interpret system (6) as a differential equation in a Banach space specified below

ż − Az = H(z), t ∈ (0,∞) (7a)

z(0) = z0 = (z10, z20) (7b)

where z = (z1, z2), Az = (D�z1, 0), H = (H1, H2),

H1(z) = δz2 − z1(1 − z2) + s∞z1 + l∞z2 (8a)

H2(z) = −(δ + ε)z2 + z1(1 − z2) − s∞z1 − l∞z2. (8b)

In the following lemma we prove local existence for (7).

LEMMA 3. For α ∈ {0, 1, 2, 3} denote Zα,p = W α
p,Bα × W 1

p,B1 . For every z0 ∈
Z1,p the Cauchy problem (7) possess a unique maximal local solution

z ∈ C([0, Tmax); Z1,p) ∩ C1((0, Tmax); Z1,p) ∩ C((0, Tmax); Z3,p).

which satisfies for t ∈ [0, Tmax) the following Duhamel formula:
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z1(t) = et D�z10 +
∫ t

0
e(t−s)D� H1(z(s))dτ (9a)

z2(t) = z20 +
∫ t

0
H2(z(s))dτ. (9b)

Moreover if Tmax < ∞ then lim supt→T −
max

‖z(t)‖1,p = ∞.

Proof. The operator A : Z p ⊃ Z2,p → Z p is a generator of an analytic strongly
continuous semigroup etA = et D� × I d (as a product of two generators). Moreover,
since Z1,p is a Banach algebra (p > n) we observe that H : Z1,p → Z1,p is locally
Lipschitz on bounded sets. The claim follows from Theorem 7.2.1 in [3]. �

We next turn to the proof of (2c).
To prove that for t ∈ [0, Tmax)l(t), s(t) ≥ 0 we consider the system

∂t l
′ − D�l ′ = δs′+ − l ′+(1 − s′+), (t, x) ∈ (0,∞) × � (10a)

∂t s
′ = −(δ + ε)s′+ + l ′+(1 − s′+), (t, x) ∈ (0,∞) × � (10b)

−D∇nl ′ = −ν, (t, x) ∈ (0,∞) × �N (10c)

l ′ = 0, (t, x) ∈ (0,∞) × �D (10d)

l ′(0) = l0, x ∈ � (10e)

s′(0) = s0, x ∈ � (10f)

As before one can show that (10) possess unique classical local solution (l ′, s′). After
multiplying (10a) by l− and integrating by parts we obtain

−1

2

d

dt

∫
�

|l ′−|2dx − D
∫

�

|∇l ′−|2dx − D
∫

�N

l ′−νdS = δ

∫
�

s′+l ′−dx ≥ 0.

Similarly multiplying (10b) by s− yields

−1

2

d

dt

∫
�

|s′−|2dx =
∫

�

l ′+s′−dx ≥ 0.

Therefore for t ∈ [0, Tmax)

‖l ′(t)−‖2
2 + ‖s′(t)−‖2

2 ≤ ‖l ′(0)−‖2
2 + ‖s′(0)−‖2

2 = 0

and consequently l ′(t) ≥ 0, s′(t) ≥ 0. We observe now that (l ′, s′) is a solution of
[LNW].B and using uniqueness we finally get that l(t) = l ′(t) ≥ 0, s(t) = s′(t) ≥ 0
for t ∈ [0, Tmax).

To show that s(t, x) < 1 for (t, x) ∈ [0, Tmax) × � we get from Lemma 3, that for
every fixed x ∈ � the function s = 1 − s = 1 − z2 − s∞ ∈ C1([0; Tmax), R) satisfies
for t > 0 the following ODE

ṡ + (δ + ε + l)s = δ + ε.
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Therefore

s(t) = e−(δ+ε)t−∫ t
0 l(τ )dτ (1 − s0) + (δ + ε)

∫ t

0
e−(δ+ε)(t−t ′)−∫ t−t ′

0 l(τ )dτ dt ′ > 0.

We finally show that Tmax = ∞. Reasoning by contradiction assume that Tmax < ∞.
Using uniform L∞ boundedness of s (and therefore of z2) we obtain for t ∈ (0, Tmax):

‖H1(z(t))‖p ≤ C(1 + ‖z1(t)‖p) ≤ C(1 + ‖z1(t)‖1,p). (11)

Using (9a), (4a), (11) we obtain

‖z1(t)‖1,p ≤ ‖et D�z10‖1,p +
∫ t

0
‖e(t−τ)D�H1(z(τ ))‖1,pdτ

≤ C‖z10‖1,p + C
∫ t

0
(t − τ)−1/2‖H1(z(t))‖pdτ

≤ C‖z10‖1,p + C
∫ t

0
(t − τ)−1/2(1 + ‖z1(τ )‖1,p)dτ

≤ C(‖z10‖1,p + 1) + C
∫ t

0
(t − τ)−1/2‖z1(τ )‖1,pdτ

Using Lemma 2 we get that ‖z1(t)‖1,p ≤ C and therefore

‖H2(z(t))‖1,p ≤ C(1 + ‖z2(t)‖1,p). (12)

Using (9b) and (12) we obtain

‖z2(t)‖1,p ≤ ‖z20‖1,p +
∫ t

0
‖H2(z(τ ))‖1,pdτ ≤ ‖z20‖1,p

+C
∫ t

0
(1 + ‖z2(τ )‖1,p)dτ

≤ C(‖z20‖1,p + 1) + C
∫ t

0
‖z2(τ )‖1,pdτ.

Another application of Lemma 2 gives desired contradiction from which we deduce
that Tmax = ∞.

7. Proof of theorem 3

The proof of Theorem 3 is based on L2 estimates obtained for n = 1 in [7] and
bootstrap method to improve convergence from Xi -topology to Xi+1-topology, where
Xi+1 ⊂ Xi are appropriately chosen Banach spaces. We use (as long as the regularity
of our solution permits) the following two step
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Bootstrap scheme

1. ‖z1(t)‖Xi + ‖z2(t)‖Xi ≤ Ce−(χ/2)t gives ‖z1(t)‖Xi+1 ≤ Ce−(χ/2)t .
2. ‖z1(t)‖Xi+1 ≤ Ce−(χ/2)t gives ‖z2(t)‖Xi+1 ≤ Ce−(χ/2)t .

Step 1. is a consequence of Duhamel formula (9a) and semigroup estimates (4).
Step 2. follows from the fact that we can solve equation (6b) explicitly for z2 in terms
of z1.

7.1. L2 estimate

We first show that, as in the one dimensional case [LNW].B has a Lyapunov func-
tional from which exponential convergence to the equlibrium (l∞, s∞) follows.

LEMMA 4. For x ∈ [0, 1), u, v ∈ W 1
p,B1(�), 0 ≤ v < 1, define

�I (x) = − ln(1 − x)

�0(v) =
∫

�

(1 − s∞)(l∞ + δ + 2ε)

[
�I (v) − �I (s∞) − v − s∞

1 − s∞

]
dx

�(u, v) = 1

2
‖u − l∞‖2

2 + �0(v)

D�(u, v) = D‖∇(u − l∞)‖2
2

+
∫

�

[u(1 − v) − (δ + ε)v]2 + ε(l∞ + δ + ε)(v − s∞)2

1 − v
dx .

Then for t ≥ 0

�(l(t), s(t)) +
∫ t

0
D�(l(τ ), s(τ ))dτ = �(l0, s0)

χ�(l(t), s(t)) ≤ D�(l(t), s(t))

(δ + ε)‖s(t) − s∞‖2
2 ≤ 2�0(s(t))

and

‖l(t) − l∞‖2
2 + (δ + ε)‖s(t) − s∞‖2

2 ≤ 2�(l0, s0)e−χ t , (13)

where χ satisfies (3c).

Proof. Proof can be obtained exactly as in [7] (part of Theorem 8 and Proposition 9
pp. 1740–1744). For the case n = 1, p ∈ (1, 2), to justify integration by parts and
Poincaré inequality, we observe that for t > 0 : l(t) ∈ W 2

p(�) ⊂ W 1
2 (�). �

7.2. L p estimate

In this subsection we will prove that for t ≥ 0

‖z1(t)‖p + ‖z2(t)‖p ≤ Ce−(χ/2)t , (14)

the parameter p being defined in A1.
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Notice that if p ∈ (1, 2] (which can only happen if n = 1), the inequality (14)
follows from (13).

Otherwise we have p > (2∨n). We choose an increasing sequence (pi )
m
i=1 such that

p1 = 2, pm = p

n/2(1/pi − 1/pi+1) < 1

(notice that for n ∈ {1, 2, 3, 4} one can take m = 2). Inductively we will prove that

‖z1(t)‖pi + ‖z2(t)‖pi ≤ Ce−(χ/2)t , 1 ≤ i ≤ m. (15)

For i = 1 (15) follows from (13). Assume that (15) is true for some 1 ≤ i ≤ m−1. Then

‖H1(z(t))‖pi ≤ ‖z1‖pi ‖1 − z2 + s∞‖∞ + ‖z2‖pi ‖δ + ε + l∞‖∞ ≤ Ce−(χ/2)t .

(16)

Using (9a), (4b), (16) and χ/2 < Dλ1 we obtain

‖z1(t)‖pi+1 ≤ ‖et D�z10‖pi+1 +
∫ t

0
‖es D� H1(z(t − s))‖pi+1dτ

≤ Ce−Dλ1t + C
∫ t

0
(Ds ∧ 1)−n/2(1/pi −1/pi+1)e−Dλ1s‖H1(z(t − s))‖pi dτ

≤ Ce−Dλ1t + C
∫ t

0
(Ds ∧ 1)−n/2(1/pi −1/pi+1)e−Dλ1se−(χ/2)(t−s)dτ

≤ Ce−Dλ1t + Ce−(χ/2)t
∫ t

0
(Ds ∧ 1)−n/2(1/pi −1/pi+1)e−(Dλ1−χ/2)sdτ

≤ Ce−(χ/2)t .

To show that for t > 0 ‖z2(t)‖pi+1 ≤ Ce−(χ/2)t , we obtain from Theorem 2 that for
each fixed x ∈ � the function z2 ∈ C1([0,∞); R) satisfies the ODE

ż2 + (δ + ε + l∞ + z1)z2 = (1 − s∞)z1,

hence

z2(t) = A(t)z20 + (1 − s∞)

∫ t

0
A(τ )z1(t − τ)dτ , (17)

where

A(t) = exp

(
−

∫ t

0
(δ + ε + l∞ + z1(τ ))dτ

)
. (18)

From l∞ + z1 = l ≥ 0 we get ‖A(t)‖∞ ≤ e−(δ+ε)t . Using χ/2 < δ + ε we obtain

‖z2(t)‖pi+1 ≤ ‖A(t)‖∞‖z20‖pi+1 + ‖1 − s∞‖∞
∫ t

0
‖A(τ )‖∞‖z1(t − τ)‖pi+1 dτ

≤ Ce−(δ+ε)t + Ce−(χ/2)t
∫ t

0
e−(δ+ε−χ/2)τ dτ ≤ Ce−(χ/2)t ,

thus finishing the proof of (15), whence that of (14).
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In the next two sections we use the smoothing properties of et� to extend conver-
gence to the first and second derivatives.

7.3. W 1
p estimate

Using (9a), (4a), (14) and χ/2 < Dλ1 we obtain

‖z1(t)‖1,p ≤ ‖et D�z10‖1,p +
∫ t

0
‖es D� H1(z(t − s))‖1,pdτ

≤ Ce−Dλ1t + C
∫ t

0
(Ds ∧ 1)−1/2e−λ1 Ds‖H1(z(t − s))‖pdτ

≤ Ce−Dλ1t + C
∫ t

0
(Ds ∧ 1)−1/2e−λ1 Dse−(χ/2)(t−s)dτ

≤ Ce−Dλ1t + Ce−(χ/2)t
∫ t

0
(Ds ∧ 1)−1/2e−(Dλ1−χ/2)sdτ

≤ Ce−(χ/2)t .

Using the above estimate for z1 we obtain that A(t) given by (18) satisfies

‖A(t)‖p ≤ C‖A(t)‖∞ ≤ Ce−(δ+ε)t

‖∇ A(t)‖p = ‖−A(t)
∫ t

0
(∇l∞ + ∇z1(τ ))dτ‖p

≤ ‖A(t)‖∞
∫ t

0
(‖∇l∞‖p + ‖∇z1(τ )‖p)dτ

≤ Ce−(δ+ε)t
∫ t

0
(1 + e−(χ/2)τ )dτ ≤ Cte−(δ+ε)t .

Thus using (17) we have

‖z2(t)‖1,p ≤ ‖A(t)‖1,p‖z20‖1,p + C‖1 − s∞‖1,p

∫ t

0
‖A(τ )‖1,p‖z1(t − τ)‖1,pdτ

≤ C(t + 1)e−(δ+ε)t + C
∫ t

0
(τ + 1)e−(δ+ε)τ e−(χ/2)(t−τ)dτ

≤ C(t + 1)e−(δ+ε)t + Ce−(χ/2)t
∫ t

0
(τ + 1)e−(δ+ε−χ/2)τ dτ

≤ Ce−(χ/2)t

which finishes the proof of (3a).

7.4. W 2
p estimate for z1

Using (9a), (4a), (3a) and χ/2 < Dλ1 we obtain

‖z1(t)‖2,p ≤ ‖et D�z10‖2,p +
∫ t

0
‖eτ D� H1(z(t − τ))‖2,pdτ
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≤ C(Dt ∧ 1)−1/2e−Dλ1t + C
∫ t

0
(Dτ ∧ 1)−1/2e−λ1 Dτ e−(χ/2)(t−τ)dτ

≤ C(t ∧ 1)−1/2e−Dλ1t + Ce−(χ/2)t
∫ t

0
(τ ∧ 1)−1/2e−(Dλ1−χ/2)τ dτ

≤ C max{1/
√

t, 1}e−(χ/2)t ,

which finishes the proof of (3b).
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