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1 Introduction

The entanglement entropy (EE) of 3d CFTs takes the form

S = B H/δ − a(Ω) log(H/δ) +O(1) (1.1)

where δ is a short-distance cutoff, B is a constant and H denotes the size of the entangling

surface. The first term of eq. (1.1) is the ‘area law’ contribution to EE and the second

logarithmic term appears only if the entangling surface has a sharp corner. For pure state,

we have a(Ω) = a(2π−Ω) due to the fact S(V ) = S(V̄ ). Besides, strong subadditivity and

Lorentz invariance impose

a(Ω) ≥ 0, ∂Ωa(Ω) ≤ 0, ∂2
Ωa(Ω) ≥ |∂Ωa(Ω)|

sin Ω
for Ω ≤ π. (1.2)

a(Ω) characterizes the CFTs and behaves as

a(Ω→ π) ' σ(π − Ω)2, a(Ω→ 0) ' κ/Ω (1.3)

in the smooth and singular limits, respectively.

– 1 –



J
H
E
P
1
0
(
2
0
1
5
)
0
3
8

Recently, it is conjectured that

σ/CT = π2/24 (1.4)

is a universal law for all CFTs in three dimensions [1]. Here CT is the central charge defined

in the vacuum two-point function

< Tµν(x)Tλρ(0) >=
CT
|x|2d

Iµν,λρ(x) (1.5)

with Iµν,λρ a dimensionless tensor fixed by symmetry.

This conjecture has been tested in [1, 2] by studying some higher curvature holographic

models, free scalars and fermions, and Wilson-Fisher fixed points of the O(N) models with

N = 1, 2, 3 for π
2 corners. For recent developments, please refer to [3, 4]. Let us briefly

review the holographic models studied in [1, 2]. Consider the following action

I =
1

16πG

∫
d4x
√
g

[
6

L2
+R+ L2(λ1R

2 + λ2RµνR
µν + λGBX4)

+ L4(λ3,0R
3 + λ1,1RX4) + L6(λ4,0R

4 + λ2,1R
2X4 + λ0,2X 2

4 )

]
(1.6)

where X4 = RµνρσR
µνρσ − 4RµνρR

µν +R2 is the 4d Euler density. Since we are interested

of the vacuum of the CFTs, we require the holographic model (1.6) has a pure AdS4

solution. This imposes one constraint on the parameters λ. Ignoring the total derivatives

and KaK
a, [1, 2] find that the holographic entanglement entropy of the model (1.6) is

equivalent to that of Einstein gravity

S = α

∫
d2y

√
h

4G
(1.7)

up to a overall factor

α = 1− 24λ1 − 6λ2 + 432λ3,0 + 24λ1,1 − 6912λ4,0 − 576λ2,1 +O(λ2). (1.8)

As a result, we have a(Ω) = αaE(Ω) where aE denotes the function for Einstein gravity.

Now let us discuss the central charge CT eq. (1.5). There is a standard holographic

calculation of CT for Einstein gravity and one finds

CT,E =
3

π3

L̃2

G
(1.9)

where L̃ is the radius of AdS4. The situation is a little more complicated for higher

curvature gravity. That is because, in addition to the usual massless spin-two gravition,

massive modes and ghost modes with M ∼ 1/(λL2) also appear in higher curvature gravity.

To suppress these modes, it is natural to work in the perturbative framework with λ� 1.

Consider the metric fluctuations in the AdS4 background together with the gauge ∇̄µhµν =

0 and gµνhµν = 0, we can derive the linearized Einstein equations as

−1

2

[
�̄ +

2

L̄2

]
hµν = 8πGTµν (1.10)
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Similarly, we can derive the linearized E.O.M for the holographic model (1.6)

−α
2

[
�̄ +

2

L̄2

]
hµν −

λ2L
2

2

[
�̄ +

2

L̄2

]2

hµν = 8πGTµν (1.11)

Clearly, the second term of the above equation is suppressed near the physical pole, i.e.

[�̄+ 2
L̄2 ]hµν ∼ 0. Comparing eq. (1.11) with eq. (1.10), we notice that the effective Newton

constant of the holographic model (1.6) is Geff = G/α. From eq. (1.9), we get CT = αCT,E .

Recall that we have a(Ω) = αaE(Ω) from eq. (1.7). We finally obtain

a(Ω)

CT
=
aE(Ω)

CT,E
(1.12)

which agrees with the conjecture (1.4).

Let us comment on the above holographic results of [1, 2].

Firstly, the holographic model (1.6) is a combination of Einstein gravity, curvature-

squared gravity and f(Lovelock) gravity. Although it looks quite general, it is actually very

special. As we know, in general, the extremal entropy surface of higher curvature gravity is

no longer a minimal area surface. However, the bulk entangling surface of model (1.6) is still

a minimal area surface. As a result, we have not only σ/CT (1.4) but also a(Ω)/CT (1.12)

universal. This is, however, not the case for free scalars and fermions. Thus, it is necessary

to study more general higher curvature gravity models.

Secondly, [1, 2] have used the entropy formula proposed in [5] for f(Lovelock) gravity.

This entropy formula obeys the second law of thermodynamics for linearized perturbations

of Killing horizons. However, it conflicts with the entropy formula proposed by [6] at order

K4 (K is the extrinsic curvature). Note that the entropy formula of [6] also satisfies the

linearized second law of theormodynamics [7, 8]. Thus, it is necessary to check whether

the holographic results of [1, 2] change if one use the entropy formula of [6] instead of [5].

We fill the above gaps in this paper. By studying the most general higher curva-

ture gravity, we give a holographic proof of the conjecture (1.4) [1]. It seems impossible

to find such a holographic proof because of the current limitations in understanding the

holographic entanglement entropy for higher curvature gravity. Let us summarize the dif-

ficulties below.

Firstly, although there are some important progresses [6, 9, 10], due to the ‘splitting

problem’ [11, 12], the exact entropy formula for higher curvature gravity is still unknown.

Secondly, we do not know where the entangling surface is located for higher curvature

gravity. In other words, we do not know on which surface to apply the entropy formula.

There are two methods to determine the location of the entangling surface in the bulk.

The first one is the so-called ‘boundary condition method’: one require that equations

of motion are regular on the entangling surface [13]. This method can yield the correct

entangling surfaces for Einstein gravity and Lovelock gravity [6, 13, 14]. However, so far it

is not clear whether this approach can give reasonable results for general higher curvature

gravity. The second method is the so-called ‘cosmic brane method’. One takes the variation

of the entropy functional and identifies the entangling surface with the extremal entropy
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surface. However, there are more than one extremal entropy surfaces in higher curvature

gravity. One need extra conditions to fix the arbitrariness [15].

Thirdly, there are infinite parameters in general higher curvature gravity. If we study

them case by case, then it is impossible to give a general proof.

Our resolutions to the above difficulties are as follows. Let us discuss them one by

one. Firstly, we do not need the exact entropy formula of higher curvature gravity for

the proof of the conjecture (1.4). Take into account the ‘splitting problem’, the correct

entropy formula in AdS4 differs from the one proposed in [6] by some higher extrinsic

curvature terms K2m with m ≥ 2. It turns out that these higher extrinsic curvature terms

do not affect either σ or CT . Secondly, as argued in [1, 2], it is natural to work in the

perturbative framework in order to suppress the massive modes and ghost modes. In the

perturbative framework, the extremal entropy surface is unique and well-defined. It is

sightly deformed away from the minimal surface and can yield correct universal terms of

EE for even-dimensional CFTs. Thirdly, we use the ‘background field approach’ developed

for the holographic Weyl anomaly and entanglement entropy [16]. We expand the action

around a background curvature. It turns out that only the first few terms in the expansions

contribute to the universal terms of entanglement entropy. Thus, we only need to deal with

finite rather than infinite terms.

In addition to the holographic proof of the conjecture (1.4) [1], we also clarify some

interesting problems discussed in [1, 2]. Firstly, we find that, in contrast to σ/CT , κ/CT
is not a universal ratio. In other words, the behaviour of logarithmic terms of EE is

not universal in the singular limit. Secondly, we notice that the lower bound aE(Ω)/CT
associated to Einstein gravity can be violated by general higher curvature gravity.

By studying the holographic models, we find that there are similar universal laws for

CFTs in higher dimensions. For simplicity, we focus on the singularities from the higher-

dimensional cones. The corresponding bulk metric takes the form

ds2 =
dz2 + dt2E + dρ2 + ρ2(dθ2 + sin2 θdΩ2

d−3)

z2
(1.13)

where dΩ2
d−3 is the metric of unit (d − 3)-sphere. We have θ ∈ [0,Ω] with Ω ≤ π. The

universal terms of EE are logarithmic terms −ad(Ω) log(H/δ) and squared logarithmic

terms −ad(Ω) log2(H/δ) in odd dimensions and even dimensions, respectively. Similar to

the 3d CFTs, we have ad(Ω) = ad(π − Ω) and the following asymptotic behaviors

ad(Ω→ π/2) ' σd(π/2− Ω)2, ad(Ω→ 0) ' κd/Ω (1.14)

Based on holographic results, we conjecture that

σd/CT = σd,E/CT,E = cd (1.15)

are universal ratios for general CFTs. Here CT are the central charges defined in eq. (1.5),

‘E’ denotes Einstein gravity and cd are universal constants which only depend on the

dimensions.

The paper is organized as follows. In section 2, we study the central charge CT for CFTs

dual to general higher curvature gravity. In section 3, we briefly review the holographic
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entanglement entropy and derive a formal entropy formula for general higher curvature

gravity in AdS. In section 4, we give a holographic proof of the conjecture of [1]. In

section 5, we find similar univeral laws for CFTs in higher dimensions. Finally, we conclude

in section 6.

Note added . While we were finishing this paper, the work [17] appeared in arXiv and

it seems to have some overlaps in the universal ratios for CFTs in higher dimensions. It

should be mentioned that [1, 2] have also anticipated the generalizations of the universal

ratios to higher dimensions. Later they derive a nice formula of the universal ratios in

general dimensions in [18].

2 The holographic central charges

In this section, we discuss the central charge CT for CFTs dual to general higher derivative

gravity f(Rµνσρ). We obtain a very simple expression for CT and find that CT is the

coefficient of the Weyl-squared term in the Weyl anomaly. For examples, CT is the ‘c’

charge relevant to the C2 term in the 4d Weyl anomaly

< T ii >=
c

16π2
CijklC

ijkl − a

16π2
E4. (2.1)

And CT is the ‘B3’ charge relevant to the C�C term in the 6d Weyl anomaly

< T ii >=
3∑

n=1

BnIn + 2AE6 (2.2)

where I3 ∼ Cijkl�Cijkl + . . ..

We use the ‘background field approach’ introduced in [16]. This method together

with [19, 20] are very useful tools to derive the holographic Weyl anomaly and universal

terms of EE [12, 16]. Firstly, we define a ‘background-curvature’ (we set the AdS radius

H̃ = 1 below)

R̃µνσρ = gµρgνσ − gµσgνρ (2.3)

and denote the difference between the curvature and the ‘background-curvature’ by

R̄µνσρ = Rµνσρ − R̃µνσρ. (2.4)

Then we expand the action around this ‘background-curvature’ and get [16]

I =
1

16πG

∫
dd+1x

√
gf(Rµνσρ) (2.5)

=
1

16πG

∫
dd+1x

√
g
[
f0 + c

(1)
1 R̄+ (c

(2)
1 R̄µνσρR̄

µνσρ + c
(2)
2 R̄µνR̄

µν + c
(2)
3 R̄2) +O(R̄3)

]
where f0 = f(R̃µνσρ) = f(Rµνσρ)|AdS is the Lagrangian for pure AdS, cni are some constants

determined by the action. We require that the higher derivative gravity has an asymptotic
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AdS solution. This would impose a condition c
(1)
1 = −f0/2d [16]. Using this condition, we

can rewrite the action (2.5) as

I =
1

16πG

∫
dd+1x

√
g

[
− f0

2d
(R+ d2 − d)

+
(
c

(2)
1 R̄µνσρR̄

µνσρ + c
(2)
2 R̄µνR̄

µν + c
(2)
3 R̄2

)
+O(R̄3)

]
(2.6)

Following [1, 2], we consider small metric fluctuations in the AdS background. Impos-

ing the transverse traceless gauge ∇̄µhµν = 0 and gµνhµν = 0, we can derive the linearized

equations of motion for higher curvature gravity (2.6) as

−αd
2

[
�̄ +

2

L̄2

]
hµν −

c
(2)
2 + 4c

(2)
1

2

[
�̄ +

2

L̄2

]2

hµν = 8πGTµν (2.7)

where αd is given by

αd = − f0

2d
+ (4d− 8)c

(2)
1 . (2.8)

Remarkably, αd only depends on two parameters of the general higher curvature grav-

ity (2.5). Note that the second term of eq. (2.7) is highly suppressed near the physical

pole, i.e. [�̄ + 2
L̄2 ]hµν ' 0. Comparing eq. (2.7) with the linearized Einstein equations

eq. (1.10), we find that the effective Newton constant of the general higher curvature grav-

ity (2.5) is Geff = G/αd. Note that the central charge CT,E for CFTs dual to Einstein

gravity is

CT,E =
d+ 1

d− 1

Γ[d+ 1]

πd/2Γ[d/2]

L̃d−1

8πG
. (2.9)

Thus we get

CT = αdCT,E (2.10)

Let us comment the above results.

Firstly, with the help of the expansions (2.7) we get a very simple and general expres-

sion of αd (2.8) for higher curvature gravity. It agrees with eq. (1.8) for the holographic

model (1.6). It is much simpler and thus enables us to discuss the higher curvature gravity

generally rather than to study them case by case.

Secondly, thanks to the simplicity of αd (2.8), the physical meaning of CT (2.10)

becomes clear. It is the central charge related to the Weyl-squared term in the Weyl

anomaly. For example, CT is proportional to the c charge in the 4d Weyl anomaly

< T ii >=
c

16π2
CijklC

ijkl − a

16π2
E4. (2.11)

Here c = π
8G(−f0

8 + 8c
(2)
1 ) ∼ CT [16]. As another example, CT is proportional to the B3

charge in the 6d Weyl anomaly

< T ii >=

3∑
n=1

BnIn + 2AE6 (2.12)

where I3 ∼ Cijkl�Cijkl + . . . and B3 = 1
3072πG(− f0

12 + 16c
(2)
1 ) ∼ CT [16].

– 6 –
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Thirdly, due to the fact O(R̄3) ∼ O(h3), the O(R̄3) terms in the action (2.6) do not

affect the linearized E.O.M. As a result, αd and thus CT are independent of such terms.

To prove the conjecture σ/CT = π2/24 for 3d CFTs, we need to prove that the entropy

from the O(R̄3) terms does not contribute to σ.

3 The holographic entanglement entropy

In this section, we derive a formal entropy formula for the general higher curvature gravity.

We utilize this formula to prove the conjecture eq. (1.4) in the next section. Now let us

briefly review the derivations of the holographic entanglement entropy for higher curvature

gravity [6]. We start with the regularized conical metric in a coordinate system adapted

to a neighborhood of the conical singularity [6]:

ds2 = e2A
[
dzdz̄ + e2AT (z̄dz − zdz̄)2

]
+
(
γij + 2Kaijx

a +Qabijx
axb
)
dyidyj

+ 2ie2AUi (z̄dz − zdz̄) dyi + · · · . (3.1)

Here xa ∈ {z, z̄} denotes orthogonal directions to the conical singularity, and yi denotes

parallel directions. The regularized warp factor is

A = − ε
2

log(zz̄ + b2) , (3.2)

ε = 1− 1

n
, (3.3)

Using the replica trick, one can derive the entropy as

S = −∂εIreg|ε=0 (3.4)

where Ireg is the gravitational action got from the regularized metric (3.1). There are two

kinds of terms relevant to the entropy. The first kind is

Rzz̄zz̄ = e2A∂z∂z̄A+ . . .∫
dzdz̄∂z∂z̄A = −πε. (3.5)

It contributes to Wald entropy. The second kind is

Rzizj = 2Kzij∂zA+ . . . , Rz̄kz̄l = 2Kz̄kl∂z̄A+ . . .∫
dzdz̄∂zA∂z̄Ae

−βA = −πε
β
. (3.6)

This is the would-be logarithmic term and it contributes to the anomaly-like entropy [6].

Applying eqs. (3.4), (3.5), (3.6), one can derive the holographic entanglement entropy

(HEE) for general higher curvature gravity f(Rµνσρ) [6]

SHEE =
1

8G

∫
dd−1y

√
γ

 ∂f

∂Rzz̄zz̄
+ 16

∑
β

(
∂2f

∂Rzizj∂Rz̄kz̄l

)
β

KzijKz̄kl

β + 2

 (3.7)
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Here β come from the formula (3.6), and ( ∂2f
∂Rzizj∂Rz̄kz̄l

)β are the coefficients in the expan-

sions
∂2f

∂Rzizj∂Rz̄kz̄l
=
∑
β

e−βA
(

∂2f

∂Rzizj∂Rz̄kz̄l

)
β

. (3.8)

[6] proposes to regularize Qzz̄ij as e2AQzz̄ij . Later it is found that this ansatz yields

inconsistent results for the universal terms of EE for 6d CFTs [12]. To resolve this incon-

sistency, [12] proposes the following regularizations

T = e−2AT0 + T1,

Q zz̄ij = Q0 zz̄ij + e2AQ1 zz̄ij (3.9)

How to split M into M0 and M1 (M denotes T and Q) is the so-called the splitting

problem. It appears because one cannot distinguish r2 and r2n in the expansions of the

conical metric. It is expected that the splitting problem can be fixed by using E.O.M.

This is indeed the case for Einstein gravity [11, 12]. However, it is a highly non-trivial

problem to fix the splittings for general higher curvature gravity. Without resolution to

this problem, we cannot apply the formula (3.7) to derive the entropy.

To be consistent with Wald entropy on entangling surface with rotational symmetry,

T0 and Q0 must be functions of the extrinsic curvatures, i.e., T0 ∼ K2 and Q0 ∼ K2 [11,

12] (This is indeed the case for the splittings obtained from Einstein equations.) As a

result, the correct entropy may differ from the original one proposed by [6] by some O(K4)

terms. It turns out that these O(K4) terms do not contribute to the universal terms

of EE for 4d CFTs on smooth entangling surfaces [16]. Although the story is a little

different for universal terms of EE on singular entangling surfaces, the O(K4) terms are

still less important if we focus on the near smooth region. As we shall prove in the next

section, the coefficient σ defined in the smooth limit eq. (1.3) is indeed independent of

these O(K4) terms.

Take into account the splittings, the Riemann tensors near the the conical singularity

z → 0 take the form

Rµνσρ = e2[P/2]AR1µνσρ + e2([P/2]−1)A(K2)µνσρ

= e2[P/2]ARµνσρ|A=0 + (e2([P/2]−1)A − e2[P/2]A)(K2)µνσρ (3.10)

where P are the numbers of (z, z̄) appearing in (µνσρ), (K2)µνσρ denotes some extrinsic

curvature squared terms, Rµνσρ|A=0 are the Riemann tensors without regularization. If

we allow more general splittings for the conical metrics, i.e., we expand T, U,Q of (3.1) in

infinite powers of e−2A. Then the Riemann tensors (3.10) can be generalized as

Rµνσρ = e2[P/2]ARµνσρ|A=0 +
∞∑
i=1

e2[P/2]A(e−2iA − 1)(K2)i µνσρ (3.11)

For pure AdS, it can be further simplifed as

Rµνσρ = gµρgνσ − gµσgνρ +

∞∑
i=1

e2[P/2]A(e−2iA − 1)(K2)i µνσρ (3.12)

– 8 –
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Now we are ready to derive the entropy for general higher curvature gravity (2.6). For

pure AdS, using eqs. (3.7), (3.12), we obtain

S = − 1

4G

∫
dd−1y

√
γ

[
− f0

2d
− c(2)

2

1

2
(trK)2 − 2c

(2)
1 trK2 +

∞∑
m=2

λm(K2m)

]
(3.13)

where (K2m) denote all the possible higher extrinsic curvature terms of order O(K2m) and

λm are some constants related the higher curvature gravity. Note that eq. (3.13) works in

the Euclidean signature, which differs from its Lorentzian form by a minus sign.

4 A holographic proof of the conjecture

In this section, we firstly briefly review the corner contributions to holographic entangle-

ment entropy for Einstein gravity, and then give a holographic proof of the conjecture

eq. (1.4). We focus on pure AdS4 and work in the perturbative framework for higher

curvature gravity.

4.1 Einstein gravity

In this subsection, we review the corner contributions to holographic entanglement entropy

for Einstein gravity [2, 21]. Let us start with the Euclidean AdS4 in Poincare coordinates

ds2 = L̄2dz
2 + dt2E + dρ2 + ρ2dθ2

z2
, (4.1)

where L̄ is the radius of AdS4 and we set it to 1 below. The holographic entanglement

entropy for Einstein gravity is given by [22, 23]

SEE =
1

4G

∫
Σ
d2y
√
γ (4.2)

where Σ is the bulk minimal surface which is homologous to the entangling surface on the

boundary. Let us take tE = 0, θ ∈ [−Ω/2,Ω/2] to denote the entangling surface on the

boundary. It has a sharp corner for Ω 6= π. The bulk minimal surface can be parametrized

as z = z(ρ, θ). Take into account the scaling symmetry of AdS, we can simplify the ansatz

to z = ρh(θ). With this ansatz, the entanglement entropy (4.2) becomes

SEE =
1

2G

∫ H

δ/h0

dρ

ρ

∫ Ω/2−ε

0
dθ

√
1 + h2 + (h′)2

h2
(4.3)

where H is the size of the entangling surface on the boundary, δ is the cutoff for z, h0 = h(0)

and the angular cut-off ε is defined at z = δ, i.e., ρ h(Ω/2− ε) = δ.

Note that there is no explicit θ dependence in eq. (4.3), thus the corresponding ‘Hamil-

tonian’ is a conserved quantity. We get

1 + h2

h2
√

1 + h2 + (h′)2
=

√
1 + h2

0

h2
0

(4.4)
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where we have used h′0 = 0 from symmetry. Using eq. (4.4), we can rewrite eq. (4.3) as

SEE =
1

2G

∫ H

δ/h0

dρ

ρ

∫ √(ρ/δ)2−1/h2
0

0
dy

√
1 + h2

0(1 + y2)

2 + h2
0(1 + y2)

(4.5)

with y =
√

1/h2 − 1/h2
0.

Let us focus on the universal logarithmic divergence of EE. From eq. (4.5), it is easy to

observe that the logarithmic divergence comes from the integral dρ. To get the coefficient

of the logarithmic divergence, we need to extract the finite part from the integral dy. Take

into account the boundary behaves (y →∞)√
1 + h2

0(1 + y2)

2 + h2
0(1 + y2)

∼ 1 +O(1/y2), (4.6)

we can derive the logarithmic divergence of EE as

SEE, log = −a(Ω) log(
H

δ
) (4.7)

where a(Ω) is given by

a(Ω) =
1

2G

∫ ∞
0

dy

[
1−

√
1 + h2

0(1 + y2)

2 + h2
0(1 + y2)

]
(4.8)

And the opening angle Ω can be obtained from

Ω = 2

∫ h0

0
dh

h2
√

1 + h2
0√

1 + h2
√

(h2
0 − h2)(h2

0 + (1 + h2
0)h2)

(4.9)

For small opening angle (Ω→ 0), we find

Ω =
2
√
πΓ(3

4)

Γ(1
4)

h0 +O(h3
0) (4.10)

aE(Ω) =
1

2G
Γ

(
3

4

)4 1

Ω
+O(Ω) (4.11)

For the near-smooth case (Ω→ π), we have

π − Ω =
π

h0
+O

(
1

h3
0

)
(4.12)

aE(Ω) =
1

8πG
(π − Ω)2 +O(π − Ω)4 (4.13)

From the above equations, we get κE = 1
2GΓ(3

4)4 and σE = 1
8πG . Recall that CT,E = 3

π3G
,

we obtain
σE
CT,E

= π2/24 (4.14)

which agrees with the conjecture (1.4). In addition to eq. (4.14), we also have

κE
CT,E

=
π2

6
Γ

(
3

4

)4

(4.15)

which seems to be another universal law from the holographic study of [2]. However, as we

shall show in the next section, this is not the case for general higher curvature gravity.
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4.2 General higher curvature gravity

In this subsection, we investigate the corner contribution to EE for CFTs dual to higher

curvature gravity. Let us start with the holographic entanglement entropy for the general

higher curvature gravity f(Rµνσρ) in AdS4 (3.13)

S =
1

4G

∫
Σ
d2y
√
γ

[
−f0

6
− c(2)

2

1

2
(trK)2 − 2c

(2)
1 trK2 +

∞∑
m=2

λm(K2m)

]
(4.16)

where Σ denotes the extremal entropy surface, f0, c
(2)
1 , c

(2)
2 , λm are the parameters of the

higher curvature gravity, and (K2m) denote all the possible higher extrinsic curvature

terms of order O(K2m). Note that eq. (4.16) works in the Lorentzian signature which

differs from its Euclidean expression (3.13) by a minus sign. Following [1, 2], we work

in the perturbative framework with (c
(2)
1 , c

(2)
2 , λm � 1) in order to suppress the massive

modes and ghost modes in higher gravity gravity.

Let us firstly discuss the squared extrinsic curvature terms O(K2) in eq. (4.16). Be-

cause trK = 0 on the extremal area surface, the minimal surface will also extremize the

entropy functional
√
γ(trK)2n (n ≥ 1). Thus, we can drop such terms in eq. (4.16) in

the perturbative framework. Using the Gauss-Codazzi equations in AdS4, we can rewrite
√
γTrK2 as ∫

Σ
d2y
√
γTrK2 =

∫
Σ
d2y
√
γ(−2−R+ (trK)2) = −2

∫
Σ
d2y
√
γ (4.17)

where R is the intrinsic curvature, and we have dropped (trK)2 and a total derivative
√
γR

in the above equation. Take into account eq. (4.17) and (trK)2 ∼ 0, eq. (4.16) becomes

S =
1

4G

∫
Σ
d2y
√
γ

[
−f0

6
+ 4c

(2)
1 +

∞∑
m=2

λm(K2m)

]
(4.18)

Let us go on to study the higher extrinsic curvature terms O(K2m) with m ≥ 2. Since

λm � 1, we focus on the leading order of λm below. It turns out that, at order O(λm),

all the possible terms of (K2m) are either zero or equivalent to TrK2m up to some overall

factor. Note that there are only two eigenvalues k± for the extrinsic curvature Ki
j in AdS4.

Then, similar to (TrK = k+ + k− = 0), the trace of odd powers of the extrinsic curvature

TrK2l−1 = k2l−1
+ + k2l−1

− = 0 (4.19)

vanishes on extremal area surfaces. As a result, we can drop all the terms including the

trace of odd powers of the extrinsic curvature. That is because there are at leat two ‘odd-

trace’ terms in (K2m), and similar to (TrK)2, such terms neither change the action or

E.O.M at the leading order of O(λm).

Now let us discuss the terms including only the trace of even powers of the extrinsic

curvature, i.e.,
∏n
i=1 TrK

2mi with
∑n≤m

i=1 mi = m. As we shall show below, it is equivalent

to 2n−1TrK2m. To see this, let us check the action and E.O.M at order O(λm) below.
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For the action, we have

λm

n∏
i=1

TrK2mi = λm2nk2m
+ +O(λ2

m) = λm2n−1TrK2m +O(λ2
m) (4.20)

For E.O.M, it is equivalently to consider the variation of the action

λmδ

(
n∏
i=1

TrK2mi

)
= λm2nmk2m−1

+ (δk+ − δk−) +O(λ2
m) = λmδ(2

n−1TrK2m) +O(λ2
m)

(4.21)

Now it is clear that
∏n
i=1 TrK

2mi and 2n−1TrK2m yield the same action and E.O.M at

the first order of O(λm). Thus, we can label all the possible terms of (K2m) by one term

TrK2m. Then the entropy eq. (4.18) becomes

S =
−f0

6 + 4c
(2)
1

4G

∫
Σ
d2y
√
γ

[
1 +

∞∑
m=2

λ̄mTrK
2m

]
+O(λm)2 (4.22)

where we have rescaled λm = (−f0

6 + 4c
(2)
1 )λ̄m. If the higher extrinsic curvature terms

TrK2m vanish, from eq. (4.22) we can easily obtain

σ =

(
−f0

6
+ 4c

(2)
1

)
σE . (4.23)

Recall that CT = (−f0

6 + 4c
(2)
1 )CT,E eq. (2.10) for general higher curvature gravity, we get

σ

CT
=

σE
CT,E

=
π2

24
. (4.24)

Thus, to prove the conjecture (1.4), we need and only need to prove that the higher extrinsic

curvature terms TrK2m do not contribute to σ.

To proceed, let us derive the exact expression of the entropy eq. (4.22)

S =
−f0

6 + 4c
(2)
1

2G

∫ H

δ/h0

dρ

ρ

∫ Ω/2−ε

0
dθ

√
1 + h2 + h′2

h2

[
1

+

∞∑
m=2

λ̄m

( 1√
h′2+h2+1

)2m

+

(
h4+hh′′+2h2+(h′)2+h3h′′+1

(h2+(h′)2+1)3/2

)2m
 (4.25)

Similar to the case of Einstein gravity, there is no explicit θ dependence in eq. (4.25). Thus

we can derive a first integral

h2 + 1

h2

√
h2 + (h′)2 + 1

+

∞∑
m=2

λ̄mFm[h, h′, h′′, h(3)] =

√
h2

0 + 1

h2
0

+
∞∑
m=2

λ̄mFm[h0, 0, h
′′
0, 0] (4.26)
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where Fm[h, h′, h′′, h(3)] is a very complicated function given by eq. (A.1) in the appendix.

Let us solve eq. (4.26) perturbatively. After some algebra, we get

h′ = −

√
(h2+1)

(
h4
(
−
(
h2

0+1
))

+h2h4
0+h4

0

)
h2
√
h2

0+1

+

∞∑
m=2

λ̄m
2
(
h2+1

) 3
2
−2m

h4m−6h4−4m
0√

(h2+1)h4
0−h4

(
h2

0+1
) (
h2

0+1
) 3

2
−m

(
−
(
h2+1

)2m ((
h2

0+2
)
m−1

)
h4m−4h−4m

0

(
h2

0+1
)2m−1

+
(
h4
(
h4

0m+h2
0

(
−4m2+5m−1

)
− 4m2+5m−1

)
+2h2h4

0m(2m−1)+h4
0m(4m−3)

))
+O(λ̄m)2 (4.27)

h′′ = −
h6
(
h2

0+1
)
+2h2h4

0+2h4
0

h5
(
h2

0+1
) +O(λ̄m) (4.28)

Using eq. (4.27), we can express the opening angle Ω in the function of h0

Ω = 2

∫ 0

h0

dh
1

h′
= ΩE(h0) +

∞∑
m=2

λ̄mΩm(h0) +O(λ̄m)2 (4.29)

where ΩE(h0) is the function eq. (4.9) for Einstein gravity, and it behaves as ΩE(h0) ∼
π − π

h0
for large h0. In the smooth limit h0 →∞, we can derive Ωm as

Ωm = − 1

h2m−1
0

∫ ∞
0

dy

4m

(
(y2+1)

2m−1

y2 + (3− 4m)y2 + (2− 4m)

)
(y2 + 1)2m+1 +O

(
1

h2m+1
0

)
=

ωmπ

h2m−1
0

+O

(
1

h2m+1
0

)
(4.30)

where we have substituted y =
√

1/h2 − 1/h2
0. And ωm are some finite numbers given by

ω1 = 0, ω2 = 3/2, ω3 = 195/64, ω4 = 595/128, ω5 = 103065/16384, . . . (4.31)

Remarkably, Ωm ∼ 1/h2m−1
0 with m ≥ 2 are the subleading corrections to the angle

function. Note that we have ω1 = 0, which means that the extrinsic curvature squared

term TrK2 does not modify the angle function. That is reasonable. Recall that
√
γTrK2

is equivalent to −2
√
γ, thus the angle function for

√
γTrK2 should be exactly the same as

that for Einstein gravity. This can be regarded as a check of our results.

Now let us study the logarithmic term of EE, i.e., −a(Ω) log(Hδ ). Substituting

eqs. (4.27), (4.28) into the entropy functional (4.25), we obtain

a(h0) =

(
−f0

6
+ 4c

(2)
1

)
aE(h0) +

∞∑
m=2

λmaK,m(h0) +O(λm)2 (4.32)
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where aE ∼ 1/h2
0 is given by eq. (4.8), and am(h0) can be derived as

aK,m = − 1

4G

∫ ∞
0

dy

4

((
4m2+1

) (
y2+1

)
−
m
(
(y2+1)

2m−1
)

y2 −m
(
3y2+2

))
h2m

0 (y2+1)2m+1 +O

(
1

h2m+2
0

)
= − 1

4G

āmπ

h2m
0

+O

(
1

h2m+2
0

)
(4.33)

in the smooth limit h0 →∞. Here ām are some finite numbers:

ā1 = 1, ā2 = 17/8, ā3 = 453/128, ā4 = 5189/1024, ā5 = 218285/32768, . . . (4.34)

Similar to Ωm (4.30), aK,m ∼ 1/h2m
0 (m ≥ 2) are subleading terms. Thus, the higher

extrinsic curvature terms can be ignored if we focus on the leading terms of Ω(h0) and

a(h0). It should be mentioned that the equivalence between
√
γTrK2 and −2

√
γ implies

ā1 = 1, which is consistent with eq. (4.34). As another check of our results, we have

calculated Ω(h0) and a(h0) numerically and got perfect agreements with the exact results

eqs. (4.29)–(4.34) for large h0.

Now we are ready to derive σ for the general higher curvature gravity. Recall that σ

is defined by a(Ω) in the smooth limit:

σ = lim
Ω→π

a(Ω)

(π − Ω)2
(4.35)

From eqs. (4.29), (4.30), (4.32), (4.33), we get

a(Ω) =

(
−f0

6
+ 4c

(2)
1

)
aE(Ω) + λm O(π − Ω)4 +O(λm)2 (4.36)

Thus we have

σ =

(
−f0

6
+ 4c

(2)
1

)
σE (4.37)

at least up to order O(λm). Recall that the central charge is given by

CT =

(
−f0

6
+ 4c

(2)
1

)
CE,T (4.38)

We obtain

σ

CT
=

σE
CT,E

=
π2

24
. (4.39)

Now we finish the proof of the conjecture (1.4).

One may wonder what happens if we take into account the higher orders terms O(λm)n

in our perturbative approach. It turns out that these higher order terms decrease quickly as

Ω− αΩE ∼
∑
m,n

λnm

h
(2m−2)n+1
0

(4.40)

a(h0)− αaE(h0) ∼
∑
m,n

λnm

h
(2m−2)n+2
0

(4.41)
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where α = (−f0

6 + 4c
(2)
1 ). Thus, the higher order terms O(λm)n are less important than

the first order terms O(λm), and they do not change σ either. A quick ‘derivation’ of the

power law eqs. (4.40), (4.41) is as follows. Note that

dh ∼ dy

h′ ∼ h0

(
c0(y) +

∑
m=2

cm(y) + λm

h2m−2
0

)
L ∼ 1

h0
(4.42)

where we have subtracted the divergent parts in L. To see why L ∼ 1
h0

, it is helpful to

note that a(h0) ∼ L/h′ ∼ 1/h2
0. Then we get

Ω− αΩE ∼
∫
dy

(
1

h′
− α

h′E

)
∼
∑
m,n

λnm

h
(2m−2)n+1
0

(4.43)

a(h0)− αaE(h0) ∼
∫
dy

(
L

h′
− αLE

h′E

)
∼
∑
m,n

λnm

h
(2m−2)n+2
0

(4.44)

In the appendix, we calculate the O(λm)2 terms exactly and find that they indeed obey the

power law eqs. (4.40), (4.41). We have also checked some O(λm)3 terms, which satisfy the

power law eqs. (4.40), (4.41) too. Thus, similar to the smooth case, the higher extrinsic

curvature terms (K2m) with m ≥ 2 can be ignored in the smooth limit. σ is irrelevant with

these terms to arbitrary order O(λnm).

To sum up, we give a holographic proof of the conjecture (1.4) for the CFTs dual to

the general higher curvature gravity. We work in the perturbative framework with λm � 1

in order to suppress the massive modes and to have a well-defined extremal entropy surface

for higher curvature gravity.

4.3 Discussions

In this subsection, we discuss some interesting questions raised by [1, 2]. Firstly, we show

that the lower bound aE(Ω)/CT associated to Einstein gravity can be violated by higher

curvature gravity. Secondly, we find that, in contrast to σ/CT , κ/CT is not universal. In

general, κ depends on infinite parameters of the higher curvature gravity. Thus, it is not

a good candidate for the central charge. Let us discuss the above two problems one by

one below.

For the first problem, we set λm = 0 with m ≥ 3 for simplicity. This means that we

focus on the higher curvature gravity including at most the cubic curvature terms. Using

eqs. (4.29)–(4.34), we obtain

a(Ω)

CT
− aE(Ω)

CT,E
= − 5

96
λ̄2(π − Ω)4 +O(π − Ω)6 (4.45)

Now it is clear that a(Ω)
CT

with positive λ̄2 = λ2/α3 is smaller than aE(Ω)
CT,E

near Ω ∼ π.1

1We notice that λ̄2 is proportional to t4, which is the parameter of three point functions for the stress

tensor. We have a constraint −4 ≤ t4 ≤ 4 from the positivity of energy [26]. Thus, λ̄2 ∼ t4 can indeed

be positive.
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Thus, the lower bound aE(Ω)/CT associated to Einstein gravity can indeed be violated by

higher curvature gravity.

Now let us go on to discuss the second problem. Recall that κ is defined in the small

angle limit of a(Ω):

κ = lim
Ω→0

a(Ω) Ω (4.46)

Following the approach of last subsection, we can express the opening angle Ω as eq. (4.29)

Ω = ΩE(h0) +

∞∑
m=2

λ̄mΩm(h0) +O(λ̄m)2 (4.47)

with Ωm(h0 → 0) given by

Ωm =

∫ ∞
0

dy
2
(

2(1−2m)r20+2r4m−20

(
(2m−1)r40+2m(4m−3)r20y

2+m(4m−3)y4
) (
r20+y2

)−2m)
y2 (2r20+y2)

3/2
(r20+y2)−1/2

+O

(
1

r30

)
= ω̂mπ

3/2h0 +O(h30). (4.48)

Here we have substituted r0 = 1/h0 and ω̂m are some finite numbers given by

ω̂1 = 0, ω̂2 =
128
√

2

15Γ
(
−3

4

)2 , ω̂3 =
2176
√

2

135Γ
(
−3

4

)2 ,
ω̂4 =

644
√

2

195Γ
(

1
4

)
Γ
(

5
4

) , ω̂5 =
956
√

2

221Γ
(

1
4

)
Γ
(

5
4

) , . . . (4.49)

From eqs. (4.10), (4.47), (4.48), we obtain

Ω =

(
2
√
πΓ(3

4)

Γ(1
4)

+

∞∑
m=2

λ̄mω̂mπ
3/2 +O(λ̄m)2

)
h0 +O(h3

0) (4.50)

Remarkably, all the higher curvature terms contribute to the leading term of Ω in the

singular limit.

Similarly, we can derive a(h0) as eq. (4.32)

a(h0) =

(
−f0

6
+ 4c2

1

)(
aE(h0) +

∞∑
m=2

λ̄maK,m(h0) +O(λ̄m)2

)
(4.51)

with aK,m(h0 → 0) given by

aK,m = − 1

4G

∫ ∞
0

dy

×
4
(
r4m0

(
(2m−1)r40+2(m(4m−3)+1)r20y

2+(m(4m−3)+1)y4
)
−(2m−1)r40

(
r20+y2

)2m)
y2 (2r20+y2)

3/2
(r20+y2)

2m− 1
2

+O

(
1

r0

)
= − 1

4G

âmπ
3/2

h0
+O(h0) (4.52)
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where r0 = 1/h0 and âm are some finite numbers:

â1 =
4Γ
(

3
4

)
πΓ
(

1
4

) , â2 = − 12
√

2

5Γ
(
−3

4

)
Γ
(

5
4

) , â3 =
2624

√
2

135Γ
(
−3

4

)2 ,
â4 =

2884
√

2

195Γ
(

1
4

)2 , â5 =
66112

√
2

1989Γ
(
−3

4

)2 , . . . (4.53)

From eqs. (4.11), (4.50), (4.51), (4.52), we obtain

a(Ω) =

(
−f0

6
+4c

(2)
1

)(
Γ
(

3
4

)4
2πG

+

∞∑
m=2

λ̄m
π2Γ

(
−1

4

)
(âm−ω̂m)

8GΓ
(

1
4

) +O(λ̄m)2

)
1

Ω
+O(Ω) (4.54)

Thus, κ depends on all the parameters of the higher curvature gravity. As a result, κ/CT
is not a universal ratio:

κ

CT
=

1

6
π2Γ

(
3

4

)4

+

∞∑
m=2

λ̄m
π5Γ

(
−1

4

)
(âm − ω̂m)

24Γ
(

1
4

) +O(λ̄m)2. (4.55)

The holographic models studied by [1, 2] imply that κ/CT seems to be a universal ratio.

However, as we have shown here, this is not the case for general holographic models.

Our results explain the field theoretical mismatch of the ratio κ/CT between free scalar

(4.17945) and free fermion (3.8005) [2]. Eq. (4.55) shows that κ
CT

crucially depends on the

parameters of the holographic models, or equivalently, the details of CFTs. Thus, there is

no reason to expect κ
CT

to be the same for scalars and fermions.

5 New conjectures for CFTs in higher dimensions

In this section, we investigate the universal contributions to EE from high-dimensional

cones. On the gravity side, we focus on the following AdS metric

ds2 =
dz2 + dt2E + dρ2 + ρ2(dθ2 + sin2 θdΩ2

d−3)

z2
(5.1)

where θ ∈ [0,Ω] with Ω ≤ π and dΩ2
d−3 is the metric of unit (d − 3)-sphere. According

to [24, 25], the universal terms of EE are logarithmic terms −ad(Ω) log(H/δ) and squared

logarithmic terms −ad(Ω) log2(H/δ) in odd dimensions and even dimensions, respectively.

Similar to the 3d CFTs, we have ad(Ω) = ad(π−Ω) and the following asymptotic behaviors

ad(Ω→ π/2) ' σd(π/2− Ω)2, ad(Ω→ 0) ' κd/Ω (5.2)

By studying the holographic models, we find that

σd
CT

=
σd,E
CT,E

(5.3)

is a universal ratio. Here CT are the central charges defined in the two point function

eq. (1.5) and E denotes Einstein gravity.
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5.1 CFTs in even dimensions

5.1.1 4d CFTs

In this subsection, we study the universal terms of EE from sharp corners for 4d CFTs. For

simplicity, we firstly consider gravity theories with at most squared curvatures and then

generalize our discussions to general higher curvature gravity.

From eq. (3.13), we get the entropy for curvature-squared gravity as

S =
1

4G

∫
dd−1y

√
γ

[
− f0

2d
− c(2)

2

1

2
(trK)2 − 2c

(2)
1 trK2

]
(5.4)

As argued in [1, 2], we can drop (trK)2 near the minimal surface. Take into account the

scaling symmetry of AdS, we can parameterize the extremal entropy surface as z = ρ h(θ).

Now the entropy functional becomes

S =
Ωd−3

4G

∫ H

δ/h0

dρ

ρ

∫ δ/ρ

h0

dh
sind−3(θ)

h′hd−1

√
1+h2+(h′)2

(
− f0

2d
−2c

(2)
1

(
k2

+ + k2
− + (d− 3)k2

0

))
(5.5)

where k±, k0 are the eigenvalues of the extrinsic curvature Ki
j :

k+ =
1√

h2 + (h′)2 + 1
, (5.6)

k0 =
h2 + hh′ cot(θ) + 1√

h2 + (h′)2 + 1
, (5.7)

k− =
h4 + hh′′ + 2h2 + (h′)2 + h3h′′ + 1(

h2 + (h′)2 + 1
)3/2

(5.8)

Now let us consider the case d = 4. Firstly, we derive E.O.M of h(θ) from the entropy

functional (5.5). Then we change the variable y = sin(θ) = y(h). Finally, we solve E.O.M

of y(h) perturbatively. After some tedious calculations, we obtain

y = sin(Ω)− 1

4
cos(Ω) cot(Ω)h2 + y0h

4 − 1

64
(cos(2Ω)− 3) cot2(Ω) csc(Ω)h4 log(h) +O(h6)

(5.9)

where y0 is a constant that can be fixed by using the fact that y(h) has an extrema at h = h0.

Remarkably, the solution (5.9) is independent of the parameter c
(2)
1 up to O(h4). This

means that the minimal surface is a good approximation for the extremal entropy surface

near the boundary of AdS. Using the solution (5.9) together with h′ =
√

1− y2/y′(h) and

h′′ = −(yy′2 + (1− y2)y′′)/y′3, we find the integrand of eq. (5.5) behaves as

sind−3(θ)

h′hd−1

√
1+h2+(h′)2

(
− f0

2d
−2c

(2)
1 trK2

)
=
f0
8

sin(Ω)

h3
+

(
−f0

8
+8c

(2)
1

)
cos(Ω) cot(Ω)

8h
+O(h)

(5.10)

According to [24], the universal squared logarithmic term can only come from the (1/h)

term in the integrand (5.10). Substituting eq. (5.10) into entropy functional (5.5), we get
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the universal term of EE as

−a4(Ω) log2(H/δ) = − π

32G

(
−f0

8
+ 8c

(2)
1

)
cos(Ω) cot(Ω) log2(H/δ) (5.11)

Now let us generalize our above discussions to general higher curvature gravity. It turns

out that the general holographic models give the same result as eq. (5.11). The reasons

are as follows. Near the boundary h→ 0, the asymptotic solution y(h) takes the form

y = sin(Ω) + c1h
2 + . . .+ hd(cd/2 + b log(h)) + . . . (5.12)

Thus, we have h′ =
√

1− y2/y′(h) ∼ 1/h and h′′ = −(yy′2 + (1 − y2)y′′)/y′3 ∼ 1/h.

Substituting h′ ∼ 1/h and h′′ ∼ 1/h into the eigenvalues of the extrinsic curvature (5.6),

we find that

(K2m) ∼ h2m (5.13)

Thus, the entropy functional for higher extrinsic curvature terms (K2m) behaves∫
dρ

ρ

∫ δ/ρ

dh
sind−3(θ)

h′hd−1

√
1 + h2 + (h′)2 (K)2m ∼

∫
dρ

ρ

∫ δ/ρ

dh
(
h2m−d+1 + . . .

)
(5.14)

where ‘. . . ’ denotes higher order terms. Now it is clear only the terms (K2m) with m ≤
(d− 2)/2 contribute to the squared logarithmic terms. That is because only the 1/h terms

in the integrand are related to the universal term of EE [24]. For d = 4, we get m ≤ 1.

Thus, besides TrK2, there is no need to consider other higher extrinsic curvature terms

for 4d CFTs.

Using eq. (5.11) together with CT = (−f0

8 + 8c
(2)
1 )CT,E for d = 4, we find that

a4(Ω)

CT
=
a4,E(Ω)

CT,E
(5.15)

is a universal ratio for all the CFTs dual to higher curvature gravity. Note that we have

not only σ4/CT but also a4(Ω)/CT universal for 4d CFTs.

5.1.2 6d CFTs

Now let us study the universal terms of EE from sharp corners for 6d CFTs. As discussed

below eq. (5.14), to derive a6(Ω), we only need to consider three extrinsic curvature terms,

i.e., TrK2, TrK4 and (trK2)2 in the entropy functional (3.13). Note that, similar to

(trK)2, (trK)(trK3) and (trK)4 are less important near the boundary of AdS, where the

extremal entropy surface becomes the minimal surface approximately.

Let us firstly consider TrK2. The corresponding entropy functional is given by eq. (5.5).

Following the approach of last subsection, we obtain the asymptotic solution

y = sin(Ω)− 3

8
cos(Ω) cot(Ω)h2− 3 cot2(Ω) csc(Ω)((104λ+11) cos(2Ω)+168λ+19)

1024(8λ+1)
h4

+ y0h
6−

3 cos(Ω) cot(Ω)
(
(112λ−15) csc4(Ω)+2(48λ−7) csc2(Ω)+48λ−3

)
4096(8λ−1)

h6 log(h)

+O(h8) (5.16)
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For simplicity, we have set − f0

2d = 1 and λ = −2c
(2)
1 in the above equation. Substituting the

solution (5.16) into the entropy functional (5.5) and picking the 1/h terms in the integrand,

we derive

a6(Ω) =
Ω3

8G

9 cos(Ω) cot(Ω)((1− 16λ) cos(2Ω) + 240λ− 31)

4096
(5.17)

σ6 = −Ω3

8G

9

128
(1− 8λ) (5.18)

Let us go on to discuss the effects from TrK4 and (trK2)2. From the experience of

3d and 4d CFTs, it is expected that TrK4 and (trK2)2 do not change σ6. Instead, they

only modify the subleading terms of a6(Ω) in the smooth limit Ω → π/2. As we shall

show below, this is indeed the case. Adding λ2(1)trK
4 + λ2(2)(trK

2)2 to the the entropy

functional (5.4) and following the above approach, we find that trK4 and (trK2)2 only

modify a6(Ω) at the subleading order O(Ω− π
2 )4

δa6(Ω) =
Ω3

8G

(
Ω− π

2

)4
(
− 21

64
λ2(1) −

9

16
λ2(2)

)
+O

(
Ω− π

2

)6
(5.19)

Thus, the coefficient of (Ω − π
2 )2, i.e., σ6 (5.18), remains the same. Now from eq. (5.18)

and CT = (1− 8λ)CT,E , it is clear that

σ6

CT
=
σ6,E

CT,E
(5.20)

is indeed a universal ratio for the CFTs dual to general higher curvature gravity.

5.1.3 2n-dimensional CFTs

Now let us investigate the universal term of EE from sharp corners for general even-

dimensional CFTs. The higher the dimension is, the more terms we need to consider in

order to derive ad(Ω). In general, we need to study all the extrinsic curvature terms (K2m)

with m ≤ (d − 2)/2 for ad(Ω). The experiences of 4d and 6d CFTs imply that only trK2

contribute to σd and the other higher extrinsic curvature terms only modify the subleading

terms of ad(Ω). For simplicity, we only consider the curvature-squared gravity in this

sub-section.

Using the entropy functional (5.5) and following the approach of section 5.1.1, we

obtain

σd =
Ωd−3

8G

(
− f0

2d
+ (4d− 8)c

(2)
1

)
βd (5.21)

where Ωd−3 = 2π(d−2)/2

Γ((d−2)/2) is the volume of the unit (d − 3)-sphere, βd are some numbers

given by

β4 =
1

8
, β6 = − 9

128
, β8 =

25

512
, β10 = − 1225

32768
, β12 =

3969

131072
, . . . (5.22)

We notice that βd are the expansion coefficients of complete elliptic integral of the first kind:

K(−x) =
π

2
− π

∞∑
n=2

β2n x
n−1 (5.23)

βd = (−1)
d
2

23−2dΓ[d− 1]2

Γ[d2 ]2
(5.24)
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Comparing σd (5.21) with CT = (− f0

2d + (4d− 8)c
(2)
1 )CT,E , we find that

σd
CT

=
Ωd−3

8G

βd
CT,E

= (−1)
d
2

(d− 1)(d− 2)πd−1Γ[d−1
2 ]2

2Γ[d2 ]2Γ[d+ 2]
, (d even) (5.25)

is a universal ratio for even-dimensional CFTs.2 Although we only checked eq. (5.25) by

studying the curvature-squared gravity, we expect that it is a universal law for the CFTs

dual to general higher curvature gravity in space-time (5.1). It should be mentioned that

ad(Ω) is not conformally invariant for even CFTs [24]. To derive eq. (5.25), we assume that

the boundary metric is

ds2 = dt2E + dρ2 + ρ2(dθ2 + sin2 θdΩ2
d−3) (5.26)

which is dual to the bulk metric (5.1). By a singular Weyl transformation, we can obtain

a new boundary metric [24]

ds2 = dY 2 + dξ2 + sin2 ξ(dθ2 + sin2 θdΩ2
d−3) (5.27)

which is dual to the bulk metric

ds2 =
1

1 +R2
dR2 + (1 +R2)dY 2 +R2[dξ2 + sin2 ξ(dθ2 + sin2 θdΩ2

d−3)] (5.28)

It turns out that ad(Ω) derived from (5.1) and (5.28) differ by a factor 2. This mismatch

can be regarded as an anomaly from the singular conformal transformation [24]. Thus, by

saying σd/CT (5.25) is universal for even-dimensional CFTs, we mean the case when all

the CFTs live in the same boundary space-time.

5.2 CFTs in odd dimensions

Now let us study the universal term of EE from sharp corners for CFTs in odd dimensions.

In contrast to 3d and even-dimensional cases, it is difficult to derive the exact formula of

σd for odd-dimensional CFTs. We leave the discussions of odd-dimensional CFTs to future

work. Below we proceed as far as we can. For simplicity, we take 5d CFTs as an example.

Let us start with the entropy functional (3.13) with d = 5, −f0/10 = 1 and λ = −2c
(2)
1 .

S =
Ω2

4G

∫ H

δ/h0

dρ

ρ

∫ δ/ρ

h0

dh
sin2(θ)

h′h4

√
1 + h2 + (h′)2

(
1 + λtrK2 +

∞∑
m=2

λm(K2m)

)
(5.29)

where trK2 =
(
k2

+ +k2
−+2k2

0

)
with k given by eq. (5.6), and (K2m) denote all the possible

higher extrinsic curvature terms. Following the approach of section 5.1.1, we can derive

the asymptotic solution

y=sin(Ω)− 1

3
h2 cos(Ω) cot(Ω)−

h4
(
cot2(Ω) csc(Ω)((5λ+1) cos(2Ω)+11λ+4)

)
54(2λ+1)

+O(h6)

(5.30)

2Note that the definition of σd of this paper differs from the one of [18] by a factor 4(−1)
d
2 . Thus,

eq. (5.25) agrees with the results of [18].
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Remarkably, the higher extrinsic curvature terms (K2m) with m ≥ 2 do not affect the

asymptotic solution up to order O(h4). That is because (K2m) ∼ h2m are subleading

terms near the boundary. This is a sign that these higher extrinsic curvature terms are

irrelevant to σ5.

Substituting the above solution into the integrand of the entropy functional (5.29),

we find

sin2(θ)

h′h4

√
1+h2+(h′)2

(
1+λtrK2+

∞∑
m=2

λm(K2m)

)
= −sin(Ω)

h4
− 2(3λ−2) cos2(Ω)

9h2
+O(1)

(5.31)

To derive the universal term of EE −a5(Ω) log(H/δ), we need to extract the finite part of

the above integrand. We obtain

a5 =
π

G
(
sin(Ω)

3h30
+

2(3λ− 2) cos2(Ω)

9h0
) (5.32)

+
π

G

∫ h0

0

dh

(
sin2(θ)

h′h4

√
1+h2+(h′)2

(
1+λtrK2+

∞∑
m=2

λm(K2m)
)
+

sin(Ω)

h4
+

2(3λ−2) cos2(Ω)

9h2

)
Unlike the 3d case, it is difficult to derive an analytical solution of h(θ) and thus a5 due to

the appearance of sin(θ) in the entropy functional (5.29). We leave the careful numerical

study of this problem to future work [27].

6 Conclusions

By applying the general higher curvature gravity, we give a holographic proof of the con-

jecture [1] for 3d CFTs. We find that, similar to the smooth case, the cubic and higher

terms in the expansions of the action (2.5) around the ‘background-curvature’ are less

important, i.e., they do not change either σ or CT . Besides, we have clarified some in-

teresting problems. Firstly, we find that, unlike σ/CT , κ/CT is not a universal ratio. On

the contrary, it crucially depends on the details of the CFTs. Secondly, we find that the

lower bound aE(Ω)/CT associated to Einstein gravity can be violated by higher curvature

gravity. Last but not least, we find that there are similar universal laws in the smooth limit

for CFTs in higher dimensions. We give a holographic proof of the universal laws for 4d

and 6d CFTs which are dual to the general higher curvature gravity and check the higher

even-dimensional cases by studying curvature-squared gravity. As for the odd-dimensional

CFTs (d > 3), it is difficult to derive the analytical results. However there are hints that

the higher extrinsic curvature terms do not affect σ. Therefore it is expected that, similar

to the 3d CFTs, σd/CT,d are also universal ratios for the CFTs in higher odd-dimensional

space-times. We leave the careful numerical study of this problem to future work [27].

Based on the holographic results, we can trust these new conjectures in higher dimensions

at least for strongly coupled CFTs. It is interesting to test whether these universal laws

are obeyed by weakly coupled CFTs. It is also interesting to find a field theoretical proof

of these universal ratios. Finally, we want to mention that, for simplicity, we focus on the

CFTs dual to the general higher curvature gravity f(Rijkl) in this paper. It is expected that

our discussions can be naturally generalized to the cases of most general higher derivative

gravity f(Rijkl,∇mRijkl, . . .). Now work is in progress in this direction.

– 22 –



J
H
E
P
1
0
(
2
0
1
5
)
0
3
8

Acknowledgments

R. X. Miao is supported by Sino-German (CSC-DAAD) Postdoc Scholarship Program. R.

X. Miao thank S. Theisen for helpful discussions.

A Some formula

Fm =
h2+2m (h′)2+1

h2
(
h2+(h′)2+1

)m+ 1
2

+

(
h2+1

)2 (
(h−6hm)h′′+h2+1

)
+2
(
2h2+3

)
m (h′)4+

(
h2+1

) (
2
(
5h2+3

)
m+1

)
(h′)2

h2
(
h2+(h′)2+1

)3m+ 1
2
(

(h2+1) (hh′′+h2+1)+(h′)2
)1−2m

+
2m
((
h2+1

) (
hh′′+h2+1

)
+(h′)2

)2m−2

h2
(
h2+(h′)2+1

) 1
2
−3m

×
(

2h
(
h2+1

)3
h′′
(
hh′′+h2+1

)
−
(
h2+3

) (
h′
)6

+
(
h2+1

) (
h′
)4 (

h4(8m−5)+h
(
h2(6m−4)−3

)
h′′+2h2(m−4)−6

)
+
(
h2+1

)2 (
h′
)2 ((

h2+1
) (

2h2(m−2)−3
)
−hh′′

(
3h(2m−1)h′′+6h2m+1

))
+
(
h3+h

)2
h(3)(2m−1)

(
h′
)3

+h2h(3)
(
h2+1

)3
(2m−1)h′

)
(A.1)

B Corner entropy at the second order

In this appendix, we give some results for the logarithmic terms of EE at order O(λm)2 for

3d CFTs. Solving eq. (4.26) to the second order of λm and then substituting the solution

into the entropy functional eq. (4.25), we can derive

a(h0) =

(
−f0

6
+ 4c2

1

)
aE(h0) +

∞∑
m=2

(
λmaK,m(h0) + λ2

maK,(2)m(h0)
)

+O(λm)3 (B.1)

where a(2)m(h0 →∞) are given by

aK,(2)m = − 1

2G

∫ ∞
0

dy

h4m−20

2m2

y2 (y2+1)
4m+1

(
512m4

(
y2+1

)2
y4+123y8+312y6

− 64m3
(
22y2+3

) (
y3+y

)2−4y2
((
y2+1

)2m−12
)

+ 9
((
y2+1

)4m−1
)

+y4
(

246−4
(
y2+1

)2m)
− 4m

((
y2+1

)2m
+6
(
y2+1

)4m−2y2
((
y2+1

)2m−28
))

− 4m
(
−3y4

((
y2+1

)2m−102
)

+173y8+416y6−7
)

+ 16m2
((
y2+1

)4m−y2 ((y2+1
)2m−24

)
−y4

((
y2+1

)2m−143
)

+92y8+210y6−1
))

= − 1

2G

ā(2)mπ

h4m−20

+O

(
1

h4m0

)
. (B.2)
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Here ā(2)m are some finite numbers:

ā(2)1 = 0, ā(2)2 = −2825

32
, ā(2)3 = −21845619

32768
,

ā(2)4 = −657678125

262144
, ā(2)5 = −14523464909675

2147483648
, . . . (B.3)

Similarly, we can derive the opening angle Ω as

Ω = 2

∫ 0

h0

dh
1

h′
= ΩE(h0) +

∞∑
m=2

(
λ̄mΩm(h0) + λ̄2

mΩ(2)m(h0)
)

+O(λ̄m)3 (B.4)

In the smooth limit h0 →∞, we have

Ω(2)m =
2

h4m−30

∫ ∞
0

dy
4m2(2m− 1)

y2 (y2 + 1)
4m+1

(
4(m− 1)

(
y2 + 1

)4m
+
(
(3− 4m)y2 − 1

) (
y2 + 1

)2m+1

+
(
y2 + 1

)2 (
(4m− 3)(16m(2m− 3) + 17)y4 − 2(8m(3m− 5) + 15)y2 − 4m+ 5

))
+O

(
1

h4m−10

)
=

2ω(2)mπ

h4m−30

+O

(
1

h4m−10

)
(B.5)

with ω(2)m given by

ω(2)1 = 0, ω(2)2 = −1359

16
, ω(2)3 = −10742535

16384
, (B.6)

ω(2)4 = −325720423

131072
, ω(2)5 = −7216252470675

1073741824
, . . . (B.7)

Note that eqs. (B.2), (B.5) obey the power law eqs. (4.40), (4.41). Remarkably, the

higher order terms O(λnm) behave as O(1/h4mn
0 ) which are much smaller than the first order

terms O(λm) in the smooth limit h0 → ∞. Thus it is sufficient to consider only the first

order of λm for the proof of the conjecture (1.4).

To end this section, let us comment the higher order terms O(λnm). At the first order

O(λm), all the possible terms of (K2m) are equivalent to trK2m up to some factor. For the

second order λ2
m, (K2m) can be classified by at most three equivalence classes, i.e., trK2m,

trK2trK2m−2 and trK4trK2m−4. Similarly, more and more equivalence classes need to be

considered for (K2m) terms at higher order O(λnm). It is expected that all the equivalence

classes obey the same power law eqs. (4.40), (4.41) as trK2m. To see this, recall that there

are two eigenvalues k± for the extrinsic curvature Ki
j in AdS4. Thus, we have

2n−1trK2m ≥
n∏
i=1

TrK2mi ≥ trK2m, with
n∑
i=1

mi = m

2n−1(k2m
+ + k2m

− ) ≥
n∏
i=1

(k2mi
+ + k2mi

− ) ≥ (k2m
+ + k2m

− ). (B.8)

Clearly,
∏n
i=1 TrK

2mi are lower and higher bounded by trK2m with some factors. So it is

expected that
∏n
i=1 TrK

2mi obey the same power law eqs. (4.40), (4.41) as trK2m.
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Let us take the (K4) terms of order O(λ2
2) as an example. These terms are associated

to the cubic curvature gravity. There are two equivalence classes trK4 and (trK2)2. We

have studied trK4 above. For (trK2)2, similar to eqs. (B.2), (B.5), we obtain

a′K,(2)2 =
1801

16G

π

h6
0

+O

(
1

h8
0

)
(B.9)

Ω′(2)2 = −847π

2h5
0

+O

(
1

h7
0

)
(B.10)

which indeed obey the same power law as trK4. One can further check that trK4 and

(trK2)2 also obey the same power law eqs. (4.40), (4.41) at the next order O(λ3
2).
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