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Abstract In this paper, we discuss existence, stability,
and symmetry of solutions for networks of parametri-
cally forced oscillators. We consider a nonlinear oscil-
lator model with strong 2:1 resonance via parametric
excitation. For uncoupled systems, the 2:1 resonance
property results in sets of solutions that we classify us-
ing a combinatorial approach. The symmetry proper-
ties for solution sets are presented as are the group op-
erators that generate the isotropy subgroups. We then
impose weak coupling and prove that solutions from
the uncoupled case persist for small coupling by using
an appropriate Poincaré map and the Implicit Func-
tion Theorem. Solution bifurcations are investigated as
a function of coupling strength and forcing frequency
using numerical continuation techniques. We find that
the characteristics of the single oscillator system are
transferred to the network under weak coupling. We
explore interesting dynamics that emerge with larger
coupling strength, including anti-synchronized chaos
and unsynchronized chaos. A classification for the
symmetry-breaking that occurs due to weak coupling
is presented for a simple example network.
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1 Introduction

The scientific study of coupled oscillators started with
Christian Huygens’ observations in the seventeenth
century of mutual synchronization of pendulum clocks
connected by a beam [4, 15]. More recently, it has
been recognized that mutual synchronization of cou-
pled oscillators—the adjustment of rhythms of oscil-
lating systems due to their weak interactions—occurs
in many biological systems, including neurons during
epileptic seizures [30] and pacemaker cells in the hu-
man heart [19]. Coupled oscillators have also been
studied in detail for technological systems, such as
arrays of lasers and superconducting Josephson junc-
tions: see [25, 27], and [28], a recent popular book on
the topic, for many biological and technological exam-
ples of synchronization for coupled oscillators.

We classify as autonomous oscillators those for
whom the stable oscillations occur for an autonomous
dynamical system, that is one for which there are no
explicit time-dependent terms in the evolution equa-
tion. For example, the oscillations might arise through
a Hopf bifurcation. In the limit of weak coupling,
it is possible to reduce the dynamics of coupled au-
tonomous oscillators to a phase model, with a single
variable describing the phase of each oscillator with
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respect to some reference state (see, e.g., [7, 13, 17,
33]). This typically leads to models for which the dy-
namics depend only on the phase differences between
different oscillators.

It is possible to show that several types of phase-
locked solutions, for which the phase of all oscillators
increases at the same constant rate, are guaranteed to
exist in the weak coupling limit for any generic cou-
pling function when the coupling topology has appro-
priate symmetry properties [1, 6, 9, 24]; for the case of
identical all-to-all coupling for N oscillators, these are
(i) in-phase solution: all N oscillators have the same
phase; (ii) two-block solutions: there are two blocks of
oscillators, one in which p oscillators share the same
phase, and one in which N − p oscillators share the
same phase; (iii) rotating-block solutions: for N = mk,
there are m blocks with k oscillators in each block
sharing the same phase, with neighboring blocks dif-
fering in phase by 2π/m; (iv) double-rotating-block
solutions: for N = m(k1 + k2), there are two rotating-
block solutions, one with m blocks with k1 oscilla-
tors in each block sharing the same phase and with
neighboring blocks differing in phase by 2π/m, an-
other with m blocks with k2 oscillators in each block
sharing the same phase and with neighboring blocks
differing in phase by 2π/m, where there is a phase
difference 0 < φ < 2π/m between a block with k1 os-
cillators and the closest phase-advanced block with k2

oscillators.
On the other hand, we classify as non-autonomous

oscillators those for whom the stable oscillations only
occur for a non-autonomous dynamical system, that
is one for which there are explicit time-dependent
terms such as time-periodic forcing. We will focus
on parametrically forced oscillators, which are non-
autonomous oscillators for which the forcing enters as
a time-varying system parameter. Coupled parametri-
cally forced oscillators arise in MEMS [5, 8, 18] and
other application areas [2, 3, 12, 29], but have not re-
ceived as much theoretical research attention as cou-
pled autonomous oscillator systems. This paper rep-
resents the first step in developing a comprehensive
theory of the dynamics of general weakly coupled
non-autonomous oscillators, in the spirit of the the-
ory of general weakly coupled autonomous oscilla-
tors described in [1, 6]. We hope that such a theory
will ultimately lead to novel sensing mechanisms us-
ing MEMS devices; for simplicity, here we will con-
sider a model system which represents only a carica-
ture of such devices.

Specifically, in this paper we describe interesting
synchronization phenomena that are possible for cou-
pled parametrically forced oscillators. For example,
consider two uncoupled oscillators whose response is
at half the frequency of the driving voltage, as is com-
mon for MEMS devices [31]. Both oscillators could
identically lock to the forcing, or they could lock
one forcing period apart—both situations are allow-
able due to a discrete time-translation symmetry for
the problem. We will show that different combina-
tions of these states will persist if the oscillators are
weakly coupled, with stability inherited from the sta-
bility properties of the periodic orbits which exist for
the uncoupled system. This paper is an extension of re-
sults investigated in [20], and is organized as follows.

In Sect. 2 we consider the dynamics of a specific
single parametrically forced oscillator and show that
the origin is a stable equilibrium in the absence of
forcing, and that for certain ranges of forcing fre-
quency there exists a stable periodic orbit. Then, in
Sect. 3.1, we consider a set of N uncoupled parametri-
cally forced oscillators, identifying different periodic
states for such systems. In Sect. 3.2, the isotropy sub-
groups are presented as well as examples of the group
operations that generate them.

Section 4.1 shows that provided the periodic or-
bits for the uncoupled system are hyperbolic, there
will be periodic orbits for the weakly coupled sys-
tem close to the periodic states identified for the un-
coupled system. We prove this fact using an appro-
priate Poincaré map and the Implicit Function Theo-
rem. In Sect. 4.2, we investigate the N = 2 case in
the presence of bi-directional coupling. We explore
the bifurcation structure of solutions with respect to
both coupling strength and forcing frequency. Inter-
esting dynamics, such as anti-synchronized chaos, are
found when the magnitude of the coupling strength
is increased. Sect. 4.3 provides a detailed analysis of
the N = 3 case in the presence of bidirectional cou-
pling for both the ring topology and the line topology.
We perform a set of numerical bifurcation analyses
to show how the magnitude and stability of the peri-
odic oscillations vary with forcing frequency. For the
N = 3 case, we classify how the symmetry present in
the uncoupled solution is either preserved or destroyed
due to coupling for a simple example system for both
the ring and the line topologies. We then relate the two
topologies using an intermediate morphing topology
(a ring with a single variable connection) and discuss
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Fig. 1 Bifurcation diagram
for fixed b = 0.2 and
F = 0.5. Solid (resp.,
dashed) lines indicate stable
(resp., unstable) solutions

how symmetry-related solutions organize differently
depending on the network structure. We describe how
these results can be generalized to N coupled paramet-
rically forced oscillators in Sect. 4.4. Finally, we give
conclusions in Sect. 5.

2 A parametrically forced oscillator

Consider the equation for a damped, parametrically
forced oscillator

ẍ + bẋ + x + x3 = xF cos(ωf t). (1)

Here the term bẋ represents damping (we assume
b > 0), the term x+x3 represents a nonlinear restoring
force, and the term xF cos(ωf t) represents paramet-
ric excitation which can be viewed as a time-periodic
modulation of the linear part of the restoring force. For
this system, if F = 0 then x → 0 as t → ∞, as fol-
lows. Letting

V (x, ẋ) = 1

2
x2 + 1

4
x4 + 1

2
ẋ2, (2)

we find that

dV

dt
= −bẋ2 ≤ 0,

with equality only if ẋ = 0. The only point in phase
space which starts in the set of points for which
V (x, ẋ) = 0 and remains in this set for all time
is (x, ẋ) = (0,0); by the LaSalle Invariance Prin-

ciple [32], all trajectories thus approach this point
as t → ∞.

For appropriate F and ωf , the system has a peri-
odic response. Indeed, treating ωf as a bifurcation pa-
rameter for fixed F and b, we obtain the bifurcation
diagram shown in Fig. 1. (This and other numerical
bifurcation analyses were done using AUTO [10] or
XPP [11].) The 0 solution is characterized by x = ẋ =
0 for all time; it exists for all ωf , being unstable near
ωf = 2 and stable otherwise for the range shown. It
loses stability in a bifurcation to a periodic orbit, with
the periodic orbit branch turning around in a saddle-
node bifurcation so that there is a region of bistability
between the periodic orbit and the 0 solution. Such a
bifurcation structure is common for MEMS devices,
see e.g. [26, 34].

Figure 2 indicates the types of dynamics which oc-
cur in different parameter ranges, with the “parabola”
corresponding to the loss of stability of the 0 so-
lution, and the “straight line” corresponding to the
saddle-node bifurcation of the periodic orbit branch.
As shown in Fig. 3, the response of this periodic orbit
is at half the frequency of the forcing, as is common for
parametrically forced oscillators [23]. We note that an
equally valid periodic orbit for this forcing is shown
in Fig. 4, which is shifted by one period of the forc-
ing from the solution shown in Fig. 3; clearly these
solutions are related by a time-translation symmetry.
Indeed, our example oscillator governed by (1) has a
very convenient form of discrete time-translation sym-
metry which is also related to phase space symmetry:
translating by one forcing period is equivalent to mul-
tiplying both states at time t by −1, so (x(t + T ),
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Fig. 2 Existence and
stability of solutions for
different regions of
parameter space for
b = 0.2, with bifurcations
sets shown as lines

Fig. 3 Stable periodic orbit
for b = 0.2, F = 0.5,
ωf = 2. The response is at
half the frequency of the
forcing. We will refer to
this as the A solution

ẋ(t + T )) = (−x(t),−ẋ(t)). These symmetry-related
solutions will be crucial for understanding the dif-
ferent possible solutions when such oscillators are
weakly coupled. We will find it convenient to distin-
guish the solutions shown in Figs. 3 and 4 by refer-
ring to one of them as the A solution and the other
as the B solution. We introduce a new solution label
z ∈ {A,B,0}. The A and B solutions have the same
max(x) value, and the periodic orbit branch in Fig. 1
corresponds to both (symmetry-related) solutions. The
z = 0 label corresponds to the previously defined 0 so-
lution, x = ẋ = 0. This notation will greatly simplify
the following presentation.

3 Uncoupled parametrically forced oscillators

3.1 Combinatorial considerations

Suppose

b = 0.2, F = 0.5, ωf = 2,

so that when c = 0, each oscillator could be in a stable
periodic state given by the A and B solutions, or it
could be in the unstable 0 solution. There will be 3N

distinct periodic orbits for c = 0: oscillator 1 could be
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Fig. 4 Stable periodic orbit
for b = 0.2, F = 0.5,
ωf = 2. This is shifted by
one period of the forcing
from the solution shown in
Fig. 3. We will refer to this
as the B solution

in A, B , or 0, oscillator 2 could be in A, B , or 0, etc.
Of these solutions, a total of

N !
pA!pB !p0! (3)

solutions will have pz oscillators in each state z = A,
B , or 0, where pA + pB + p0 = N . This follows
from the following combinatorial argument. Suppose
we make a list of N symbols such that the ith symbol
is A, B , or 0 according to whether the ith oscillator
is in the A, B , or 0 state, respectively. In the N slots,
there are(

N

pA

)
= N !

pA!(N − pA)!

different ways to put the symbol A in pA of the slots.
Of the remaining (N − pA) slots, there are

(
N − pA

pB

)
= (N − pA)!

pB !(N − pA − pB)!

different ways to put the symbol B in pB of the slots.
The remaining (N −pA −pB) slots will have the sym-
bol 0. The product of these is

N !
pA!(N − pA)! × (N − pA)!

pB !(N − pA − pB)! = N !
pA!pB !p0! ,

as in (3). As an illustration, suppose N = 4, pA = 2,
pB = 1, and p0 = 1. The different possible lists of
symbols are

AAB0 AA0B ABA0

A0AB AB0A A0BA

BAA0 0AAB BA0A

0ABA B0AA 0BAA,

giving a total of

4!
2!1!1! = 12

possibilities. This combinatorial argument readily
generalizes to situations in which more than three
states are possible for each oscillator, for example
when b = 0.2, F = 0.5, and ωf = 2.25.

3.2 Symmetry considerations

Periodic solution trajectories of an uncoupled N os-
cillator system are described by the population label-
ing variable z, a length-N set of single oscillator so-
lution labels zi for i = 1, . . . ,N . Since the order of
the entries is irrelevant for an uncoupled system, we
can group any state string into successive substrings of
A’s, B’s, and 0’s. For example, a 00A0AB0AB state
is equivalent to an AAABB0000 state. In any state
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string, there are NA A’s, NB B’s, and N0 0’s, where
NA + NB + N0 = N .

It is possible to classify solutions of dynamical sys-
tems with symmetry according to their isotropy sub-
group, which is the subgroup of all symmetry opera-
tions which leave the solution unchanged. It is conve-
nient to order the solution into the substrings of A’s,
B’s, and 0’s as described above. Then, we see that the
isotropy subgroup of the system is

S(NA+NB) × SN0, (4)

where

S(NA+NB) = 〈κ1, κ2〉, SN0 = 〈κ3, κ4〉,

κ1 · (z1, z2, . . . , zNA−1, zNA
,

zNA+1, zNA+2, . . . , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, . . . , zN−1, zN

)
→ (

z2, z1, . . . , zNA−1, zNA
,

zNA+1, zNA+2, . . . , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, . . . , zN−1, zN

)
,

κ2 · (z1, z2, . . . , zNA−1, zNA
,

zNA+1, zNA+2, . . . , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, . . . , zN−1, zN

)
→ (−zNA+NB

, z1, z2, . . . , zNA−1,

−zNA
, zNA+1, zNA+2, . . . , zNA+NB−1,

zNA+NB+1, zNA+NB+2, . . . , zN−1, zN

)
,

κ3 · (z1, z2, . . . , zNA−1, zNA
,

zNA+1, zNA+2, . . . , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, . . . , zN−1, zN

)
→ (

z1, z2, . . . , zNA−1, zNA
,

zNA+1, zNA+2, . . . , zNA+NB−1, zNA+NB
,

zNA+NB+2, zNA+NB+1, . . . , zN−1, zN

)
,

κ4 · (z1, z2, . . . , zNA−1, zNA
,

zNA+1, zNA+2, . . . , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, . . . , zN−1, zN

)
→ (

z1, z2, . . . , zNA−1, zNA
,

zNA+1, zNA+2, . . . , zNA+NB−1, zNA+NB
,

zN , zNA+NB+1, zNA+NB+2, . . . , zN−1
)
.

In words, κ1 swaps the first two A solutions, κ2 is
a cyclic permutation of the A and B solutions with
minus signs appropriately included, κ3 swaps the first
two 0 solutions, and κ4 is a cyclic permutation of the
0 solutions. The intuition behind this result is that the
solution is unchanged by permuting the first NA + NB

states (the A and B states) however one desires, pro-
vided the A and B states are transformed into each
other through appropriate multiplications by −1. The
N0 0 solutions can be permuted however desired with-
out changing the solution.

Let us again consider our example system
AAABB0000. This solution has isotropy subgroup
S5 × S4, being unchanged by multiplication by any
product of κ1, κ2, κ3, κ4. For example, it is unchanged
under

κ3κ
2
2 κ1κ2κ1κ

3
2 · (z1, z2, z3, z4, z5, z6, z7, z8, z9)

→ (−z5, z1,−z4,−z2,−z3, z7, z6, z8, z9).

This discussion readily generalizes to conditions
where the individual oscillators have more than three
possible states by including additional κ operators to
swap and permute the additional possible states.

4 Coupled parametrically forced oscillators

4.1 Periodic orbits for weakly coupled oscillators

When c �= 0 but is small, we expect solutions analo-
gous to those for c = 0 to exist, as follows. We write
our system as

ẋ = f(x, t) + cg(x), (5)

where

x = (
x1, ẋ1, . . . , xN , ẋN

)T
, (6)

f(x, t) captures the terms which are independent of c,
and g(x) captures the coupling terms. Let T = 2π/ωf

be the period of the forcing. We define Pc to be the
time-2T map, that is, the map which takes an initial
condition (the state at t = 0) to the state obtained by
evolving for a time equal to twice the period of the
forcing. Now, let

h(x, c) = Pc(x) − x, (7)
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and let q0 be a point on one of the periodic solutions of
the uncoupled problem, for example the AA solution
in the N = 2 case. We see that

h
(
q0,0

) = 0. (8)

The Implicit Function Theorem (see Appendix) then
implies that, provided the matrix Dxh(q0,0) is invert-
ible, there is a unique solution q(c) close to q0, for
any sufficiently small c, such that h(q(c), c) = 0. This
implies that

Pc

(
q(c)

) = q(c), (9)

that is, q(c) ≈ q0 is a fixed point of the time-2T map,
which means that it is a point on a periodic orbit with
period 2T which is close to a periodic orbit of the un-
coupled system. (A related argument is used to prove
part (ii) of Theorem 4.1.1 in [14].)

It is instructive to consider an alternative, but equiv-
alent argument. We know that q0 is a fixed point of P0,
that is,

P0(q0) = q0. (10)

We will determine, to leading order in c, the condition
which must be met for q(c) to be a fixed point of Pc .
Consider the asymptotic expansions

q(c) = q0 + cq1 + · · · , (11)

Pc(x) = P0(x) + cp1(x) + · · · . (12)

Setting Pc(q(c)) = q(c), we obtain

q0 + cq1 + · · ·
= Pc(q0 + cq1 + · · ·)
= P0(q0 + cq1 + · · ·) + p1(q0 + cq1 + · · ·)
= P0(q0) + cDP0(q0)q1 + cp1(q0) + · · · .

This is valid at O(c0) from (10). At O(c1), we need

q1 = DP0(q0)q1 + p1(q0). (13)

Solving for q1,

q1 = [
Id − DP0(q0)

]−1
p1(q0), (14)

where Id is the identity matrix. In order to solve for
q1, it is necessary that [Id − DP0(q0)] be invertible.

This is equivalent to the above condition for the Im-
plicit Function Theorem to hold that Dxh(q0,0) be
invertible.

We now show that this matrix is invertible provided
the periodic orbit for the uncoupled system is hyper-
bolic. Suppose that v is an eigenvector of DP0(q0)

with eigenvalue λ, so that[
DP0(q0)

]
v = λv. (15)

Then(
Id − [

DP0(q0)
])

v = (1 − λ)v. (16)

Thus, the matrix (Id − [DP0(q0)]) only has a zero
eigenvalues if λ = 1. But the eigenvalues of DP0(q0)

give the stability of the periodic orbit for the uncou-
pled problem; in particular, if it is a hyperbolic peri-
odic orbit, none of the eigenvalues is on the unit circle.
The hyperbolicity condition only needs to be checked
for a single uncoupled oscillator, since we are assum-
ing that the oscillators are identical.

Summarizing, provided the periodic orbit for the
uncoupled system is hyperbolic, there will be a nearby
periodic orbit for the system with sufficiently small
coupling.

Furthermore, we expect that since the c → 0 sys-
tem limits to the c = 0 system, the periodic orbit for
the weakly coupled system will “inherit” the stabil-
ity properties from the periodic orbit for the uncou-
pled system. This follows from the continuity of the
Poincaré map with respect to c, giving

lim
c→0

DPc

(
q(c)

) = DP0(q0). (17)

This implies that the eigenvalues corresponding to the
stability of the q(c) periodic orbit for the coupled sys-
tem tend toward the eigenvalues corresponding to the
stability of the q0 periodic orbit for the uncoupled sys-
tem.

4.2 N = 2 coupled oscillators

Now consider N = 2 parametrically forced oscillators
which are coupled linearly:

ẍ1 + bẋ1 + x1 + x3
1 = x1F cos(ωf t) + c(x2 − x1),

(18)

ẍ2 + bẋ2 + x2 + x3
2 = x2F cos(ωf t) + c(x1 − x2),

(19)

where xi is the position of the ith oscillator, i = 1,2.
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If c = 0, these are independent parametrically
forced oscillators. Thus, for b = 0.2, F = 0.5, and
ωf = 2, each oscillator could be in a stable periodic
state given by the A or B solutions; each oscillator
also has an unstable 0 solution. The periodic solutions
for the uncoupled two-oscillator system are given in
Table 1.

Here the first symbol characterizes the state of
the first oscillator, and the second symbol character-
izes the state of the second oscillator. In-phase solu-
tions have both oscillators responding identically to
the forcing, while out-of-phase solutions correspond
to each oscillator undergoing an oscillation which is
shifted by one period of the forcing relative to the
other. Large-small solutions have one oscillator un-
dergoing oscillations locked to the forcing while the
other oscillator is stationary. The name comes from

Table 1 Periodic solutions for uncoupled two-oscillator system

Type Equivalent states

In-phase AA, BB

Out-of-phase AB, BA

Large-small A0, B0, 0A, 0B

00 solution 00

the result that when weak coupling is introduced, the
former oscillator will undergo relatively large oscil-
lations, while the latter will undergo relatively small
oscillations. For the 00 solution, both oscillators are
stationary. The distinct solutions within a given class
(in-phase, out-of-phase, or large-small) are related by
symmetry.

Results for c �= 0 are illustrated for (18)–(19) for
b = 0.2, F = 0.5, ωf = 2 in Fig. 5, which show that
for small c > 0, periodic orbits of the expected stabil-
ity type exist and are close to the periodic orbits for
the uncoupled system. Indeed, for the uncoupled sys-
tem the A and B solutions are stable and the 0 solu-
tion is unstable (see Fig. 1); thus, the AA and AB so-
lutions (and their symmetry-related counterparts BB

and BA, respectively) are expected to be stable for
small |c|, while the others are expected to be unstable.
Figure 5 shows that as c increases, the out-of-phase
AB solution loses stability. This illustrates that our ar-
guments above are only valid for small |c|. We note
that, in this figure, the fact that the branches come to-
gether at c = 0 is an artifact of the projection. The
solutions are actually separated in phase space: even
though they share the same value for max(|x1|), the
second oscillator has different behavior. Therefore, the
uniqueness property from the Implicit Function Theo-
rem argument is not violated.

Fig. 5 Bifurcation diagram for fixed b = 0.2, F = 0.5, ωf = 2
with the coupling strength c treated as a bifurcation parameter.
Solid (resp., dashed) lines indicate stable (resp., unstable) solu-
tions. For small (positive) c, from top to bottom, the solutions of
the branches approach the AA, A0, AB , 0A, and 00 as c → 0.

Note, for example, that the AA and BB solutions have the same
max(x1) value, and thus appear to be on the same branch in this
projection. A similar coincidence between symmetry-related
solutions occurs for all other branches
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Fig. 6 Bifurcation diagram
for fixed b = 0.2, F = 0.5,
ωf = 2.25 with the
coupling strength c treated
as a bifurcation parameter.
Solid (resp., dashed) lines
indicate stable (resp.,
unstable) solutions

Fig. 7 Partial bifurcation
diagram for (18)–(19) for
fixed b = 0.2, F = 0.5,
c = 0.03 with ωf treated as
a bifurcation parameter.
Solid (resp., dashed) lines
indicate stable (resp.,
unstable) solutions

For b = 0.2, F = 0.5, ωf = 2.25, Fig. 1 shows that
the 0 solution is stable, and that there are stable pe-
riodic orbits (which are analogs of the A and B so-
lutions discussed above) and unstable periodic orbits.
Figure 6 shows that for small c > 0, periodic orbits of
the expected stability type exist and are close to the pe-
riodic orbits for the uncoupled system. (To aid in inter-
preting this plot, we note that the maximum x values
for the stable and unstable periodic orbits are approx-
imately 0.72 and 0.45, respectively.) Indeed, for the
uncoupled system the A, B , and 0 solutions are stable;
thus, the in-phase AA solutions, out-of-phase AB so-
lutions, large-small solutions (which in the limit c → 0
approach the A0 solutions), and 00 solution are all sta-
ble for small |c|. All solutions which involve an unsta-

ble periodic orbit for the uncoupled system as c → 0
are unstable.

We now fix the coupling strength as c = 0.03 and
take b = 0.2, F = 0.5, and treat ωf as a bifurcation
parameter. Figure 7 shows the corresponding bifurca-
tion diagram for the in-phase, out-of-phase, and 00 so-
lutions. We see that the in-phase and out-of-phase so-
lutions bifurcate from the 00 solution at different val-
ues of ωf . As expected from the discussion above, for
ωf = 2 both the in-phase and out-of-phase solutions
are stable, while for ωf = 2.25 the in-phase, out-of-
phase, and 00 solutions are all stable. We expect at
ωf = 2.25 there will be large-small solutions; this is
verified in Fig. 8 which identifies them as being on a
branch which bifurcates from the out-of-phase solu-
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Fig. 8 Full bifurcation
diagram for (18)–(19) for
fixed b = 0.2, F = 0.5,
c = 0.03 with ωf treated as
a bifurcation parameter.
Solid (resp., dashed) lines
indicate stable (resp.,
unstable) solutions

Fig. 9 Example of a
large-small periodic orbit
for N = 2, b = 0.2,
F = 0.5, ωf = 2.25,
c = 0.03. In the lower
panel, the dark line and
light line correspond to the
two different oscillators

tion branch. The large-small solution at ωf = 2.25 is
shown in Fig. 9.

Although our analytical results only apply in the
weak coupling limit, we note that interesting dynamics
occur for larger |c|, such as anti-synchronized chaotic
behavior for b = 0.2, F = 0.5, ωf = 2, and c = −0.9
shown in Figs. 10 and 11.

4.3 N = 3 coupled oscillators

For the identical bidirectional coupling considered in
this paper, the N = 3 case is the smallest network
wherein network topology plays a significant role. We

consider

ẍ1 + bẋ1 + x1 + x3
1

= x1F cos(ωf t) + c(x2 − x1) + c̃(x3 − x1), (20)

ẍ2 + bẋ2 + x2 + x3
2

= x2F cos(ωf t) + c(x1 − x2) + c(x3 − x2), (21)

ẍ3 + bẋ3 + x3 + x3
3

= x3F cos(ωf t) + c̃(x1 − x3) + c(x2 − x3). (22)

The cases c̃ = c and c̃ = 0 are referred to ring and
line coupling topologies, respectively, and are shown
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Fig. 10 Time series for
anti-synchronized chaos for
N = 2, b = 0.2, F = 0.5,
ωf = 2, and c = −0.9,
where the dark line and
light line correspond to the
two different oscillators

Fig. 11 Phase space
representation of
anti-synchronized chaos for
N = 2, b = 0.2, F = 0.5,
ωf = 2, and c = −0.9,
where the dark line and
light line correspond to the
two different oscillators

in Fig. 12. We will consider the limit of weak cou-
pling and we will show how the network topology
will partition the set of all possible solutions into sets
of symmetry-related solutions. We note that, due to
the form of coupling, there will always exist a zero
solution 000 with stability inherited from the uncou-
pled case, and a class of stable synchronous solutions

{AAA,BBB}, regardless of network topology. In the
following analysis, we will be specifically considering
the case where b = 0.2, ωf = 2, F = 0.5, which cor-
responds to the region in bifurcation space where, for a
single oscillator, only the 0 solution and the large peri-
odic orbit exist. The numerics were done using AUTO
[10], which enables the analysis of stable and unsta-
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Fig. 12 N = 3 oscillator networks. Ring [c̃ = c] (a), morph
[0 < c̃ < c] (b), and line [c̃ = 0] (c)

ble orbits. We note that the representative solutions
we consider are particular to the system described by
(20)–(22).

4.3.1 Notation

For convenience, we will introduce additional nota-
tion to describe the solution types and indicate solu-
tion symmetries. The z ∈ {A,B,0} solution label may
now be indexed by subscripts, i.e. zXY . The X sub-
script variable indicates two different qualifications of
the solution, depending on the z solution type. If the
solution is near or identically zero, i.e. z = 0, the sub-
script X ∈ {A,B,0} indicates if the solution is iden-
tically zero (X = 0) or if it is a small (near-zero) pe-
riodic orbit with phase the same as either the A or B

large periodic orbits (X = A or X = B , respectively).
For solutions near or identically zero, the Y superscript
on the X subscript is not used.

For the large periodic orbit states z ∈ {A,B}, the
subscript X ∈ {L,S,0} denotes the relative size of the
solution and is intended to provide a qualification of
the symmetry when coupling is included. If the solu-
tion is identical to the uncoupled stable periodic orbit,
we will denote this by X = 0. If, on the other hand, the
solution’s magnitude (i.e. maxt∈(0,T ](x(t))) is larger
(resp., smaller) than the uncoupled stable periodic or-
bit, we denote this by X = L (resp., X = S). When two
or more oscillators both exhibit a large periodic orbit
close in magnitude to the uncoupled solution, we will
use our notation to indicate symmetry. For example, if
there are two identical A solutions that are larger than
the uncoupled orbit, we will indicate this by ALAL. If
there are two A solutions that are larger than the un-
coupled solution, but not equal to each other, we will
indicate this using the Y superscript as AL+AL− . The
Y ∈ {−,+} superscript will be used with the 0X labels
as well, also to indicate non-identical orbits. The ‘+’
solution is so marked because it has a larger magnitude
than the ‘−’ solution (again, quantifying magnitude
by maxt∈(0,T ](x(t))). It is worthwhile to note here that

Table 2 N = 3 ring symmetry classes

Label Symmetry-related states Stability

R1 000 Unstable

R2 AAA,BBB Stable

R3 AA0,A0A,0AA,BB0,B0B,0BB Unstable

R4 AAB,ABA,BAA,BBA,BAB,ABB Stable

R5 A00,0A0,00A,B00,0B0,00B Unstable

R6 AB0,A0B,B0A,0BA,0AB,BA0 Unstable

these orbits and their magnitudes are all well-defined
in the limit of small |c|.

For the rest of our discussion, when we refer
to oscillators being synchronized, we mean phase-
synchrony, which does not imply any relationship be-
tween amplitudes. When amplitudes are equal, we will
use the terms identical if they are indistinguishable, or
anti-synchronized if they are in anti-phase.

4.3.2 Ring topology

For the N = 3 case, the ring topology is the same as
the all-to-all topology. Each oscillator is coupled iden-
tically to the others. Even in such a simple network
as shown below, the dynamics are rich, both for small
coupling and as the coupling strength becomes largely
negative.

The ring topology gives six symmetry classes in-
cluding the zero (R1) and synchronous (R2) solutions,
which are summarized in Table 2.

The R3 class is the set of all solutions that have two
oscillators with synchronous large periodic orbits and
one with a small near-zero magnitude orbit. For c � 0,
the large periodic orbits are slightly larger in magni-
tude than the uncoupled orbit and the near-zero orbit
is in phase. For 0 � c, the two synchronous large pe-
riodic orbits are slightly smaller than the uncoupled
orbit, and the near-zero orbit is out of phase. This so-
lution is depicted in Fig. 13. All solutions in the R3

class are unstable for small |c|.
The R4 class consists of all solutions wherein two

oscillators have synchronized large periodic orbits and
the other oscillator has a similar large periodic orbit,
but shifted in time by one forcing frequency. With non-
zero coupling, the S3 symmetry of the AAB solution is
broken. For c � 0, the two synchronous periodic orbits
are smaller in magnitude than the anti-synchronous or-
bit, resulting in an S2 symmetry. The relative mag-
nitudes of the periodic orbits switch for the positive



Weakly coupled parametrically forced oscillator networks: existence, stability, and symmetry 673

Fig. 13 Example of R3
periodic orbit for b = 0.2,
F = 0.5, ωf = 2.25,
c = 0.03 with ring
topology. In the lower
panel, the dark line, the
light line, and the dashed
line correspond to the three
different oscillators, the
latter two of which have
identical solutions

Fig. 14 Example of R4
periodic orbit for b = 0.2,
F = 0.5, ωf = 2.25,
c = 0.03 with ring
topology. In the lower
panel, the dark line, the
light line, and the dashed
line correspond to the three
different oscillators, the
latter two of which have
identical solutions

small coupling case, 0 � c, shown in Fig. 14. The R4

solutions are all stable for small |c|.
The R5 class is the set of all solutions that have

a single oscillator with a large periodic orbit and two
oscillators with near-zero orbits. For c � 0, the large
periodic orbit is larger than the uncoupled orbit and
the two near-zero solutions are identical (retaining an
analog of the symmetry of the uncoupled solution) and
in phase with the other oscillator. As c is increased
through zero, the magnitude of the A solution becomes
smaller than the uncoupled orbit, and the two near-
zero solutions switch to become out of phase with the
A solution (but still synchronous and identical to each
other). All solutions in the R5 class are unstable for
small |c|.

The R6 class contains all solutions that have two
oscillators with anti-synchronized large periodic or-
bits while the third oscillator has a near-zero orbit. For
c � 0, the two large periodic orbits have identical mag-
nitudes and are slightly larger than the uncoupled so-
lution. For 0 � c, the two large periodic orbits are have
identical magnitudes and are slightly smaller than the
uncoupled solution. In all the cases, the near-zero so-
lution is, in fact, identically zero. Thus, the symmetry
present in the uncoupled solution is preserved for sets
of solutions in the R6 class. All solutions in the R6

class are unstable for small |c|.
The properties of the ring topology solutions for

c = 0 and |c| ≈ 0 are summarized in Tables 2 and 3.
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Fig. 15 N = 3 ring
topology bifurcation
diagram for fixed b = 0.2,
F = 0.5, c = 0.03 with ωf

treated as a bifurcation
parameter. Solid (resp.,
dashed) lines indicate
stable (resp., unstable)
solutions. Stable solutions
are labeled by symmetry
class per the 0 � c column
of Table 3, and have
symmetry-related solutions
tabulated in Table 2

Table 3 Solution representatives for |c| ≈ 0 for each symmetry
class for ring topology

Symmetry class c � 0 c = 0 0 � c

R1 000000 000000 000000

R2 A0A0A0 A0A0A0 A0A0A0

R3 ALAL0A A0A000 ASAS0B

R4 ASASBL A0A0B0 ALALBS

R5 AL0A0A A00000 AS0B0B

R6 ALBL00 A0B000 ASBS00

4.3.3 Forcing-frequency bifurcation diagram:
Ring topology

We again fix the coupling strength as c = 0.03 and
take b = 0.2, F = 0.5, and treat ωf as a bifurcation
parameter. Figure 15 shows the max(|x1|)-projection
of the corresponding bifurcation diagram. This pro-
jection is identical in appearance to the max(|x2|) and
max(|x3|) bifurcation diagrams due to the label per-
mutation symmetry of the ring topology. The in-phase
AAA solution and the A0B solution bifurcate from
the 000 solution at different values of ωf . This bifur-
cation diagram is similar to the N = 2 case shown in
Figs. 7 and 8. The main features are preserved, such as
the large-small solution, which is now a large-small-
small solution (or in our new notation, 0A0AB).

4.3.4 Chaotic dynamics

Similarly to the N = 2 case, interesting dynamics
also emerge as |c| is increased. Figure 16 shows un-

synchronized chaotic behavior for b = 0.2, F = 0.5,
ωf = 2, and c = −0.9. The phase portrait of the N = 3
chaotic system shown in Fig. 17 displays a double-
well potential structure similar to that of the N = 2
case shown previously in Fig. 11, although the trajec-
tories of the three oscillators are not synchronized.

4.3.5 Line topology

The line topology breaks the symmetry of the ring and
introduces new symmetry classes, which are summa-
rized in Table 4. There still exists an unstable zero
solution (L1) and a stable synchronous solution (L2).
However, the line topology means that the “center” os-
cillator gets input from both of the two “end” oscilla-
tors, while the end oscillators only receive input from
center oscillator. This has dramatic effect on the sym-
metry class partitions.

The L3 class represents solutions where the cen-
ter oscillator is synchronized in a large periodic orbit
with one of the end oscillators. The other end oscilla-
tor is near-zero. Solutions in this class exhibit interest-
ing bifurcation behavior. One of the end oscillators re-
tains the uncoupled orbit amplitude for all sufficiently
small c, regardless of sign. This can be interpreted as a
region of the amplitude versus coupling strength curve
where the slope is zero. For c � 0, the center oscillator
has a periodic orbit that is slightly larger in amplitude
than the uncoupled orbit and the other end oscillator
has an in-phase near-zero orbit. For small positive cou-
pling, the center oscillator has a slightly smaller mag-
nitude orbit, and the near-zero orbit of the other end
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Fig. 16 Time series for
unsynchronized chaos for
N = 3 ring with b = 0.2,
F = 0.5, ωf = 2, and
c = −0.9, where the dark
line, the dashed line, and
light line correspond to the
three different oscillators

Fig. 17 Phase space
representation of
unsynchronized chaos for
N = 3 ring with b = 0.2,
F = 0.5, ωf = 2, and
c = −0.9, where the dark
line, the dashed line, and
light line correspond to the
three different oscillators

Table 4 N = 3 line symmetry classes

Label Symmetry-related states Stability

L1 000 Unstable

L2 AAA,BBB Stable

L3 AA0,0AA,BB0,0BB Unstable

L4 AAB,BAA,BBA,ABB Stable

L5 A00,00A,B00,00B Unstable

L6 A0B,B0A Unstable

L7 A0A,B0B Unstable

L8 ABA,BAB Stable

L9 AB0,BA0,0BA,0AB Unstable

L10 0A0,0B0 Unstable

oscillator is out of phase. This is an example of bro-
ken symmetry due to coupling, since for small non-
zero c, the permutation symmetry of the AA pair is
destroyed—the changing amplitude of the center os-
cillator prevents the SNA

permutation operators from
mapping the solutions identically back to themselves.
This class of solutions is unstable for small |c|.

The L4 class is the set of solutions where the cen-
ter oscillator is synchronized in a large periodic or-
bit with one of the end oscillators and the other os-
cillator has an anti-synchronized large periodic orbit.
Similarly to the L3 solutions, this class also has a bi-
furcation pattern that leaves one of the end oscillators
unchanged in a larger periodic orbit. The center oscil-
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Fig. 18 Example of L5
periodic orbit for b = 0.2,
F = 0.5, ωf = 2.25,
c = 0.03 with line topology.
In the lower panel, the dark
line, the light line, and the
dashed line correspond to
the three different
oscillators

lator and the other end oscillator are identical but out
of phase, and have larger magnitudes than the uncou-
pled case for negative coupling, and smaller magni-
tudes for positive coupling. Although the permutation
symmetry between the A solutions is broken by non-
zero c, the symmetry between the center A solution
and the end B solution remains for small c. The L4

solutions are all stable for small |c|.
The L5 class is the set of solutions where the cen-

ter and one of the end oscillators are near-zero and the
other end oscillator has a large periodic orbit. Sym-
metries in this class are completely broken for non-
zero coupling. For c � 0, the large periodic orbit has
larger magnitude than in the uncoupled system, and
the two zero solutions become distinct near-zero pe-
riodic orbits in phase with the A solution. A surpris-
ing behavior found numerically is that for small posi-
tive coupling, the zero solution of the center oscillator
switches to be out of phase with respect to the other
two oscillators, even though this phase relationship is
not a mirror image of the negative coupling case. For
both coupling cases, the amplitude of the center oscil-
lator’s near-zero orbit is slightly larger than that of the
end oscillator’s near-zero orbit. We show this solution
in Fig. 18. These solutions are unstable for small |c|.

The L6 class consists of the solutions where the
center oscillator is the 0 solution and the two end
oscillators have large periodic orbits that are in anti-
synchrony. The symmetry of the uncoupled case is
preserved for small coupling for solutions in this class.
When the coupling is negative, the oscillatory solu-
tions are larger than the uncoupled case, and for posi-

Table 5 Solutions representatives for |c| ≈ 0 for each symme-
try class for line topology

Symmetry class c � 0 c = 0 0 � c

L1 000000 000000 000000

L2 A0A0A0 A0A0A0 A0A0A0

L3 A0AL0A A0A000 A0AS0B

L4 A0ALBL A0A0B0 A0ASBS

L5 AL0A+ 0A− A00000 AS0B+ 0A−

L6 AL00BL A000B0 AS00BS

L7 AL0AAL A000A0 AS0BAS

L8 AL−BL+AL− A0B0A0 AS+BS−AS+

L9 AL−BL+ 0B A0B000 AS+BS− 0A

L10 0AAL0A 00A000 0BAS0B

tive coupling the reverse is true, as shown in Table 5.
Interestingly, the center oscillator’s zero solution re-
mains identically zero. The L6 solutions are unstable
for small |c|.

The L7 class is the set of solutions where the cen-
ter oscillator is near-zero and the two end oscillators
are synchronized with large periodic orbits. Solutions
in this class also retain their symmetry for small non-
zero coupling. For c � 0, the two end oscillators fol-
low orbits that are slightly larger than the uncoupled
A solution, and the zero solution becomes a near-zero
solution in phase with the other two oscillators. For
0 � c, the magnitude of the end oscillators’ larger pe-
riodic orbit becomes slightly smaller than the uncou-
pled case, and the near-zero solution is out of phase.
These solutions are also unstable for small |c|.
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Fig. 19 Example of L9
periodic orbit for b = 0.2,
F = 0.5, ωf = 2.25,
c = 0.03 with line topology.
In the lower panel, the dark
line, the light line, and the
dashed line correspond to
the three different
oscillators

The L8 class is the set of solutions where the two
end oscillators have large synchronous periodic orbits
in anti-synchrony with the center oscillator’s large pe-
riodic orbit. Symmetries of solution trajectories in this
class are modified by coupling in an interesting way.
The two end oscillators retain their permutation sym-
metry, but the symmetries with the center oscillator are
lost, because the amplitudes no longer match. When
the small coupling is negative, the center oscillator has
a larger orbit than the two end oscillators which them-
selves have a slightly larger orbit than the uncoupled
case. The situation is reversed for the case of small
positive coupling, as shown in Table 5. These two so-
lutions are stable for small |c|.

The L9 class is composed of the solutions for which
the center oscillator has a large periodic orbit in anti-
synchrony with one of the end oscillators, and the
other end oscillator has a near-zero orbit. The solu-
tion symmetries for this class are broken by coupling.
For c � 0, the two non-zero solutions become larger
than the uncoupled periodic orbit, but are not identi-
cal, and the zero solution becomes a near-zero solu-
tion in phase with the center oscillator. Small positive
coupling yields a similar situation, with the two peri-
odic solutions becoming slightly smaller than the un-
coupled orbit, and non-identical, while the near-zero
solution is in phase with the other end oscillator. This
solution is shown in Fig. 19. The L9 class of solutions
are all unstable for small |c|.

The L10 class is the set of solutions where the two
end oscillators have near-zero orbits and the center os-
cillator has a large periodic orbit. This class of so-

lutions retains a version of its uncoupled symmetry.
For small negative coupling, the center oscillator has a
slightly larger orbit than the uncoupled trajectory, and
the two end oscillators follow identical synchronous
near-zero orbits. The opposite is true for small posi-
tive coupling. This class of solutions is unstable for
small |c|.

The properties for the solutions for |c| ≈ 0 are sum-
marized for reference in Table 5.

4.3.6 Forcing-frequency Bifurcation diagram:
Line topology

We again fix the coupling strength as c = 0.03 and
take b = 0.2, F = 0.5, and treat ωf as a bifur-
cation parameter. Figure 20 shows the max(|x1|)-
projection of the corresponding bifurcation diagram
and Fig. 21 shows the max(|x2|)-projection. We note
that the max(|x1|)-projection is visually identical to
the max(|x3|)-projection, as the two end oscillators
(numbers 1 and 3) differ only by a label permutation.
As in the previous bifurcation diagrams, the in-phase
AAA solution and the A0B solution bifurcate from the
000 solution at different values of ωf . The structure of
these bifurcation diagrams is similar to the N = 2 case
shown in Figs. 7 and 8. We see the large-small solu-
tion branches are substantially different in magnitude
for the center (number 2) oscillator versus the end os-
cillators (numbers 1 and 3).
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Fig. 20 N = 3 line
topology bifurcation
diagram for fixed b = 0.2,
F = 0.5, c = 0.03 with ωf

treated as a bifurcation
parameter
(max(|x1|)-projection).
Solid (resp., dashed) lines
indicate stable (resp.,
unstable) solutions. Stable
solutions are labeled by
symmetry class per the
0 � c column of Table 5,
and have symmetry-related
solutions tabulated in
Table 4

Fig. 21 N = 3 line
topology bifurcation
diagram for fixed b = 0.2,
F = 0.5, c = 0.03 with ωf

treated as a bifurcation
parameter
(max(|x2|)-projection).
Solid (resp., dashed) lines
indicate stable (resp.,
unstable) solutions. Stable
solutions are labeled by
symmetry class per the
0 � c column of Table 5,
and have symmetry-related
solutions tabulated in
Table 4

4.3.7 Non-uniform coupling: Morphing from a line
to a ring

By starting with the ring topology, holding two of the
coupling links fixed, and varying the third (c̃ in (20)–
(22)), we can continuously morph the network from
the ring topology to the line topology. In so doing, we
can see how the symmetry classes change due to the
topology.

The R3 class splits into two classes, L3 and L7, the
R4 class splits into the L4 and L8 classes, the R5 class
splits into the L5 and L10 classes, and the R6 class
splits into the L6 and L9 classes. It is interesting to

note that the stability properties of the split L classes
are inherited from the parent R classes.

4.4 N coupled oscillators

These results generalize to N coupled parametrically
forced oscillators. Specifically, provided the periodic
orbits for the individual oscillators for the uncou-
pled system are hyperbolic, for every periodic solu-
tion which exists for the uncoupled system there will
be a nearby periodic orbit for the system with suffi-
ciently small coupling. Furthermore, the periodic orbit
will inherit the stability properties from the periodic
orbit for the uncoupled system.
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Notably, the Implicit Function Theorem argument
presented above does not depend on the coupling
topology of the system, or any special properties about
the coupling strength (for example, all the strengths
being equal). That is, regardless of how the oscillators
are coupled together, for sufficiently small coupling
strengths there will be analogs of the periodic solu-
tions which exist for the uncoupled system. For ex-
ample, instead of the oscillators having all-to-all cou-
pling, similar results hold for oscillators coupled only
to their neighbors. Of course, as the coupling strengths
increase away from zero, so that the above arguments
no longer hold, the coupling topology will affect the
types of states that exist and are stable.

5 Conclusion

We have discussed periodic solutions which occur
for parametrically forced oscillators that are weakly
coupled together. A combinatorial approach was pre-
sented to enumerate all possible solutions for the un-
coupled case. The existence and stability of periodic
orbits for the coupled system can be determined by
the existence and stability of the individual paramet-
rically forced oscillators when they are uncoupled.
Our results follow from an application of the Implicit
Function Theorem to an appropriate Poincaré map.
The results were confirmed using numerical bifurca-
tion analysis for several simple networks of oscillators
with 2:1 excitation resonance. An explicit expression
was given for the isotropy subgroup of symmetric so-
lutions, and the generators of those subgroups were
identified. We classified the behavior of the solutions
as a function of coupling strength, and classified the
symmetry-breaking that occurs for non-zero coupling,
which depends on network topology. We also explored
the solution bifurcation structure as a function of forc-
ing frequency for our example networks, which could
be useful for experimental purposes, for example in
MEMS research [8, 18, 26, 31, 34]. These results may
be viewed as an analog of general results on the ex-
istence of phase-locked solutions for weakly coupled
autonomous oscillators, as in [1, 6].

We remark that while it is instructive to study sys-
tems with symmetries as we have done in this pa-
per, in real systems such symmetries will not be ex-
act and symmetry breaking imperfections must be as-
sumed to be present. For example, not all oscillators

will be identical due to imprecision in their fabrica-
tion. Studies of systems with weakly broken symmetry
have shown that analogues of the solutions when there
is exact symmetry will persist; however, broken sym-
metries can lead to the appearance of new solutions
which have no analogue in the fully symmetric sys-
tem [21, 22]. The study of coupled oscillator systems
with broken symmetry is deferred to future work.
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Appendix: The Implicit Function Theorem

We state the Implicit Function Theorem, adapted
from [16].

Let � : R
N → R

M , 1 ≤ M < N , be a continuously
differentiable function, written as

�(x) = �(x1, . . . , xN)

= (
φ1(x1, . . . , xN), . . . , φM(x1, . . . , xN)

)
.

Suppose

�
(
x0) = �

(
x0

1 , . . . , x0
N

) = 0,

and

det

⎛
⎜⎜⎜⎜⎜⎝

∂φ1
∂xN−M+1

∣∣
x0

∂φ1
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x0 · · · ∂φ1

∂xN

∣∣
x0

∂φ2
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x0

∂φ2
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...
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∂xN−M+2

∣∣
x0 · · · ∂φM

∂xN

∣∣
x0

⎞
⎟⎟⎟⎟⎟⎠ �= 0.

Then there exists a unique continuously differen-
tiable function f = (f1, . . . , fM) from a neighbor-
hood of (x0

1 , . . . , x0
N−M) ∈ R

N−M to a neighborhood
of (x0

N−M+1, . . . , x
0
N) ∈ R

M such that

�
(
x1, . . . , xN−M,f1(x1, . . . , xN−M), . . . ,

fM(x1, . . . , xN−M)
) = 0.
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