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Abstract

shikimic acid.

Background: Shikimic acid, the sole chemical building block for the antiviral drug oseltamivir (Tamiflu®), is one of
the potent pharmaceutical intermediates with three chiral centers. Here we report a metabolically engineered
recombinant Bacillus megaterium strain with arok (shikimate dehydrogenase) overexpression for the production of

Results: In a 7 L bioreactor, 4.2 g/L shikimic acid was obtained using the recombinant strain over 0.53 g/L with the
wild type. The enhancement of total shikimate dehydrogenase activity was 2.13-fold higher than the wild type.
Maximum yield of shikimic acid (12.54 g/L) was obtained with fructose as carbon source. It was isolated from the
fermentation broth using amberlite IRA-400 resin and 89 % purity of the product was achieved.

Conclusion: This will add up a new organism in the armory for the fermentation based production which is better
over plant based extraction and chemical synthesis of shikimic acid.
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Background

Shikimic acid, with three chiral centers is regarded as a
versatile hydroaromatic intermediate for the pharma-
ceutical industry. Since the synthesis of Oseltamivir
(Tamiflu®) from shikimic acid, its industrial demand has
increased exponentially [1]. Due to its unique structure,
it has been used as the building block for the synthesis
of several biologically active compounds such as anti-
biotics, antitumor agents [2], antithrombotic agents [3, 4],
and vitamins etc. It has also been used in the organic syn-
thesis and cosmetic industry [5]. Currently, shikimate is
mainly produced by chemical synthesis or extraction from
the fruit of Illicium spp. However, these processes are
complicated with the high cost and/or limitations of raw
materials making it difficult to meet the increasing world-
wide requirements due to the global pandemic of influenza
[6]. Microbial fermentation is regarded as a potential alter-
native for large scale production considering the increasing
demand of shikimate [7].
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Shikimate pathway is responsible for the synthesis of
aromatic amino acids and several aromatic compounds
in microbes and plants [8, 9]. The shikimate pathway
(Fig. 1) starts with the formation of 3-deoxy-D-arabino-
heptulosonate-7-phosphate (DAHP), which is formed by
DAHP synthase isoenzmyes (aroF, aroG, and aroH). The
DAHP so formed, is further catalyzed by three en-
zymatic steps (aroB, aroC and aroE) to form shikimic
acid. Shikimic acid is further transformed into aromatic
amino acids (phenylalanine, tyrosine, and tryptophan)
through chorismic acid. Escherichia coli have been the
major target of metabolic engineers and molecular biolo-
gists to modify the shikimic acid pathway to have higher
concentration of shikimic acid in the fermentation broth.
[6, 10-12]. Modification of the central carbon meta-
bolism has been one of the major strategies for the pro-
duction of shikimic acid by fermentation. Inactivation of
the PTS operon (PTS-), expression of non-PTS glucose
transporters like glucose facilitators (glf), glucokinase
(glk) in combination with over expression of tktA gene
was reported to increase the shikimic acid titer to 71 g/L
[13]. Antisense RNA interference and gene deletion were
employed to inactivate the aroK gene in a shikimic acid
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Fig. 1 Biosynthetic pathway of shikimic acid [indicating the over expression of aroE gene and enhancement in shikimic acid yield]
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producing E. coli strain with shikimic acid yield of
1.85 g/L using glycerol as carbon source in a 10-L fer-
menter [14]. Based on the inactivation of ptsHlcrr, aroK,
aroL, pykF and lacl genes in E. coli, Rodriguez et al. [12]
constructed a high-yield (43 g/L) shikimic acid strain
through constitutive expression of selected genes from
the pentose phosphate and aromatic pathways. Recently,
a modified E. coli strain has been reported where aroK
knock out mutant was combined with enhanced phospho-
enolpyruvate level and a shikimic acid yield of 14.6 g/L
was achieved [15]. Chemically inducible chromosomal
evolution and cofactor metabolic engineering was re-
ported to have shikimic acid yield of 3.12 g/L [16]. In
addition to recombinant E. coli, genetically modified
Bacillus subtilis [17] and Citrobacter freundii [18] have
been successfully used to overproduce shikimic acid al-
though the titers have not exceeded more than 20 g/L.
Statistical modelling approach was used for media op-
timization and shikimic acid titer of 16.78 g/L was achieved
with C. freundii [19]. In one of the recent reports, genetically
modified B. subtilis strain with combined overexpression
of genes for 3-deoxy-D-arabinoheptulosonate-7-phosphate
synthase (aroA) and SA dehydrogenase (aroD) was men-
tioned with shikimic acid yield of 3.2 g/L [20]. A pyruvate
kinase deficient strain of B. subtilis was also reported with
shikimic acid yield of 4.67 g/L [21].

In this study, we have developed a modified strain of
Bacillus megaterium with aroE (shikimate dehydrogenase)
overexpression for the production of shikimic acid (Fig. 1).

The aroE gene is targeted for this study, as shikimate
dehydrogenase is one of the rate limiting steps in the
shikimic acid pathway. Various carbon sources were used
to study their effect on the yield of shikimic acid. As no
computational model was available for shikimate dehydro-
genase of B. subtilis, a homology model was developed.
To rationalize the model, docking study was performed
using dehydroshikimate as substrate.

Results and discussion

Expression profile of shikimate dehydrogenase and PMF
based identification

To generate an aroE overexpression mutant of B. mega-
terium, the aroE gene from B. subtilis was cloned into
pWH1520 vector. The vector construct was transformed
into wild type B. megaterium cells for expression. As the
vector has a xylose inducible promoter, xylose was fed
into the media for induction. Upon optimization, induc-
tion with xylose (2 %, w/v), a clear band was observed in
the SDS gel (12 %, w/v), above the 29 kDa band of the
marker (Fig. 2a). The band was cut from the gel and
used for the in-gel digestion. The digested sample was
given for MALDI analysis and peptide profile was ob-
tained (Fig. 2b). The peptide mass (m/z) values were
compared with the MASCOT database and score of > 25
was obtained. These were some of the matched frag-
ments of specific cleavage: 147.138, 175.180, 395.493,
522.910, and 721.747 along with several matches of non-
specific cleavages.
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Fig. 2 aroF overexpression and peptide mass fingerprinting (a) SDS-PAGE (12 %) showing over expression of shikimate dehydrogenase (aroF).
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Generation of homology model and docking study

To characterize the overexpressed protein, BLAST ana-
lysis of the cloned gene sequence was carried out [22]. It
showed the presence of NAD(P) binding site in the pro-
tein and also confirmed it as a member of the shikimate

dehydrogenase superfamily. Sequence alignment demon-
strated that it has 98 % similarity with shikimate dehydro-
genase of B. subtilis subsp. spizizenii str. W23 and 94 %
similarity with B. subtilis subsp. subtilis str. 168. A homo-
logy model was developed for shikimate dehydrogenase of
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B. subtilis MTCC 441 (Fig. 3a) and the corresponding
Ramachandran plot was generated (Fig. 3b). From the plot
it was found that 83.5 % amino acids are in the most
favoured regions (A, B, L) which make it a standard model
for shikimate dehydrogenase. Since, there was no such
model available for shikimate dehydrogenase of B. subtilis;
this gives an insight to the structure activity relationship of
this enzyme.

Docking studies were carried out with dehydroshi-
kimate as ligand to show the binding interaction of
substrate with the enzyme. The pocket finder analysis
showed that Lys 111, Met 263, Lys 264 play the crucial
role in substrate binding and activity (Fig. 3c).

Shikimate dehydrogenase activity with aroE
overexpression strain

Shikimate dehydrogenase activity plays a key role in the
shikimic acid production by converting dehydroshikimate
to shikimic acid. The specific activity of shikimate de-
hydrogenase was estimated in crude extract of recombi-
nant B. megaterium. The wild type strain (B. megaterium
MTCC 428) was used as a control. From Fig. 4, it is evi-
dent that the specific activity of shikimate dehydrogenase
in the recombinant strain had increased by 2 fold com-
pared to the wild type. This enhancement in the total ac-
tivity of shikimate dehydrogenase was due to the aroE
overexpression in the recombinant strain.

Shikimic acid production using recombinant strain
To evaluate the effect of aroE overexpression on the
growth and shikimic acid production, a batch reactor of
7 L capacity was run in LB medium with the recom-
binant B. megaterium. The cells were induced with 2 %
xylose, when the ODggo,m reached to 0.4 and cell mass
was 0.8 g/L. During the growth and production of shi-
kimic acid by the recombinant organism, (Fig. 4) re-
ducing sugar concentration started decreasing from the
very beginning and it was found to be 1.6 g/L at 24 h.
Xylose was used for induction and it seems that the
most of the xylose had been utilized by B. megaterium
for the growth and shikimic acid production. The maxi-
mum shikimic acid concentration was 4.2 g/L at the end
of 24 h as analyzed and quantified by HPLC. DO con-
centration showed the downward trend initially along
with the increase of growth and finally it reached to the
saturation level at the end of fermentation. The initial
pH of the fermentation medium was 6.5 and during
course of growth and shikimic acid production, it was
found that the pH of the fermentation broth was on the
increasing side. The cell mass concentration started in-
creasing from the very beginning and a maximum of
6.6 g/L cell mass was obtained at 24 h.

Various biochemical engineering parameters such as
volumetric productivity, specific product formation rate
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and yield are calculated both for the wild type and re-
combinant strains of B. megaterium. It is evident from
Table 1 most of the parameters increased many times
than the wild type strain. The most important parameter
is the volumetric productivity, which is eight times more
in the case of recombinant strain than that of the wild
type. LB medium as such did not have any carbon
source, except the xylose which was used as inducer. It
was thought that the addition of extra carbon source in
the media might have significant effect on shikimic acid
yield. Various carbon sources were fed into the fermen-
tation medium before the inoculation.

Effect of carbon sources

The effect of various carbon sources (glucose, maltose,
sucrose, fructose, lactose, starch) on the growth and shi-
kimic acid production by aroE over-expressing strain of
B. megaterium was investigated to select the best carbon
source (Fig. 5). The cell mass produced in the culture
medium under different carbon sources was investigated.
The highest amount of cell mass was achieved with glu-
cose as carbon source. Out of the six carbon sources
used, the recombinant strain had the highest amount of
shikimic acid accumulation when fructose was used as
carbon source with the lowest amount of cell mass.

The growth of cell mass and the amount of shikimic
acid produced with various carbon sources are shown in
Table 2. The shikimic acid yield with various carbon
sources was also calculated. Although glucose is a highly
metabolizable carbon source, the highest shikimic acid
yield (4.04 g/gpcw) was observed with fructose. Sub-
strate diversion was more towards the product forma-
tion when fructose was used as a carbon source. These
data indicate the non-growth linked character of shi-
kimic acid production with fructose as a carbon source,
as there are instances of higher growth with other car-
bon sources than fructose, however, the shikimic acid
yield was superior with 1 % fructose.

Isolation of shikimic acid and its identification

Anion exchange resin, amberlite IRA-400 Cl~ was used
for the extraction of shikimic acid from the fermentation
broth following the method as described in methods
section. After extraction, the product was characterized
as shikimic acid by HPLC, Mass and NMR (Additional
file 1: Supporting information: S1, S2, S3, S8, S9, S10).

Conclusion

The effect of overexpression of aroE gene (shikimate
dehydrogenase) on the yield of shikimic acid is reported
in this paper. The maximum shikimic acid yield of
12.54 g/L was achieved using the recombinant strain at
7 L reactor level. The effect of various carbon sources
was investigated and fructose was found to be the most
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Fig. 3 Computational study of shikimate dehydrogenase structure and Docking analysis (a) Homology model of shikimate dehydrogenase of
B. subtilis. (b) Ramachandran plot of shikimate dehydrogenase showing the distribution of amino acids. (c¢) Docking studies showing catalytic
interaction of shikimate dehydrogenase with dehydroshikimate

effective carbon source for shikimic acid accumulation.  enzyme-substrate interaction is shown. The amino acid
The homology model developed for shikimate dehydro-  residues involved in substrate binding and catalysis were
genase has been used for the docking study and the identified. The study shows that over expression of aroE
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gene has significant effect over the shikimic acid yield in
B. megaterium than the previously reported strains. By
this single alteration in the pathway, an improved Bacillus
strain is developed which is better over some of the re-
combinant counterparts with multiple modifications.
Though the yield is lower than the reported values, with
further modifications of the recombinant strain (such as
generation of aroK knock out), this may be developed as a
potential process for industrial application. There is a pos-
sibility of having higher titer of shikimic acid on the
achievement of complete optimization studies with the re-
combinant B. megaterium.

Methods

Culture and growth condition

B. megaterium MTCC 428 and B. subtilis MTCC 441 was
obtained from Microbial Type Culture Centre, Institute of
Microbial Technology, Chandigarh, India. E. coli Topl0,
available in the laboratory, was used as cloning host. Luria
Bertani broth (10 g/L tryptone, 5 g/L yeast extract, 10 g/L
NaCl) was used for the growth of both the organisms. Va-
rious concentrations of antibiotics (ampicillin 100 pg/mL,
tetracycline 10 pug/mL) was used in the medium for the
selection of recombinants of E. coli and B. megaterium,
respectively. Cells were grown in an incubator shaker

Table 1 Comparison of fermentation parameters of the wild
type and recombinant strain in the growth and production of
shikimic acid

Condition Q. Q, (Mg SA/g Y Yeers)

(g SA/Lh) cell mass.h) (9/100 @) (9/100 @)
Wild type 0.01 883 25 265
Recombinant 0.08 26.31 33.25 21
Fold 8 297 133 792

Qy = Volumetric productivity of shikimic acid
Qp = Specific product formation rate

Yxss) = Cell mass yield

Yp/5) = Product yield w.r.t substrate

(Kuhner, Germany) at 37 °C (200 rpm) for 12 h (E. coli)
and 24 h (B. megaterium).

> Fermentation media and growth condition

For the production of shikimic acid using wild type and re-
combinant strain, in shake flask and bioreactor, Luria
Bertani broth was used. Induction was carried out with 2 %
xylose (w/v) at ODggonm 0f 0.4 (cellmass 0.8 g/L). Tetra-
cycline (10 pg/mL) was used for the selective growth of the
recombinant. For shake flask experiments, the strain
(glycerol stock stored at —80 °C) was grown in 20 mL
LB-Tet medium as starter culture. This fresh culture was
used to inoculate (2 %, v/v) 100 mL medium at 37 °C
(200 rpm). For 7 L bioreactor (5 L working volume), 250 mL
starter culture was prepared for inoculation. Glucose fee-
ding of 50 g/L was given after 24 h, in the stationary phase.
The reactor was aerated at 0.5 VVM and the dissolved
oxygen concentration was maintained above 30 % air
saturation by agitation at 200-500 rpm. Antifoam (poly-
propylene glycol) was added manually as and when needed.

Plasmid construction

Standard procedures were followed for polymerase chain
reactions (PCR), DNA purifications, enzyme digestions,
ligation reactions and plasmid extractions [23]. The plasmid
construct was verified by PCR using the construct as tem-
plate, restriction digestion analysis, and sequencing. Wild
type gene aroE, from B. subtilis MTCC 441, was amplified
with primers aroE-FP and aroE-RP, and cloned into plasmid
pWH1520 via Spel and Kpnl sites to construct plasmid
pWH1520-aroE"". Strategy and map of plasmid construct
is displayed in Fig. 6.

aroE-FP: 5" GATGCACTAGTATGAAAAAGCTGTA
CGGGGTTATCGG 3’

aroE-RP: 5" GATGCGGTACCTTAACATTCTGTTC
CTCCTAATTTTCC 3’
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Table 2 Shikimic acid yields with respect to cell mass under
different carbon sources

Carbon sources? DCW (g/L) Shikimic acid (g/L) Y
Glucose 5.78 1221 211
Lactose 336 10.95 3.25
Maltose 535 12.18 227
Starch 4.65 6.89 148
Sucrose 341 12.30 36

Fructose 31 12.54 4.04

Y(e/x) = Product yield w.r.t cell mass
#Carbon sources such as Glucose, Lactose, Maltose, Starch, Sucrose and
Fructose (1 %, w/v) were used

Transformation of vector construct into protoplast of

B. megaterium

The transformation of B. megaterium protoplasts provides
an elegant method to introduce foreign plasmid DNA
[24]. For the transformation of protoplasts, method re-
ported by Biedendieck et al. [25] was followed. After
transformation, the protoplasts were platted on Tet-LB-
agar plate and incubated at 37 °C. Colonies were observed
indicating the successful transformation.

Overexpression of shikimate dehydrogenase (aroE)

In plasmid pWH1520, the promoter is under the control
of xylose induction. For the expression of cloned gene,
xylose concentration was optimized. Different concentra-
tions of xylose (1, 2, 3, 4, 6 %, w/v) were used. Cells were
induced at ODgyonm Of 0.2-0.4. Cells were harvested after
24 h, once stable ODggg,, Was achieved. Cells were washed
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twice with phosphate buffer (100 mM, pH 7.0) and resus-
pended in lysis buffer (100 mM Tris—HCl, 0.4 mM DTT,
1.2 mM PMSE, 1 mM EDTA) at final cellmass concentra-
tion of 100 mg/mL. Cells were disrupted by French Press
at 600 psi and the suspension was centrifuged to remove
the cell debris. Both the pellet and supernatant was used as
sample for PAGE (12 %) to check for the protein.

Identification of over expressed protein

The over expressed protein was characterized by peptide
mass fingerprinting using in-gel digestion method, as re-
ported by Shevchenko et al. [26]. The peptide profile
was checked by MALDI analysis and compared with the
MASCOT database [27]. The MASCOT score was used
for the identification of protein.

Homology modelling of shikimate dehydrogenase and
docking study

Homology model was developed on the basis of sequencing
data of the cloned aroE gene using the Expasy server and
Swiss Dock model [28]. The model was validated by Pro-
chek. Docking was carried out with Swiss Dock system
using dehydroshikimate (from Zinc database) as ligand.
Binding site of the ligand was predicted using pocket finder
and docking analysis. Binding interaction of the ligand with
the enzyme was predicted using Chimera map.

Assay for shikimate dehydrogenase (SDH)

The enzyme was assayed in the reverse direction using
shikimic acid as substrate at 25 °C by monitoring the re-
duction of NAD" at 340 nm [29]. The assay mixture (total
volume 1 mL) contained 100 mM Na,CO3 (pH 10.6),

4 mM shikimic acid and 2 mM NAD". Substrate blank,
enzyme blank and co-factor blank was used for each assay
experiment. One unit of enzyme activity is defined as the
amount of enzyme that catalyses the conversion of 1 umol
of substrate/min.

Analytical methods

Cell growth was monitored by measuring the optical
density at 600 nm. Glucose concentration was estimated
by DNS method [30]. Shikimic acid concentration was de-
termined by HPLC using Waters Alliance 2695 series in-
strument and Alltech OA-2000 organic acid column
(100 x 6.5 mm, 6.5 pm) (Grace Davison Discovery Science,
Deerfield, Illinois, USA) maintained at 30 °C. The mobile
phase was 0.005 N H,SO, with a flow rate of 0.5 mL/min.
Shikimic acid was detected at 254 nm with a photodiode
detector and quantified using a standard curve.

Isolation of shikimic acid from fermentation broth
Shikimic acid being anionic in nature, an anion exchange
chromatography was used for its extraction from the fer-
mentation broth. Amberlite IRA-400 CI” was used for
this purpose [31]. Cells were separated by centrifugation;
supernatant was concentrated on rotavapor till a viscous
mass was formed, dissolved in methanol and centrifuged
again. The resultant solution was then dried in rotavapor
till it formed a layer. The solid residue then re-dissolved
in water and filtered. The filtrate was loaded onto an
Amberlite IRA-400 chloride column and washed with
deionized water. Shikimic acid was eluted with 25 %
aqueous acetic acid and concentrated on rotavapor. The
concentrate was analyzed by HPLC, GC-MS and NMR.
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