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1 Prolegomena

Neutrinos — and perhaps novel weakly interacting particles — escape unobserved from the
collisions in which they are produced. In the corresponding “missing energy” events, the
reconstruction of the masses of the parent particles and the specification of the underly-
ing process are challenging because there are typically fewer kinematical constraints than
unknowns. At a hadron collider this situation is rendered even thornier, since particles
produced at small angles also escape undetected. This prohibits the determination of the
longitudinal momentum of the center of mass system of the colliding partons.

The above limitations confer a higher standing to observables exclusively dependent on
transverse momenta [1, 2], or otherwise invariant under longitudinal boosts [3]. In principle,
transverse observables are insensitive to the significant uncertainties associated with the
(longitudinal) parton distribution functions (pdfs). In practice the uncertainties are to
some extent reintroduced via the angular coverage limitations of an actual experiment,
which are not invariant under longitudinal boosts.
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The quintessential transverse observable is the transverse mass, of W -discovery fame.
In an event at a hadron collider, consider the production of a single W , followed by its
decay W → `ν, with ` an electron, a muon, or one of their antiparticles. Denote by x ≡
(x0, ~xT , x3) and l ≡ (l0,~lT , l3) the neutrino and charged lepton fourmomenta, respectively.
Here~lT ≡ (l1, l2) and ~xT ≡ (x1, x2) are the momenta of the leptons in the plane transverse to
the beam direction(s), and ~pT ≡ (p1, p2) the analogous quantity for the observed final state
hadrons. The traditional “transverse mass”, a function of ~lT and ~pT , whose distribution is
used to infer the W boson mass, is [1, 2]

M2
T

= 2 lT xT [1− cos ∆Φ(~xT ,
~lT )]

~xT � ~xT +~lT + ~pT = 0, (1.1)

where ∆Φ(~xT ,
~lT ) is the angle between the transverse lepton directions. The most precise

determination of the mass of the W by a single experiment is the one by DØ [4]. In spite
of the relatively unfavorable environment of a hadron collider, its large statistics results in
a value with an overall error smaller than that of the LEP experiments. The DØ result is
based on the decays W → e ν, and the measurement of three highly correlated transverse
observables: the traditional “transverse mass” function [1, 2], the lepton’s transverse energy
and the total missing transverse energy. The result:

MW = 80.401± 0.043 GeV, (1.2)

stems from an actual measurement of MW /MZ . But MZ was determined with exquisite
precision at LEP. The PDG quotes MZ = 91.1876± 0.0021 GeV [5].

The procedure to extract MW from the distributions in transverse mass, lepton mo-
mentum and total missing energy is as follows. A finely spaced set of input W boson
masses, M , is used to generate a set of “templates”: the “Monte Carlo” (MC) expectations
for the observed distributions, with all their experimental cuts, estimated uncertainties,
calorimeter responses, etc. The χ2(M) values for the comparison of data and expecta-
tions are fit to a quadratic form, from whose minimum and width MW and its estimated
error are inferred. Naturally, all the procedure is tested and calibrated by the observed
Z-production and leptonic decay (into e+e−, in the DØ case).

In order of decreasing incidence on the error in eq. (1.2), the limitations are the elec-
tron’s energy calibration, the uncertainties on the pdfs, and the statistics. For this partic-
ular measurement, the backgrounds are well understood and quite negligible.

Given the large statistics already gathered at the Tevatron collider, and with the
advent of the LHC as a high statistics precision physics tool, the main limitation of a
hadron collider determination of the W mass from its decays into electrons and muons is
likely to be the pdf uncertainty. At the LHC this problem is in particular exacerbated [6]
by the fact that it is a pp, not a p̄p collider, and the quark pdfs in a proton — or the
identical antiquark pdfs in an antiproton — are much better known than the antiquark
pdfs in a proton.
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2 Introduction

A ginormous amount of attention has been paid to hypothetical processes involving neutral,
long-lived, weakly-interacting final state particles that can only be indirectly detected. A
prototypical example is the pair production of squarks followed by their decays into quark
plus neutralino. Such processes generally involve two or more particles of unknown masses.

The first aim in the missing particle searches for physics beyond the Standard Model is
the establishment or the exclusion of a signal, both tantamount to an efficient suppression
of backgrounds. Some novel longitudinal boost invariant variables are a very good choice
in this endeavor [3], as demonstrated by the data analysis in [7].

A longer-range aim is the measurement of unknown masses, when there are more
than one and a candidate process is selected. In this connection, a very general algebraic
singularity method has been advocated [8], involving the use of a “singularity variable”
(SV), allegedly more powerful than that of a singularity “condition” (SC), such as the one
leading, as we shall see, to the M2

T
result of eq. (1.1).

It is too late to discover the W , though not to attempt to measure its mass even better,
a relevant task in checking the consistency of the Standard Model and constraining the mass
of its hypothetical scalar. With this ab-initio motivation, we have exhaustively studied the
phase space for W production and leptonic decay, a simple undertaking analogous to the
analysis of a Dalitz plot, but with incomplete kinematical information (section 4).

We have also studied the singularities of this phase space, and their use in constraining
the W mass (sections 4 and 5) . We identify the criterion for the theoretically optimal SV
and derive its explicit form (sections 6, 8 and 10). En passant, we find that other nonoptimal
SVs, such as the one proposed in [8], are “dangerous”, in that their distributions display
fake singularities (section 7).

The singularity variables we study involve the measured longitudinal momentum of the
charged lepton, l3. This longitudinal information is obviously additive to the transverse
information exploited in observables such as M2

T , but is highly correlated with it (section 9).
The l3 distribution directly reflects the pdfs of merging quarks and antiquarks of different
flavor. Recent progress in QCD fits and in calculations well beyond the leading order allows
one to hope that — eventually — the dominant limitations concerning the problem at hand
will not be the theoretical pdf uncertainties, but the limited calorimetric resolutions.

Given a trustable set of pdfs, one can simulate the observable distribution of events
dN/(dl3 d2lT d

2pT ) for a set of input trial masses and contrast it with observation. This
comparison involves the five relevant variables and their correlations; it has no statistically
superior competitor. Why then study any alternatives? Besides the pleasure of under-
standing with use of one’s own neural network, there is the motivation of paving the way
of searches for other processes involving unobservable particles, for which it is a priori
prohibitive to simulate all possibilities.

In this note we report on a thorough theoretical study of the extraction of phase space
information from single-W signal events, but we use the standard model of W production
and decay only to leading order. We entirely ignore the backgrounds, which are well known
to be very modest for this particular process. A reason for these choices is that only the
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experimentalists themselves can fully model the detector’s effects and backgrounds, and
that this modeling is independent from the theoretical issues on which we focus.

3 Linguistic quandaries

Based on equations such as M2 = (l+x)2, we shall be drawn to give a plethora of meanings
to what is, for starters, simply a letter: “M”. It ends up being everything else. The
resemblance to M -theory is coincidental.

Naturally, M may stand for the physical or measured MW , as well as for its Lorentzian
distribution, when the width is not neglected. But it may also, as in the case of the
transverse mass, MT , be a non-Lorentzian function of other observables.

In analyzing data, one compares them with MC generated distributions that depend
on an ensemble of input “trial masses”, for which we reserve the label M . A different type
of trial masses, which we callM, appears in “singularity variables”, which are functions of
observable momenta and of M. Not to make this complex linguistic heritage hereditary,
we label the singularity variables “Σ” (and not once more “M”, as in the M2

T function)
thereby not introducing new meanings to the symbol M or the word “mass”.

4 Single-W phase space

The full information relevant to the reconstruction of the W mass is embedded in the
kinematical equations:

E1 V x2 = 0 (4.1)

E2 V 2 l · x = M2 (4.2)

E3 V l1 + x1 + p1 = 0 (4.3)

E4 V l2 + x2 + p2 = 0 (4.4)

where we have made the approximation l2 = 0 for the charged lepton. The equations are
incomplete in that the ν longitudinal momentum, x3, is unconstrained, precluding a direct
determination of the W boson mass from a “mass peak”. Is there a systematic way to
extract the kinematically most stringent information on MW ?

To answer this question it is useful to study first the phase space described by eqs. (4.1)–
(4.4) in a simplified case. If the energy and transverse momentum of the observed hadrons
could be measured with precision, it would be possible to boost every event to the ~pT = 0
frame. To (temporarily) simplify the algebra, let us just adopt this constraint. Solve the
linear equations E2, E3, E4 to express x0, x1, x2 as functions of x3. Substitute the result in
E1 to obtain the phase space

Φ(lT , l3, x3,M) ≡ (M2 + 2 l3 x3 − 2 l2
T

)2 − 4 l20 (l2
T

+ x2
3) = 0 (4.5)

l0 ≡ +
√
l2
T

+ l23 (4.6)

l2
T
≡ l21 + l22 (4.7)

– 4 –
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It will be useful to consider the two solutions to eq. (4.5) in x3 = x3(lT , l3,M):

x±3 =
1

2 l2T

[
l3(M2 − 2 l2T )±M l0

√
M2 − 4 l2T

]
(4.8)

With no loss of generality, and to be able to plot the phase space, do three more things.
Take l3 to be positive if directed along the direction of a given (fixed) proton beam. Define
the lT of eq. (4.7) to be positive if directed above the beams, negative otherwise. The
function Φ(lT , l3, x3) = 0, from divers points of view, is plotted in figure 1. Along the
(blue) straight lines the planes tangent to the phase space contain one “visible” direction,
l3, and the “invisible” direction x3. The projection of phase space into the visible directions
(lT , l3) is bounded by the lines lT = ±M/2.

The boundaries of the phase space projected along an invisible direction onto the space
of the visible ones, l2T = M2/4, are an example of singularity condition(s). At their location
there is a single invisible coordinate x3 for fixed values (lT , l3) of the visible ones, as opposed
to the two of the general case in eq. (4.8), and the projected phase space density is not
smooth [8].

In practice two cuts have to be applied to the momentum of the observed lepton. We
adopt |l3| < 5 |lT | (resulting from a pseudo-rapidity limitation |η̄| < 2.3) and a rather
demandingly low |lT | > 10 GeV. These cuts result in the unobservability of a large fraction
of phase space: the (red) domain shown without a mesh in figure 2. The maximum
|x3| = O(50)MW happens to be close to the absolute kinematical limit, approximately
|x3| < Ep, at the current LHC energy, Ep = 3.5 TeV. This was probably not the main
reason to choose this machine energy.

In simple cases such as the one at hand the singularity condition can be directly
obtained. The lT boundary is the projection of the phase space points at which the tangent
plane is vertical and contains the invisible direction x3. At these points ∂Φ(lT , l3, x3)/∂x3 =
0. Eliminating M from this expression and eq. (4.5) one obtains x3 = l3. At these
boundaries M2 = 4 l2T .

4.1 The formal singularity condition

The procedure of the last paragraph requires some guesswork, but can be rendered entirely
general and systematic. At a singularity one or more of the invisible directions are contained
in the tangent plane to the full phase space. The general condition for this to happen
is that, in the space {x} of invisible directions, the row vectors of the Jacobian matrix
Dij ≡ ∂Ei/∂xj (with the row index i running along the number of equations and the
column index j over the number of invisible coordinates) be linearly dependent, so that
the derivative relative to an x-direction normal to these vectors be zero. In other words,
at a singularity, the rank of Dij must be smaller than its rank at nonsingular points [8].

For the general single-W case we are discussing

D=
∂(E1, E2, E3, E4)
∂(x0, x1, x2, x3)

=2


x0 −x1 −x2 −x3

l0 −l1 −l2 −l3
0 1 0 0
0 0 1 0

 (4.9)
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Figure 1. Three views of the phase space function Φ of eq. (4.5), with the momenta (lT , l3 and
x3) in units of M . The black lines cut the surface at fixed lT or l3 and the green ellipses at fixed
W3 = l3 + x3, the longitudinal momentum of the W . The (blue) lines at lT = ±1/2, x3 = l3 are
singular. A point in the (lT , l3) plane corresponds to two values of x3 = x±3 (lT , l3).

and the reduced rank condition is

EC V DetD ∝ l0 x3 − l3 x0 = 0 (4.10)

The same condition is obtained in the ~pT = 0 example. Combining it with eq. (4.5) results
in x3 = l3, the phase space boundaries shown as straight (blue) lines in figure 1.
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Figure 2. The same as figure 1, but in a different, more extensive, domain of (lT , l3, x3). The
finite dashed (green) domain is what survives the typical experimental cuts on lT and η̄. A (yellow)
plane tangent to the phase space surface Φ = 0 along the singularity line at lT /M = −1/2 is shown
at the left; it contains the invisible direction x3. The arrow is orthogonal to the phase space Φ = 0
at a point in it, and extends from this point to the tangent plane.

4.2 The MT function

The general case with nonvanishing ~pT is treated with equal ease. Eliminate the four
variables x to solve the five equations (4.1)–(4.4), (4.10) in M . The result is ΣT = 0, with:

ΣT (M,~lT , ~pT ) ≡M4 − 4M2 (~lT · ~pT + l2
T

) + 4
[
(~lT · ~pT

)2 − l2
T
p2

T

]
(4.11)

Of the four M -roots of ΣT = 0, one is not unphysical

MT (~lT , ~pT )=+
√

2
[
|lT | |p+ l|T +~lT · (~lT + ~pT )

]
, (4.12)

which reduces to MT = 2 |lT | for ~pT = 0. The function MT
2 of eq. (4.12) is the consuetu-

dinary M2
T

of eq. (1.1).

5 Kim’s singularity variable

Discussing the general case with an arbitrary number of invisible final state particles, Kim
has argued [8] that the use of a “singularity variable” (SV) is more powerful than that of
a singularity “condition” (SC), such as the one leading to the M2

T
result of eq. (4.12).

Kim requires a SV to have four properties [8]:

(i) To vanish at the singularity.

(ii) To be perpendicular — at the singularity — to the phase space surface in the ob-
servable directions.

– 7 –
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(iii) To be “normalized such that every event can give the same significance”.

(iv) To be computed to first nontrivial order (the second fundamental form) in the distance
between a phase space point and the nearest singularity.

Our interpretation of these formal looking choices is the following. Condition (i) is
the only scale invariant stipulation. At the singularity, condition (ii) entails a maximal
sensitivity to the unknown masses. Condition (iii) ensures that two events with the same
distance to the singularity be treated on equal footing. The requirement (iv) is one way to
make the procedure general.

To fathom all this it is useful to jump momentarily to the result of Kim’s prescription
in our single-W case. The SV (more precisely, the singularity function) is:

Σ(M,~l, ~pT ) =
l2
T

+ 2 l23
4 l4

T

ΣT (M,~lT , ~pT ) (5.1)

with ΣT as in eq. (4.11), and M substituted for M, as its role will now be that of a trial
mass. For ~pT = 0 this SV reduces to:

Σ0(M,~l, ~pT ) =
l2
T

+ 2 l23
4 l4

T

M2 (M2 − 4 l2
T

) (5.2)

Refer for a moment to the limit Γ → 0 for the W width and a situation with no
measurement uncertainties. Consider a set of N real or MC generated events, i.e. a list
of values of (~l, ~pT ) and the histograms dN(M)/dσ of the corresponding values of σ =
Σ(M,~l, ~pT ), for different choices of M. For M = MW , the real or “MC true” value of the
W boson mass, the singularity is at σ = 0, dN(M)/dσ peaks at that point and vanishes for
σ < 0. For a fixed data set and varying M, the function dN(M)/dσ varies in shape, but
obviously not in statistically useful content. We shall later illustrate these points in detail.

The use of an “implicit” variableM may seem to be an overkill. In the single-W case
with ~pT = 0, it is. One could equally well erase M in eq. (5.2) and use the SV:

Σl(M, l) =
l2
T

+ 2 l23
l2
T

, (5.3)

which, in conjunction with M2 = 4 l2T , embodies two projections of the full distribution
dN/(dlT dl3).

Contrariwise, one could make the singularity condition into a singularity variable with
an implicit M:

ΣT (M, lT ) ≡M2 − 4 l2
T

(5.4)

and consider the distributions dN(M)/dσT . But the information that these distributions
contain is precisely the same as that of the distribution dN/dl2

T
, the corresponding his-

tograms are just mirror reflected and shifted relative to one another.
The above unfavorable commentaries on implicit variables are by no means general.

Even in the single-W case, for ~pT 6= 0, it will not be possible to “erase” M from eq. (5.1)
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P

S l
u

x

M

H

Figure 3. P is a point in “phase space” of which only the corresponding l is measured. S is
the closest singularity to it. The length of the three arrows and the angle u are used to construct
various singularity variables.

in the same cavalier spirit in which we erased it from eq. (5.2) to obtain eq. (5.3). Sin-
gularity variables should be of particular practical relevance in problems with more than
one unknown mass or unobservable particle, for which the labor of making templates for
all possibilities may be out of the question. There, at least at the discovery stage, “clever”
variables may be useful to zoom kinematically to the relevant mass ranges before a full
analysis is to be contemplated, as discussed in [3].

6 The quest for an optimal variable

It is instructive to consider a trivial example with one visible variable, l, and a single
invisible one, x, constrained by the “Euclidean phase space” equation

Φ := x2 + l2 −M2 = 0 (6.1)

This apparently arbitrary instance actually corresponds to an imaginable process, that of
a particle decaying into an invisible one, X, and a visible one that happens to be at rest.
The longitudinal momentum of X is x and its transverse one, l, is measured via the usual
transverse balance. M is a combination of the masses involved [9].

The value of the unknown quantity M in eq. (6.1) is encoded in the l-distribution. The
Jacobian matrix is D = ∂Φ/∂x = 2x. The constraint that its rank be reduced is x = 0,
resulting in the SCs l = ±M . For a given “observed” l, there are two points P in Φ. Their
nearest singularity is the point S, as illustrated in figure 3.

Following Kim’s method [8], we obtain for the SV

ΣK(M, l) = u2 ≡
[
arccos

|l|
M
]2

, (6.2)
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proportional to the squared (angular or geodesic) P to S distance measured on the Φ
surface. In a less trivial case, the resulting SV would have been the same distance on the
quadratic approximation to Φ around S.

There is nothing sacred about the elegant result of eq. (6.2). There are other SVs
that (up to an overall normalization) coincide with u to second order. Three examples,
illustrated in figure 3, are:

(1) The distance between P and the hyperplane, H, tangent to Φ at S (the dotted vertical
line, in this case). This distance is the horizontal arrow.

(2) The P to H distance along the normal direction to Φ at P : the slanted arrow.

(3) The square of the length of the vertical arrow.

In the notation of eq. (6.2) and normalized so that they coincide with ΣK to O(u2), these
SVs are:

Σ1(M, l) = 2 [1− cosu] (6.3)

Σ2(M, l) = 2 [1/ cosu− 1] (6.4)

Σ3(M, l) = sin2 u (6.5)

Note that Σ1 is the 2D analog of the singularity condition used as a SV, as in eq. (5.4).
That is to say, it is equivalent to the transverse mass distribution.

Is any of these SVs in eqs. (6.2) to (6.5) “the best” in some useful sense? To answer,
consider the distributions of the numerical values σ of the various Σi functions, for fixed
M (a zero width resonance):

Hi(σ,M,M) ≡ dN

dσ
≡
∫
dx dl δ(x2 + l2 −M2) δ[σ − Σi(M, l)] (6.6)

Recalling eq. (6.1), and in particle physics language, dx dl δ(Φ) is the phase space, Hi is the
distribution of the Σi values. Monte Carlo generated “diagonal” histograms, Hi(σ,M,M),
would be the templates for various trial choices of M .

In the four cases of eqs. (6.2) to (6.5), with the notation ρ ≡ M/M , and normalized
to unit integral in the allowed range of the corresponding σ, the distributions are

HK =
ρ sin

√
σ

π
√

1− ρ2 cos2
√
σ
, σ ∈ [arccos2 ρ−1, π2/4]

H1 =
ρ

π
√

1− ρ2 + ρ2(σ − σ2/4)
, σ ∈ [2(1− ρ−1), 2]

H2 =
4ρ

π(2 + σ)
√

(2 + σ)2 − 4ρ2
, σ ∈ [2(ρ− 1),∞)

H3 =
ρ

π
√

1− ρ2(1− σ)
√

1− σ , σ ∈ [1− ρ−2, 1] (6.7)

In the simple case at hand, one need not refer to “nondiagonal” histograms Hi(σ,M,M),
that involve the implicit variable M 6= M . In more blind searches with several unknown
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masses this may no longer be the case. Moreover the nondiagonal histograms provide one
way to ascertain the “goodness” of their SV.

To quantify the amount by which the distribution of a given SV is sensitive to the
difference between a “true” mass M = M and a variation thereof, M = M + ∆M , define
the “statistical squared derivative”, χ̂2, and its integral1

χ̂2
i (σ) ≡ 1

Hi(σ,M,M)

[
∂Hi(σ,M,M)

∂M
]2

M=M

Di =
∫ σmax

σmin

χ̂2
i (σ) dσ (6.8)

The notation reflects the parentage of χ̂2 with the usual χ2 measure; it is also the square of
the geometrical mean between ordinary and logarithmic derivatives. “Statistical” reflects
the fact that χ̂2(σ) is a local measure of a variation relative to the one expected from a
standard deviation of 1σ size. In this hypothetical case with sharply defined cuts in σ, χ̂2

is singular at σ = 0. Regularizing the singularity with a cut σ > σ0 > 0 we obtain:

DK ∼
σ0↓0

2
3π
σ
−3/2
0 (1 + 2σ0) + o(1),

D1 ∼
σ0↓0

2
3π
σ
−3/2
0

(
1 +

15
8
σ0

)
+ o(1),

D2 ∼
σ0↓0

2
3π
σ
−3/2
0

(
1 +

21
8
σ0

)
+ o(1),

D3 ∼
σ0↓0

2
3π
σ
−3/2
0

(
1 +

3
2
σ0

)
+ o(1).

(6.9)

The singularities of the different Hi are all ∝ 1/
√
σ and have been equally normalized

by construction (and for a fair comparison). The sensitivity to the value of M is max-
imal close to the singularity. This sensitivity puts the SVs of eqs. (6.2) to (6.5) in the
“goodness” order

Σ2 � ΣK � Σ1 � Σ3 (6.10)

dictated by the second term in brackets in eqs. (6.9). The fully “orthogonal” SV Σ2 is the
contest’s winner. The usual transverse mass distribution (Σ1 in this simplification) does
not fare well.

So far there seems to be no compelling reason not to have made the above variable-
comparing analysis with M =M for starters. But in a more realistic case M would stand
for the central value of a distribution of non zero natural width, whileM is just an auxiliary
quantity introduced for analysis purposes.

To illustrate the above, and to convey the numerical meaning of eqs. (6.9), substitute
the sharp definition of M in eqs. (6.1), (6.6) by the one corresponding to a resonance of
mass M and width Γ:

δ(x2 + l2 −M2)→ 1
π

M Γ
(l2 + x2 −M2)2 +M2 Γ2

(6.11)

1F.J. Girón informs us that our statistical derivative is nothing but the statistician’s “Fisher’s informa-

tion”.
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Figure 4. Top: the dHi(σ,M,Γ,M)/dσ distributions for the SVs Σi, i = K, 2 for M =M = 1,
Γ = 0.3. Bottom: the corresponding statistical squared derivatives.

This corresponds to “spreading” the circle of figure 3 and “scanning” it with circles of
varying — but sharply defined — M, with the help of different “Σ” scanners.

Results for the distributions for Kim’s variable and the orthogonal SV are shown in
the upper figure 4. The lower figure shows their χ̂2

i (σ) around the σ = 0 singular point, the
domain to which the Hi distributions are most sensitive to the unknown M. The figures
are drawn for M = M = 1, Γ = 0.3, showing how the orthogonal Σ2 is better than ΣK .
However, the difference is not large and, for a narrow resonance (or one whose width is
masked by detector effects) it would be negligible, as the relative differences close to σ = 0
between the χ̂2

i (σ) of the various SVs diminish linearly as Γ/M → 0.
The Di integrals of eq. (6.8) over their complete respective kinematical domains are

numerically similar, apparently demonstrating that, in toto, all variables are statistically
equivalent. In practice this is not the case. The signal-to-noise ratios of the distributions
are increasingly unfavorable as one moves away from the σi ∼ 0 neighborhood of the
signal’s peak.

We have proven that Σ2 is better than others, but not that it is the best. Its optimality,
however, appears to be intuitively obvious. The phase space Φ of eq. (6.1) simply scales as
M changes. The optimal SV ought to maximize the dependence on M at every point in
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phase space. This dependence is maximal in the direction orthogonal to Φ. The variable
Σ2 measures a distance to the nearest singularity, in that preferred direction.

7 Induced singularities

Let us return to the case of single-W production and model the simplified ~pT = 0 instance
as stated in the ending paragraph of section 2, that is, to leading order. We use the quark
and antiquark parton distribution functions of [10] at an LHC energy of

√
s = 7 TeV and

apply the cuts |lT | > 10 GeV and |η̄| < 2.3 to the charged lepton. We ignore the difference
between W+ and W− production.

We choose to present results for the distribution of the values, σ, of the function:

Σ(M, l) = (l2
T

+ 2 l23)M2 (M2 − 4 l2
T

), (7.1)

which differs from eq. (5.2) by a factor 4 l4T . This does not affect the arguments to follow.
Moreover, in conjunction with the transverse mass (4 l2T ) distribution, the use of eqs. (5.2)
or (7.1) are equivalent.

A heedless use of eq. (7.1) results in an interesting surprise, illustrated in the top panel
of figure 5. The histogram has two peaks, one of them significantly above the expected
singularity at σ = 0. The peaks fuse as one lets the W have its rather narrow width,
Γ/M ' 0.02, as illustrated in the lower panel of figure 5. Still, the fused peak is not just
the expected singularity at the origin of the SV and the issue calls for understanding.

Consider restricting the phase space of eqs. (4.5) and figure 1 to its slices at fixed
longitudinal momentum of the W , W3 = x3 + l3, shown in these plots as (green) ellipses
(in practice this can only be done at a monochromatic eνe collider). The distribution
H(σ,M,M,W3) is shown on the upper figure 6, for M = M = 1, W3 = 2. It has two
singularities besides the one expected at σ = 0.

The origin of the singularities is clarified in the lower figure 6, where the curve is the
phase space Φ(l3, σ), again for M = 1, W3 = 2. A uniform distribution of events along
Φ(l3, σ), projected on the σ axis, has three cumulation points at the projections of the
vertical tangents. The one at the edge is the expected σ = 0 singularity, the other two are
induced singularities. In these MW = 1 units, for W3 < 1 there is no induced singularity,
for W3 = 1 there is one and for W3 > 1 there are two. One induced singularity survives
the integration over the W3 distribution, as shown in figure 5.

The source of the induced singularities is the specific form of the SV in eq. (7.1) —
or of the formal SV of eq. (5.2) — which results in a fixed-W3 phase space the curvature
of whose surface is not everywhere of the same sign. The induced singularities are not
endpoints, but are event accumulation points for the same reason as the endpoints, i.e. the
tangent manifold to the phase space at their locations contains invisible directions.

In a process with just one mass scale to disentangle, the complications we just discussed
are a lesser problem. In a process with more than one mass scale, they are a putative source
of confusion. The fully orthogonal SV Σ2 of eq. (6.4) does not result in induced singularities.

– 13 –
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Figure 5. Top: The singularity variable of eq. (5.3) results, for a narrow resonance, in a distribution
with an extra singularity away from σ = 0. Bottom: The small width of the W suffices to merge
the singularities, shifting the resulting peak away from σ = 0.

8 Results

For the single-W case at hand, consider the “fully orthogonal” variable akin to Σ2 in
eq. (6.4). We call it ΣA and discuss it first in the ~pT = 0 instance. Its geometrical
interpretation is depicted in figure 2; ΣA is a measure of the length of the arrow, which
is orthogonal to a phase space point P with coordinates (lT , l3, x3) and ends in the plane
tangent to the phase space surface at the singularity line.

Define the unit vector ~n orthogonal to the surface Φ(lT , l3, x3,M) of eq. (4.5):

~N ≡ (N1, N2, N3) = (∂Φ/∂lT , ∂Φ/∂l3, ∂Φ/∂x3)

~n = ~N/|N | (8.1)

The length, ΣA, of the orthogonal segment joining P with a point in the plane tangent to
the singularity is such that

ΣA | M2 = lT − ΣA n1 (8.2)
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Figure 6. Top: The phase space of eqs. (4.5) and figure 1 for a fixed W3 = x3 + l3 = 2 results,
for a narrow resonance, in a triple peaked distribution (all quantities in units of M = 1 units). The
singularities occur at values of σ where the phase space Φ(l3, σ) has vertical l3 projections.

More explicitly

ΣA(lT , l3,M) =
M/2− lT

2 lT
(M2 +W 2

3

) ×√M4
(
2l23 +W 2

3 − 2l3W3

)
+ 8W 2

3 l
4
T

+4 l2T
(M4 +M2W 2

3 +W 4
3

)
W3 ≡ l3 + x3(lT , l3,M) (8.3)

with x3 as in eq. (4.8). For each (lT , l3) pair (an event) there are two equal probability
solutions, the two roots of the equation. In generating events we chose at random the ±
sign in eq. (4.8).

We show in figure 7 the ~pT = 0 results for the m2
T and ΣA distributions. All three

graphs are generated for a peak mass of the W , M = 1. As shown in the bottom figure, for
a trial massM 6= M the peak of the distribution shifts away from σA = 0, becoming wider
and, for M < M , double peaked: there is for this “bad” choice an induced singularity,
even for the optimal SV. Naturally, the histograms with M 6= M are not statistically
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Figure 7. Top: Histogram HT of the distribution of the square of the transverse mass, for M = 1.
Center: Histogram H2 of the distribution of the values σ2 of the optimal SV ΣA of eq. (8.3), for
M = M = 1. Bottom: same as center, for different values of M. In all cases ~pT = 0.
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Figure 8. The correlation between the SV of eq. (8.3) and the SC expressed as the SV of eq. (9.1),
for M = M = 1.

independent from the M = M one. While they may be used to “focus” on the correct
choice of M, the extraction of information on the W boson mass would ultimately hinge
on a set of templates for M = M values close to its currently measured value.

The value of x3 is not always real. When the value of l2T chosen by the Lorentzian
distribution of physical (or MC generated) values of MW is such that 4 l2T >M2, x3 involves
the square root of a negative number. There is nothing pathological about these events.
The way to “recover” them is to set:

If Im (ΣA) 6= 0; then ΣA → −Abs(ΣA) (8.4)

In the middle figure 7, for example, the recovered events are those at σ2 < 0.

9 Correlations

It is clear that the transverse mass — or its equivalent ΣT of eq. (5.4) — and the SV
of eq. (8.3) are highly correlated. They both vanish at the singularity as M− 2 lT . To
illustrate the point, define the variable

Σt =M− 2 lT (9.1)

which has the same mass dimensionality as ΣA and, close to the singularity, carries the
same information as ΣT . The double histogram dN/dΣA dΣt, shown in figure 8, illustrates
the expected correlation.

Naturally, correlations between observables constitute a weakness of their ensemble,
to which we shall come back in the conclusions. Suffice it to say here that in the “signal
only” case at hand, there is only one mass scale to extract from the data: the correlations
are unavoidable.
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10 The general case

In figures 1, 2 we have profited from the fact that the pT = 0 phase space of eq. (4.7) is a
function of l2T to plot the phase space for negative and positive lT . For pT 6= 0 this is no
longer possible. Let lT and pT be the moduli of the corresponding vectors and θ be the
angle between them. The general case phase space is then:

Φ(l3, x3, lT , cos θ, pT ,M) ≡ (−2 lT (cos θ pT + lT ) + 2 l3x3 +M2
)2 (10.1)

−4
(
l3

2 + lT
2
) (

2 cos θ lT pT + lT
2 + pT

2 + x3
2
)

= 0

for which the generalization of the pT = 0 result of eq. (4.8) is

x±3 (M, l3, cos θ, pT ) =
l3
M2

[
M2 + 2 pT

(
pT ± cos θ

√
M2 + pT 2

)]
(10.2)

and that of |lT | < M/2 is

lT
max(M, cos θ, pT ) =

M2/2√
M2 + p2

T + pT cos(θ)
(10.3)

The statistically optimal ΣA is computed exactly as in the previous section, with
the result:

ΣA(l3, x3, lT , cos θ, pT ,M) =
lT − lTmax(M)

n1(M)
(10.4)

where n1 is computed as in eq. (8.1) in terms of the phase space function of eq. (10.1).
More explicitly:

N1 = −4
[
pT cos(θ)

(
2l3W3 +M2

)
+ 2 lT

(M2 + p2
T sin2(θ) +W 2

3

) ]
N2 = −4

(
l3M2 + 2l3p2

T + 2W3l
2
T −M2W3

)− 8lT (l3 +W3) pT cos(θ)

N3 = 4l3
(M2 − 2lT pT cos(θ)

)− 8l2TW3 (10.5)

Some examples of the general phase space surface are given in figure 9.

11 Conclusions and outlook

We have studied in detail the phase space of the simplest interesting hadron collider process
involving an unobservable particle and only one mass to be determined. Naturally, the
crucial ingredients are the phase space projections onto the observable momenta, their
limits, and the distances of actual events from these limits.

The edge of the projected phase space is given by the formal singularity condition,
eq. (4.10), which can be re-expressed as a function of the observable momenta, eq. (4.12)
and coincides with the consuetudinary transverse mass function, eq. (1.1).

The “singularity variables” are various measures of the distance of an actual event to
the nearest edge singularity. We have determined in section 6 the measure for which SV is
statistically optimal, which we called the “statistical squared derivative” and turns out to
be well known to statisticians as the “Fisher information”. The actual result ought to have
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Figure 9. The general phase space of eq. (10.1) for M = 1 and pT = 1. Top, Center, Bottom are
for cos θ = −1, 0, 1.
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been obvious for starters: the optimal variable — ΣA in eqs. (8.3), (10.4) — is orthogonal
to the phase space at all points and is thereby most sensitive to the unknown mass, which
determines the overall scale of momenta.

Somewhat unexpectedly, singularity variables other than the optimal one develop fake
singularities away from the edge singularity at σ = 0, see figure 5, top. The W ’s natural
width suffices to merge the edge and fake singularities, resulting in a peak at σ > 0, see
figure 5, bottom. This is a potential complication in their use as tools to determine the
unknown mass(es).

Contrary to the SCs, the SVs depend on longitudinal momenta. In the case of single-W
production, whether or not they may add significant precision to a measurement of the W
mass depends on the prior level of understanding of the relevant pdfs [6], a question that
we have not tried to investigate. It may well turn out, contrariwise, that the optimal SV,
with a value of M determined by the transverse observables, is a good tool to constrain
the pdfs.

The SVs contain the SC as a factor. This makes them “weak”, in that they are highly
correlated to the information contained in the SC, as discussed in section 9. The SVs are
functions of an auxiliary massM, and of transverse and longitudinal momenta. VaryingM
as in the lower figure 7 is an efficient way to “focus” on the relevant mass scale, particularly
for cases with more than one unknown mass [8]. But it does not add to the precision with
which the mass(es) may be measured.

Whether or not the various and rather negative conclusions of the previous two para-
graphs apply to cases wherein more than one particle decays into invisible ones is a question
that we plan to discuss in subsequent work. The answer requires a detailed study of the
relevant phase space, akin to the one in this note.
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