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1 Introduction and summary of results

Supersymmetric theories have been extensively studied in the past 40 years. This has

partly been because their enhanced symmetries allow for various exact computations to be

performed in these theories, even at strong coupling, so that they provide useful windows

into strong coupling physics. In particular in four space-time dimensions, much progress

has been made on understanding the properties of four dimensional N = 1, N = 2 and

N = 4 superconformal field theories (SCFTs).

In this note we study the properties of general N = 3 superconformal theories, that

do not also have N = 4 supersymmetry — we will call these “pure N = 3 theories”. There

are no known examples of such theories, but to the best of our knowledge there is also no

proof that they do not exist. The only free multiplet of N = 3 supersymmetry is a vector

multiplet identical to that of N = 4 theories, so there are no free pure N = 3 theories.

There are also no weakly coupled N = 3 SCFTs, since weakly coupled N = 2 SCFTs are

specified by their field content, and any such theory that has N = 3 supersymmetry also

has N = 4 supersymmetry. So, all pure N = 3 theories must be strongly coupled.

Various methods to construct strongly coupled N = 3 theories have not yet yielded any

examples of such theories. No brane construction in string theory [1] gives rise to such a

theory. There are no known AdS5 backgrounds of string or M theory, or of their low-energy

supergravities, that have precisely 4d N = 3 superconformal symmetry, though there is also

not yet any proof that such backgrounds do not exist.1 One possible way to obtain N = 3

1We thank G. Papadopoulos for a discussion of these topics. In [3] it was shown that there is a truncation

of type IIB supergravity on AdS5 × S
5 that is consistent with a dual 4d N = 3 field theory, but a full

solution was not constructed. After our paper first appeared, the paper [4] proved that there are no smooth

supergravity solutions of this type with a compact internal space, and the paper [5] constructed examples

of string theory backgrounds dual to 4d N = 3 SCFTs (with a supergravity limit of the same form as the

truncations of [3]). These constructions were studied further in [6, 7]. The results of these papers are all

consistent with the results of this paper.
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theories would be to start from an N = 4 theory and to perform a relevant deformation

that preserves N = 3 supersymmetry but not N = 4, but we show in appendix A that this

is not possible. A large class of N = 2 SCFTs arises (following [2]) by compactifying six

dimensional N = (2, 0) superconformal theories on Riemann surfaces, but all examples of

this type that have N = 3 supersymmetry also have N = 4. Finally, it may be possible to

study N = 3 superconformal theories by conformal bootstrap methods, imposing N = 3

supersymmetry and a gap in dimensions between the conserved supercurrents and the next

operator of spin 3/2, but this has not yet been done (a conformal bootstrap analysis for

N = 4 theories was performed in [8], and for N = 2 theories in [9]).

Thus, it is interesting to either find examples of pure N = 3 theories, or to prove that

such theories cannot exist. In this note we take first steps towards this, by analyzing some

of the properties that such N = 3 theories must have. We begin in section 2 by proving

that any N = 3 theory must have a relation a = c between its conformal anomalies, like

N = 4 SCFTs (but unlike general N = 2 theories, whose ratio a/c is bounded [10] but not

determined). Our method is to use the fact that any N = 3 theory is also an N = 2 theory,

and to use the known facts about N = 2 anomalies to learn about the N = 3 anomalies.

In section 3 we discuss three separate properties of pure N = 3 theories. We show

that pure N = 3 theories cannot have exactly marginal deformations preserving N = 3

supersymmetry, even though such deformations exist in all N = 4 theories, and they are

common inN = 1 andN = 2 theories (see [11] and references therein). Thus it is impossible

to have a family of N = 3 superconformal theories. This could have been expected from the

fact that there are no weakly coupled N = 3 theories, and one might expect any manifold

of N = 3 theories to have a weak coupling limit. We then show that pure N = 3 theories,

like N = 4 theories, cannot have global symmetries that are not R-symmetries.

Finally, we analyze the chiral operators labeling the moduli space of N = 3 theories

(which is always a “Coulomb branch”, since the only free multiplet is a vector multiplet).

We find that these always include operators similar to the ones labeling moduli spaces of

N = 4 theories, with integer scaling dimensions. In pure N = 3 theories their dimensions

must obey ∆ ≥ 3. However, we could not prove that additional operators are not also

needed to parameterize the full moduli space.

It would be interesting to study additional constraints on N = 3 theories, for instance

by further constraining their Coulomb branches and attempting to classify at least N = 3

theories which have Coulomb branches, as in for instance [12–16]. One could also try

to study them using the conformal bootstrap, or using the relation of general 4d N = 2

theories to chiral algebras in two dimensions [17]. It would also be interesting to generalize

our analysis to different numbers of supercharges and dimensions.

2 Conformal anomalies of N = 3 superconformal theories

Let us begin by computing the conformal anomalies of N = 3 superconformal theories.

As usual in superconformal theories, the conformal anomalies a and c appearing in the

trace of the energy-momentum tensor in curved space are related by supersymmetry to

the chiral anomalies of the R-symmetry currents [18]. In the case of N = 3 SCFTs the
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R-symmetry group is SU(3)R × U(1)R. We will denote the U(1)R charge by R3; the

supercharges are in the 3 representation of SU(3)R and have R3 = 1. We would like to

relate the R-symmetry anomalies to the conformal anomalies, and to see if this implies any

restriction on the conformal anomalies. One way to do this would be to analyze in detail

the general form of the 3-point function of the N = 3 energy-momentum multiplet, which

includes the energy-momentum tensor and the R-symmetry currents. However, since this

is cumbersome, we will not do this here. Instead, we will see that the answer can be found

simply by using the fact that N = 3 theories are also N = 2 theories, and using known

facts about N = 2 SCFTs.

The N = 3 SU(3)R-symmetry group generators can be expressed in the usual SU(3)

basis Ta = λa

2 , where λa are the Gell-Mann matrices, obeying tr (TaTb) = 1
2δab; two

Cartan generators are T3 and T8 (T3 = 1
2 diag(1,−1, 0), T8 = 1

2
√
3
diag(1, 1,−2)). N = 2

superconformal theories have R-symmetry group SU(2)R×U(1)R̃; we will denote the N = 2

U(1) charge by R2, and normalize it such that the N = 2 supercharges have R2 = 1.

When we view the N = 3 theory as an N = 2 theory, the SU(2)R × U(1)R̃ symmetry

of the latter is embedded into SU(3)R×U(1)R; the other generator of SU(3)R×U(1)R that

commutes with the N = 2 supercharges is a global symmetry from the point of view of

the N = 2 theory. We will embed the SU(2)R in the top 2× 2 block of SU(3)R, so that its

Cartan generator is I3 = T3. The R2 generator must then take the form R2 = κR3 + µT8.

To get the correct R2 charge for the N = 2 supercharges, we must have κ + µ

2
√
3
= 1. To

obtain another relation between the coefficients, we use the fact that (for a given choice

of the two N = 2 supercharges) the N = 2 reduction of an N = 3 theory is unique, so it

is enough to determine κ and µ in a specific example. In the N = 4 theory, there is just

an SU(4) R-symmetry, that should include both U(1) R-symmetries above; since both R3

and R2 must correspond to traceless generators, the R-charges of the N = 4 supercharges

must be R3 = (1, 1, 1,−3) and R2 = (1, 1,−1,−1), respectively. Comparing the charges of

the third supercharge then gives κ− 2 µ

2
√
3
= −1, leading to κ = 1

3 , µ = 4√
3
. So, the N = 2

R-symmetry is embedded into the N = 3 R-symmetry as

I3 = T3, R2 =
1

3
R3 +

4√
3
T8. (2.1)

The N = 3 theory has three independent R-current cubic chiral anomalies: SU(3)3,

SU(3)2×U(1) and U(1)3. There is also an anomaly for the U(1)R current with two energy-

momentum tensors, that we will not require here. We normalize the anomalies using their

value in a free theory as a trace over Weyl fermions:

s3 ≡ tr (T 3
8 ), s2 ≡ tr (R3T

2
3 ), r3 ≡ tr (R3

3). (2.2)

The structure constant relations for Gell-Mann matrices imply that

tr (T 3
3 ) = tr (T 2

8 T3) = tr (R3T3T8) = 0, tr (T8T
2
3 ) = −s3, tr (R3T

2
8 ) = s2. (2.3)

In order to compute the N = 3 anomalies and constrain a/c, we use the supersymmetry

reduction to N = 2, which turns out to be enough. Two equations can be obtained by
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considering the form of the cubic anomalies in N = 2 superconformal theories (see e.g. [14],

following the N = 1 results of [18]), and using (2.1):

tr (R3
2) = 48(a− c) → 1

27
r3 +

16

3
s2 +

64

3
√
3
s3 = 48(a− c), (2.4)

tr (R2I
2
3 ) = 4a− 2c → 1

3
s2 −

4√
3
s3 = 4a− 2c. (2.5)

To proceed further, we can use the extra U(1) global symmetry that we get (from the

N = 2 point of view) from the N = 3 R-symmetry. Since the N = 2 supercharges cannot

be charged under this global symmetry, its form must be (up to an unimportant overall

factor) F = R3 − 2
√
3T8. According to equation (3.33) of [19], the three-point function of

two N = 2 supercurrents and a flavor current superfield vanishes. In particular the parity-

odd term in the 3-point function of the currents vanishes. This term gets contributions

from both the U(1)R̃ and SU(2)R currents in the N = 2 supercurrent. Being careful about

the normalizations, the two terms that contribute are

U(1) : tr (R2R2F ) ⇒ 1

4
tr

(

(

R3 − 2
√
3T8

)

(

1

3
R3 +

4√
3
T8

)2
)

, (2.6)

SU(2) : tr (I3I3F ) ⇒ 3 tr
(

(

T 2
3

)

(

R3 − 2
√
3T8

))

, (2.7)

where the factor of 3 on the second line comes from summing over the 3 SU(2)R generators,

and the factor of 1
4 on the first line from normalizing R2 in the same way as the SU(2)R

generators. Adding up (2.6) and (2.7) we get

1

9
r3 + 12s2 +

40√
3
s3 = 0. (2.8)

We now have 3 equations for r3, s2 and s3, which are enough to determine them, but

not enough to give constraints on a and c. However, there is another restriction on the

anomalies coming from (3.32) of [19]. This equation shows that the correlator of three

global symmetry currents in N = 2 SCFTs is antisymmetric, and thus it should vanish for

three identical currents, so that

tr (F 3) = r3 − 24
√
3s3 + 36s2 = 0. (2.9)

Altogether we now have 4 equations

1

27
r3 +

16

3
s2 +

64

3
√
3
s3 = 48(a− c), (2.10)

1

3
s2 −

4√
3
s3 = 4a− 2c, (2.11)

1

9
r3 + 12s2 +

40√
3
s3 = 0, (2.12)

r3 + 36s2 − 24
√
3s3 = 0. (2.13)
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These equations only have a solution if a = c, and then we find

r3 = −96c, s2 = 2c, s3 = − c√
3
. (2.14)

Thus, as in N = 4 theories, N = 3 SCFTs necessarily have a = c. Note that since our

analysis is valid for any N = 3 theory, including as a special case the N = 4 theories, it

is obvious that any relation that we find between a and c must take the form a = c. Our

non-trivial result is that indeed the constraints on the anomalies give such a relation, and

thus lead to a = c. It would be interesting to see this also from a direct analysis of the

3-point functions of the N = 3 energy-momentum supercurrent.

3 Properties of N = 3 theories

In this section we study some general properties of N = 3 superconformal theories that

are not also N = 4 (we call these “pure N = 3 theories”). In section 3.1 we show that

pure N = 3 theories cannot have any exactly marginal deformations, so that any such

theories are isolated fixed points. In section 3.2 we show that these theories, like N = 4

theories, cannot have any global symmetries. Finally, in section 3.3 we discuss the short

multiplets whose expectation values can parametrize Coulomb branches of N = 3 SCFTs.

Throughout this section we use several facts about N = 2 superconformal multiplets, that

can be found in [20].

3.1 N = 3 multiplets with exactly marginal deformations

An exactly marginal deformation is a scalar operator of dimension 4 that sits at the top of

a supermultiplet and is invariant under R-symmetry. All N = 4 theories have a complex

exactly marginal deformation sitting in their energy-momentum multiplet, so let us first

analyze this case, viewing this theory as a special case of an N = 3 superconformal theory.

The bottom state of the N = 4 energy-momentum multiplet is a dimension 2 scalar be-

longing to the 20′ representation of SU(4); it breaks into 6−4, 6̄4 and 80 representations of

SU(3)R × U(1)R. Since all of these representations have different U(1)R charges for their

bottom components, they must give birth to different N = 3 multiplets (such multiplets

are built on a bottom component that has a specific spin and R-symmetry representation).

Thus, the N = 4 energy-momentum multiplet splits exactly into three N = 3 multiplets.

The multiplet built on 80 is the energy-momentum multiplet of the N = 3 theory,

which is always present. However, the complex exactly marginal deformation belongs to

the multiplets built on 6−4 and 6̄4; this can be seen from the fact that it is obtained from

the bottom component by the action of either 4 Q’s or 4 Q̄’s, and it should have R3 = 0.

Under the reduction of N = 4 to N = 3, three of the four supercharges sit in the N = 3

energy-momentum multiplet, while the fourth necessarily belongs to the multiplets built

on 6−4 and 6̄4. Thus, the exactly marginal deformation of N = 4 sits in the same N = 3

representation as an extra supercurrent, and cannot appear in pure N = 3 theories.

Now let us analyze the general case. Exactly marginal deformations of any N = 2

SCFT sit in chiral representations (denoted E2(0,0)) whose bottom component is a scalar of

– 5 –



J
H
E
P
0
4
(
2
0
1
6
)
0
4
0

dimension ∆ = 2, that is an SU(2)R singlet with R2 = ±4. So it is clear that the bottom

component of an N = 3 multiplet containing an exactly marginal deformation must obey

∆3 ≤ 2. On the other hand, the dimension must be a half-integer, and it cannot be equal to
3
2 (since a spinor operator of this dimension is a free field) or 1 (since a scalar operator of this

dimension is a free field). So the bottom component of the multiplet should have ∆3 = 2,

and contain a scalar singlet of SU(2)R with R2 = ±4. For deformations preserving N = 3

supersymmetry, the top component must have R3 = 0, so it is clear that this bottom

component must also have R3 = ±4. Using the unitarity constraints of appendix B on

N = 3 superconformal representations, and the decomposition of SU(3) to SU(2) × U(1),

the only possible SU(3)R representations with R3 = ±4 that can have a dimension 2 bottom

scalar component, and that contain an SU(2)R singlet with R2 = ±4, are the 6−4 and 6̄4.

But we already saw that these contain an extra conserved supercurrent. Thus, pure N = 3

theories cannot have any exactly marginal deformations.

The above analysis leaves open the possibility of having exactly marginal deformations

that preserve a smaller amount of superconformal symmetry (N = 1 or N = 2). One

cannot preserve N = 2 by such deformations, since exactly marginal deformations cannot

modify the global symmetries of N = 2 theories unless operators with spin s ≥ 2 become

conserved at the enhancement point, implying that the theory becomes free (see [9]). It is

possible that exactly marginal deformations preserving N = 1 superconformal symmetry

could exist, as is the case for the N = 4 supersymmetric Yang-Mills theory.

3.2 N = 3 multiplets with global symmetries

If we have a global symmetry of some N = 3 theory, it remains a global symmetry also

when we view it as an N = 2 theory. The bottom component of the global symmetry

current multiplet of N = 2 SCFTs is a scalar of dimension 2, that is a triplet of SU(2)R
and has R2 = 0. By the same arguments as above, the bottom component of the N = 3

multiplet must be a scalar with ∆3 = 2, and it should contain a triplet of SU(2)R with

R2 = 0 when supersymmetry is reduced to N = 2. Using again the unitarity constraints of

appendix B, we find that the only possible R-charges of this bottom component are 6−4, 6̄4
and 80. But we already saw that the first two cases contain an extra supercharge, and the

latter is the N = 3 energy-momentum multiplet that contains only the R-symmetry global

currents. Thus, we conclude that pure N = 3 theories cannot have global symmetries that

are not R-symmetries.

3.3 N = 3 multiplets with Coulomb branch operators

N = 3 SCFTs may or may not have a moduli space. If they do, then since the only

free representation in N = 3 theories is a vector representation, the low-energy theory at

generic points on the moduli space must involve some number of these vector multiplets;

in particular it should be called a Coulomb branch. Each N = 3 vector multiplet contains

six scalar fields, so a rank r moduli space is labeled by 6r scalars.

In supersymmetric field theories (even with N = 1 supersymmetry), moduli spaces

may be labeled by the expectation values of some chiral operators (which are the bot-

tom components of chiral multiplets). In this section we examine the “Coulomb branch

– 6 –
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operators” (CBOs) in general N = 3 SCFTs. These should be scalars which are lowest

components of N = 3 short superconformal multiplets. Since any N = 3 theory is also an

N = 2 theory, we can use the information on CBOs in N = 2 theories.

From the N = 2 point of view, each N = 3 vector multiplet decomposes into an

N = 2 vector multiplet and an N = 2 hypermultiplet. Thus, the N = 3 moduli space

contains a 2r-dimensional subspace which is an N = 2 Coulomb branch (where only vector

multiplets are turned on), and a 4r-dimensional subspace which is an N = 2 Higgs branch

(where only hypermultiplets are turned on); all other points are mixed Coulomb-Higgs

branches. In N = 2 theories, a 2r-dimensional Coulomb branch is labeled by r N = 2

chiral multiplets (often denoted by E(R2/2)(0,0)) whose bottom component is an SU(2)R
singlet with ∆ = |R2|/2. These r operators are believed to obey no relations in the N = 2

chiral ring. The N = 3 theory must therefore contain r N = 3 multiplets that contain

such N = 2 multiplets (including their lowest component). In addition there must be

Higgs-branch chiral operators from the point of view of the N = 2 theory, that label the

4r-dimensional Higgs branch; these are all have R2 = 0.

Moreover, we know that the SU(3)R symmetry rotates the N = 2 vector multiplets

into N = 2 hypermultiplets (this symmetry is generally broken on the moduli space, but

we still know how it acts on the supercharges). Thus, every point on the Coulomb branch

(on which the SU(2)R subgroup of SU(3)R is unbroken) can be rotated by an SU(3)R
transformation into a point on the Higgs branch (where the U(1)R̃ symmetry of the N = 2

theory is unbroken).

An N = 3 CBO containing an N = 2 CBO could be either an SU(3)R-singlet or a non-

trivial representation. If it is a non-trivial representation, then the considerations of the

previous paragraph imply that by an SU(3)R rotation the bottom component of the same

N = 3 multiplet should also contain N = 2 operators labeling the Higgs branch, which have

R2 = 0. This limits the possible N = 3 representations to have SU(3) representations with

weights [a; 0] (a symmetric product of a 3’s) and R3 = −2a, or their complex conjugates;

these have dimension ∆ = a, and obey the shortening condition (B.5) on N = 3 supercon-

formal multiplets. The case with a = 2 is the one we discussed before that contains extra

conserved supercharges, so such representations in pure N = 3 theories must have a ≥ 3.

This class of operators appears also parameterizing the moduli space of N = 4 theories

(with larger N = 4 multiplets that contain these N = 3 multiplets); in that case the a = 2

representation always appears, since it is part of the N = 4 energy-momentum multiplet.

The bottom component could also be an SU(3)R singlet, as long as it has |R3| > 6

and ∆ = |R3|/6. In this case we can use the fact that the N = 3 superconformal algebra

actually contains three separate N = 2 superconformal algebras, each containing two of

its three supercharges. The Coulomb branches from the point of view of the other N = 2

subalgebras are part of the Higgs branch of the originalN = 2 subalgebra that we discussed,

and should be labeled by appropriate N = 2 chiral operators as well. But if we have an

N = 3 chiral multiplet that is an SU(3)R singlet then it is a chiral multiplet from the point

of view of all N = 2 subalgebras, contradicting the fact that it is supposed to be non-zero

on the Coulomb branch but not on the Higgs branch of the moduli space. So we conclude

that such multiplets (containing N = 2 CBOs) should not exist.

– 7 –
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So the moduli space of N = 3 theories must be (at least partly) labeled by r represen-

tations of the type mentioned above, with some integers a = 3, 4, · · · . The fact that from

the N = 2 point of view there are no relations between the r CBOs implies that there are

no constraints (in the sense of constraints on the expectation values of the corresponding

operators in supersymmetric vacua) relating the symmetric products of the corresponding

N = 3 multiplets, though there would always be other constraints relating the multiplets

(to ensure that the moduli space is just 6r-dimensional). Of course there would generally

be an infinite number of N = 3 CBOs, but only r of them should be independent in the

sense mentioned here.

Apriori there could be extra N = 3 CBOs that do not contain N = 2 CBOs, and

that label regions of the moduli space that do not contain the N = 2 Coulomb branch.

Our arguments above imply that there are no constraints relating the N = 2 CBOs inside

the N = 3 CBOs, and also the operators in the same SU(3)R representations that have

R2 = 0 and are highest and lowest weights of SU(2)R (these are related by permutations

of the three supercharges to the N = 2 CBOs). We conjecture that these N = 3 CBOs

that contain N = 2 CBOs are enough to parameterize the full moduli space. However, we

could not prove this, since there could be constraints relating the three different types of

operators in the N = 3 CBOs (that correspond to the Coulomb branches of the different

N = 2 subgroups).

There is a conjecture [21] that the chiral ring of N = 2 theories is freely-generated;

this is true in all known N = 2 theories. If it is true, then any N = 3 SCFT that contains a

multiplet containing an N = 2 chiral (Coulomb-branch) multiplet must have a non-trivial

moduli space, parameterized as above. However, even if this conjecture is true, we cannot

conclude that all N = 3 theories have a moduli space, since there is no obvious reason

why every N = 3 theory should contain such a multiplet (unlike N = 4 SCFTs which, as

discussed above, always contain such a multiplet).

It would be interesting to find further constraints on the Coulomb branches and the di-

mensions of CBOs of pure N = 3 theories. The leading irrelevant operators on the Coulomb

branch of N = 3 theories were studied using an N = 3-preserving superspace [22, 23]

in [24, 25], and it was found that they are the same as the ones appearing on the Coulomb

branch of the N = 4 supersymmetric Yang-Mills theory, though their coefficient may be

different. Higher irrelevant operators on the Coulomb branch of N = 3 theories are pre-

sumably more general than the ones appearing in the N = 4 theory, and it would be

interesting to analyze their properties.2

Acknowledgments

We would like to thank Marco Baggio, Nikolay Bobev, George Papadopoulos and Igor

Samsonov for useful discussions, and Zohar Komargodski for many useful discussions and

collaboration on parts of this project. This work was supported in part by an Israel

Science Foundation center for excellence grant, by the I-CORE program of the Planning

and Budgeting Committee and the Israel Science Foundation (grant number 1937/12), by

2After this paper first appeared, irrelevant deformations of 4d N = 3 SCFTs were classified in [26].

– 8 –



J
H
E
P
0
4
(
2
0
1
6
)
0
4
0

the Minerva foundation with funding from the Federal German Ministry for Education and

Research, by a Henri Gutwirth award from the Henri Gutwirth Fund for the Promotion of

Research, and by the ISF within the ISF-UGC joint research program framework (grant

no. 1200/14). OA is the Samuel Sebba Professorial Chair of Pure and Applied Physics.

A No relevant deformations of N = 3 SCFTs

One possible way to obtain an N = 3 theory would be to deform an N = 4 theory by a

relevant deformation that breaks N = 4 but leaves N = 3 intact; this would lead to an

N = 3 theory in the infrared limit (our discussion in section 3.1 shows that one cannot

break N = 4 to N = 3 with an exactly marginal deformation). In this appendix we

show that this is impossible by proving a more general statement: any N = 3 theory

(including N = 4 theories) cannot have a relevant deformation preserving the full N = 3

supersymmetry.

To have such a deformation there should be an N = 3 multiplet with a top component

that is a scalar and that has scaling dimension ∆ < 4. Relevant deformations of N = 2

SCFTs that preserve supersymmetry can either lie in conserved current multiplets or in

(conjugate) chiral multiplets. We have already shown in section 3.2 that pure N = 3

theories cannot contain conserved current multiplets, and that in the N = 4 SYM theory

the only conserved currents are in the energy-momentum multiplet that does not contain

N = 3-preserving relevant deformations, so an N = 3 multiplet containing a relevant

deformation must contain an N = 2 (conjugate) chiral multiplet.

Let us restrict to the case of the N = 2 chiral multiplet without losing generality. In

the N = 2 chiral multiplet, the top component arises by the action of four Q supercharges

on the bottom component. In the N = 3 multiplet, the top component must then arise by

the action of at least four supercharges on the bottom component. But since it is a scalar

with ∆ < 4, unitarity (the non-existence of fermionic operators with ∆ < 3
2 and of bosonic

operators with ∆ < 1) implies that the top component must arise from the action of exactly

four supercharges (which are all Q’s and not Q̄’s). We then have two different cases:

• 1. The bottom component is a singlet of SU(3)R. In this case after acting with

four supercharges we necessarily obtain an operator charged under SU(3)R (since

it has triality one). But this means that when the supersymmetry is decomposed

from N = 3 to N = 2, we would get an N = 2 multiplet that has a scalar top

component with ∆ < 4 and that is charged under SU(2)R. But there is no such

N = 2 superconformal multiplet.

• 2. The bottom component is charged under SU(3)R. As we want the scaling di-

mension of the bottom component to be ∆ < 2, we are severely restricted by the

unitarity restrictions of appendix B. The only SU(3)R-charged operators that satisfy

them with ∆ < 2 are scalars in the 3−2 or 3̄2 representations, with ∆ = 1. How-

ever, this corresponds to a free N = 3 vector multiplet, that is not present in an

interacting theory.
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Thus, we conclude that N = 3 theories cannot have SUSY-preserving relevant de-

formations, and, in particular, that one cannot obtain an N = 3 theory by a relevant

deformation of an N = 4 theory. Note that N = 3 SCFTs do always have a relevant

deformation that preserves N = 2 supersymmetry, since their energy-momentum multiplet

contains an N = 2 global current multiplet, which contains such a deformation.

B Unitarity restrictions on the bottom component of a multiplet

The scaling dimension ∆0 of the bottom component of an N = 3 superconformal multiplet

is constrained according to equations (6a)–(6d) of [27] (see also [28]). Taking the bottom

component to have spin (j1, j2), U(1)R charge R3, and to sit in the SU(3)R representation

[a; b] (labeling the representation by its weights), unitarity constrains generic multiplets by

∆0 ≥ d1 = 2 + 2j1 +
4a+ 2b

3
+

R3

6
, (B.1)

∆0 ≥ d3 = 2 + 2j2 +
2a+ 4b

3
− R3

6
. (B.2)

In addition there are a few special cases:

1. If the bottom component is a scalar, then in addition we have a unitary representation

when one of the following three conditions is satisfied:

∆0 = d4 =
2a+ 4b

3
− R3

6
if d4 ≥ d1, (B.3)

∆0 = d2 =
4a+ 2b

3
+

R3

6
if d2 ≥ d3, (B.4)

∆0 = d2 if d2 = d4. (B.5)

An important example of a multiplet that satisfies (B.5) is the free vector multiplet

[1; 0]−2 = 3−2.

2. If the bottom component has spin (j, 0), then the unitarity conditions are also satis-

fied when

∆0 = d4 = −2j +
2a+ 4b

3
− R3

6
if d4 ≥ d1. (B.6)

3. If the bottom component has spin (0, j), then the unitarity conditions are also satis-

fied when

∆0 = d2 = −2j +
4a+ 2b

3
+

R3

6
if d2 ≥ d3. (B.7)

Whenever one of (B.3)–(B.7) is satisfied, or we have an equality in (B.1) or (B.2), we

have a short multiplet with less states than a generic long multiplet. All the multiplets we

discuss in this paper will be of this type.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 10 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
4
(
2
0
1
6
)
0
4
0

References

[1] A. Giveon and D. Kutasov, Brane dynamics and gauge theory,

Rev. Mod. Phys. 71 (1999) 983 [hep-th/9802067] [INSPIRE].

[2] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[3] S. Ferrara, M. Porrati and A. Zaffaroni, N = 6 supergravity on AdS5 and the SU(2, 2/3)

superconformal correspondence, Lett. Math. Phys. 47 (1999) 255 [hep-th/9810063]

[INSPIRE].

[4] S.W. Beck, J.B. Gutowski and G. Papadopoulos, AdS5 Backgrounds with 24

Supersymmetries, arXiv:1601.06645 [INSPIRE].
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