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We study the frequency-selective broadcast channel with confidential messages (BCC) where the transmitter sends a confidential
message to receiver 1 and a common message to receivers 1 and 2. In the case of a block transmission of N symbols followed by
a guard interval of L symbols, the frequency-selective channel can be modeled as a N × (N + L) Toeplitz matrix. For this special
type of multiple-input multiple-output channels, we propose a practical Vandermonde precoding that projects the confidential
messages in the null space of the channel seen by receiver 2 while superposing the common message. For this scheme, we provide
the achievable rate region and characterize the optimal covariance for some special cases of interest. Interestingly, the proposed
scheme can be applied to other multiuser scenarios such as the K + 1-user frequency-selective BCC with K confidential messages
and the two-user frequency-selective BCC with two confidential messages. For each scenario, we provide the secrecy degree of
freedom (s.d.o.f.) region of the corresponding channel and prove the optimality of the Vandermonde precoding. One of the
appealing features of the proposed scheme is that it does not require any specific secrecy encoding technique but can be applied
on top of any existing powerful encoding schemes.
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1. Introduction

We consider a secured medium such that the transmitter
wishes to send a confidential message to its receiver while
keeping the eavesdropper, tapping the channel, ignorant of
the message. Wyner [1] introduced this model named the
wiretap channel to model the degraded broadcast channel
where the eavesdropper observes a degraded version of
the receiver’s signal. In this model, the confidentiality is
measured by the equivocation rate, that is, the mutual
information between the confidential message and the
eavesdropper’s observation. For the discrete memoryless
degraded wiretap channel, Wyner characterized the capacity-
equivocation region and showed that a nonzero secrecy rate
can be achieved [1]. The most important operating point
on the capacity-equivocation region is the secrecy capacity,
that is, the largest reliable communication rate such that the
eavesdropper obtains no information about the confidential
message (the equivocation rate is as large as the message

rate). The secrecy capacity of the Gaussian wiretap channel
was given in [2]. Csiszár and Körner considered a more
general wiretap channel in which a common message for
both receivers is sent in addition to the confidential message
[3]. For this model known as the broadcast channel with
confidential (BCC) messages, the rate-tuple of the common
and confidential messages was characterized.

Recently, a significant effort has been made to oppor-
tunistically exploit the space/time/user dimensions for
secrecy communications (see, e.g., [4–14] and references
therein). In [4], the secrecy capacity of the ergodic slow fad-
ing channels was characterized and the optimal power/rate
allocation was derived. The secrecy capacity of the parallel
fading channels was given [6, 7] where [7] considered
the BCC with a common message. Moreover, the secrecy
capacity of the wiretap channel with multiple antennas
has been studied in [8–13, 15] and references therein.
In particular, the secrecy capacity of the multiple-input
multiple-output (MIMO) wiretap channel has been fully
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characterized in [5, 11, 12, 14] and more recently its closed-
form expressions under a matrix covariance constraint have
been derived in [15]. Furthermore, a large number of recent
works have considered the secrecy capacity region for more
general broadcast channels. In [16], the authors studied
the two-user MIMO Gaussian BCC where the capacity
region for the case of one common and one confidential
message was characterized. The two-user BCC with two
confidential messages, each of which must be kept secret to
the unintended receiver, has been studied in [17–20]. In [18],
Liu and Poor characterized the secrecy capacity region for the
multiple-input single-output (MISO) Gaussian BCC where
the optimality of the secret dirty paper coding (S-DPC)
scheme was proved. A recent contribution [19] extended
the result to the MIMO Gaussian BCC. The multireceiver
wiretap channels have been also studied in [21–26] (and
reference therein) where the confidential messages to each
receiver must be kept secret to an external eavesdropper.
It has been proved that the secrecy capacity region of the
MIMO Gaussian multireceiver wiretap channels is achieved
by S-DPC [24, 26].

However, very few work have exploited the frequency
selectivity nature of the channel for secrecy purposes [27]
where the zeros of the channel provide an opportunity
to “hide” information. This paper shows the opportuni-
ties provided by the broad-band channel and studies the
frequency-selective BCC where the transmitter sends one
confidential message to receiver 1 and one common message
to both receivers 1 and 2. The channel state information
(CSI) is assumed to be known to both the transmitter and
the receivers. We consider the quasistatic frequency-selective
fading channel with L + 1 paths such that the channel
remains fixed during an entire transmission of n blocks for
an arbitrary large n. It should be remarked that in general
the secrecy rate cannot scale with signal-to-noise ratio (SNR)
over the channel at hand, unless the channel of receiver 2
has a null frequency band of positive Lebesgue measure (on
which the transmitter can “hide” the confidential message).
In this contribution, we focus on the realistic case where
receiver 2 has a full frequency band (without null subbands)
but operates in a reduced dimension due to practical
complexity issues. This is typical of current orthogonal
frequency division multiplexing (OFDM) standards (such as
IEEE802.11a/WiMax or LTE [28–30]) where a guard interval
of L symbols is inserted at the beginning of each block to
avoid the interblock interference and both receivers discard
these L symbols. We assume that both users have the same
standard receiver, in particular receiver 2 cannot change
its hardware structure. Studying secure communications
under this assumption is of interest in general and can be
justified since receiver 2 is actually a legitimate receiver which
can receive a confidential message in other communication
periods. Of course, if receiver 2 is able to access the guard
interval symbols, it can extract the confidential message and
the secrecy rate falls down to zero. Although we restrict
ourselves to the reduced dimension constraint in this paper,
other constraints on the limited capability at the unintended
receiver such as energy consumption or hardware complexity

might provide a new paradigm to design physical layer
secrecy systems.

In the case of a block transmission of N symbols followed
by a guard interval of L symbols discarded at both receivers,
the frequency-selective channel can be modeled as an N ×
(N + L) MIMO Toeplitz matrix. In this contribution, we
aim at designing a practical linear precoding scheme that
fully exploits the degrees of freedom (d.o.f.) offered by
this special type of MIMO channels to transmit both the
common message and the confidential message. To this end,
let us start with the following remarks. On one hand, the
idea of using OFDM modulation to convert the frequency-
selective channel represented by the Toeplitz matrix into a
set of parallel fading channel turns out to be useless from
a secrecy perspective. Indeed, it is known that the secrecy
capacity of the parallel wiretap fading channels does not
scale with SNR [7]. On the other hand, recent contributions
[5, 11, 12, 14, 15] showed that the secrecy capacity of the
MIMO wiretap channel grows linearly with SNR, that is,
r log SNR where r denotes the secrecy degree of freedom
(s.d.o.f.) (to be specified). In the high SNR regime, the
secrecy capacity of the MISO/MIMO wiretap channel is
achieved by sending the confidential message in the null
space of the eavesdropper’s channel [10, 11, 14, 15, 18, 19].
Therefore, OFDM modulation is highly suboptimal in terms
of the s.d.o.f.

Inspired by these remarks, we propose a linear Vander-
monde precoder that projects the confidential message in the
null space of the channel seen by receiver 2 while superposing
the common message. Thanks to the orthogonality between
the precoder of the confidential message and the channel
of receiver 2; receiver 2 obtains no information on the
confidential message. This precoder is regarded as a single-
antenna frequency beamformer that nulls the signal in
certain directions seen by receiver 2. The Vandermonde
structure comes from the fact that the frequency beamformer
is of the type [1, ai, a2

i , . . . , aN+L
i ]T where ai is one of

the roots of the channel seen by receiver 2. Note that
Vandermonde matrices [31] have already been considered for
cognitive radios [32] and CDMA systems [33] to reduce/null
interference but not for secrecy applications. One of the
appealing aspects of Vandermonde precoding is that it does
not require a specific secrecy encoding technique but can be
applied on top of any classical capacity achieving encoding
scheme.

For the proposed scheme, we characterize its achiev-
able rate region, the rate-tuple of the common message,
the confidential message, respectively. Unfortunately, the
optimal input covariances achieving their boundary are
generally difficult to compute due to the nonconvexity of
the weighted sum rate maximization problem. Nevertheless,
we show that there are some special cases of interest such
as the secrecy rate and the maximum sum rate point
which enable an explicit characterization of the optimal
input covariances. In addition, we provide the achievable
d.o.f. region of the frequency-selective BCC, reflecting the
behavior of the achievable rate region in the high SNR
regime, and prove that the Vandermonde precoding achieves
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Figure 1: Frequency-selective broadcast channels with confidential messages.

this region. More specifically, it enables to simultaneously
transmit l streams of the confidential message and N − l
streams of the common message for l ≤ L simultaneously
over a block of N +L dimensions. Interestingly, the proposed
Vandermonde precoding can be applied to multiuser secure
communication scenarios: (a) a K + 1-user frequency-
selective BCC with K confidential messages and one com-
mon message, (b) a two-user frequency-selective BCC with
two confidential messages and one common message. For
each scenario, we characterize the achievable s.d.o.f. region
of the corresponding frequency-selective BCC and show the
optimality of the Vandermonde precoding.

The paper is organized as follows. Section 2 presents
the frequency-selective fading BCC. Section 3 introduces
the Vandermonde precoding and characterizes its achievable
rate region as well as the optimal input covariances for
some special cases. Section 4 provides the application of the
Vandermonde precoding to the multiuser secure communi-
cations scenarios. Section 5 shows some numerical examples
of the proposed scheme in the various settings, and finally
Section 6 concludes the paper.

Notation. In the following, upper (lower boldface) sym-
bols will be used for matrices (column vectors) whereas
lower symbols will represent scalar values, (·)T will denote

transpose operator, (·)� conjugation, and (·)H = ((·)T)
�

hermitian transpose. In, 0n×m represent the n × n identity
matrix, n×m zero matrix. |A|, rank(A), tr(A) denote a deter-
minant, rank, trace of a matrix A, respectively. xn denotes
the sequence (x[1], . . . , x[n]). w, u, v, x, y, z denote the
realization of the random variables W , U , V , X , Y , Z. Finally,
“�” denotes less or equal to in the positive semidefinite
ordering between positive semidefinite matrices, that is, we
have A � B if B− A is positive semidefinite.

2. SystemModel

We consider the quasistatic frequency-selective fading BCC
illustrated in Figure 1. The received signal y[t], z[t] ∈ CN×1

of receivers 1, 2 at block t is given by

y[t] = T (h)x[t] + n[t],

z[t] = T
(
g
)
x[t] + ν[t], t = 1, . . . ,n,

(1)

where T (h), T (g) denote an N × (N + L) Toeplitz matrix
with the L + 1-path channel vector h = [hL, . . . ,h0] of
user 1, g = [gL, . . . , g0] of user 2, respectively, x[t] ∈
C(N+L)×1 denotes the transmit vector, and finally n[t], ν[t] ∼

NC(0, IN ) are mutually independent additive white Gaussian
noise (AWGN). The input vector is subject to the power
constraint given by

1
n

n∑
t=1

x[t]Hx[t] ≤ P, (2)

where we let P = (N +L)P. The structure of T (h) is given by

T (h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hL · · · h0 0 · · · 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 · · · 0 hL · · · h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

We assume that the channel matrices T (h), T (g) remain
constant for the whole duration of the transmission of n
blocks and are known to all terminals. At each block t, we
transmit N +L symbols by appending a guard interval of size
L � N larger than the delay spread, which enables to avoid
the interference between neighbor blocks.

The transmitter wishes to send a common message W0 to
two receivers and a confidential message W1 to receiver 1. A
(2nR0 , 2nR1 ,n) code consists of the following: (1) two message
sets W0 = {1, . . . , 2nR0} and W1 = {1, . . . , 2nR1} with the
messagesW0,W1 uniformly distributed over the sets W0, W1,
respectively; (2) a stochastic encoder that maps each message
pair (w0,w1) ∈ (W0, W1) to a codeword xn; (3) one decoder
at receiver 1 that maps a received sequence yn to a message

pair (ŵ(1)
0 , ŵ1) ∈ (W0, W1) and another at receiver 2 that

maps a received sequence zn to a message ŵ(2)
0 ∈ W0. The

average error probability of a (2nR0 , 2nR1 ,n) code is defined as

Pn
e =

1
2nR0 2nR1

∑
w0∈W0

∑
w1∈W1

Pn
e (w0,w1), (4)

where Pn
e (w0,w1) denotes the error probability when the

message pair (w0,w1) is sent defined by

Pn
e (w0,w1) � Pr

((
ŵ(1)

0 , ŵ1

)
/= (w0,w1)∪ ŵ(2)

0 /=w0

)
. (5)

The secrecy level of the confidential message W1 at
receiver 2 is measured by the equivocation rate Re defined
as

Re � 1
n
H(W1 | Zn) (6)
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which is the normalized entropy of the confidential message
conditioned on the received signal at receiver 2 and available
CSI.

A rate-equivocation tuple (R0,R1,Re) is said to be
achievable if for any ε > 0 there exists a sequence of codes
(2nR0 , 2nR1 ,n) such that we have

Pn
e ≤ ε,

R1 − Re ≤ ε.
(7)

In this paper, we focus on the perfect secrecy case where
receiver 2 obtains no information about the confidential
message W1, which is equivalent to Re = R1. In this
setting, an achievable rate region (R0,R1) of the general BCC
(expressed in bit per channel use per dimension) is given by
[3]

Cs =
⋃

p(u,v,x)

{
(R0,R1) : R0 ≤ 1

N + L
min{I(U ;Y), I(U ;Z)},

R1 ≤ 1
N + L

[I(V ;Y | U)− I(V ;Z | U)]
}

,

(8)

where the union is over all possible distribution U , V , X
satisfying [20, Lemma 1]

U ,V −→ X −→ Y ,Z, (9)

where U might be a deterministic function of V . Recently,
the secrecy capacity region Cs of the two-user MIMO-BCC
(1) was characterized in [16] and is given by all possible rate
tuples (R0,R1) satisfying

R0 ≤ 1
N + L

min

{
log

∣∣I + HSHH
∣∣

|I + HKHH | , log

∣∣I + GSGH
∣∣

|I + GKGH |

}
,

R1 ≤ 1
N + L

[
log
∣∣∣I + HKHH

∣∣∣− log
∣∣∣I + GKGH

∣∣∣]
(10)

for some 0 � K � S with S denotes the input covariance
satisfying tr(S) ≤ P and H, G denotes the channel
matrix of receiver 1, 2, respectively. Obviously, when only
the confidential message is transmitted to receiver 1, the
frequency-selective BCC (1) reduces to the MIMO flat-
fading wiretap channel whose secrecy capacity has been
characterized in [10–12, 14, 15]. In particular, Bustin et al.
derived its closed-form expression under a power-covariance
constraint [15]. Under a total power (trace) constraint, the
secrecy capacity of the MIMO Gaussian wiretap channel is
expressed as [19, Theorem 3]

Cs = 1
N + L

⋃
S	0; tr(S)≤P

r∑
j=1

logφj , (11)

where {φj}rj=1 are the generalized eigen-values greater than
one of the following pencil:(

I + S1/2HHHS1/2, I + S1/2GGHS1/2
)
. (12)

(In [15, 19] the authors consider the real matrices H, G.
Nevertheless, it is conjectured that for complex matrices
the following expression without 1/2 in the prelog holds.)
As explicitly characterized in [15, Theorem 2], the optimal
input covariance achieving the above region is chosen such
that the confidential message is sent over r subchannels
where receiver 1 observes stronger signals than receiver 2.
Moreover, in the high SNR regime the optimal strategy
converges to beamforming into the null subspace of G [5, 11,
12, 14] as for the MISO case [14, 18]. In order to characterize
the behavior of the secrecy capacity region in the high SNR
regime, we define the d.o.f. region as

(r0, r1) � lim
P→∞

(
R0

logP
,

R1

logP

)
, (13)

where r1 denotes s.d.o.f. which corresponds precisely to the
number r of the generalized eigenvalues greater than one in
the high SNR.

3. Vandermonde Precoding

For the frequency-selective BCC specified in Section 2, we
wish to design a practical linear precoding scheme which
fully exploits the d.o.f. offered by the frequency-selective
channel. We remarked previously that for a special case
when only the confidential message is sent to receiver 1
(without a common message), the optimal strategy consists
of beamforming the confidential signal into the null subspace
of receiver 2. By applying this intuitive result to the special
Toeplitz MIMO channels T (h), T (g) while including a
common message, we propose a linear precoding strategy
named Vandermonde precoding. Prior to the definition of the
Vandermonde precoding, we provide some properties of a
Vandermonde matrix [31].

Property 1. Given a full-rank Toeplitz matrix T (g) ∈
CN×(N+L), there exists a Vandermonde matrix Ṽ1 ∈ C(N+L)×l

for l ≤ L whose structure is given by

Ṽ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 1

a1 · · · al

a2
1 · · · a2

l

...
. . .

...

aN+L−1
1 · · · aN+L−1

l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

where {a1, . . . , al} are the l ≤ L roots of the polynomial
S(z) = ∑L

i=0 giz
L−i with L + 1 coefficients of the channel g.

Clearly Ṽ1 satisfies the following orthogonal condition:

T
(
g
)
Ṽ1 = 0N×l, (15)

and rank (Ṽ1) = l if a1, a2, . . . , al are all different.

It is well known that as the dimension of N and
L increases, the Vandermonde matrix Ṽ1 becomes ill-
conditioned unless the roots are on the unit circle. In other
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words, the elements of each column either grow in energy or
tend to zero [31]. Hence, instead of the brut Vandermonde
matrix (14), we consider a unitary Vandermonde matrix
obtained either by applying the Gram-Schmidt orthogonal-
ization or singular value decomposition (SVD) on T (g).

Definition 1. We let V1 be a unitary Vandermonde matrix
obtained by orthogonalizing the columns of Ṽ1. We let V0 ∈
C(N+L)×(N+L−l) be a unitary matrix in the null space ofV1 such
that VH

0 V1 = 0. The common message W0, the confidential
message W1, is sent along V0, V1, respectively. We call V =
[V0,V1] ∈ C(N+L)×(N+L)Vandermonde precoder.

Further, the precoding matrix V1 for the confidential
message satisfies the following property.

Lemma 2. Given two Toeplitz matrices T (h), T (g) where h,
g are linearly independent, there exists a unitary Vandermonde
matrix V1 ∈ C(N+L)×l for 0 ≤ l ≤ L satisfying

T
(
g
)
V1 = 0N×l,

rank(T (h)V1) = l.
(16)

Proof. Appendix A.

In order to send the confidential message intended to
receiver 1 as well as the common message to both receivers
over the frequency-selective channel (1), we consider the
Gaussian superposition coding based on the Vandermonde
precoder of Definition 1. Namely, at block t, we form the
transmit vector as

x[t] = V0u0[t] + V1u1[t], (17)

where the common message vector u0[t] and the confidential
message vector u1[t] are mutually independent Gaussian
vectors with zero mean and covariance S0, S1, respectively.
Under this condition, the input covariances subject to

tr(S0) + tr(S1) ≤ P (18)

satisfy the power constraint (2). We let F denote the feasible
set (S0, S1) satisfying (18).

Theorem 3. The Vandermonde precoding achieves the follow-
ing secrecy rate region:

Rs = cov
⋃

(S0,S1)∈F

⎧⎨⎩(R0,R1) : R0

≤ 1
N + L

×min

⎧⎨⎩log

∣∣∣IN + H0S0HH
0 + H1S1HH

1

∣∣∣∣∣∣IN + H1S1HH
1

∣∣∣ ,

log
∣∣∣IN + G0S0GH

0

∣∣∣
⎫⎬⎭,

R1 ≤ 1
N + L

log
∣∣∣IN + H1S1HH

1

∣∣∣
⎫⎬⎭,

(19)

where cov denotes the convex hull and we let H0 = T (h)V0,
H1 = T (h)V1, G0 = T (g)V0.

Proof. Due to the orthogonal property (16) of the unitary
Vandermonde matrix, receiver 2 only observes the common
message, which yields the received signals given by

y = T (h)V0u0 + T (h)V1u1 + n,

z = T
(
g
)
V0u0 + ν,

(20)

where we drop the block index. We examine the achievable
rate region Rs of the Vandermonde precoding. By letting the
auxiliary variables U = V0u0,V = U + V1u1 and X = V , we
have

I(U ;Y)

= 1
N + L

× log

∣∣∣IN + T (h)V0S0VH
0 T (h)H + T (h)V1S1VH

1 T (h)H
∣∣∣∣∣∣IN + T (h)V1S1VH

1 T (h)H
∣∣∣ ,

I(U ;Z) = 1
N + L

log
∣∣∣IN + T

(
g
)
V0S0VH

0 T (g)H
∣∣∣,

I(V ;Y | U) = 1
N + L

log
∣∣∣IN + T (h)V1S1VH

1 T (h)H
∣∣∣,

I(V ;Z | U) = 0.
(21)

Plugging these expressions to (8), we obtain (19).

The boundary of the achievable rate region of the
Vandermonde precoding can be characterized by solving the
weighted sum rate maximization. Any point (R�0 ,R�1 ) on the
boundary of the convex region Rs is obtained by solving

max
(R0,R1)∈Rs

γ0R0 + γ1R1 (22)
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for nonnegative weights γ0, γ1 satisfying γ0 + γ1 = 1. When
the region Rs, obtained without convex hull, is nonconvex,
the set of the optimal covariances (S�0 , S�1 ) achieving the
boundary point might not be unique. Figure 2 depicts an
example in which the achievable rate region Rs is obtained
by the convex hull operation on the region Rs, that is,
replacing the non-convex subregion by the line segment A,
B. For the weight ratio γ1/γ0 corresponding to the slope
of the line segment A, B, there exist two optimal sets of
the covariances yielding the points A and B (which clearly
dominate the point C). These points are the solution to
the weighted sum rate maximization (22). In summary, an
optimal covariance set achieving (22) (might not be unique)
is the solution of

max
(S0,S1)∈F

γ0R0 + γ1R1 = max
(S0,S1)∈F

γ0 min{R01,R02} + γ1R1,

(23)

where we let

R01(S0, S1) = 1
N + L

log

∣∣∣IN + H0S0HH
0 + H1S1HH

1

∣∣∣∣∣∣IN + H1S1HH
1

∣∣∣ ,

R02(S0) = 1
N + L

log
∣∣∣IN + G0S0GH

0

∣∣∣,

R1(S1) = 1
N + L

log
∣∣∣IN + H1S1HH

1

∣∣∣.
(24)

Following [34, Section II-C] (and also [7, Lemma 2]), we
remark that the solution to the max-min problem (23) can
be found by hypothesis testing of three cases, R01 < R02, R02 <
R01, and R01 = R02. Formally, we have the following lemma.

Lemma 4. The optimal (S�0 , S�1 ), solution of (23), is given by
one of the three solutions.

Case 1. (S�0 , S�1 ) maximizes

f1(S0, S1) = γ0 log

∣∣∣IN + H1S1HH
1 + H0S0HH

0

∣∣∣∣∣∣IN + H1S1HH
1

∣∣∣
+ γ1 log

∣∣∣IN + H1S1HH
1

∣∣∣
(25)

and satisfies R01(S�0 , S�1 ) < R02(S�1 ).

Case 2. (S�0 , S�1 ) maximizes

f2(S0, S1) = γ0 log
∣∣∣IN + G0S0GH

0

∣∣∣ + γ1 log
∣∣∣IN + H1S1HH

1

∣∣∣
(26)

and satisfies R02(S�1 ) < R01(S�0 , S�1 ).

Case 3. (S�0 , S�1 ) maximizes

f3(S0, S1) = γ0

⎡⎣θ log

∣∣∣IN + H1S1HH
1 + H0S0HH

0

∣∣∣∣∣∣IN + H1S1HH
1

∣∣∣
+(1− θ) log

∣∣∣IN + G0S0GH
0

∣∣∣
⎤⎦

+ γ1 log
∣∣∣IN + H1S1HH

1

∣∣∣

(27)

and satisfies R01(S�0 , S�1 ) = R02(S�1 ) for some 0 < θ < 1.

Before considering the weighted sum rate maximization
(23), one applies SVD toH1 ∈ CN×l, G0 ∈ CN×(N+L−l)

H1 = Uh1Λh1Vh1
H ,

G0 = Ug0Λg0Vg0
H ,

(28)

where Uh1,Ug0 ∈ CN×N , Vh1 ∈ Cl×l, and Vg0 ∈
C(N+L−l)×(N+L−l) are unitary, Λh1,Λg0 contain positive singular

values {
√
λh1
i }li=1, {

√
λ
g0
i }N+L−l

i=1 , respectively. Following [7,
Theorem 3], one applies Lemma 4 to solve the weighted sum
rate maximization.

Theorem 5. The set of the optimal covariances (S�0 , S�1 ),
achieving the boundary of the achievable rate region Rs of the
Vandermonde precoding, corresponds to one of the following
three solutions.

Case 1. (S�0 , S�1 ) = (S1
0, S1

1), if (S1
0, S1

1), solution of the
following KKT conditions, satisfies R01(S1

0, S1
1) < R02(S1

1)

γ0HH
0 Γ

−1H0 + Ψ0 = μIN+L−l,

γ0HH
1 Γ

−1H1 +
(
γ1 − γ0

)
HH

1 (IN + H1S1HH
1 )
−1
H1 + Ψ1 = μIl,

(29)

where tr(ΨiSi) = 0 with a positive semidefinite Ψi for i =
0, 1, μ ≥ 0 is determined such that tr(S0) + tr(S1) = P, and
we let Γ = IN + H0S0HH

0 + H1S1HH
1 .

Case 2. (S�0 , S�1 ) = (S2
0, S2

1) if the following (S2
0, S2

1) fulfills
R02(S2

1) < R01(S2
0, S2

1).
We let S2

0 = Vg0Ŝ0VH
g0 and S2

1 = Vh1Ŝ1VH
h1 where Ŝ0, Ŝ1 are

diagonal with the ith element given by

p0,i =
[
γ0

μ
− 1

λ
g0
i

]
+

, i = 1, . . . ,N + L− l,

p1,i =
[
γ1

μ
− 1

λh1
i

]
+

, i = 1, . . . , l,

(30)

where μ ≥ 0 is determined such that
∑N+L−l

i=1 p0,i +
∑l

i=1 p1,i =
P.
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Case 3. (S�0 , S�1 ) = (S3
0, S3

1), if (S3
0, S3

1), solution of the
following KKT conditions, satisfies Rθ

02(S3
1) = Rθ

01(S3
0, S3

1) for
some 0 < θ < 1

θHH
0 Γ

−1H0 + (1− θ)GH
0

(
IN + G0S0GH

0

)−1
G0 + Ψ0

= μIN+L−l,

γ0θHH
1 Γ

−1H1 +
(
γ1 − γ0θ

)
HH

1

(
IN + H1S1HH

1

)−1
H1 + Ψ1

= μIl,
(31)

where tr(ΨiSi) = 0 with a positive semidefinite Ψi for i =
0, 1, μ ≥ 0 is determined such that tr(S0) + tr(S1) = P.

Proof. Appendix B.

Remark 6. Due to the non-concavity of the underlying
weighted sum rate functions, it is generally difficult to
characterize the boundary of the achievable rate region Rs

except for some special cases. The special cases include the
corner points, in particular, the secrecy rate for the case of
sending only the confidential message (γ1 = 1), as well as the
maximum sum rate point for the equal weight case (γ0 = γ1).
It is worth noticing that under equal weight the objective
functions in three cases are all concave in S0, S1 since f1 is
concave if γ1 ≥ γ0 and f3 is concave if γ1 ≥ γ0θ and 0 < θ < 1.

The maximum sum rate point γ0 = γ1 can be found by
applying the following greedy search [7].

Greedy Search to Find the Maximum Sum Rate Point. (1)
Find S0, S1 maximizing f1 and check R02 < R01. If yes stop.
Otherwise go to (2).

(2) Find S0, S1 maximizing f2 and check R01 < R01. If yes
stop. Otherwise go to (3).

(3) Find S0, S1 maximizing f3 and check Rθ
01 = Rθ

01 for
some 0 < θ < 1.

For the special case of γ1 = 1, Theorem 5 yields the
achievable secrecy rate with the Vandermonde precoding.

Corollary 7. The Vandermonde precoding achieves the secrecy
rate

Rvdm
1 = max

S1:tr (S1)≤P

1
N + L

log det
(
IN + T (h)V1S1VH

1 T (h)H
)

= 1
N + L

L∑
i=1

log (μλh1
i )+,

(32)

where the last equality is obtained by applying SVD to H1 =
T (h)V1 and plugging the power allocation of (30)with γ0 = 0,
γ1 = 1, μ is determined such that

∑L
l=1 p1i ≤ P.

Finally, by focusing the behavior of the achievable
rate region in the high SNR regime, we characterize the
achievable d.o.f. region of the frequency-selective BCC (1).

Theorem 8. The d.o.f. region of the frequency-selective BCC
(1) with (N + L)× L Toeplitz matrices T (h), T (g) is given as
a union of (r0, r1) = (1/(N + L))(l0, l) satisfying

l ≤ L, (33)

l0 + l ≤ N , (34)

where l0, l denote non-negative integers. The Vandermonde
precoding achieves the above d.o.f. region.

Proof. The achievability follows rather trivially by applying
Theorem 3. By considering equal power allocation over all
N + L streams such that S0 = PIN+L−l, S1 = PIl, we obtain
the rate tuple (R0,R1) where R0 ≤ min(R01,R02)

R01

= 1
N + L

× log

∣∣∣IN + PT (h)V0VH
0 T (h)H + PT (h)V1VH

1 T (h)H
∣∣∣∣∣∣IN + PT (h)V1VH

1 T (h)H
∣∣∣ ,

R02 = 1
N + L

log
∣∣∣IN + PT

(
g
)
V0VH

0 T (g)H
∣∣∣,

R1 ≤ 1
N + L

log
∣∣∣IN + PT (h)V1VH

1 T (h)H
∣∣∣.

(35)

We first notice that the prelog factor of log |I+PA| as P → ∞
depends only on the rank of A. From Lemma 2, we obtain

rank
(
T (h)V1VH

1 T (h)H
)

= rank(T (h)V1) = l,
(36)

rank
(
T
(
g
)
V0VH

0 T (g)H
)

= rank
(
T
(
g
)
V0
)

(a)= rank
(
T
(
g
)
[V0V1]

)
(b)= rank

(
T
(
g
)) = N ,

(37)

rank
(
T (h)

(
V0VH

0 + V1VH
1

)
T (h)H

)
= rank

(
T (h)VVHT (h)H

)
(b)= rank(T (h)) = N ,

(38)

where (a) follows from orthogonality between T (g) and V1,
(b) follows from the fact that V = [V0V1] is unitary satisfying
VVH = I. Notice that (36) yields r1 = l/(N +L). For the d.o.f.
r0 = l0/(N + L) of the common message, (36) and (38) yield

l0 = rank
(
T (h)

(
V0VH

0 + V1VH
1

)
T (h)H

)
− rank

(
T (h)V1VH

1 T (h)H
)

= N − l

(39)
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Figure 3: d.o.f. region (l0, l1) of frequency-selective BCC.

which is dominated by the pre-log of R02 in (37). This
establishes the achievability.

The converse follows by noticing that the inequalities
(33) and (34) correspond to trivial upper bounds. The first
inequality (33) corresponds to the s.d.o.f. of the MIMO
wiretap channel with the legitimate channel T (h) and the
eavesdropper channel T (g), which is bounded by L. The
second inequality (34) follows because the total number of
streams for receiver 1 cannot be larger than the d.o.f. of T (h),
that is, N .

Figure 3 illustrates the region (l, l0) of the frequency-
selective BCC over N + L dimensions. We notice that the
s.d.o.f. constraint (33) yields the line segment A, B while the
constraint (34) in terms of the total number of streams for
receiver 1 yields the line segment B, C.

4. Multiuser Secure Communications

In this section, we provide some applications of the Vander-
monde precoding in the multi-user secure communication
scenarios where the transmitter wishes to send confidential
messages to more than one intended receivers. The scenarios
that we address are: (a) a K + 1-user frequency-selective BCC
with K confidential messages and one common message, (b)
a two-user frequency-selective BCC with two confidential
messages and one common message. For each scenario,
by focusing on the behavior in the high SNR regime, we
characterize the achievable s.d.o.f. region and show the
optimality of the Vandermonde precoding.

4.1. K + 1-User BCC with K Confidential Messages. As an
extension of Section 3, we consider the K +1-user frequency-
selective BCC where the transmitter sends K ≤ L confidential
messages W1, . . . ,WK to the first K receivers as well as one
common message W0 to all receivers. Each of the confidential
messages must be kept secret to receiver K + 1. Notice that
this model, called multireceiver wiretap channel, has been
studied in the literature ([20, 22–26] and reference therein).
In particular, the secrecy capacity region of the Gaussian
MIMO multireceiver wiretap channel has been characterized
in [24, 26] for K = 2, an arbitrary K , respectively, where the
optimality of the S-DPC is proved.

The received signal yk of receiver k and the received signal
z of receiver K + 1 at any block are given by

yk = T (hk)x + nk, k = 1, . . . ,K , (40)

z = T
(
g
)
x + ν, (41)

where x is the transmit vector satisfying the total power
constraint and n1, . . . ,nK , ν are mutually independent
AWGN with covariance I. We assume that the K + 1 vectors
h1, . . . ,hK , g of length L + 1 are linearly independent and
perfectly known to all the terminals. As an extension of the
frequency-selective BCC in Section 2, we say that the rate
tuple (R0,R1, . . . ,RK ) is achievable if for any ε > 0 there exists
a sequence of codes (2nR0 , 2nR1 , . . . , 2nRK ,n) such that

Pn
e ≤ ε,

∑
k∈K

Rk − 1
n
H(WK | Zn) ≤ ε, K ⊆ {1, . . . ,K},

(42)

where we denote WK = {∀k ∈K ,Wk} and define

Pn
e =

1∏K
k=02nRk

×
∑

w0∈W0

· · ·
∑

wK∈WK

Pr

⎛⎝ K⋃
k=1

(
ŵ(k)

0 , ŵk

)
/= (w0,wk)

⎞⎠.
(43)

An achievable secrecy rate region (R1,R2) for the case of K =
2, when the transmitter sends two confidential messages in
the presence of an external eavesdropper, is provided in [25,
Theorem 1]. This theorem can be extended to an arbitrary K
while including the common message. Formally we state the
following lemma.

Lemma 9. An achievable rate region of the K+1-user BCC,
where the transmitter sends K confidential messages intended
to the first K receivers as well as a common message to all users,
is given as a union of all non-negative rate-tuple satisfying

R0 ≤ min
{
I(U ;Z), min

k
I(U ;Yk)

}
,

Rk ≤ I(Vk;Yk | U)− I(Vk;Z | U), k = 1, . . . ,K ,∑
k∈K

Rk ≤
∑
k∈K

I(Vk;Yk | U)

−
|K|∑
j=2

I
(
Vπ( j);Vπ(1), . . . ,Vπ( j−1) | U

)
− I(VK ;Z | U), ∀K ⊆ {1, . . . ,K}, ∀π,

(44)

where π denotes a permutation over the subsetK , |K| denotes
the cardinality of K , we let VK = {∀k ∈ K ,Vk}, and the
random variables U , V1, . . . ,VK , X , Y1, . . . ,YK , Z satisfy the
Markov chain

U ,V1, . . . ,VK −→ X −→ Y1, . . . ,YK ,Z. (45)
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Figure 4: s.d.o.f. region (l0, l1, l2) over N + L dimensions of three-
user frequency-selective BCC.

Proof. Appendix C.

Notice that the second term of the last equation in (44)
can be also expressed by

|K|∑
j=2

I
(
Vπ( j);Vπ(1), . . . ,Vπ( j−1) | U

)

=
∑
k∈K

H(Vk | U)−H(VK | U),

∀K ⊆ {1, . . . ,K}, ∀π.

(46)

It can be easily seen that without the secrecy constraint the
above region reduces to the Marton’s achievable region for
the general K-user broadcast channel [35].

In order to focus on the behavior of the region in the high
SNR regime, we define the s.d.o.f. region as

r0 = lim
P→∞

R0

logP
, rk = lim

P→∞
Rk

logP
, k = 1, . . . ,K , (47)

where r0 denotes the d.o.f. of the common message and rk
denotes the s.d.o.f. of confidential message k. As an extension
of Theorem 8, we have the following s.d.o.f. region result.

Theorem 10. The s.d.o.f. region of the K + 1-user frequency-
selective BCC (40) is a union of (r0, r1, . . . , rK ) = (1/(N +
L))(l0, l1, . . . , lK ) satisfying

K∑
k=1

lk ≤ L, (48)

l0 +
K∑
k=1

lk ≤ N , (49)

where {l0, l1, . . . , lK} are non-negative integers. The Vander-
monde precoding achieves this region.

Proof. Appendix D.

Figure 4 illustrates the region (l0, l1, l2) for the case of
K = 2 confidential messages. It can be easily seen that

l1 + l2 = 2

N + L = 6,N = 4

Rx 1

Rx 2

Eavesdropper

Figure 5: Equivalent MIMO interpretation for three-user
frequency-selective BCC with two confidential messages.

the constraint (49) in terms of the total number of streams
for the virtual receiver yields the subspace C, B1, B2 while
the s.d.o.f. constraint (48) for the virtual receiver yields the
subspace A1, A2, B2, B1. We remark that for the special case of
one confidential message and one common message (K = 1),
the region reduces to Figure 3.

Remark 11. When only the K confidential messages are
transmitted to the K intended receivers in the presence
of the eavesdropper, the s.d.o.f. region has the equivalent
MIMO interpretation [36]. More specifically, the frequency-
selective BCC (40) is equivalent to the MIMO-BCC where
the transmitter with N + L dimensions (antennas) sends
messages to K receivers with N antennas each in the presence
of the eavesdropper with N antennas. The secrecy constraint
(orthogonal constraint) consumes N dimensions of the
channel seen by the virtual receiver and lets the number of
effective transmit antennas be L. The resulting channel is
the MIMO-BC without secrecy constraint with L transmit
antennas and K receivers with N antennas each, whose
multiplexing gain is min(L,KN) = L (we assume L < N).
Figure 5 illustrates the example with K = 2, N = 4, L = 2.

4.2. Two-User BCC with Two Confidential Messages. We
consider the two-user BCC where the transmitter sends
two confidential messages W1, W2 as well as one common
message W0. Each of the confidential messages must be
kept secret to the unintended receiver. This model has been
studied in [17–19] for the case of two confidential messages
and in [20] for the case of two confidential messages and a
common message. In [19], the secrecy capacity region of the
MIMO Gaussian BCC was characterized. The received signal
at receivers 1, 2 at any block is given, respectively, by

y1 = T (h1)x + n1,

y2 = T (h2)x + n2,
(50)

where x is the input vector satisfying the total power
constraint and n1, n2 are mutually independent AWGN with
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covariance IN . We assume the channel vectors h1, h2 are
linearly independent.

We say that the rate tuple (R0,R1,R2) is achievable if for
any ε > 0 there exists a sequence of codes (2nR0 , 2nR1 , 2nR2 ,n)
such that

Pn
e ≤ ε,

R1 − 1
n
H
(
W1 | Yn

2

) ≤ ε, R2 − 1
n
H
(
W2 | Yn

1

) ≤ ε,

(51)

where we define the average error probability as

Pn
e =

1∏2
k=02nRk

×
∑

w0∈W0

∑
w1∈W1

∑
w2∈W2

Pr
((

ŵ(1)
0 , ŵ1

)
/= (w0,w1)

∪
(
ŵ(2)

0 , ŵ2

)
/= (w0,w2)

)
,

(52)

where (ŵ(1)
0 , ŵ1), (ŵ(2)

0 , ŵ2) is the output of decoders 1, 2,
respectively. A secrecy achievable rate region of the two-user
BCC with two confidential messages and a common message
is given by [20, Theorem 1]

R0 ≤ min{I(U ;Y1), I(U ;Y2)},
R1 ≤ I(V1;Y1 | U)− I(V1;Y2,V2 | U),

R2 ≤ I(V2;Y2 | U)− I(V2;Y1,V1 | U),

(53)

where the random variables satisfy the Markov chain

U ,V1,V2 −→ X −→ Y1,Y2. (54)

We extend Theorem 8 to the two-user frequency-selective
BCC (50) and obtain the following s.d.o.f. result.

Theorem 12. The s.d.o.f. region of the two-user frequency-
selective BCC (50) is a union of (r0, r1, r2) = (1/(N +
L))(l0, l1, l2) satisfying

lk ≤ L, k = 1, 2, (55)

l0 + lk ≤ N , k = 1, 2, (56)

where {l0, l1, l2} are non-negative integers. The Vandermonde
precoding achieves the region.

Proof. Appendix F.

Figure 6 represents the s.d.o.f. region (l0, l1, l2) over N +L
dimensions of the two-user frequency-selective BCC. The
per-receiver s.d.o.f. constraints (55) yield the subspace A1,
B1, E, F for user 1 and the subspace A2, B2, E, F for user 2.
The constraints (56) in terms of the total number of streams
per receiver yield the subregion C, B1, E for user 1 and the
subregion C, B2, E for user 2. For the special case of one
confidential message and one common message, the region
reduces to Figure 3.

l0

N

A2 A1

B2 B1

C

N − L

E

F

L L
l2 l1

Figure 6: s.d.o.f. region (l0, l1, l2) over N + L dimensions of K = 2-
user frequency-selective BCC.

l1 = 2

l2 = 2

N + L = 6,N = 4

Figure 7: Equivalent MIMO interpretation for the two-user
frequency-selective BCC with two confidential messages.

Remark 13. Comparing Theorems 10, 12 as well as Figures
4, 6 for K = 2, it clearly appears that the s.d.o.f. of K + 1-
user BCC with K confidential messages is dominated by
the s.d.o.f. of K-user BCC with K confidential messages.
In other words, the s.d.o.f. region critically depends on
the assumption on the eavesdropper(s) to whom each
confidential message must be kept secret.

Remark 14. When only two confidential messages are trans-
mitted in the two-user frequency-selective BCC, the set
of the s.d.o.f. has the equivalent MIMO interpretation
[36]. More specifically, the frequency-selective BCC (40) is
equivalent to the MIMO-BCC where the transmitter with
N+L dimensions (antennas) sends two confidential messages
to two receivers with N antennas. The secrecy constraint
consumes N dimensions for each MIMO link and lets the
number of effective transmit antennas be L for each user.
The resulting channel is a two parallel L × N point-to-point
MIMO channel without eavesdropper. Notice that the same
parallel MIMO links can be obtained by applying the block
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diagonalization on the MIMO-BC without secrecy constraint
[36]. In other words, the secrecy constraint in the BCC
with inner eavesdroppers is equivalent to the orthogonal
constraint in the classical MIMO-BC. Figure 7 shows the
example with N = 4, L = 2, and K = 2 confidential
messages.

5. Numerical Examples

In order to examine the performance of the proposed Van-
dermonde precoding, this section provides some numerical
results in different settings.

5.1. Secrecy Rate versus SNR. We evaluate the achievable
secrecy rate Rvdm

1 in (32) when the transmitter sends only
a confidential message to receiver 1 (without a common
message) in the presence of receiver 2 (eavesdropper) over
the frequency-selective BCC studied in Section 3.

5.1.1. MISO Wiretap Channel. For the sake of comparison
(albeit unrealistic), we consider the special case of the
frequency-selective wiretap channel when receiver 1 has a
scalar observation and the eavesdropper has N observations.
This is equivalent to the MISO wiretap channel with the
receiver 1 channel h ∈ C1×(N+L) and the eavesdropper
channel T (g) ∈ CN×(N+L). Without loss of generality, we
assume that the observation at receiver 1 is the first row
of T (h). We consider that all entries of h, g are i.i.d. ∼
NC(0, 1/(L + 1)) and average the secrecy rate over a large
number of randomly generated channels with N = 64,
L = 16. In Figure 8, we compare the optimal beamforming
strategy [10, 13, 14] and the Vandermonde precoding as a
function of SNR P. Since only one stream is sent to receiver
1, the s.d.o.f. is 1/(N + L). In fact, the MISO secrecy capacity
in the high SNR regime is given by

1
N + L

log

(
1 + (N + L)P max

φ:T (g)φ=0

∣∣hφ∣∣2

)
, (57)

where φ ∈ C(N+L)×1 is the beamforming vector. The
Vandermonde precoding achieves

1
N + L

log
(

1 + (N + L)P max
i=1,...,L

∣∣hv1,i
∣∣2
)

, (58)

where v1,i denotes the ith column of V1 ∈ C(N+L)×L

orthogonal to T (g). Clearly, there exists a constant gap
between (57) and (58) due to the suboptimal choice of the
beamforming vector.

5.1.2. MIMO Wiretap Channel. We consider the frequency-
selective wiretap channel with N = 64, L = 16. Although
there exists a closed-form expression under a power-
covariance constraint [15], the secrecy capacity under a
total power constraint in (11) is still difficult to compute
(especially for a large dimension of N and L) because
it requires a search over all possible power covariances
constraints. Therefore, in Figure 9, we compare the averaged
secrecy rate achieved by the generalized SVD scheme [5]
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Figure 8: Achievable secrecy rate with one observation at receiver 1
and N = 64, L = 16 (MISO wiretap channel).

and the Vandermonde precoding. We assume that all entries
of h, g are i.i.d. ∼ NC(0, 1/(L + 1)). For the Vandermonde
precoding, we show the achievable rate with waterfilling
power allocation (32) and equal power allocation (36) by
allocating p = (N + L)P/L to L streams. As observed, these
two suboptimal schemes achieve the same s.d.o.f. of L/(N +
L) = 1/5 although the generalized SVD incurs a substantial
power loss. The result agrees well with Theorem 8. We
remark also that the optimal waterfilling power allocation
yields a negligible gain.

5.2. The Maximum Sum Rate Point (R0, R1) versus SNR. We
consider the frequency-selective BCC with one confidential
message to receiver 1 and one common message to two
receivers. In particular, we characterize the maximum sum
rate-tuple corresponding to γ0 = γ1 on the boundary of
the achievable rate region Rs. Figure 10 shows the averaged
maximum sum rate-tuple (R0,R1) of the Vandermonde
precoding both with optimal input covariance computed by
the greedy algorithm and with equal power allocation. We
remark that there is essentially no loss with the equal power
allocation.

5.3. Two-User Secrecy Rate Region in the Frequency-Selective
BCC. We consider the two-user frequency-selective BCC
where the transmitter sends two confidential messages (no
common message) of Section 4.2. For the sake of comparison
(albeit unrealistic), we consider the special case of one
observation N = 1 at each receiver. Notice that the two-
user frequency-selective BCC is equivalent to the two-user
MISO BCC with h1,h2 ∈ C1×(L+1) whose secrecy capacity
region is achieved by the S-DPC scheme [18]. The proposed
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Figure 9: Achievable secrecy rate with N = 64, L = 16 (MIMO
wiretap channel).
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Vandermonde precoding achieves the secrecy rate region
given by all possible rate-tuples (R1,R2)

R1 ≤ 1
L + 1

log
(

1 + p1 max
i=1,...,L

∣∣h1v1,i
∣∣2
)

,

R2 ≤ 1
L + 1

log
(

1 + p2 max
i=1,...,L

∣∣h2v2,i
∣∣2
) (59)

satisfying p1 + p2 = (L + 1)P where v1,i, v2,i denotes the ith
column of V1 ∈ C(N+L)×L orthogonal to h2, V2 ∈ C(N+L)×L

orthogonal to h1, respectively. Figure 11 compares the aver-
aged secrecy rate region of the Vandermonde precoding,
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Figure 11: Achievable secrecy rate region N = 1, L = 5 (MISO-
BCC).

zero-forcing beamforming, and the optimal S-DPC scheme
for L = 5 where all entries of h1,h2 are i.i.d. ∼ NC(0, 1/(L +
1)). As observed, the Vandermonde precoding achieves the
near-optimal rate region. As the number of paths L increases,
the gap with respect to the S-DPC becomes smaller since
the Vandermonde precoding tends to choose the optimal
beamformer matched to the channels.

6. Conclusions

We considered the secured communication over the
frequency-selective channel by focusing on the frequency-
selective BCC. In the case of a block transmission of N
symbols followed by a guard interval of L symbols discarded
at both receivers, the frequency-selective channel can be
modeled as an N × (N + L) Toeplitz matrix. For this special
type of MIMO channels, we proposed a practical yet order-
optimal Vandermonde precoding which enables to send l ≤
L streams of the confidential messages and N − l streams
of the common messages simultaneously over a block of
N + L dimensions. The key idea here consists of exploiting
the frequency dimension to “hide” confidential information
in the zeros of the channel seen by the unintended receiver
similarly to the spatial beamforming. We also provided some
application of the Vandermonde precoding in the multiuser
secured communication scenarios and proved the optimality
of the proposed scheme in terms of the achievable s.d.o.f.
region.

We conclude this paper by noticing that there exists a
simple approach to establish secured communications. More
specifically, perfect secrecy can be built in two separated
blocks: (1) a precoding that cancels the channel seen by the
eavesdropper to fulfill the equivocation requirement, (2) the
powerful off-the-shelf encoding techniques to achieve the
secrecy rate. Since the practical implementation of secrecy
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encoding techniques (double binning) remains a formidable
challenge, such design is of great interest for the future
secrecy systems.

Appendices

A. Proof of Lemma 2

In this appendix, we consider the rank of T (h)V1 where V1

satisfies the orthogonality T (g)V1 = 0. By letting v1,i denote
the ith column of V1 we have V1 = [v1,1, . . . , v1,L] for the
case of l = L. We define the matrix G orthogonal to V1 by
appending L− l rows vH1,l+1, . . . , vH1,L to T (g)

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T
(
g
)

vH1,l+1

...

vH1,L

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (A.1)

Notice that all N + L − l rows are linearly independent. By
definition of V1, it is not difficult to see that G and VH

1 form
a complete set of basis for an N +L-dimensional linear space.
Indeed for l = L the matrix G reduces to T (g), while l < L,
a subset of a projection matrix onto the null space of T (g) is
appended to T (g). Hence T (h) can be expressed as

T (h) = HG + HV = AG + BVH
1 , (A.2)

where HG is the projection of T (h) onto the row vectors of
G with an N × (N + L − l) coefficient matrix A, HV is the
projection of T (h) onto the row vectors of V1 with an N × l
coefficient matrix B

rank(T (h)V1) = rank
((

AG + BVH
1

)
V1

)
(a)= rank(B)

(b)= rank
(
BVH

1 V1BH
)

= rank(HV )

(c)= l,

(A.3)

where (a) follows from the orthogonality GV1 = 0 and
VH

1 V1 = Il, (b) follows from rank(BBH) = rank(B). The
equality (c) is obtained as follows. We notice

rank

⎡⎣HV

G

⎤⎦ (d)= rank

⎡⎣HV + HG

G

⎤⎦ = rank

⎡⎣T (h)

G

⎤⎦
(e)= min(N + L, 2N + L− l) = N + L,

(A.4)

where in (d) adding HG does not change the rank, (e) follows
because any set of N + L rows taken from T (h),G is linearly
independent (from the assumption that h, g are linearly
independent). Since HV is orthogonal to G, (A.4) yields

rank(HV ) = N + L− (N + L− l) = l (A.5)

which establishes (c).

B. Proof of Theorem 5

We consider the following three cases given in Lemma 4.

Case 1. Supposing R01 < R02, we consider the objective
function f1 in (25). The objective is concave only when
γ1 ≥ γ0. Nevertheless, we consider the KKT conditions
which are necessary for the optimality. It can be easily shown
that the KKT conditions are given by (29) where Ψi 	
0 is the Lagrangian dual matrix associated to the positive
semidefiniteness constraint of Si for i = 0, 1 and μ ≥ 0 is
the Lagrangian dual variable associated to the total power
constraint. It clearly appears that for γ1 ≥ γ0 the objective
is concave in S0, S1 and the problem at hand is convex. In
this case, any convex optimization algorithm, the gradient-
based algorithm [37] for example, can be applied to find
the optimal solution while the algorithm converges to a local
optimal solution for γ1 < γ0.

Case 2. Supposing R02 < R01, we consider the objective
function f2 in (26). Since the problem is convex ( f2 is concave
and the constraint is linear in S0, S1), the KKT conditions
are necessary and sufficient for optimality. We form the
Lagrangian and obtain the following KKT conditions:

γ0GH
0

(
IN + G0S0GH

0

)−1
G0 + Ψ0 = μIN+L−l,

γ1HH
1

(
IN + H1S1HH

1

)−1
H1 + Ψ0 = μIl,

tr(S0) + tr(S1) = P,

tr(ΨiSi) = 0, i = 0, 1,

(B.1)

where Ψi 	 0 is the Lagrangian dual matrix associated to
the positive semidefiniteness constraint of Si for i = 0, 1 and
μ ≥ 0 is the Lagrangian dual variable associated to the total
power constraint. By creating N parallel channels via SVD on
G0, H1 in (28), we readily obtain the solution (30).

Case 3. For 0 < θ < 1, we consider the objective function f3
in (27). In the following we focus on γ0 > 0. Notice that if
γ0 = 0 we have R01 = R02 = 0 which yields the corner point
(0,Rvdm

1 ) where Rvdm
1 denotes the secrecy rate characterized

in (32). The KKT conditions, necessary for the optimality,
are given by (31) where Ψi 	 0 is the Lagrangian dual matrix
associated to the positive semidefiniteness constraints for
i = 0, 1 and μ ≥ 0 is the Lagrangian dual variable associated
to the total power constraint. The gradient-based algorithm
[37] can be applied to find the solution satisfying these KKT
conditions. Although this algorithm yields the optimal and
unique solution for γ1 ≥ γ0θ, the algorithm converges to a
local optimal solution for γ1 < γ0θ.

C. Proof of Lemma 9

In the following, we provide the encoding/decoding scheme
to achieve a vertex point within R corresponding to a
specific encoding order π. Our proof builds on the successive
Gel’fand-Pinsker coding [38] and random binning for
ensuring the perfect secrecy. The overall region R is obtained
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by taking the union over all possible K ! encoding orders
followed by the convex hull operation. We extensively use

the notation A(n)
ε (PX ,Y ) to denote a set of jointly typical

sequences x, y of length n with respect to the distribution
P(x, y). We let ε > 0 arbitrary small for a large n.

(a) Codebook Generation. Fix P(u),P(v1 | u), . . . ,P(vK | u)
and P(x | u, v1, . . . , vK ). We define for k = 1, . . . ,K

Lπ(k) � I
(
Vπ(k);Z | Vπ(1), . . . ,Vπ(k−1),U

)− ε

Mπ(k) � I
(
Vπ(k);Vπ(1), . . . ,Vπ(k−1) | U

)
+ ε

(C.1)

and we let Mπ(1) = 0. the joint distribution factors as The
stochastic encoder randomly generates

(i) i.i.d. codewords u(w0) according P(un) = ∏n
i=1P(ui)

where w0 ∈ {1, . . . , 2n(R0−ε)}.

(ii) For user π(1), 2nI(Vπ(1);Yπ(1)|U) = 2n(Rπ(1)+Lπ(1)) i.i.d.
codewords vπ(1)(wπ(1), jπ(1)) with P(vnπ(1)) =∏n

i=1P(vπ(1)), where the indices are given by

wπ(1) ∈
{

1, . . . , 2nRπ(1)

}
, jπ(1) ∈

{
1, . . . , 2nLπ(1)

}
. (C.2)

(iii) For user π(k), 2nI(Vπ(k);Yπ(k)|U) = 2n(Rπ(k)+Lπ(k)+Mπ(k)) i.i.d.
codewords vπ(k)(wπ(k), jπ(k), iπ(k)) with P(vnπ(k)) =∏n

i=1P(vπ(k)), where the indices are given by

wπ(k) ∈
{

1, . . . , 2nRπ(k)

}
, jπ(1) ∈

{
1, . . . , 2nLπ(k)

}
,

iπ(k) ∈
{

1, . . . , 2nLπ(k)

}
.

(C.3)

(b) Encoding. To send the messages w0,w1, . . . ,wk, we first
choose randomly the index w0 and the corresponding
codeword u(w0). Given the common message u(w0), we
choose randomly the codeword vπ(1) within the bin wπ(1),
that is, the index jπ(1), such that (u, vπ(1)) ∈ Aεn(PU ,Vπ(1) ).
Then successively choose the codeword vπ(k), that is, the
indices jπ(k), iπ(k), such that

(
u, vπ(1), . . . , vπ(k)

) ∈ An
ε

(
PU ,Vπ(1) , . . . , Vπ(k)

)
. (C.4)

If there are more than one such sequence, it randomly selects
one. Finally the encoder selects according to P(x|v1, . . . , vK ).

(c) Decoding. The received signals at the K legitimate
receivers are yn1, . . . , yn

k , the outputs of the channels
P(ynk |xn) = ∏n

i=1P(ynk |xn) for any k. Receiver k chooses

w(k)
0 ,wk so that

(
u
(
w(k)

0

)
, vk
(
wk, jk

)
, yk

)
∈ A(n)

ε

(
PU ,Vk ,Yk

)
(C.5)

if such pair w(k)
0 ,wk exists and unique. Otherwise it declares

an error.

(d) Error Probability Analysis. Without loss of generality, we
assume that the message set is w0 = w1 = . . . = wk = 1.
We remark that an error is declared if one or more of the
following events occur.

(i) Encoding fails

E1 �
{(

u(1), vπ(1)
(
1, jπ(1)

)
, . . . , vπ(k)

(
1, jπ(K), iπ(K)

))
/∈A(n)

ε

(
PU ,V1,...,VK

)}
.

(C.6)

From the construction of the codebook above, we have
P(E1) ≤ ε.

(ii) Decoding step 1 fails; there does not exist a jointly
typical sequence for some k, that is,

Ek
2 �

{(
u(1), vk

(
1, jk, ik

)
, yk

)
/∈A(n)

ε

(
PU ,Vk ,Yk

)}
. (C.7)

From joint typicality [39] we have P(Ek
2) ≤ ε for any k.

(iii) Decoding step 2 fails; there exits other sequences
satisfying the joint typicality for some k

Ek
3 �

{
∀
(
w(k)

0 ,wk

)
/= (1, 1),

(
u(w0), vk

(
wk, jk, ik

)
, yk

)
∈ A(n)

ε

(
PU ,Vk ,Yk

)}
.

(C.8)

It can be shown that we have P(Ek
3) ≤ ε if

Rk + Lk + Mk ≤ I(Vk;Yk | U) (C.9)

for any k. Hence, the error probability P(n)
e =

P(E1
⋃

(∪kE2k)
⋃

(∪kE3k)) ≤ ε if the rate-tuple satisfies
(44).

(e) Equivocation Calculation. To prove the equivocation
requirement

∑
k∈K

Rk − 1
n
H(WK | Zn) ≤ ε

n
, K ⊆ {1, . . . ,K}, (C.10)

where we denote WK = {Wk, k ∈ K}, we remark that it is
sufficient to verify the above inequality for K = {1, . . . ,K}
due to [24, Lemma 1]. Hence, we check whether the the sum
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rate secrecy constraint is satisfied by the proposed encoding
strategy.

(a)

H(W1, . . . ,WK | Zn) ≥ H(W1, . . . ,WK | Zn,Un)

= H(W1, . . . ,WK ,Zn | Un)−H(Zn | Un)

= H
(
W1, . . . ,WK ,Vn

1 , . . . ,Vn
K ,Zn | Un

)
−H

(
Vn

1 , . . . ,Vn
K |W1, . . . ,WK ,Zn,Un

)−H(Zn | Un)

= H
(
W1, . . . ,WK ,Vn

1 , . . . ,Vn
K | Un

)
+ H

(
Zn |W1, . . . ,WK ,Vn

1 , . . . ,Vn
K ,Un

)
−H

(
Vn

1 , . . . ,Vn
K |W1, . . . ,WK ,Zn,Un

)−H(Zn | Un)

(b)≥ H
(
W1, . . . ,WK ,Vn

1 , . . . ,Vn
K | Un

)
+ H

(
ZnW1, . . . ,WK ,Vn

1 , . . . ,Vn
K ,Un

)− nε −H(Zn)

(c)= H
(
W1, . . . ,WK ,Vn

1 , . . . ,Vn
K | Un

)
+ H

(
Zn | Vn

1 , . . . ,Vn
K ,Un

)− nε−H(Zn | Un)

(d)≥ H
(
Vn

1 , . . . ,Vn
K | Un

)
+ H

(
Zn | Vn

1 , . . . ,Vn
K ,Un

)
− nε −H(Zn | Un)

= H
(
Vn

1 , . . . ,Vn
KU

n
)− I

(
Vn

1 , . . . ,Vn
K ;Zn | Un

)− nε

(e)=
K∑
k=1

H
(
Vn
k | Un

)
−

K∑
j=2

I
(
Vn
π( j);Vn

π(1), . . . ,V
n
π( j−1)U

n
)

− I
(
Vn

1 , . . . ,Vn
K ;Zn | Un

)− nε

(f)≥
K∑
k=1

I
(
Vn
k ;Yn

k |Un
)
−

K∑
j=2

I
(
Vn
π( j);V

n
π(1), . . . ,V

n
π( j−1) |Un

)
− I
(
Vn

1 , . . . ,Vn
K ;Zn | Un

)− nε

(g)
≥ n

K∑
k=1

Rk − nε,

(C.11)

where (a) follows because the conditioning decrease the
entropy, (b) follows from Fano’s inequality [39] stating that
for a sufficiently large n we have

H
(
Vn

1 , . . . ,Vn
K | W1, . . . ,WK ,Zn,Un

)
≤ 1 + nP(n)

e,eav

K∑
k=1

(
Lπ(k) + Mπ(k)

) ≤ nε,
(C.12)

where P(n)
e,eav denotes the eavesdropper’s error probability

when decoding Vn
1 , . . . ,Vn

K with the knowledge on the

message indices w1, . . . ,wK . We have that P(n)
e,eav → 0 as

n → ∞ if
∑K

k=1(Lπ(k) + Mπ(k)) ≤ I(Vn
1 , . . . ,Vn

K ;Z | Un) +∑K
j=2 I(V

n
π( j);V

n
π(1), . . . ,V

n
π( j−1) | Un). (c) follows from the

Markov chain W1, . . . ,WK → Vn
1 , . . . ,Vn

K → Zn
1 , . . . ,Zn

K ,

(d) follows by ignoring a nonnegative term H(W1, . . . ,WK |
Vn

1 , . . . ,Vn
K ,U), (e) follows because H(Vn

1 , . . . ,Vn
K | Un) =∑K

k=1 H(Vn
k | Un) − ∑K

j=2 I(V
n
π( j);V

n
π(1), . . . ,V

n
π( j−1) | Un)

for any permutation π over the set {1, . . . ,K}, (f) follows
because H(Vn

k | Un) ≥ I(Vn
k ;Yn

k | Un) for any k, finally
(g) follows because the successive encoder yields the sum rate
given by

K∑
k=1

I
(
Vn
k ;Yn

k | U
)
−

K∑
j=2

I
(
Vn
π( j);V

n
π(1), . . . ,V

n
π( j−1) | U

)
− I
(
Vn

1 , . . . ,Vn
K ;ZnU

)
.

(C.13)

This establishes the achievability.

D. Proof of Theorem 10

The achievability follows by extending Theorem 8 to the
case of K confidential messages. First we remark that as a
straightforward extension of Lemma 2 the following lemma
holds.

Lemma D.15. For
∑K

k=1 lk ≤ L, there exists a matrix
[V1, . . . ,VK ]with

∑K
k=1 lk orthonormal columns with sizeN+L

satisfying

T
(
g
)
Vk = 0N×lk , k = 1, . . . ,K , (D.1)

rank

⎛⎝T (hk)

⎛⎝∑
j∈K

V jVH
j

⎞⎠T (hk)H
⎞⎠ = ∑

j∈K

l j ,

∀K ⊆ {1, . . . ,K},
(D.2)

where lk denotes the number of columns of Vk

A sketch of proof is given in Appendix E.
We let V0 be unitary matrix with N + L − ∑K

k=1 lk
orthonormal columns in the null space of [V1, . . . ,VK ] such
that VH

0 [V1, . . . ,VK ] = 0. In other words, the Vandermonde
precoder V = [V0, . . . ,VK ] is a squared unitary matrix
satisfying VVH = IN+L. Based on the Vandermonde precoder
V, we construct the transmit vector x as

x =
K∑
k=0

Vkuk, (D.3)

where u0,u1, . . . ,uK are mutually independent Gaussian vec-
tors with zero mean and covariance S0, S1, . . . , SK satisfying∑K

i=0 tr(Si) ≤ (N + L)P. From the orthogonality properties
(D.1), the received signals become

yk = T (hk)V0u0 + T (hk)Vkuk

+ T (hk)
∑
j /= k

V ju j + nk, k = 1, . . . ,K ,

z = T
(
g
)
V0u0 + ν,

(D.4)
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where receiver k observes the common message, the intended
confidential message, and the interference from other users,
while receiver K + 1 observes only the common message. By
letting U = V0u0, Vk = U + Vkuk for k = 1, . . . ,K , X =
U +

∑K
k=1 Vk and considering the equal power allocation to

all N + L streams, we readily obtain

I(U ;Yk)

= 1
N + L

× log

∣∣∣IN + PT (hk)
(∑K

j=0 V jVH
j

)
T (hk)H

∣∣∣∣∣∣IN + PT (hk)
(∑K

j=1 V jVH
j

)
T (hk)H

∣∣∣ ,

∀k,

(D.5)

I(U ;Z)

= 1
N + L

log
∣∣∣IN + PT

(
g
)
V0VH

0 T (g)H
∣∣∣,

(D.6)

I(Vk;Yk | U)

= 1
N + L

× log

∣∣∣IN + PT (hk)
(∑K

j=1 V jVH
j

)
T (hk)H

∣∣∣∣∣∣IN + PT (hk)
(∑K

j=1, j /= k V jVH
j

)
T (hk)H

∣∣∣ ,

∀k,
(D.7)

I(VK ;Z | U) = 0, ∀K ⊆ {1, . . . ,K}, (D.8)

and we also have H(VK | U) = ∑
k∈K H(Vk | U) from

the independency between V1, . . . ,VK conditioned on U .
Plugging this together with (D.7) and (D.8) into (44), we
have

Rk ≤ I(Vk;Yk | U), k = 1, . . . ,K ,∑
k∈K

Rk ≤
∑
k∈K

I(Vk;Yk | U).
(D.9)

In order to find the d.o.f. region, we notice

rank
(
T
(
g
)
V0VH

0 T (g)H
)

= rank
(
T
(
g
)
V0
)

(a)= rank
(
T
(
g
)
[V0V1, . . . ,VK ]

)
(b)= rank

(
T
(
g
)) = N , (D.10)

rank

⎛⎝T (hk)

⎛⎝ K∑
j=0

V jVH
j

⎞⎠T (hk)H
⎞⎠

= rank
(
T (hk)VVHT (hk)H

)
(b)= rank(T (hk)) = N ,

(D.11)

rank

⎛⎝T (hk)

⎛⎝ K∑
j=1

V jVH
j

⎞⎠T (hk)H
⎞⎠ (c)=

K∑
j=1

l j , (D.12)

rank

⎛⎝T (hk)

⎛⎝ K∑
j=1, j /= k

V jVH
j

⎞⎠T (hk)H
⎞⎠ (c)=

K∑
j=1, j /= k

l j , (D.13)

where (a) follows from orthogonality between T (g) and Vk

for k ≥ 1, (b) follows from the fact that V = [V0 · · ·VK ]
is unitary satisfying VVH = I, and (c) follows from
Lemma D.15. From (D.11) and (D.12), we readily obtain
r0 ≤ (N −∑K

k=1 lk)/(N + L), which is dominated by (D.10).
Combining (D.12) and (D.13), we obtain rk ≤ lk/(N + L) for
k = 1, . . . ,K . This completes the achievability.

The converse follows by a natural extension of Theorem 8
to the K + 1-user BCC. To obtain the constraint (48),
we consider that the first K receivers perfectly cooperate
to decode the K confidential messages and one common
message. By treating these K receivers as a virtual receiver
with KN antennas, we immediately obtain the bound (48)
corresponding to the s.d.o.f. of the MIMO wiretap channel
with the virtual receiver channel [T (h1)T , . . . , T (hK )T]T and
the eavesdropper channel T (g). The bound (49) is obtained
by noticing that the total number of streams that receiver
k can decode is limited by the d.o.f. of T (hk), that is, N .
Namely, we have the following K inequalities:

l0 + lk ≤ N , k = 1, . . . ,K (D.14)

which yields l0 ≤ N −maxk lk. Further by letting lk = L for
any k ∈ {1, . . . ,K} and and l j = 0 for any j /= k, we obtain
l0 ≤ N − L. Adding the last inequality and (48), we obtain
(49). This establishes the converse.

E. Proof of LemmaD.15

We consider rank(T (hk)
∑

j∈K V jVH
j T (hk)H) for a sub-

set K ⊆ {1, . . . ,K}. First we let vc,1, . . . , vc,L denote
L orthonormal columns that form a unitary Vander-
monde matrix orthogonal to T (g). For any subset L ⊆
{1, . . . ,L}, we let Vc,L be the unitary matrix formed by
|L| columns corresponding to the subset L taken from
vc,1, . . . , vc,L. Since a unitary matrix formed by {Vk}k∈K for
any K can be expressed equivalently as Vc,L, we consider
rank(T (hk)Vc,LVH

c,LT (hk)H). For a given L, we let Vc,L

denote a unitary matrix composed by L − |L| columns
corresponding to the complementary set L such that L +
L = {1, . . . ,L}. In order to derive the rank, we follow the
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same approach as Appendix A. We define the matrix GL ∈
C(N+L−|L|)×(N+L) orthogonal to Vc,L by appending VH

c,L to
T (g)

GL =
⎡⎣T

(
g
)

VH
c,L

⎤⎦, (E.1)

where the N + L − |L| rows are linearly independent. Since
GL and VH

c,L form a complete set of an N + L-dimensional
linear space, T (hk) can be expressed as

T (hk) = Ak,LGL + Bk,LVH
c,L, k = 1, . . . ,K , (E.2)

where Ak,L,Bk,L is a coefficient matrix with dimension N ×
(N +L−|L|), N ×|L|, respectively. By recalling that any set
of N+L rows taken from T (hk), T (g) is linearly independent
for k = 1, . . . ,K (from the assumption that g,h1, . . . ,hK are
linearly independent), we can repeat the same argument as
Appendix A and obtain

rank
(
T (hk)Vc,LVH

c,LT (hk)H
)
= |L|,

∀L ⊆ {1, . . . ,L}, k = 1, . . . ,K
(E.3)

which yields the result.

F. Proof of Theorem 12

The achievability follows by generalizing Theorem 8 for
the case of two confidential messages. We remark that by
symmetry Lemma 2 for one beamforming matrix V1 can be
trivially extended to two beamforming matrices V1 and V2.
Namely, we have

Lemma F.16. For l1 ≤ L and l2 ≤ L, there exists Vk with lk
orthnormal columns for k = 1, 2 satisfying

T (hk)V j = 0N×l j , k = 1, 2, j /= k, (F.1)

rank(T (hk)Vk) = lk, k = 1, 2. (F.2)

Further, we let V0 be a unitary matrix with M = N +
L− rank([V1V2]) orthonormal columns in the null space of
[V1V2] such that VH

0 [V1V2] = 0M×(l1+l2). We construct x by
Gaussian superposition coding based on the Vandermonde
precoder V0, V1, and V2. From (F.1), each user observes the
vector of its confidential message and that of the common
message, that is,

y1 = T (h1)(V0u0 + V1u1) + n1,

y2 = T (h2)(V0u0 + V2u2) + n2.
(F.3)

By letting U = V0u0, Vk = U+Vkuk for k = 1, 2, X = V1 +V2

and considering equal power allocation to all streams with
p = (N + L)P/(M + l1 + l2), we readily obtain

I(U ;Yk)

= 1
N + L

× log

∣∣∣IN + pT (hk)
(
V0VH

0 + VkVH
k

)
T (hk)H

∣∣∣∣∣∣IN + pT (hk)VkVH
k T (hk)H

∣∣∣ ,

I(Vk;Yk | U) = 1
N + L

log
∣∣∣IN + pT (hk)VkVH

k T (hk)H
∣∣∣,

I(V1;Y2,V2 | U) = I(V2;Y1,V1 | U) = 0.
(F.4)

We remark

rank
(
T (hk)VkVH

k T (hk)H
)

= rank(T (hk)Vk) = lk, k = 1, 2,

rank
(
T (hk)

(
V0VH

0 + VkVH
k

)
T (hk)H

)

= rank

⎛⎝T (hk)[V0Vk]

⎡⎣VH
0

VH
k

⎤⎦T (hk)H
⎞⎠

(a)= rank
(
T (hk)

[
V0VkV j

])
(b)= rank(T (hk)) = N ,

(F.5)

where (a) follows from orthogonality between T (hk) and V j

for j /= k, (b) follows because [V0V1V2] or [V0V2V1] spans
a complete N + L-dimensional space. These equations yield
l0 + lk ≤ N for k = 1, 2. This establishes the achievability.

The converse follows by noticing that the constraints
(55) and (56) correspond to trivial upper bounds. To obtain
(55), we consider the special case when the transmitter sends
only one confidential message to one of two receivers in the
presence of the eavesdropper. When sending one confidential
message to receiver 1, the two-user frequency-selective BCC
reduces to the MIMO wiretap channel with the legitimate
channel T (h1) and the eavesdropper channel T (h2), whose
s.d.o.f. is upper bounded by L. The same bound holds for
receiver 2 when transmitting one confidential message to
receiver 2 in the presence the eavesdropper (receiver 1).
The upper bounds (56) follow because the total number of
streams per receiver is limited by the individual (N + L)×N
MIMO link. This establishes the converse.
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