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Abstract. Phase field simulations suitable to describe interfacial phenomena at
the mesoscale require as input parameters accurate interfacial energies as well
as the interface mobilities. However, this information is not directly accessible
by experiment. Furthermore, phenomena such as impurity segregation cannot be
decoupled and their independent role in interfacial cohesion and mobility cannot
be deduced. On the other hand ab-initio calculations and/or classical interatomic
potentials are suitable tools which can provide an on-atomic-scale description of
the interfaces. However, there are a number of challenges that one encounters:
multidimensional phase space of the interfacial misorientation degrees of freedom,
suitable driving forces, and large length and time scales just to mention a few. In
the present report we provide an extended review on the atomistic calculations
and the simulation strategies proposed to tackle the corresponding problems.

1 Introduction

Phase field simulations are by now well established as an important tool in the computational
physical metallurgy which may describe phenomena associated with microstructural evolution
such as dendritic growth, martensitic and other phase transitions as well as grain growth [1]. A
prerequisite for phase field simulations is the accurate knowledge of material specific parameters
such as solid–solid and solid–liquid interface energies and the corresponding kinetic parameters.
In most cases this information is not always directly accessible by experiment. For example the
experimentally derived interfacial energies as well as interfacial mobilities always include the
influence of small amount of impurities: Even tiny concentrations of them may drastically
alter the corresponding properties. In order to control the microstructural evolution a detailed
understanding of those phenomena is required. Thus, methods which will allow for a full control
over all system parameters such as interfacial symmetries, impurity concentrations, segregation
effects, or pressure and temperature are required.
Atomistic calculations based on first-principles and/or empirical potentials satisfy the afore-

mentioned requirements and are widely used to describe interfacial as well as interphasial phe-
nomena. In a bottom-up simulation hierarchy both approaches are with respect to length and
time scale below the phase field simulations with length scales ranging up to a few hundreds
of nanometers for empirical potential based calculations. First-principles calculations are free
of empirical or other fitting parameters, are transferable (i.e. can accurately describe different
environments) and can be applied to multicomponent alloy systems. However, they are suffering
from their extensive requirements on memory and CPU power and they thus are restricted to
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rather small system sizes ranging up to a few nanometers length scales. On the other hand
empirical potentials can be extended to larger length and time scale but their transferability
and accuracy should always be checked and ensured in advance.
In the following sections we will focus and review on atomistic calculations of the static

properties of Solid–Solid and Solid–Liquid interfaces. In the first section we will provide a short
discussion on the atomistic calculations. In the two subsequent sections we will discuss the
Solid–Solid interfaces: In Section 3 we will focus on a specific subclass of grain boundaries, the
coherent interphase boundaries and we will briefly discuss the atomistic approaches to tackle
the corresponding problems. The grain boundaries will be the topic of Section 4. In the last
section we will review the different approaches to simulate Solid-Liquid interfaces and calculate
the interfacial energy and stiffness.

2 Atomistic simulations

Computer simulations have been emerged as an important branch in the field of materials
science and engineering over the last few decades. From a conceptual point of view computer
simulations link theory with experiment. Atomistic simulations (molecular dynamics or Monte
Carlo simulations) is a term which refers to those simulation techniques and models where
atoms are the building blocks of the systems under consideration. Those techniques has been
and are used for studying various systems ranging from atoms and small molecules and clusters
to large biomolecules, crystals, surfaces, interfaces, or liquid systems.
Atomistic simulations can in principle be categorized in two groups depending on whether

empirical input data are used. In the first class we find the ab-initio (first-principles) calcu-
lations: The treatment of the system is based solely on quantum mechanical concepts and
in principle no-empirical parameters enter. On the other hand in the empirical and/or semi-
empirical methods approximate interatomic interactions which depend on a group of parameters
obtained by empirical and/or ab-initio data are used.
A detailed review of ab-initio and the empirical potential calculations is beyond the scope

of the present review. Nevertheless in the following paragraphs we will shortly present the ideas
underlying both simulation techniques along with a small discussion on the advantages and the
applicability of them.

2.1 First-principles calculations

The principle idea underlying the first-principles calculations is to assume any many-atom
system as a many-body system consisting of electrons and nuclei and treat them on the basis
of quantum mechanical concepts. Nevertheless, in most cases in materials science the quantum
behavior of the nuclei is not important and thus they can be regarded as classical particles.
Moreover, as Born and Oppenheimer noted in 1923, the nuclei are much more massive than the
electrons and move on a time scale which is approximately two orders of magnitude larger than
that of the electrons. Thus, the electrons can respond to the ionic motion almost instantaneously
and any change in the electronic state occurs vary rapidly compared to the nucleus motion.
Therefore, it is a good approximation to separate electronic and ionic motion and to perform
the calculation of the electronic structure separately from the calculation of the ionic motion.
On the other hand electrons must be described by quantum mechanics in any situation. The
electronic Hamiltonian consisting of system of Ne electrons and NI nuclei, neglecting relativistic
effects, can be written as:
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where RI and ZI are the position and the atomic number of the nucleus I respectively, and ri
is the position of the electron i.
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There are three different classes of quantum mechanical approaches to determine the ground
state of many body systems: The simplest of the ab-initio methods is the Hartree–Fock (HF)
approximation (see pp 11–18 in Ref. [72]). The HF approximation replaces the Ne electron
wavefunction by a antisymmetric wavefunctions having the form of a Slater determinant. The
ground state energy is determined by invoking the variational principle. However, the HF ap-
proximation has the disadvantage that it cannot describe the electronic correlation properly.
For example it gives zero density of states at the Fermi level of metals.
Alternatively to the HF approximation, one may consider the Density Functional Theory

(DFT). In DFT the many-body problem is reformulated in terms of the electron density ρ [71,
89]. Electron density compared to the many-body wavefunction is more attractive, since it
drastically reduces the degrees of freedom: it depends only on x, y, and z spatial coordinates
and there may be two densities for spin polarized systems: ρ ↑ (spin up) and ρ ↓ (spin down).
In contrast, the many-body wavefunction depends on all coordinates of all particles. Although,
DFT originally applied in atoms and simple molecules, nowadays can be assumed as a work
horse for more complex systems in the chemical and materials sciences. The interesting reader
is referred to the excellent reviews on DFT in Refs. [71,72].
Unlike the single particle HF and DFT approximations, Quantum Monte Carlo (QMC)

approaches use statistical techniques to solve the many dimensional integrals and model many-
body wavefunction directly [90]. The great significance of QMC techniques is that they are
relatively insensitive to the dimensionality of the problem. This advantage allows the study of
systems which are typically beyond the reach of other approaches. However, QMC methods
suffer from the fact that their accuracy improves only slowly with the computational resources
used.
Ab-initio based methods provide a reliable tool for accurate atomic scale calculations. How-

ever, a major drawback of DFT calculations is their rather limited ability to represent systems
consisting of large numbers of atoms and/or to perform simulations over a large timescale, in
the case of Molecular Dynamics (MD). Thus, it is crucial to develop and introduce numerically
simpler methods that will allow to treat large scale systems and/or long time scale simulations.
An established method to do this is the application of empirical potentials (EP).

2.2 Empirical interatomic potentials

One of the first pair potentials used in atomistic simulations is the hard spheres model. It
consists of an pair potential of the following form:

Φ12 =

{∞, r < σ
0, r ≥ σ (2)

where Φ12 is the pair interaction between two spheres at a distance r, and σ is the diameter
of the sphere. The hard spheres potential models the interaction between impenetrable spheres
that cannot overlap. It has been widely used to study the thermodynamics of solid and liquid
systems, phase transitions, and solid-liquid interfaces.
One of the most widely used pair potentials in atomistic calculations is the Lennard–Jonnes

(LJ) model. The analytical form of the LJ pairwise interactions is the following:

Φ12(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (3)

where σ and ε are the specific LJ parameters, different for different interacting particles. σ is
the length at which the interaction vanishes (Φ12 = 0) and ε is the depth of the potential well.
For large separation distances r the 1/r6 term dominates and the LJ potential is attractive.
This behaviour represents the London dispersion forces. However, as the separation distance
decreases the 1/r12 dominates and the potential becomes repulsive.
Apart from the simple pairwise potentials, more sophisticated and more complex many-body

potentials have been developed in order to incorporate the influence of the local environment
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of each atom into the energy of the system. Among the most popular many-body potentials
are the Finis-Sinclair (FS) [91] and embedded atom method (EAM) [92,93] potentials. The
main idea behind these models is that the strength of the chemical bond depends both on the
interatomic distance as well as the bonding environment. They consist of a pair potential term
which is modified by an environmental dependent many-body term. The analytical function of
the 2nd nearest neighbors modified EAM type potentials has for example the following form:

E =
∑
i


F (ρi) + 12

∑
j �=i
φ (Rij)


 (4)

where φ(Rij) is an attractive pair potential and F (ρ) = AEc
(
ρ/ρ0

)
ln
(
ρ/ρ0

)
is the embedding

energy function which incorporates the effects of the local environment. The dependence on the
environment enters through the background electron density ρi at the atomic position ri formed
by the surrounding atoms sitting on positions rj . ρ

0 is the electron background density for the
reference structure, Ec is the sublimation energy, and A is an adjustable parameter. Various
parametrizations of the FS and EAM type potentials have been proposed over the last decades
to model various single element such as Al, Cu, Ag, Au, Ni, Pd, Pt, and Pb [98], just to mention
a few as well as for multicomponent systems such as ternary C-Fe alloys [99] and quaternary
Ni-Al-H systems [97]. A detailed database and documentation of EAM and FS potentials can
be found at the NIST online repository [100].

2.3 Discussion on the atomistic calculations

Ab-initio methods are by now a well established tool for accurate, parameter free simulations
in the field of materials science and engineering. Their range of applications varies from total
energy and electronic structure calculations of small molecules and cluster, to crystals, point
defects, and extended defects, just to mention a few. However, they suffer from their extensive
demands on computational resources. The CPU time required to calculated the ground state of
a system may vary from a few hours for systems consisting of a few atoms, up to a few weeks
for a few hundreds of atoms. The corresponding time scale for Molecular Dynamic calculations
is limited in the order of 10−12 sec.
Interatomic empirical potentials have much lower demands on both CPU power and memory

requirements: Calculations of systems consisting of a few millions of atoms and in a time
scale of 10−9 sec are feasible nowadays. However, the empirical potentials are models which
have there own materials properties: They are parameterized and fitted to reproduce certain
material properties such as lattice parameters, elastic constants, cohesive energies, or melting
temperatures just to mention a few. The transferability of a given potential, i.e. the ability of
a potential to describe various environments, is always a question which should be carefully
addressed. Moreover, not all potentials are suitable for all systems: A nobel gas system may be
accurately described by a LJ potential or a Stillinger-Weber [96] interaction may be suitable for
tetrahedrally bonded covalent system. However, it is evident that a SW potential will probably
fail to mimic a metallic system. Hence, not only the parameterization but also the choice of
potential depends strongly on the system under consideration. Nevertheless we should always
keep in mind that the empirical interatomic potentials are material systems themselves and
should be treated like that.

3 Coherent interphase boundaries

Grain boundaries (GBs) are the central structural features in thermomechanical processes such
as recovery, recrystallization, and grain growth and significantly affect the physical and mechan-
ical properties of materials. Grain boundary engineering, i.e. optimizing the population of GBs
with desirable geometry by suitable thermomechanical treatment, is nowadays an important
topic in functional and structural materials design [62]. In particular, polycrystalline materials
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Fig. 1. Schematic drawing of a coherent interphase boundary, here between two phases with the same
L12 structure (far left and far right) but the opposite composition.

characterized by relatively large number of boundaries having special misorientations are ex-
pected to exhibit exceptional macroscopic properties such as strong resistance to intergranular
failure and corrosion [63,64].
A specific subclass of grain boundaries is coherent interphase boundaries (CIPBs) char-

acterized by structural continuation of atomic planes of interfacing crystals throughout the
boundary (see Fig. 1). The technological and industrial importance of CIPBs stems from the
fact that one of the most efficient ways to strengthen multiphase alloys is to introduce coherent
precipitates via a controlled heat treatment [2]. This treatment is referred to as the age hard-
ening, aging, or precipitation strengthening. The effect of strengthening critically depends on
the volume fraction, size, morphology, and/or spatial distribution of the precipitates. The mi-
crostructural evolution and kinetics of the precipitate formation that is determining the above
mentioned parameters, decisively depend on structural and thermodynamic properties of the
interphase boundaries (see e.g. a review article by Thornton et al [3]). However, experimental
data are frequently not available due to difficulties in measuring the interphase boundaries.
This is particularly true for multicomponent systems. Therefore, there have been several at-
tempts to determine the most important characteristics of CIPBs, such as the interphase energy,
theoretically.

3.1 Theoretical modeling of coherent interphase boundaries

The calculations of the interphase boundary energies between two immiscible phases in a binary
alloy were performed using e.g. (i) the regular solution model by Lee and Aaronson [4] or (ii) the
cluster variation method (CVM) by Kikuchi and Cahn [5]. In the latter, the CIPB energies in
Cu-Au alloys were calculated using the sum-method approach combined with the tetrahedron
approximation of the CVM (T-CVM) that unfortunately neglects longer-range interactions
on the lattice. In order to take the long-range interactions into account, the tetrahedron–
octahedron approximation of the CVM (TO-CVM) can be used [6,12], in which both the first
and second nearest neighbor interactions are included.
As a very promising computational approach, the cluster/site approximation (CSA) was

recently found to (i) possess an accuracy comparable to the CVM in phase diagram calculations,
however, (ii) be much less computationally demanding [8–10]. The method was applied e.g. in
[7] to determine the CIPB energies in fcc metals. Methodologically, the interphase boundary is
studied by considering the thermodynamic properties of rather large systems (supercells, see
Fig. 2) containing distinct spatial regions of two different bulk phases with an interface between
them. Using the sum-method [6,11], the grand potential, Ω(hkl), of a supercell containing e.g.
a (hkl) interphase boundary in a cubic system, reads

Ω(hkl) = U − TS −
∑
p

µpNp

where µp is the chemical potential of the p component and Np being the total number of p atoms
in the entire system. The internal energy U and configurational entropy S can be derived from
different statistical mechanical models what allows for a finite temperature description.
The internal energy can be within the CSA expanded into a series of cluster probabilities and

cluster energies that can be obtained from a fit to the experimental results. If the experimental
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Fig. 2. Schematic drawing of a periodically repeated supercell used in the calculations of a coherent
(100)fcc interphase boundary, here between the L12 phase (left) and the fcc phase (right) with an abrupt
boundary in between (mind the fact that realistic supercells contain 50 or more atomic layers [7,12]).

data are missing, ab initio calculations are recommended to be used in order to calculated them
as such computations are essentially based on fundamental quantum mechanics and only make
use of information that can be found in the periodic table, i.e. no adjustable parameters are
introduced. The equilibrium state of the boundary can be obtained by minimizing the grand
potential Ω(hkl) for a given temperature and bulk equilibrium chemical potential. Importantly,
the minimization must maintain the so-called the continuity constraints at each atomic plane
(see more details in [5]).

3.2 Coherency stresses

Particularly in case of coherent interphase boundaries, a stress is often present in multiphase
solids, since the lattice parameters of the different phases typically differ. These so-called co-
herency stresses give rise to an elastic strain energy that can affect a wide range of processes in,
and equilibrium properties of, multiphase systems. Specifically, the elastic and interfacial ener-
gies can easily be comparable in systems such as high temperature alloys since these systems
often possess a misfit of only up to 1%. The effect of resulting stress is small when the particles
are small, however, in many alloys the particles can grow large enough such that the microstruc-
ture is decisively influenced by the presence of the elastic stresses. In addition, it can also alter
(i) the diffusion coefficients [15,16], and/or (ii) particle coarsening that is significantly more
complicated in a stressed environment than in a stress-free one. First, the equilibrium compo-
sitions of the coherent two-phase mixture are usually different from those determined by the
incoherent phase diagrams [17]. Secondly, the elastic properties are usually anisotropic what
introduces yet another level of complexity.
In the CIPB modeling, the elastic energy is taken into account either in the atomistic su-

percell calculations or as a contribution to the energy functional of the phase-field method (see
e.g. [2,18–20]. For example, Vaithyanathan and Chen in [2] used the Khachaturyan’s model for
the elastic energy [21] arising from the lattice misfit with a homogeneous modulus approxima-
tion. Assuming that the lattice parameter has a linear dependence on the solute composition
(Vegard’s law), the elastic energy functional can be written as

Eel =
1

2

∫
k

B[n]|c̃(k)|2 d
3k

(2π)2

where the integral is over the reciprocal or Fourier space, n(= k/|k|) is a unit vector in the k
direction and c̃(k) is the Fourier transform of composition field c(r). The function B(n) contains
the information on the elasticity of the system and can be approximated in 2D [22] as

B(n) ≈ Bel(n)2x(n)2yε20, Bel = −
4(C11 + 2C12)

2

C11(C11 + C12 + 2C44)
∆

where C11, C12 and C44 are independent coefficients in the elastic constant matrix, ∆(=
C11C12 − 2C44) is the elastic anisotropy factor and ε0[= (da/a)(1/dc)] is the coefficient of
lattice expansion caused by the changes in composition.
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In a multi-disciplinary manner, the electronic-structure calculations can be used to deter-
mine (i) thermodynamical and mechanical properties of the strained states (see e.g. [23,24]) or
(ii) the elastic constants Cij used in Eq. (3.2) for each of the present phases. If required by the
employed model, the anisotropic elastic properties can also be homogenized into an elastically
isotropic characteristic using various homogenization techniques (see e.g. [25–29]).
The role played by the elastic stresses can be demonstrated on the shape of the precipitating

particles. In the absence of stress, particles minimize the surface area for the given particle
volume and become nearly spherical. In contrast, when the anisotropic elastic stresses are large,
the surface energy yields to the stress, and the morphology of particles changes from spherical
to cuboidal or elongated shapes such as rectangular or square plates [2]. The changes in particle
morphology originates from the fact that the system is governed by two competing energies, (i)
one due to the presence of an interface and (ii) the second due to the elastic stresses. If only
the interfacial energy is present, an isolated precipitate having isotropic surface energy takes
a spherical shape to minimize the interfacial area. When an elastic stress is present, the total
energy of the system may be reduced if the shape of the precipitate deviates from the spherical
one. Specifically, when there is an anisotropy in the elastic constants, the interface tends to
become flat along the elastically soft directions and highly curved along the elastically hard
directions. The resulting shapes are cuboidal with rounded corners and nearly flat sides. The
energy may be further reduced by changing the aspect ratio of the precipitate, resulting in the
plate-like shapes. Such microstructures are seen in many alloy systems, e.g. binary alloys Ni-Al
[30] and Ni-Si [31,32]. The exact shape depends on the ratio of the two energies and the degree
of the elastic anisotropy of the material. The subject has been widely reviewed in [33–35].

4 Grain boundaries

Grain boundaries constitute a larger and more general class of interfaces in solid state. Un-
like, coherent interphase boundaries, GBs break the continuation of the lattice plane across
the boundary. One of the major challenges that the study of GBs imposes is the number of
macroscopic degrees of freedom required to describe and identify a GB: Three parameters are
required to define the lattice misorientation of a GB (3 dimensional phase space). However
the aforementioned three degrees of freedom are not enough to fully characterize the coinci-
dence at the boundary of two adjacent grains. Two additional parameters necessary to define
the boundary plane inclination are required (2 dimensional phase space). A number of recent
reports highlight the importance of the interface inclination on the properties of a GB (see
Ref. [76] and Refs therein). Thus, for a complete macroscopic description a five dimensional
GBs configurational is necessary.
In the next section we will shortly review the available atomistic approaches to address

the grain boundary formation energies γGB and we will provide recent results based on first
principles density functional theory and modified embedded atom method (MEAM) calculations
of GBs in Al in order to compare the different simulation techniques.

4.1 Different geometries to model a GB

In atomistic scale simulations of GBs and/or dislocations a common approach to model the
extended defect is to perform slab or cluster calculations: In the slab geometry a single defect is
placed at the center of the cell and periodicity is applied only for the two directions parallel to
the the GB plane (see Fig. 3(b)). On the other hand in the cluster geometry the GB is imposed
in a bulk crystal of finite size and no periodic boundary conditions (PBC) are applied to the sys-
tem (see Fig. 3(c)). If a code which inherently imposes PBC is used caution should be taken for
the vacuum thickness d in order to ensure efficient decoupling of the free surfaces: The vacuum
thickness should be larger than the range of the interatomic potential or convergence checks
should be carefully undertaken in case of e.g. planewave ab-initio calculations. Nevertheless,
both geometries have the advantage of the absence of a second geometrically necessary com-
pensating defect in order to ensure periodic boundary conditions: The use of periodic boundary
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Fig. 3. Schematic representation of the different simulation geometries used to calculate GB formation
energies γGB: (a) Supercell with PBC in all three directions, (b) slab geometry, and (c) cluster geometry.
The dashed lines indicate the position of the interfaces while open and filled balls are used to denote
atoms located in opposite grains. Gray balls in (a) represent the periodic images of the supercell and
d in (b) and (c) denotes the vacuums thickness.

r2
CSL

r1
CSL

(a) (b)

Fig. 4. Moiré patterns formed by the lattice points of two interpenetrating grains denoted by the open
and filled balls respectively. The cross denote the position of the [110] rotation axis. Only one of the
two (110) planes is shown. (a) For an arbitrary rotation angle (here ≈ 12.70◦) no superlattice is formed.
(b) For special rotation angles (here ≈ 38.94◦) a superlattice (the CSL) consisting of the coincident
points is formed. The dotted lined indicate the planes of the CSL and the thick dashed lines its unit
cell. The unit vectors are also shown. The superlattice shown here is to the Σ9 CSL.

conditions requires the existence of a finite size unit cell which has translational symmetry.
However, extended defects such as dislocations and GBs break the crystal translational sym-
metry. This problem is circumvented by forming a second compensating defect1. Nevertheless,
cluster and slab geometries impose the problem of the free surface treatment: The effect of the
free surface on the atomic geometry, electronic structure and total energy of the system un-
der consideration is not known in advance. Moreover different grain boundary misorientations
impose different free surfaces. Thus, even the relative comparison of two defects is a puzzling
situation.
An alternative approach which is aimed to eliminate the surface effects uses three dimen-

sional periodic boundaries conditions with supercells which have a pair of compensating defects
(see Fig. 3(a)). The defect-defect interactions are assumed to be negligible if the separation
distance is taken to be sufficiently large. However, for ab-initio calculations the size of the
systems which may be handled is of the order of few hundreds of atoms. Thus, first principles
calculations are suitable to describe GB systems of only special misorientation and inclination.
On the other hand empirical or semi-empirical potentials may handle systems consisting of
more than a few hundreds of thousands or even millions of atoms and various misorientations
and inclinations can be addressed (see e.g. Ref. [88]).

4.2 Coincidence Site Lattice

In order to construct a supercell containing a pair of compensating GBs the symmetry of the
crystal has to be explicitly taken into account. In principle there is an infinite number of possible

1 The analogous in electrostatics is if we assume the extended defect as a charged entity to place a
compensating charge of opposite sign in order to assess charge neutrality.



Advances in the Multi-Scale Computational Design of Condensed Matter Interfaces 49

ny

nx

Lattice A

Lattice B

A

B

O

Fig. 5. Schematic representation of the construction of a CSL for rotation on the (110) fcc plane. The
rotation [110] axis is at the origin of the frame of reference (point O). Large and small balls denote
atoms in the two successive (110) fcc planes. We assume two lattices, Lattice A and Lattice B, which
initially are in full coincidence. Only the upper (lower) half of Lattice A (B) are shown respectively.

misorientations of two grains relative to each other. However due to symmetry reasons and the
discrete nature of the lattice, it is not possible each of them to be included in a supercell
with its compensating image. In order to tackle this problem the concept of the Coincidence
Site Lattice (CSL) is used: Let us consider the Moiré pattern formed by the lattice points of
two interpenetrating grains with the same origin which the one has been rotated relative to the
other. For an arbitrary misorientation angle the Moiré pattern will look like the one in Fig. 4(a).
However, for certain special rotation angles some lattice points from both grains will coincide
and a superlattice, the CSL, will be formed (see Fig. 4(b)). The CSL has a certain translational
symmetry defined by the CSL primitive vectors (r1CSL and r

2
CSL in the 2D example of Fig 4).

The ratio of the unit cell volume of the CSL to the unit cell volume of the regular lattice
corresponds to the Σ value of the CSL. In can be shown that the numerical value of Σ is always
odd [70]. Σ1 CSL would denote a perfect crystal, i.e. the lack of any boundary. Nevertheless, low
angle GBs, e.g. GBs that are composed by a superposition of an array of lattice dislocations
and have misorientation angles smaller than � 10 − 15◦, are also commonly referred as Σ1
boundaries.

Once the CSL and hence the Σ value is defined the three macroscopic degrees of freedom
associated with the misorientation of the grains are uniquely defined. The other two degrees
of freedom associated with the boundary inclination can be assessed by choosing various CSL
planes, i.e. planes that intersect CSL points. The advantage of the CSL concept is that thanks to
its translational symmetry any two parallel CSL planes would correspond to two identical GBs.
Therefore, a supercell a pair of equivalent GBs with certain misorientation and inclination can
be formed in the following way: In a first step the corresponding CSL is constructed. Although
not all GBs are CSL boundaries, any GB can be approximated by a CSL boundary of arbitrary
large Σ value and very close misorientation angles. A detailed description on the construction of
a CSL can be found in Ref. [70]. Nevertheless, as an example we demonstrate the construction
of a CSL of tilt GBs in fcc crystals having as rotational axes the [110] axes (see Fig. 5): We
assume two lattices, Lattice A and Lattice B, which initially are in full coincidence. Only the
upper half of Lattice A and the lower half of Lattice B are shown in Fig. 5. In order to construct
a CSL, Lattice B has to be rotated by an angle θ which will bring sites of Lattice B to coincide
with sites of Lattice A. In order for example to bring point B ontop of pointA, Lattice B should
be rotated by an angle θ = 2arctan((nyry)/(rxnx)), where nx and ny are lattice coordinates
and rx and ry the corresponding fcc lattice vectors. The vector rOA = nxrx + nyry will be one
of the three CSL primitive vectors. The second CSL primitive vector is the fcc lattice vector
along the [110] direction. The third one is the normal to the rOA lying in the (110) plane.

Once the CSL has been constructed and the misorientation has been fixed, the boundary
plane has to been chosen. In principle an infinite number of boundary planes exists for a given
CSL. However, it is expected that boundaries that contain higher density of lattice points in
a CSL is expected to exhibit better atomic fit and therefore more pronounced cohesion. The
density of atomic points at the boundary is inverse proportional to both the Σ value and the
area of the 1× 1 boundary unit cell. Once the boundary plane is chosen, the supercell can be
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{110}

{211}

{111}

CSL
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gb2gb’2 gb’2
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Fig. 6. Schematic representation of a procedure to construct various GBs for a given CSL. Open and
filled balls correspond to atoms of two different grains. Grey balls denote the periodic images of the
atoms. (a) Each CSL plane corresponds as those denoted by the dashed lines corresponds to a GB
with a misorientation defined uniquely by the Σ value. Any two parallel CSL planes correspond to
GBs having the same inclination (e.g. gb1 and gb’1 as well as gb2 and gb’2). (b) and (c) Supercells
containing a pair of compensating GBs.

constructed by choosing two additional planes parallel to the first one, as schematically shown
in Fig. 6.
However besides the five macroscopic degrees of freedom there is in principle an infinite

number of microscopic degrees of freedom which control the free energy and the cohesive prop-
erties of a GB. These degrees of freedom correspond to translations of the one grain with
respect to the other, boundary expansion or “breathing” of the boundary (excess volume), and
the coordinates of the atoms in boundary and at the neighborhood of the boundary. While the
atomic positions can be implicitly derived by performing atomic relaxation, the other micro-
scopic degrees of freedom have to explicitly taken into account by applying the corresponding
translations to the one of the two grains.

4.3 GB energies: Discussion

In Fig. 7(a) the energies for symmetrical tilt [110] GBs in Aluminum derived by MEAM and
ab-initio supercell calculations are shown [73]. The energy profile extends in the range of 0◦
to 180◦ of misorientation angles and has a few cusps which correspond to low low Σ value
CSL. An interesting finding is that the MEAM potential calculations describe the energetics of
GBs within 10% with respect to the ab-initio calculated energies, which is an indication that
the Al modified EAM potential used here, describes the interatomic interactions fairly well.
Unfortunately only relative experimentally measured GB energies for the [110] symmetrical
tilt GBs in Al are available in the literature [74]. Thus, only qualitative comparisons can be
made. Indeed our results closely reproduce the energy profile of the experimentally accessible
energies.
The great advantage of constructing the GB based on the CSL concept is that all the GBs are

formed by pure symmetry operations. Thus, the use of periodic boundary conditions restricts
the interface planes to have the area and the misorientation defined by the aforementioned sym-
metry operations. Consequently, the interface area and the interface reconstruction are known
in advance. Moreover, the possibility of the boundary plane to reconstruct according to the
Wulff-Herring reconstruction [67,68] is rather limited and, in principle, GBs with the exact
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Fig. 7. Computed symmetrical tilt GB energies for Al as function of the misorientation having the
[110] rotational axis. Disks (stars) denote the MEAM (ab-initio) calculated energies respectively.

assumed misorientation and/or inclination are calculated. This is contrast cluster calculations:
B. J. Lee et al. [75] have been calculated the [110] symmetrical tilt GBs implementing large
spherical clusters having 8 to 10 nm diameter. They have calculated on average 100mJ/m2 lower
interfacial energies which can be attributed to heavy interfacial reconstructions. Moreover, the
reported that an error bar of approximately 60mJ/m

2
originated from the estimation of the

free surface energies should be added to the cluster derived formation energies. Nevertheless,
the cluster approach provides the advantage that the 5D space of grain boundary misorienta-
tions and inclinations can be assessed in a continuous manner. Moreover along with the slab
calculations, thanks to the lack of translational symmetry restrictions to directions normal to
the boundary, smaller cells can be used for arbitrary GBs.
GB energies constitute important input variables for phase field simulations. However, theo-

retical works that will provide a complete a consistent description of the GB energies as function
of the 5 degrees of freedom are still lucking. Recently Olmsted et al. have been reported EAM
calculations on 388 CSL GBs which could be constructed in a cell of prescribed size. Slab
geometries were utilized and the Σ385 was the largest CSL used [88]. Other reports based on
empirical potential calculations have addressed only one of the five degrees of freedom associ-
ated with the GBs such as the [110] symmetrical tilt GBs in Al [75,77]. On the other hand,
ab-initio calculations have been used with great success to describe GBs of certain misorien-
tation and inclination (single point in the 5D configurational space) [78,79,82]. The formation
of vacancies, the precipitation of impurities as well as GB sliding and migration have been
successfully addressed by first principles calculations [80,81,83–85]. In principle one may con-
clude that first principle methods are restricted to rather small systems sizes and thus special
GBs, they are more suitable to provide an insight understanding of the atomistic mechanisms
governing the properties of GBs. A profound example is the investigation of Bi embrittlement
of Cu by Schweinfest et al. [84]. On the other hand empirical potential calculations are suitable
to provide vast data of GB energies and boundary excess volumes which are a prerequisite in
phase field simulation.

5 Solid-liquid interfaces

Mesoscale phase field simulations are an ideal method to describe the evolution of a sys-
tem during grain and/or dendritic growth. However, the dendritic evolution and solidification
processes depend strongly on material specific parameters such as the solid-liquid interfacial
free energy γ and the kinetic coefficient µ. Although the dependence of γ on the interface nor-
mal n̂ is rather low, while that of the µ is one order of magnitude larger, both anisotropies
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substantially influence the growth evolution and morphology. Therefore the accurate determi-
nation of both parameters constitutes both a challenge as well as a bottleneck for accurate
phase field simulations: Experimental precise estimation of the anisotropy of both parameters
is extremely difficult, if possible at all. Therefore, a variety of techniques based on Valence Force
Field Molecular Dynamics simulations have been developed over the last two decades aiming
to provide a accurate estimation of the anisotropy of interfacial free energy and kinetic coeffi-
cient. In the following two subsections we will first describe the available techniques proposed
to calculate solid-liquid interfacial free energies and then the models to calculate the kinetic
coefficient from atomistic calculations.
The solid liquid free energy γSL corresponds to the revisable work required to form an

interface between a crystal and its coexistent melt. Experimentally the value of γSL can be
measured by contact angle experiments: The interfacial free energy is derived by equilibrating
the forces at the intersection of crystal, liquid, and grain boundary surfaces. This approach has
been applied to various material systems, and although it is relatively accurate it suffers from
various approximations and sources of uncertainty (e.g. see Ref. [39]). A less accurate method
to derive SL interfacial free energies is based on the measurement of crystal nucleation rates:
According to nucleation theory the temperature of critical supercooling depends strongly on
and it is directly related to γSL. However this technique suffers from approximations inherent
to classical nucleation theory as well as from purity and homogeneity problems. Moreover, it
is not capable to provide the anisotropy of γSL: The measured interfacial energy is an average
over all the orientations.

5.1 Thermodynamic integration

Over the last decades three different techniques based on atomistic calculations have been devel-
oped and applied to calculate the interfacial free energy γSL: In the first category the interfacial
energy is directly derived by thermodynamic integration over revisable paths undertaken in
order to construct the SL interface from bulk crystal and bulk liquid samples prepared at the
calculated temperature and densities [36,38]. The corresponding paths proposed by Broughton
and Gilmer [38] are shown in Fig. 8: In a first step an appropriate cleavage potential is in-
serted in the bulk crystal while PBC along all directions are maintained. In the second step
the cleavage of the bulk liquid follows in a similar way. In the third step the crystal and liquid
slabs produced are juxtaposed. During this step the cleavage potentials are maintained but the
size of the system along the transverse to the interface direction is changed. In the final step
the cleavage potential is removed. The energy E of the system at each path is a function of
coupling parameter λ which varies over the range 0 to 1. The former value corresponds to the
start while the later to the end of the path. The change in the Helmholtz free energy during
each step i is calculated via thermodynamic (λ) integration:

∆EHeli =

∫ 1
0

〈
δEi

δλ

〉
δλ. (5)

The magnitude 〈δEi/δλ〉 is evaluated for different λ values at each step. The dependence of the
energy on the coupling parameter Ei(λ) contains the contributions both from the interatomic
potential φint as well as the cleavage potential φcl. At the first step has for example the following
form:

E1(λ) =

〈∑
k<l

φint(rkl) + λ
∑
l

φcl(xl, yl, zl)

〉
, (6)

where the sums are evaluated over the atoms k and l. For the bulk crystal system a purely
repulsive and short ranged potential was used. For the bulk liquid special care was taken in
order to avoid first order hysteresis phenomena and attractive tails were added to the cleavage
potential. Due to zero pressure conditions during the integration paths, the excess Gibbs inter-
face free energy is simply the sum of the calculated Helmholtz free energies over the four steps.
In more recent works Davidchak and Laird performed the same integration paths for a hard
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sphere [36] and Lennard-Jones model systems [37]. However, instead of of cleavage potentials
they used purely repulsive cleavage walls and the interfacial free energy was calculated in terms

of average pressure P (λ) acting on these walls during each path: w =
∫ 1
0
P (λ)dλ. The advan-

tage of the cleavage wall proposed by Davidchak and Laird compared to the cleavage potential
proposed by Broughton and Gilmer is that in the former case the authors constructed the cor-
responding walls in order these to introduce minimal perturbation in the system. Although,
the Broughton and Gilmer approach suffers from larger statistical uncertainties, both reports
based on hard-spheres predicted the following anisotropy with respect to interfacial orientation:
γ100 < γ111 < γ110. However, the later work on a continuous Lennard-Jones system by David-
chak and Laird predict a different anisotropy γ111 < γ110 < γ100, which is in agreement with
experimental observations on the Al-Cu alloy system [52].

5.2 Atomic density functional theory

Although not purely atomistic it is worth mentioning here an approach which is based on atomic
Density Functional Theory based calculations: The interfacial energy is derived by minimization
of the atomic density functional Ω[ρ] which corresponds to the grand canonical free energy of
the system [40,60]:

Ω[ρ] = F [ρ]− µ
∫
drρ(r) +

∫
drρ(r)Vext(r), (7)

where F [ρ] is the Helmholtz free energy of the system, ρ(r) the atomic density, and Vext(r) an
external potential. The equilibrium density ρ0(r) is found by minimizing Ω[ρ]:∣∣∣∣ δΩδρ(r)

∣∣∣∣
ρ(r)=ρ0

= 0. (8)

The Helmholtz free energy functional contains two contributions: The first one is an ideal gas
part and accounts for the entropic effects during crystallization (Fid) while the second one
is due to the interatomic interactions Fexc. The ideal gas part depends on the temperature
T , the atomic density ρ(r), and the thermal wavelength Λ: Fid = kBT

∫
drρ(r){ln[ρ(r)Λ3r]}.

The explicit form of Fexc is not known and various approximations have been proposed in the
past. Ramakrishnan and Youssouff [53] and Haymet and Oxtoby [54] proposed a perturbative
approach where the interaction part is expanded about that of the homogenous liquid Fext(ρl)
in powers of the crystal and liquid density differences ∆ρ(r) = ρs(r)− ρl:

Fexc [ρs (r)] = Fexc (ρl)− c{1} (ρl)
∫
dr∆ρ (r′)− 1

2

∫
drdr′c{2} (r′ − r; ρl)∆ρ (r)∆ρ (r′) . (9)

Here c{1}(ρl) is the chemical potential for the liquid phase and c{2}(r′ − r; ρl) is the direct
Ornstein-Zernike correlation function of the liquid. The functional expansion of Eq. (9) is exact
in the ∆ρ(r) 
 1 limit. Haymet and Oxtoby introduced an additional square gradient term
(Square Gradient Approximation, SGA) for the variation of the density along the interface.
An alternative approach proposed by Curtin and Ashcroft [55,56] which lifts the perturbative
character of Eq. (9) and provides a more consistent description of the rapidly varying crystal
density makes use of a weighted density ρ̄(r) =

∫
dr′w(|r− r′|, ρ̄(r))ρ(r′). This approximation

is named Weighted Density Approximation (WDA) and the weight function w(|r− r′|, ρ̄(r)) is
normalized and chosen in such a way that the liquid structure factor is reproduced in the limit
of uniform density. A modification to the WDA which offers a more realistic approximation
to the free energy functional has been later proposed by Ohnesorge et al. which is based on a
Gaussian approximation for the local atomic density [58]. The atomic DFT approximation has
been applied to Solid-Liquid interfacial studies of only model hard-sphere and/or Lennard-Jones
systems [58–61].



54 The European Physical Journal Special Topics

W

(b)
[1]

[2]

[3]

[4]

(a)

Liquid

Crystal Crystal

Liquid

L CC L+

Fig. 8. Schematic representation of the techniques and geometries used to simulate a Crystal-Liquid
interfaces: (a) Reversible paths to form a Crystal–Liquid interface. The number in brackets denote
the corresponding steps while the dashed line the position of the cleavage potentials (see text). (b)
Simulation box for the CFM. Lighter (darker) balls denote to particles in the liquid (solid) phase
respectively and the thick line the solid–liquid boundary. Periodic boundary conditions are applied in
all three dimensions. W is the length of the cell along the long ribbonlike solid slab.

5.3 Capillary Force Method

More recently an approach which is based on the capillary force calculations has been proposed
by Hoyt, Asta, and Karma. The Capillary Force Method (CFM) is based on the calculation of
the interfacial stiffness γ + γ′′ instead of the interfacial free energy γ, where γ′′ ≡ d2γ/dθ2 and
θ is the angle between the interfacial normal and the [100] direction. The great advantage of
this method is that the interfacial stiffness is by one order of magnitude more anisotropic than
the interfacial energy and therefore is much more easier to be computed. In order to determine
the interfacial free energy with respect to crystal orientation the former is expanded in terms
of cubic harmonics:

γ(n̂)

γ0
= 1 + ε1

(∑
i

n4i −
3

5

)
+ ε2

(
3
∑
i

n4i + 66n
2
1n
2
2n
2
3 −
17

7

)
, (10)

where n̂ is the interfacial normal, γ0 is the averaged value of γ, and ε1 and ε2 are the strengths
of the fourfold and sixfold anisotropies respectively. The calculation of the γ0, ε1, and ε2 is
based upon the known fact that the interfacial stiffness can be related to the spectrum of
interfacial fluctuations in thermodynamic equilibrium. Two different geometries corresponding
to a quasi-1D and a 2D interfaces have been used to derive the interfacial fluctuations: Hoyt
et al. assumed a ribbonlike interface which is schematically shown in Fig. 8(b). A crystal slab
is inserted into a liquid bath forming two SL interfaces. The crystal slab has a ribbonlike
morphology: If b and W are the dimensions of the cell parallel to the interface then is assumed
that b 
 W . This geometry simulates a rather quasi-1D interface. In a subsequent report
Becker et al. extended the aforementioned approach to include 2D interfaces (the dimensions
of b and W being comparable). The advantage of the quasi-1D over the 2D interfacial system is
that in the former the amplitude of the interfacial fluctuations is larger and smaller simulation
cells can be employed. However, in the later case smaller number of simulations are required in
order to fit the γ, ε1, and ε2 parameters. The height of the fluctuations h(r) can be written in a
Fourier series: h(x1, x2) =

∑
k1,k2

A(k1, k2) exp(i(k1x1+k2x2)) and the mean square amplitude

〈|A(k1, k2)|2〉 can be written as function of the interfacial stiffness:

〈|A (k1, k2)|2〉 = kBTM

A (S11k21 + S22k
2
2 + 2S12k1k2)

, (11)
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where TM is the melting temperature, A is the cross sectional area of the simulation cell, and
(Sij) is a 2× 2 stiffness tensor. In order to locate the interface an atomic order parameter φ is
used: Hoyt et al. assumed for an fcc system as an order parameter the sum of distances over
the 12 nearest neighbors: φ = 1

12

∑
i |ri − rfcc|2, which is always positive having values larger

than one for the liquid phase and vanishes for the ideal fcc crystal. Morris et al. defined a set of
Nq vectors such that exp (iq · r) = 1 for any vector r connecting nearest neighbors in an ideal
fcc lattice [50]. The order parameter is then defined as φ = | 1

Nq
1
Z

∑
r

∑
q exp iq · r|2 which has

the value of one for ideal fcc crystal and smaller than one otherwise. In both cases the order
parameter changes rapidly as the solid liquid interface is traversed and thus the later can be
easily located.
The CFM has been applied to various single component metallic systems such as Ni [42],

Au [43], Ag [43], and Al [50] utilizing embedded atom type potentials. Moreover model in-
teractions such as Lennard-Jones [51] interatomic potentials and hard-spheres [49] has been
also been used. Nevertheless, studies focusing on crystal-liquid alloy systems are fewer and are
restricted to Ni-Cu [44] and Lennard-Jones [46,47] alloys: Although alloys are of high inter-
est for technological applications, the number of available interatomic potentials suitable for
multicomponent systems is rather limited.
A detailed discussion on the aforementioned methods to calculate Solid-Liquid interfacial

energies and kinetic parameters can be found in the extensive and comprehensive review by
Hoyt et al. in Ref. [45]. Nevertheless it is worth to stress here advantages and disadvan-
tages of these techniques. The cleavage approach has the advantage of being computation-
ally more efficient: Almost one order of magnitude larger simulation cells are required for
the CFM. Both, the cleavage technique and the CFM, approaches predict anisotropic Solid-
Liquid interfacial energies and qualitatively they provide the same results. However, the CFM
is based on the calculation of the interfacial stiffness which is by one order of magnitude more
anisotropic than the interfacial energy. Thus, the anisotropy in γ is more precisely provided by
the CFM.

6 Summary

To summarize, ab-initio electronic-structure calculations and/or classical atomistic-modeling
approaches are suitable tools which can provide accurate material-specific parameters neces-
sary for state-of-the-art phase field simulations of the mesoscale microstructure evolution. The
importance of the atomic-level approaches is closely linked to the fact that many phase-field
input parameters can not be directly accessible by experiment. Moreover, in order to control
the microstructural evolution, an insight and deeper understanding of various phenomena at
the atomic scale are required. Thus, concepts which will allow for a full determination (and thus
a possible control over) of all system parameters would be desirable. Obviously, in the ladder
of simulation-relevant scales both first-principles and atomistic modeling lie below the phase
field simulations. Fortunately, all the three simulation classes may, in principle, be combined in
a multi-disciplinary manner into an efficient computational scheme.
In order to do design and apply such a complex modeling approach, a number of hurdles

must be overcome. For example, first-principles calculations are on one hand advantageously
free of empirical or fitting parameters (what makes them easily transferable into different en-
vironment and/or applicable to multicomponent alloys), on the other hand they are suffering
from extensive computational requirement what restricts them to rather small system sizes
ranging up to a few nanometers. Complementarily, the atomistic modeling can be extended to
larger length and time scale but its transferability and accuracy should always be checked and
ensured in advance. Also methodologically there are many challenges, as e.g. multidimensional
phase space of the interfacial misorientation degrees of freedom, suitable driving forces, and/or
large length and time scales, that must be tackled. As the present report shows, the state-of-
the-art modeling approaches systematically address these problems and the prospectives to find
suitable solutions are very encouraging.
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