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The existence of multiple solutions for a class of fourth elliptic equation with respect to the
resonance and nonresonance conditions is established by using the minimax method and Morse
theory.

1. Introduction

Consider the following Navier boundary value problem:

Δ2u(x) = f(x, u), in Ω,

u = Δu = 0 in ∂Ω,
(1.1)

where Ω is a bounded smooth domain in R
N (N > 4), and f(x, t) satisfies the following:

(H ′
1) f ∈ C1(Ω × R,R), f(x, 0) = 0, f(x, t)t ≥ 0 for all x ∈ Ω, t ∈ R;

(H ′
2) lim|t|→ 0(f(x, t)/t) = f0, lim|t|→∞(f(x, t)/t) = l uniformly for x ∈ Ω, where f0 and l

are constants;

(H ′
3) lim|t|→∞[f(x, t)t − 2F(x, t)] = −∞, where F(x, t) =

∫ t
0 f(x, s)ds.
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2 Boundary Value Problems

In view of the condition (H ′
2), problem (1.1) is called asymptotically linear at both zero

and infinity. Clearly, u = 0 is a trivial solution of problem (1.1). It follows from (H ′
1) and (H ′

2)
that the functional

I(u) =
1
2

∫

Ω
|Δu|2dx −

∫

Ω
F(x, u)dx (1.2)

is of C2 on the space H1
0(Ω) ∩H2(Ω)with the norm

‖u‖ :=
(∫

Ω
|Δu|2dx

)1/2

. (1.3)

Under the condition (H ′
2), the critical points of I are solutions of problem (1.1). Let 0 <

λ1 < λ2 < · · · < λk < · · · be the eigenvalues of (Δ2,H2(Ω) ∩ H1
0(Ω)) and φ1(x) > 0

be the eigenfunction corresponding to λ1. Let Eλk denote the eigenspace associated to λk.
Throughout this paper, we denoted by | · |p the Lp(Ω) norm.

If l in the above condition (H ′
2) is an eigenvalue of (Δ2,H2(Ω)∩H1

0(Ω)), then problem
(1.1) is called resonance at infinity. Otherwise, we call it non-resonance. A main tool of
seeking the critical points of functional I is the mountain pass theorem (see [1–3]). To apply
this theorem to the functional I in (1.2), usually we need the following condition [1], that is,
for some θ > 2 and M > 0,

(AR)

0 < θF(x, s) ≤ f(x, s)s for a.e. x ∈ Ω , |s| > M. (1.4)

It is well known that the condition (AR) plays an important role in verifying that the
functional I has a “mountain pass” geometry and a related (PS)c sequence is bounded in
H2(Ω) ∩H1

0(Ω)when one uses the mountain pass theorem.
If f(x, t) admits subcritical growth and satisfies (AR) condition by the standard

argument of applying mountain pass theorem, we known that problem (1.1) has nontrivial
solutions. Similarly, lase f(x, t) is of critical growth (see, e.g., [4–7] and their references).

It follows from the condition (AR) that lim|t|→∞(F(x, t)/t2) = +∞ after a simple
computation. That is, f(x, t) must be superlinear with respect to t at infinity. Noticing our
condition (H ′

2), the nonlinear term f(x, t) is asymptotically linear, not superlinear, with
respect to t at infinity, which means that the usual condition (AR) cannot be assumed in our
case. If the mountain pass theorem is used to seek the critical points of I, it is difficult to verify
that the functional I has a “mountain pass” structure and the (PS)c sequence is bounded.

In [8], Zhou studied the following elliptic problem:

−Δu = f(x, u), u ∈ H1
0(Ω), (1.5)

where the conditions on f(x, t) are similar to (H ′
1) and (H ′

2). He provided a valid method to
verify the (PS) sequence of the variational functional, for the above problem is bounded in
H1

0(Ω) (see also [9, 10]).
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To the author’s knowledge, there seems few results on problem (1.1) when f(x, t)
is asymptotically linear at infinity. However, the method in [8] cannot be applied directly
to the biharmonic problems. For example, for the Laplacian problem, u ∈ H1

0(Ω) implies
|u|, u+, u− ∈ H1

0(Ω), where u+ = max(u, 0), u− = max(−u, 0). We can use u+ or u− as a
test function, which is helpful in proving a solution nonnegative. While for the biharmonic
problems, this trick fails completely since u ∈ H2

0(Ω) does not imply u+, u− ∈ H2
0(Ω) (see [11,

Remark 2.1.10]). As far as this point is concerned, we will make use of the methods in [12] to
discuss in the following Lemma 2.3. In this paper we consider multiple solutions of problem
(1.1) in the cases of resonance and non-resonance by using the mountain pass theorem and
Morse theory. At first, we use the truncated skill and mountain pass theorem to obtain a
positive solution and a negative solution of problem (1.1) under our more general condition
(H ′

1) and (H ′
2) with respect to the conditions (H1) and (H3) in [8]. In the course of proving

existence of positive solution and negative solution, the monotonicity condition (H2) of [8]
on the nonlinear term f is not necessary, this point is very important because we can directly
prove existence of positive solution and negative solution by using Rabinowitz’s mountain
pass theorem. That is, the proof of our compact condition is more simple than that in [8].
Furthermore, we can obtain a nontrivial solution when the nonlinear term f is resonance or
non-resonance at the infinity by using Morse theory.

2. Main Results and Auxiliary Lemmas

Let us now state the main results.

Theorem 2.1. Assume that conditions (H ′
1) and (H ′

2) hold, f0 < λ1, and l ∈ (λk, λk+1) for some
k ≥ 2; then problem (1.1) has at least three nontrivial solutions.

Theorem 2.2. Assume that conditions (H ′
1)–(H

′
3) hold, f0 < λ1, and l = λk for some k ≥ 2; then

problem (1.1) has at least three nontrivial solutions.

Consider the following problem:

Δ2u = f+(x, u), x ∈ Ω,

u|∂Ω = Δu|∂Ω = 0,
(2.1)

where

f+(x, t) =

⎧
⎨

⎩

f(x, t), t > 0,

0, t ≤ 0.
(2.2)

Define a functional I+ : H2(Ω) ∩H1
0(Ω) → R by

I+(u) =
1
2

∫

Ω
|Δu|2dx −

∫

Ω
F+(x, u)dx, (2.3)

where F+(x, t) =
∫ t
0 f+(x, s)ds, and then I+ ∈ C2(H2(Ω) ∩H1

0(Ω),R).
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Lemma 2.3. I+ satisfies the (PS) condition.

Proof. Let {un} ⊂ H2(Ω) ∩ H1
0(Ω) be a sequence such that |I ′+(un)| ≤ c, < I ′+(un), φ >→ 0 as

n → ∞. Note that

〈
I ′+(un), φ

〉
=
∫

Ω
ΔunΔφdx −

∫

Ω
f+(x, un)φdx = o

(∥∥φ
∥
∥) (2.4)

for all φ ∈ H2(Ω) ∩ H1
0(Ω). Assume that |un|2 is bounded, taking φ = un in (2.4). By (H ′

2),
there exists c > 0 such that |f+(x, un(x))| ≤ c|un(x)|, a.e. x ∈ Ω. So un is bounded in H2(Ω) ∩
H1

0(Ω). If |un|2 → +∞, as n → ∞, set vn = un/|un|2, and then |vn|2 = 1. Taking φ = vn in
(2.4), it follows that ‖vn‖ is bounded. Without loss of generality, we assume that vn ⇀ v in
H2(Ω) ∩H1

0(Ω), and then vn → v in L2(Ω). Hence, vn → v a.e. in Ω. Dividing both sides of
(2.4) by |un|2, we get

∫

Ω
ΔvnΔφdx −

∫

Ω

f+(x, un)
|un|2

φdx = o

(∥∥φ
∥∥

|un|2

)

, ∀φ ∈ H2(Ω) ∩H1
0(Ω). (2.5)

Then for a.e. x ∈ Ω, we deduce that f+(x, un)/|un|2 → lv+ as n → ∞, where v+ = max{v, 0}.
In fact, when v(x) > 0, by (H ′

2)we have

un(x) = vn(x)|un|2 −→ +∞,

f+(x, un)
|un|2

=
f+(x, un)

un
vn −→ lv.

(2.6)

When v(x) = 0, we have

f+(x, un)
|un|2

≤ c|vn| −→ 0. (2.7)

When v(x) < 0, we have

un(x) = vn(x)|un|2 −→ −∞,

f+(x, un)
|un|2

= 0.
(2.8)

Since f+(x, un)/|un|2 ≤ c|vn|, by (2.5) and the Lebesgue dominated convergence theorem, we
arrive at

∫

Ω
ΔvΔφdx −

∫

Ω
lv+φdx = 0, for any φ ∈ H2(Ω) ∩H1

0(Ω). (2.9)
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Choosing φ = φ1, we deduce that

l

∫

Ω
v+φ1dx = λ1

∫

Ω
vφ1dx. (2.10)

Notice that

∫

Ω
v+φ1dx −

∫

Ω
vφ1dx =

∫

Ω−
−vφ1dx ≥ 0, (2.11)

where Ω− = {x ∈ Ω : v(x) < 0}.
Now we show that there is a contradiction in both cases of |Ω−| = 0 and |Ω−| > 0.

Case 1. Suppose |Ω−| = 0, then v(x) ≥ 0 a.e. in Ω. By v(x)/≡ 0 we have
∫
Ω vφ1dx > 0. Thus

(2.11) implies that

l

∫

Ω
vφ1dx = l

∫

Ω
v+φ1dx = λ1

∫

Ω
vφ1dx (2.12)

which contradicts to l > λ1.

Case 2. Suppose |Ω−| > 0, then
∫
Ω−

−vφ1dx > 0, and
∫
Ω v+φ1dx >

∫
Ω vφ1dx. It follows from

(2.11) that

l

∫

Ω
v+φ1dx = λ1

∫

Ω
vφ1dx < λ1

∫

Ω
v+φ1dx (2.13)

which contradicts to l > λ1 if
∫
Ω v+φ1dx > 0 and contradicts to 0/< 0 if

∫
Ω v+φ1dx = 0.

Lemma 2.4. Let φ1 be the eigenfunction corresponding to λ1 with ‖φ1‖ = 1. If f0 < λ1 < l, then

(a) there exist ρ, β > 0 such that I+(u) ≥ β for all u ∈ H2(Ω) ∩H1
0(Ω) with ‖u‖ = ρ;

(b) I+(tφ1) = −∞ as t → +∞.

Proof. By (H ′
1) and (H ′

2), if l ∈ (λ1,+∞), for any ε > 0, there exist A = A(ε) ≥ 0 and B = B(ε)
such that for all (x, s) ∈ Ω × R,

F+(x, s) ≤ 1
2
(
f0 + ε

)
s2 +Asp+1, (2.14)

F+(x, s) ≥ 1
2
(l − ε)s2 − B, (2.15)

where p ∈ (1, (N + 4)/(N − 4)) if N > 4.
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Choose ε > 0 such that f0 + ε < λ1. By (2.14), the Poincaré inequality, and the Sobolev
inequality, we get

I+(u) =
1
2

∫

Ω
|Δu|2dx −

∫

Ω
F+(x, u)dx

≥ 1
2

∫

Ω
|Δu|2dx − 1

2

∫

Ω

[(
f0 + ε

)
u2 +A|u|p+1

]
dx

≥ 1
2

(
1 − f0 + ε

λ1

)
‖u‖2 − c‖u‖p+1.

(2.16)

So, part (a) holds if we choose ‖u‖ = ρ > 0 small enough.
On the other hand, if l ∈ (λ1,+∞), take ε > 0 such that l − ε > λ1. By (2.15), we have

I+(u) ≤ 1
2
‖u‖2 − l − ε

2
|u|22 + B|Ω|. (2.17)

Since l − ε > λ1 and ‖φ1‖ = 1, it is easy to see that

I+
(
tφ1

) ≤ 1
2

(
1 − l − ε

λ1

)
t2 + B|Ω| −→ −∞ as t −→ +∞, (2.18)

and part (b) is proved.

Lemma 2.5. Let H2(Ω) ∩ H1
0(Ω) = V ⊕ W , where V = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk . If f satisfies

(H ′
1)–(H

′
3), then

(i) the functional I is coercive on W , that is,

I(u) −→ +∞ as ‖u‖ −→ +∞, u ∈ W (2.19)

and bounded from below on W ;

(ii) the functional I is anticoercive on V .

Proof. For u ∈ W , by (H ′
2), for any ε > 0, there exists B1 = B1(ε) such that for all (x, s) ∈ Ω×R,

F(x, s) ≤ 1
2
(l + ε)s2 + B1. (2.20)

So we have

I(u) =
1
2

∫

Ω
|Δu|2dx −

∫

Ω
F(x, u)dx

≥ 1
2

∫

Ω
|Δu|2dx − 1

2
(l + ε)|u|22 − B1|Ω|

≥ 1
2

(
1 − l + ε

λk+1

)
‖u‖2 − B1|Ω|.

(2.21)

Choose ε > 0 such that l + ε < λk+1. This proves (i).
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(ii) We firstly consider the case l = λk. Write G(x, t) = F(x, t) − (1/2)λkt2, g(x, t) =
f(x, t) − λkt. Then (H ′

2) and (H ′
3) imply that

lim
|t|→∞

[
g(x, t)t − 2G(x, t)

]
= −∞, (2.22)

lim
|t|→∞

2G(x, t)
t2

= 0. (2.23)

It follows from (2.22) that for every M > 0, there exists a constant T > 0 such that

g(x, t)t − 2G(x, t) ≤ −M, ∀t ∈ R, |t| ≥ T, a.e. x ∈ Ω. (2.24)

For τ > 0, we have

d

dτ

G(x, τ)
τ2

=
g(x, τ)τ − 2G(x, τ)

τ3
. (2.25)

Integrating (2.25) over [t, s] ⊂ [T,+∞), we deduce that

G(x, s)
s2

− G(x, t)
t2

≤ M

2

(
1
s2

− 1
t2

)
. (2.26)

Let s → +∞ and use (2.23); we see that G(x, t) ≥ M/2, for t ∈ R, t ≥ T, a.e. x ∈ Ω. A similar
argument shows that G(x, t) ≥ M/2, for t ∈ R, t ≤ −T, a.e. x ∈ Ω. Hence

lim
|t|→∞

G(x, t) −→ +∞, a.e. x ∈ Ω. (2.27)

By (2.27), we get

I(v) =
1
2

∫

Ω
|Δv|2dx −

∫

Ω
F(x, v)dx

=
1
2

∫

Ω
|Δv|2dx − 1

2
λk

∫

Ω
v2dx −

∫

Ω
G(x, v)dx

≤ −δ∥∥v−∥∥2 −
∫

Ω
G(x, v)dx −→ −∞

(2.28)

for v ∈ V with ‖v‖ → +∞, where v− ∈ Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk−1 .
In the case of λk < l < λk+1, we do not need the assumption (H ′

3) and it is easy to see
that the conclusion also holds.
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Lemma 2.6. If λk < l < λk+1, then I satisfies the (PS) condition.

Proof. Let {un} ⊂ H2(Ω)∩H1
0(Ω) be a sequence such that |I(un)| ≤ c, < I ′(un), φ >→ 0. One

has

〈
I ′(un), φ

〉
=
∫

Ω
ΔunΔφdx −

∫

Ω
f(x, un)φdx = o

(∥∥φ
∥
∥) (2.29)

for all φ ∈ H2(Ω) ∩ H1
0(Ω). If |un|2 is bounded, we can take φ = un. By (H ′

2), there exists a
constant c > 0 such that |f(x, un(x))| ≤ c|un(x)|, a.e. x ∈ Ω. So un is bounded in H2(Ω) ∩
H1

0(Ω). If |un|2 → +∞, as n → ∞, set vn = un/|un|2, and then |vn|2 = 1. Taking φ = vn

in (2.29), it follows that ‖vn‖ is bounded. Without loss of generality, we assume vn ⇀ v in
H2(Ω) ∩H1

0(Ω), and then vn → v in L2(Ω). Hence, vn → v a.e. in Ω. Dividing both sides of
(2.29) by |un|2, we get

∫

Ω
ΔvnΔφdx −

∫

Ω

f(x, un)
|un|2

φdx = o

(∥∥φ
∥∥

|un|2

)

for any φ ∈ H2(Ω) ∩H1
0(Ω). (2.30)

Then for a.e. x ∈ Ω, we have f(x, un)/|un|2 → lv as n → ∞. In fact, if v(x)/= 0, by (H ′
2), we

have

|un(x)| = |vn(x)||un|2 −→ +∞,

f(x, un)
|un|2

=
f(x, un)

un
vn −→ lv.

(2.31)

If v(x) = 0, we have

∣∣f(x, un)
∣∣

|un|2
≤ c|vn| −→ 0. (2.32)

Since |f(x, un)|/|un|2 ≤ c|vn|, by (2.30) and the Lebesgue dominated convergence theorem,
we arrive at

∫

Ω
ΔvΔφdx −

∫

Ω
lvφdx = 0, ∀φ ∈ H2(Ω) ∩H1

0(Ω). (2.33)

It is easy to see that v /≡ 0. In fact, if v ≡ 0, then |v|2 = 0 contradicts to limn→∞|vn|2 = |v|2 = 1.
Hence, l is an eigenvalue of (Δ2,H2(Ω) ∩H1

0(Ω)). This contradicts our assumption.

Lemma 2.7. Suppose that l = λk and f satisfies (H ′
3). Then the functional I satisfies the (C) condition

which is stated in [13].

Proof. Suppose un ∈ H2(Ω) ∩H1
0(Ω) satisfies

I(un) −→ c ∈ R, (1 + ‖un‖)
∥∥I ′(un)

∥∥ −→ 0 as n −→ ∞. (2.34)
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In view of (H ′
2), it suffices to prove that un is bounded inH2(Ω) ∩H1

0(Ω). Similar to the proof
of Lemma 2.6, we have

∫

Ω
ΔvΔφdx −

∫

Ω
lvφdx = 0, ∀φ ∈ H2(Ω) ∩H1

0(Ω). (2.35)

Therefore v /≡ 0 is an eigenfunction of λk, then |un(x)| → ∞ for a.e. x ∈ Ω. It follows from
(H ′

3) that

lim
n→+∞

[
f(x, un(x))un(x) − 2F(x, un(x))

]
= −∞ (2.36)

holds uniformly in x ∈ Ω, which implies that

∫

Ω

(
f(x, un)un − 2F(x, un)

)
dx −→ −∞ as n −→ ∞. (2.37)

On the other hand, (2.34) implies that

2I(un) −
〈
I ′(un), un

〉 −→ 2c as n −→ ∞. (2.38)

Thus

∫

Ω

(
f(x, un)un − 2F(x, un)

)
dx −→ 2c as n −→ ∞, (2.39)

which contradicts to (2.37). Hence un is bounded.

It is well known that critical groups and Morse theory are the main tools in solving
elliptic partial differential equation. Let us recall some results which will be used later. We
refer the readers to the book [14] for more information on Morse theory.

LetH be a Hilbert space, let I ∈ C1(H,R) be a functional satisfying the (PS) condition
or (C) condition, let Hq(X,Y ) be the qth singular relative homology group with integer
coefficients. Let u0 be an isolated critical point of I with I(u0) = c, c ∈ R, and let U be a
neighborhood of u0. The group

Cq(I, u0) := Hq(Ic ∩U, Ic ∩U \ {u0}), q ∈ Z (2.40)

is said to be the qth critical group of I at u0, where Ic = {u ∈ H : I(u) ≤ c}.
Let K := {u ∈ H : I ′(u) = 0} be the set of critical points of I and a < inf I(K); the

critical groups of I at infinity are formally defined by (see [15])

Cq(I,∞) := Hq(H, Ia), q ∈ Z. (2.41)

The following result comes from [14, 15] and will be used to prove the results in this
paper.
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Proposition 2.8 (see [15]). Assume that H = H+
∞ ⊕ H−

∞, I is bounded from below on H+
∞ and

I(u) → −∞ as ‖u‖ → ∞ with u ∈ H−
∞. Then

Ck(I,∞) � 0, if k = dimH−
∞ < ∞. (2.42)

3. Proof of the Main Results

Proof of Theorem 2.1. By Lemmas 2.32.4 and the mountain pass theorem, the functional I+ has
a critical point u1 satisfying I+(u1) ≥ β. Since I+(0) = 0, u1 /= 0, and by the maximum principle,
we get u1 > 0. Hence u1 is a positive solution of the problem (1.1) and satisfies

C1(I+, u1)/= 0, u1 > 0. (3.1)

Using the results in [14], we obtain

Cq(I, u1) = Cq

(
IC1

0(Ω), u1

)
= Cq

(
I+ |C1

0(Ω), u1

)
= Cq(I+, u1) = δq1Z. (3.2)

Similarly, we can obtain another negative critical point u2 of I satisfying

Cq(I, u2) = δq,1Z. (3.3)

Since f0 < λ1, the zero function is a local minimizer of I, and then

Cq(I, 0) = δq,0Z. (3.4)

On the other hand, by Lemmas 2.52.6 and Proposition 2.8, we have

Ck(I,∞) � 0. (3.5)

Hence I has a critical point u3 satisfying

Ck(I, u3) � 0. (3.6)

Since k ≥ 2, it follows from (3.2)–(3.6) that u1, u2, and u3 are three different nontrivial
solutions of problem (1.1).

Proof of Theorem 2.2. By Lemmas 2.52.7 and the Proposition 2.8, we can prove the conclusion
(3.5). The other proof is similar to that of Theorem 2.1.
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