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Abstract We construct an event-based computer simulation model of the Einstein-
Podolsky-Rosen-Bohm experiments with photons. The algorithm is a one-to-one
copy of the data gathering and analysis procedures used in real laboratory experi-
ments. We consider two types of experiments, those with a source emitting photons
with opposite but otherwise unpredictable polarization and those with a source emit-
ting photons with fixed polarization. In the simulation, the choice of the direction of
polarization measurement for each detection event is arbitrary. We use three different
procedures to identify pairs of photons and compute the frequency of coincidences
by analyzing experimental data and simulation data. The model strictly satisfies Ein-
stein’s criteria of local causality, does not rely on any concept of quantum theory and
reproduces the results of quantum theory for both types of experiments. We give a
rigorous proof that the probabilistic description of the simulation model yields the
quantum theoretical expressions for the single- and two-particle expectation values.

Keywords Quantum theory · EPR paradox · Computational techniques

1 Introduction

A fundamental problem, originating from the work of Einstein, Podolsky and Rosen
(EPR) [1] and reformulated by Bohm [2] is to explain how individual detection
events, registered by different detectors in such a way that a measurement on one
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particle does not have a causal effect on the result of the measurement on another
particle (Einstein’s criterion of local causality), give rise to the two-particle quantum
correlations that are found in experiments [3–12].

In Einstein-Podolsky-Rosen-Bohm (EPRB) experiments, individual events are
registered, correlations between them are calculated and are found to correspond to
the two-particle correlation for the singlet state. Since, in quantum theory, the basic
equation that describes individual events is not known [13], quantum theory simply
cannot be used to construct a numerical algorithm to simulate the individual events.
Of course, using pseudo-random numbers we could generate events according to the
probability distribution that is obtained by solving the Schrödinger equation. How-
ever, the challenge is to explain how the individual events can give rise to the two-
particle correlations of the singlet state without invoking concepts of quantum theory.

The question that we address in this paper is: Given the existing experimental data
(numbers recorded during an experiment, stored on computer disks, and analyzed
long after the data is taken), that, when analyzed properly, yields expectation values
which are in good agreement with the predictions of quantum theory [3, 5–8, 12], is
it possible to construct an event-based simulation algorithm that satisfies Einstein’s
criteria of local causality, generates the same kind of data as in experiment, and is ca-
pable of reproducing exactly the single- and two-particle averages of quantum theory
for a system of two S = 1/2 particles?

Within the context of local realist probabilistic models, a rigorous proof that the
existence of an algorithm that describes the outcome of real EPRB experiments can-
not be excluded, has been given earlier [14]. Although such a proof is very valuable,
actually finding such algorithms using local, causal processes to generate the proba-
bility distributions of quantum theory, is another challenge.

In this paper, we present results of a complete simulation of Aspect-type exper-
iments using an Einstein local, causal event-based simulation model. An important
feature in these experiments is the arbitrariness in the choice of the directions in
which the polarization will be measured, for each individual detection event [3–8].
This feature has not been taken into account in our earlier work [15] but is fully
accounted for in the simulation procedure that we describe in this paper.

The paper is organized as follows. In Sect. 2 we describe the experimental set-
up, the data gathering method and the data analysis procedures used in EPRB ex-
periments with photons, closely following references [5, 8]. The sources used in
EPRB experiments emit photons with opposite but otherwise unpredictable polar-
ization. Each photon propagates to an observation station consisting of a polarizer
and two detectors. In accordance with quantum theory and experiments, we expect
the two-particle correlation to agree with the expression obtained by assuming that
the quantum state is a singlet. We refer to this experimental set-up as Case I. Inserting
polarizers between the source and the observation stations changes the pair genera-
tion procedure such that the two photons that enter the observation stations have a
fixed polarization. In this case, the photon intensity recorded by the detectors behind
the polarizers in each observation station obeys Malus law. We refer to this set-up
as Case II. A brief review of the quantum theoretical description of Cases I and II is
given in Sect. 3.

In real experiments, macroscopic or microscopic, we need a well-defined pro-
cedure to decide if two detection events stem from a single system. In real EPRB
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experiments with photons, the time at which the events are registered is used for this
purpose. However, the criterion that is used to select the events that stem from a sin-
gle two-particle system is, to considerable extent, arbitrary. In Sect. 4, we study this
aspect by analyzing publicly available experimental data for an EPRB experiment
with photons [8]. We present results of an analysis using three different procedures:

• First, we simply divide the time interval of measurement in equally spaced bins.1

For each station, we determine the number of events per bin. From this data, we
compute the coincidences. Effectively, this procedure compares the detection times
at both stations with the time of a reference clock, using a coincidence window with
a width that is equal to the bin size.

• Second, we employ the criterion used in the experiment [8, 9]. We compute the
coincidences of a detection event at station 1 and a detection event at station 2 by
comparing the time difference of these events with a fixed time window, that is we
use relative times to determine the coincidences.

• Finally, in the third procedure [9], we first maximize the number of coincidences
by shifting by the same amount, the detection times of station 2 relative to those
of station 1, and then use the second procedure to count the coincidences. This
two-step procedure reproduces the published results [8].

Our analysis shows that the first and third procedure may yield a result that is in
reasonable agreement with the prediction of quantum theory if the bin size or coin-
cidence window is sufficiently small. The data obtained by the second procedure is
similar except that for a particular choice of the time window, the result is in con-
flict with quantum theory. In general, these results support the idea that the idealized
EPRB gedanken experiment [16–18] that agrees with quantum theory cannot be per-
formed [19].

In Sect. 5 we describe an Einstein local, causal event-based computer simulation
model, based on the EPRB experiment with photons performed by Weihs et al. [8, 9].
The crucial point of the present and of our earlier work [15, 20–22] is that we simulate
a model of the real EPRB experiments, not of the simplified, gedanken-type version
that is commonly used [16–18]. We give an explicit description of the algorithm to
simulate the photons one by one, the observation stations containing the polarizers
and detectors, and the data analysis procedure. The polarizers are modeled such that
we reproduce the quantum theoretical results for Cases I and II without changing the
algorithm for the polarizers, that is the functionality of all polarizers is the same. In
contrast to the real EPRB experiments with photons [8, 9], the number of orientations
per polarizer to choose from is not limited to two.

Section 6 gives a rigorous analytical treatment of the probabilistic model of our
simulation algorithm and proves that this model can reproduce the single-particle
averages and the two-particle correlation of a system of two quantum spins for Cases I
and II. This probabilistic model is identical to the one studied in [14], except for the
concrete model of the time-delay mechanism. In Sect. 7 we present our simulation
data and demonstrate that there is excellent agreement with the results obtained from
quantum theory and the probabilistic model. In Sect. 8, we study the effect of the

1This procedure was suggested to us by R. Gill.
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time window on the frequency of coincidences and show that the simulation model
readily reproduces published experimental data, including the statistics of the single-
detection events. A summary of our results is given in Sect. 9.

2 EPRB Experiment with Photons

A schematic diagram of Case I is shown in Fig. 1. A source emits pairs of photons
with opposite but otherwise unpredictable polarization. Each photon of a pair prop-
agates to an observation station in which it is manipulated and detected. The two
stations are separated spatially and temporally. This arrangement prevents the obser-
vation at station 1 (2) to have a causal effect on the data registered at station 2 (1).
In Case II (see Fig. 2), additional polarizers are inserted between the source and the
observation stations [5] such that the two photons that enter the observation stations
have a fixed polarization. We denote the orientations of these polarizers by the an-
gles η1 and η2.

As the photon arrives at station i = 1,2, it passes through a polarizer. The orien-
tation of the polarizer in observation station i is characterized by the angle θi , which
may be chosen at random. As the photon leaves the polarizer, it generates a signal
in one of the two detectors. Each station has its own clock (not shown) that assigns
a time-tag to each signal generated by one of the two detectors [8, 9]. Effectively,
this procedure discretizes time in intervals, the width of which is determined by the
time-tag resolution τ . In experiment, the time-tag generators are synchronized before
each run [8, 9]. This procedure is necessary because in time, the clocks may become
unsynchronized [8, 9].

Fig. 1 (Color online) Case I: Schematic diagram of an EPRB experiment with randomly polarized parti-
cles
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Fig. 2 (Color online) Case II: Schematic diagram of an EPRB experiment with particles with fixed polar-
ization

Note that the description given earlier is only a pictorial description of real EPRB
experiments with photons, as they are carried out in a laboratory. The experimen-
tal facts are the settings of the various apparatuses and the detection events. What
happens in between activating the source and the registration of the detection events
is not, or cannot be, measured and is therefore not known. In this sense, the pho-
ton should be regarded as an element of a model or theory for the real laboratory
experiment only.

In the experiment, the firing of a detector is regarded as an event. At the nth event,
the data recorded on a hard disk (not shown) at station i = 1,2 consists of θn,i , xn,i =
±1, specifying which of the two detectors behind the selected polarizer fired and
the time tag tn,i indicating the time at which a detector fired. Hence, the set of data
collected at station i = 1,2 during a run of N events may be written as

ϒi = {xn,i , tn,i , θn,i |n = 1, . . . ,N}. (1)

In practice, the data {ϒ1,ϒ2} are analyzed long after the data have been col-
lected [8]. Any real EPRB experiment requires some criterion to decide which de-
tection events are to be considered as stemming from a single two-particle system. In
EPRB-type experiments with photons, this decision is taken on the basis of coinci-
dence in time [8, 23]. However, as discussed in Sect. 4, this identification procedure
is not unique. Coincidences can, for example, be identified by comparing the time
differences {tn,1 − tn,2|n = 1, . . . ,N} with a window W [8]. In this case, for each
pair of rotation angles α and β , the number of coincidences between detectors Dx,1

(x = ±1) at station 1 and detectors Dy,2 (y = ±1) at station 2 is given by
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Cxy = Cxy(α,β) =
N∑

n=1

δx,xn,1δy,xn,2δα,θn,1δβ,θn,2

× 	(W − |tn,1 − tn,2|), (2)

where 	(t) is the Heaviside step function. The single-particle averages and correla-
tion between the coincidence counts are then given by

E1(α,β) =
∑

x,y=±1 xCxy∑
x,y=±1 Cxy

,

E2(α,β) =
∑

x,y=±1 yCxy∑
x,y=±1 Cxy

,

E(α,β) =
∑

x,y=±1 xyCxy∑
x,y=±1 Cxy

= C++ + C−− − C+− − C−+
C++ + C−− + C+− + C−+

,

(3)

where the denominators in (3) are the sum of all coincidences. In general, the values
for the coincidences Cxy(α,β) depend on the time-tag resolution τ and the window
W used to identify the coincidences, independent of which of the three pair identifi-
cation procedures (see Sect. 4) is being used.

Data of EPRB experiments are often analyzed in terms of the function [8, 24]

S(α,α′, β,β ′) = E(α,β) − E(α,β ′) + E(α′, β) + E(α′, β ′), (4)

because it provides clear evidence that a quantum system is described by an entangled
state. The idea behind this is that for any product state in quantum theory, or for the
class of local realistic theories considered by Bell [16]

−2 ≤ S(α,α′, β,β ′) ≤ 2, (5)

an inequality known as one of Bell’s generalized inequalities [24]. For later use, it is
expedient to introduce the function

S(θ) ≡ S(α,α + 2θ,α + θ,α + 3θ), (6)

where we have fixed the relation between the angles β = α + θ , α′ = α + 2θ , β ′ =
α + 3θ through the angle θ . Assuming rotational invariance, S(θ) does not depend
on α and we may set α = 0.

3 Quantum Theory

In this section, we give a brief account of the quantum theoretical description of
Cases I and II, strictly staying within the axiomatic framework that quantum theory
provides.

In the quantum theoretical description of Case I, the whole system is assumed to
be described by the two-particle state
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Table 1 The single- and
two-particle expectation values
for the two experiments
described by the states (7)
and (8), respectively

Case I Case II

P+(α) 1/2 cos2(α − η1)

P−(β) 1/2 sin2(β − η2)

E1(α) 0 cos 2(α − η1)

E2(β) 0 cos 2(β − η2)

E(α,β) − cos 2(α − β) cos 2(α − η1) cos 2(β − η2)

|
〉 = 1√
2

(|H 〉1|V 〉2 − |V 〉1|H 〉2)

= 1√
2

(|HV 〉 − |V H 〉) , (7)

where H and V denote the horizontal and vertical polarization and the subscripts
refer to photon 1 and 2, respectively. The singlet state |
〉 cannot be written as a
product of single-photon states, hence it is an entangled state.

In Case II, the photons have a definite polarization when they enter the observation
station and the system is described by the product state

|
〉 = (cosη1|H 〉1 + sinη1|V 〉1)(cosη2|H 〉2 + sinη2|V 〉2). (8)

The quantum theoretical expectation P+(α) (P−(β)) for observing a photon at the
+ (−) detector behind the polarizer with orientation α (β) is given in the first two
rows of Table 1. The expressions for the two-particle correlation E(α,β) are given
in the fifth row. From Table 1, it is clear that measuring E1(α) = P+(α) − P−(α),
E2(β) = P+(β) − P−(β) and E(α,β) for various α and β suffices to distinguish
between systems in the entangled state (Case I) or in the product state (Case II).

In Case I, E(α,β) = − cos 2(α − β) and we find

S(θ) = 3 cos 2θ − cos 6θ, (9)

which reaches its maximum value Smax = maxθ S(θ) = 2
√

2 at θ = π/8 + jπ/2,
where j is an integer number.

Analysis of the experimental data [3–8, 10–12], yields results that are in good
agreement with the expressions in Table 1, leading to the conclusion that in a quantum
theoretical description of Case I, the state does not factorize, in spite of the fact that
the photons are spatially and temporally separated and do not interact.

4 Data Analysis of a Real EPRB Experiment with Photons

We analyze a data set (the archives Alice.zip and Bob.zip) of a real EPRB experiment
with photons that is publicly available [25]. The archives Alice.zip and Bob.zip con-
tain data (1) for Case I for θ1 = 0,π/4 and θ2 = π/8,3π/8. In a real experiment, such
as the one described in [8], the number of events detected at station 1 is unlikely to be
the same as the number of events detected at station 2. The data sets of [25] show that
station 1 (Alice.zip) recorded N1 = 388455 events while station 2 (Bob.zip) recorded
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N2 = 302271 events. The fact that N1 �= N2 may have various reasons: It may hap-
pen that the source emitted one instead of two photons, one of the detectors did not
respond to the arrival of a photon, the detector fired when there was no photon, etc.
The data analysis does not account for such possibilities: We use the data as it is,
without making additional hypotheses about unknown processes.

We need a well-defined procedure to decide which two detection events stem
from two particles that form a pair. Here, we use three different procedures to de-
termine these pairs. Once the coincidences have been identified, we compute the
two-particle average and Smax = maxθ S(θ) using (3), (4) and (6), respectively. In
addition, we compute the frequency of coincidences, defined by 2(C++ + C−− +
C+− + C−+)/(N1 + N2).

The first procedure divides the time interval of measurement (about 10 s) in
equally spaced bins of size B .2 For each station, we use the data {tn,1|n = 1, . . . ,N1}
and {tm,2|m = 1, . . . ,N2} to determine the number of events per bin and compute
the coincidences by examining the content of the bins. This procedure compares the
detection times tn,1 and tm,2 with a reference clock, using a coincidence window
W = B/2. In the second procedure, we count the coincidences according to (2). In
the third procedure, we account for the fact that in the real EPRB experiment [9],
there may be an unknown shift � (assumed to be constant during the experiment)
between the times tn,1 gathered at station 1 and the times tm,2 recorded at station 2.
Therefore, there is some extra ambiguity in matching the data of station 1 to the data
of station 2. A simple data processing procedure that resolves this ambiguity consists
of two steps [9]. First, we make a histogram of the time differences tn,1 − tm,2 with a
small but reasonable time resolution (we used 0.5 ns). Then, we fix the value of the
time-shift � by searching for the time difference for which the histogram reaches its
maximum. Thus, we maximize the number of coincidences by a suitable choice of �.
For the case at hand, we find � = 4 ns.

The results for Smax and the frequency of coincidences, as obtained by applying
the three data analysis procedures, are presented in Figs. 3 and 4, respectively. Note
that in general, the frequency of coincidences depends on α and β . However, for
the choice α = θ1 = 0,π/4 and β = θ2 = π/8,3π/8, made in experiment [8], by
symmetry the four relevant frequencies of coincidences are expected to be the same,
hence we show their average. As it is clear from (2) that the width of the time window
in the second and third procedure is 2W , we have taken B = 2W to facilitate the
comparison.

From Fig. 3, it follows that all three procedures yield a value of Smax that sig-
nificantly exceeds the upperbound (Smax = 2) of the original Bell-like models [16].
As it has been shown rigorously that the original Bell (CHSH) inequality has to be
modified if one uses (2) to count coincidences [14], this violation should not come
as a surprise. For W > 10 ns and disregarding small fluctuations, the general trend
is clear: Smax decreases with W and drops below the “Bell-bound” for W > 300 ns.
For W ≤ 10 ns, each of the three procedures yields results for Smax that are close to
the quantum theoretical upperbound 2

√
2 ≈ 2.83 [26].

The procedure that maximizes the coincidence count by varying � reduces the
maximum value of Smax from a value 2.89 (� = 0) that considerably exceeds the

2This procedure was suggested to us by R. Gill.
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Fig. 3 (Color online) Left: Smax as a function of the time window W , computed from the
data sets contained in the archives Alice.zip and Bob.zip that can be downloaded from [25].
Squares (black): Data obtained by comparing the detection times {tn,1|n = 1, . . . ,N1 = 388455} and
{tm,2|m = 1, . . . ,N2 = 302271} with a reference clock. The maximum value of Smax ≈ 2.78 is found
at W = 2 ns at which the total number of coincidences is 2010 (≈ 0.6%). Crosses (blue): Results of
comparing the difference of the detection times with the time window W (� = 0). The maximum value of
Smax ≈ 2.89 is found at W = 3 ns at which the total number of coincidences (with double counts removed)
is 2899 (≈ 0.8%). Bullets (red): Results of comparing the difference of the detection times with the time
window W , taking into account the time shift � = 4 ns that maximizes the total number of coincidences,
which (with double counts removed) is 13975 (≈ 4%) in this case. The maximum value of Smax ≈ 2.73 is
found at W = 2 ns. Dashed line at 2

√
2 ≈ 2.82: Smax if the system is described by quantum theory (see

Sect. 3). Dashed line at 2: Smax if the system is described by the class of models introduced by Bell [16].
Right: Same as left except for the range of W

Fig. 4 (Color online) Frequency of coincidences defined by 2(C++ +C−− +C+− +C−+)/(N1 +N2),
as a function of the time window W (bin size B = 2W ). The results were obtained by averaging
the data of the four experiments (θ1 = 0, θ2 = π/8), (θ1 = 0, θ2 = 3π/8), (θ1 = π/4, θ2 = π/8),
and (θ1 = π/4, θ2 = 3π/8), contained in the archives Alice.zip and Bob.zip [25]. Squares
(black): Data obtained by comparing the detection times {tn,1|n = 1, . . . ,N1 = 388455} and
{tm,2|m = 1, . . . ,N2 = 302271} with a reference clock. Crosses (blue): Results of comparing the dif-
ference of the detection times with the time window W (� = 0). Bullets (red): Results of comparing the
difference of the detection times with the time window W , taking into account the time shift � = 4 ns that
maximizes the number of coincidences. For the values of W at which the three Smax reach their maximum
(squares: W = 2 ns, Smax ≈ 2.78; crosses: W = 3 ns, Smax ≈ 2.89; bullets: W = 2 ns, Smax ≈ 2.73), the
frequencies of coincidences are approximately 0.0015, 0.002, and 0.01, respectively

maximum (2
√

2) for the quantum system [26] to a value 2.73 (the value cited in [8])
that violates the Bell inequality [16] and is less than the maximum for the quantum
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system. The fact that the “uncorrected” data (� = 0) violate the rigorous bound for
the quantum system should not be taken as evidence that quantum theory is “wrong”:
It merely indicates that the way in which the data of the two stations has been grouped
in two-particle events is not optimal.

Analyzing the experimental data set [25] with � = 4 ns and W = 2 ns (yield-
ing the “best” value of Smax ≈ 2.73 and a total number of coincidences of
13975) gives E1(0,π/8) = −0.073, E1(0,3π/8) = 0.118, E1(π/4,π/8) = 0.036,
E1(π/4,3π/8) = −0.065, and E2(0,π/8) = 0.188, E2(0,3π/8) = 0.258,
E2(π/4,π/8) = 0.099, E2(π/4,3π/8) = −0.147, significantly different from the
theoretically expected value (zero, see Table 1). Disregarding the coincidence
criterion, we find

∑
n xn,1 = −0.007,−0.005 for α = 0,π/4 and

∑
n xn,2 =

−0.028,−0.024 for β = π/8,3π/4. Apparently, all these numbers change consider-
ably with the station and with the settings of the electro-optic modulators.

The results presented in Fig. 4, show that for small W , the frequency of coinci-
dences depends significantly on the criterion that is used to identify pairs of events.
The procedure that maximizes the coincidence count (procedure three) seems to yield
the most “stable” results. For all three procedures, the frequency of coincidences at
which Smax reaches its maximum is below 1% (see Fig. 4). If we identify the ob-
served frequency of coincidences with the probability of coincidences γ that enters
the upperbound in the properly modified Bell inequality (see (16) in [14]), then this
theoretical upperbound is larger than 4, supporting the idea that the experimental
data [8] is not in conflict with local realism [19].

Textbook treatments of EPRB experiments assume that the correlation, as mea-
sured in experiment, is given by [16]

C(∞)
xy =

N∑

n=1

δx,xn,1δy,xn,2 , (10)

which is obtained from (2) by taking the limit W → ∞, hence the notation C
(∞)
xy .

Although the limit W → ∞ defines a valid theoretical model, there is no reason why
this model should have any bearing on the real EPRB experiments with photons as
they have been performed so far. An argument that might justify taking the limit
W → ∞ is the hypothesis that for ideal experiments, the value of W should not
matter. However, as our analysis of the experimental data shows, to make contact
to quantum theory, one has to reduce (not increase) W [8, 9]. Thus, in real EPRB
experiments with photons, the window W matters [8, 9]. The details of the criterion
that is used to decide which two events correspond to the observation of a single
two-particle system seem to be of secondary importance.

As it is relatively easy to reproduce the results of quantum theory in the regime
of small W [15], and as keeping W arbitrary does not render the mathematics more
complicated, there really is no point of studying the simplified model defined by (10):
We may always consider the limiting case W → ∞ afterwards.

5 Simulation Model

We now take up the main challenge, the construction of Einstein-local, causal
processes that generate the data sets (1) such that they reproduce the results of quan-
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tum theory, summarized in Table 1. A concrete simulation model of the EPRB exper-
iments sketched in Figs. 1 and 2 requires a specification of the information carried by
the particles, of the algorithm that simulates the source and the observation stations,
and of the procedure to analyze the data. From the specification of the algorithm, it
will be clear that it complies with Einstein’s criterion of local causality on the onto-
logical level: Once the particles leave the source, an action at observation station 1 (2)
can, in no way, have a causal effect on the outcome of the measurement at observation
station 2 (1).

5.1 Source and Particles

The source emits particles that carry a vector Sn,i = (cos(ξn + (i − 1)π/2), sin(ξn +
(i − 1)π/2)), representing the polarization of the photons. The “polarization state”
of a particle is completely characterized by ξn, which is distributed uniformly over
the whole interval [0,2π[. We use uniform pseudo-random numbers to mimic the
apparent unpredictability of the experimental data. However, from the description
of the algorithm, it trivially follows that instead of uniform pseudo-random number
generators, simple counters that sample the intervals [0,2π[ in a systematic, but uni-
form, manner might be employed as well. This is akin to performing integrals by
the trapezium rule instead of by Monte Carlo sampling. The source thus emits two
particles with mutually orthogonal, random polarization.

In Case II we change the unpredictable polarization state of the particles to a fixed
polarization state by placing polarizers in between the source and each observation
station. These polarizers have one input and one output channel and their orientations
are characterized by the angles η1 and η2.

5.2 Observation Stations

Prior to collecting data, we fix the number M of different polarization directions
(M = 2 in the experiment of [8]). We use 2M random numbers to fill the arrays
(α1, . . . , αM) and (β1, . . . , βM). Before (or after) the nth pair leaves the source, we
use two uniform random numbers 1 ≤ m,m′ ≤ M to select the angles θn,1 = αm and
θn,2 = βm′ . In practice, we use two different pseudo-random number generators for
observation stations 1 and 2, but we have never seen any statistically significant effect
of using the same one for both observation stations.

5.3 Polarizer

We make the hypothesis that in laboratory EPRB experiments with photons the vari-
ous polarizers are interchangeable. Therefore, the algorithm to simulate the two po-
larizers in the observation stations should be identical. Evidently, for the present pur-
pose, if we switch from Case I to Case II, it is not permitted to change the algorithm
for the polarizer. This also holds for the polarizers placed in between the source and
the observation stations.

The input-output relation of a polarizer is rather simple: For each input event, the
algorithm maps the input vector S onto a single output bit x. The value of the output
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bit depends on the orientation of the polarizer a = (cosα, sinα). According to Malus
law, for fixed S = (cos ξ, sin ξ) and fixed a, the bits xn are to be generated such that

lim
N→∞

1

N

N∑

n=1

xn = cos 2(ξ − α), (11)

with probability one. If the input vectors S are distributed uniformly over the unit
circle, the sequence of output bits should satisfy

lim
N→∞

1

N

N∑

n=1

xn = 0, (12)

with probability one, independent of the orientation a of the polarizer.
The model for a polarizer is defined by the rule

xn,i =
{+1 if rn ≤ cos2(ξn − α),

−1 if rn > cos2(ξn − α),
(13)

where 0 < rn < 1 are uniform pseudo-random numbers. The polarizer sends a particle
with polarization Sn,i = (cosα, sinα) or Sn,i = (− sinα, cosα) through its output
channel +1 or −1, respectively. It is easy to see that for fixed ξn = ξ and α, this
algorithm generates events such that 2〈xn,i〉 − 1 = cos2(ξ − α), where 〈X〉 denotes
the average over many realizations of the variables rn and ξn. In this case, the input-
output relation of the simulation model agrees with Malus law (11). On the other
hand, if ξn is distributed uniformly over the interval [0,2π[, we have 〈xn,i〉 = 0, in
agreement with (12). It is at this point, the model for the polarizer, that the simulation
model differs from the one used in [15]: The model of the polarizer used in [15] can
reproduce the correlation of the singlet state but cannot reproduce Malus law.

In Case II we discard particles with polarization η1 + π/2 (η2 + π/2) that leave
the polarizers placed in between the source and observation station 1 (2).

5.4 Time Delay

In our model, the time delay tn,i for a particle is assumed to be distributed uniformly
over the interval [t0, t0 + T ]. In practice, we use uniform pseudo-random numbers
to generate tn,i . As in the case of the angles ξn, the random choice of tn,i is merely
convenient, not essential. From (2), it follows that only differences of time delays
matter. Hence, we may put t0 = 0. The time-tag for the event n is then tn,i ∈ [0, T ].

There are not many reasonable options to choose the functional dependence
of T . Assuming that the particle “knows” its own direction and that of the po-
larizer only, T should be a function of the relative angle only. Furthermore, con-
sistency with classical electrodynamics requires that functions that depend on the
polarization have period π [27]. Thus, we must have T (ξn − θ1) = F((Sn,1 · a)2)

and, similarly, T (ξn − θ2) = F((Sn,2 · b)2), where b = (cosβ, sinβ). We found that
T (x) = T0| sin 2x|d yields the desired results [15]. Here, T0 = maxθ T (θ) is the max-
imum time delay and defines the unit of time, used in the simulation. In our numerical
work, we set T0 = 1.
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5.5 Data Analysis

For fixed N , the algorithm described earlier generates the data sets ϒi , just as ex-
periment does. In order to count the coincidences, we choose a time-tag resolution
0 < τ < T0 and a coincidence window W ≥ τ . We clear all the coincidence counts
Cxy(αm,βm′) for all x, y = ±1 and m,m′ = 1, . . . ,M . Then, we make a loop over
all events. To count the coincidences, we first compute the discretized time tags
kn,i = �tn,i/τ� for all events in both data sets. Here �x� denotes the smallest inte-
ger that is larger or equal to x, that is �x� − 1 < x ≤ �x�. According to the pro-
cedure adopted in the experiment [8], an entangled photon pair is observed if and
only if |kn,1 − kn,2| < k = �W/τ�. Thus, if |kn,1 − kn,2| < k, we increment the count
Cxn,1,xn,2(αm,βm′).

We emphasize that the simulation procedure counts all events that, according to
the same criterion as the one employed in experiment, correspond to the detection of
two-particle systems. Note that in our simulation model, the three different methods
that we used to analyze the experimental data (see Sect. 4) give identical results.

6 Probabilistic Treatment

Let us assume that we can analyze our simulation model, described in Sect. 5, by
replacing the deterministic sequence of pseudo-random numbers by the mathemati-
cal concept of independent random variables, as defined in the (Kolmogorov) theory
of probability [28, 29]. Under this assumption, each event constitutes a Bernouilli
trial [28, 29] and we can readily obtain analytical expressions for the expectation
values that we compute with the simulation model.

This section serves three purposes. First, it provides a rigorous proof that for up to
first order in W and for d = 4, the probabilistic description of the simulation model
exactly reproduces the single particle averages and the two-particle correlations of
quantum theory for the system under consideration. Second, it illustrates how the
presence of the time-window introduces correlations that cannot be described by the
original Bell-like “hidden-variable” models [14]. Third, it reveals a few hidden as-
sumptions that are implicit in the derivation of the specific, factorized form of the
two-particle correlation that is essential to Bell’s work.

As explained in Sect. 2, real EPRB experiments with photons produce the data
sets

ϒi = {
xn,i = ±1, tn,i , θn,i |n = 1, . . . ,N

}
. (14)

Let us assume that there exists a probability, denoted by P(x1, x2, t1, t2|α,β), to
observe the data {x1, t1, θ1 = α} and {x2, t2, θ2 = β} at station 1 and 2, respectively.
Notice that we assume, unlike in the computer simulation model where θn,i may
change with each event n but as in the case of quantum theory, that α and β are fixed.
The mathematical expectation of the coincidences Cxy (see (2)), that is the average
computed with P(x1, x2, t1, t2|α,β), is given by

〈Cxy〉 ≡ N

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 P(x, y, t1, t2|α,β)	(W − |t1 − t2|). (15)



Found Phys (2008) 38: 322–347 335

Once we know 〈Cxy〉, the mathematical expectation of the single-particle counts and
two-particle coincidences follow from

E1(α,β,W) =
∑

x,y=±1 x〈Cxy〉∑
x,y=±1〈Cxy〉 ,

E2(α,β,W) =
∑

x,y=±1 y〈Cxy〉∑
x,y=±1〈Cxy〉 ,

E(α,β,W) =
∑

x,y=±1 xy〈Cxy〉∑
x,y=±1〈Cxy〉 .

(16)

As a first step, let us express the probability for observing the data {x1, x2, t1, t2}
as an integral over the mutually exclusive events ξ1, ξ2. According to the rules of
probability theory [28, 29], we have

P(x1, x2, t1, t2|α,β)

= 1

4π2

∫ 2π

0

∫ 2π

0
P(x1, x2, t1, t2|α,β, ξ1, ξ2)P (ξ1, ξ2|α,β)dξ1dξ2, (17)

where ξ1 and ξ2 denote the two-dimensional unit vectors, representing the polariza-
tion. Starting from the exact representation (17), we now assume that in the proba-
bilistic version of our simulation model, for each event, the values of {x1, x2, t1, t2}
are independent of each other and that the values of {x1, t1} ({x2, t2}) are also inde-
pendent of β and ξ2 (α and ξ1)). Thus, we may write

P(x1, x2, t1, t2|α,β) = 1

4π2

∫ 2π

0

∫ 2π

0
P(x1, t1|x2, t2, α,β, ξ1, ξ2)

× P(x2, t2|α,β, ξ1, ξ2)P (ξ1, ξ2|α,β)dξ1dξ2

= 1

4π2

∫ 2π

0

∫ 2π

0
P(x1, t1|α, ξ1)P (x2, t2|β, ξ2)

× P(ξ1, ξ2|α,β)dξ1dξ2

= 1

4π2

∫ 2π

0

∫ 2π

0
P(x1|α, ξ1)P (t1|α, ξ1)P (x2|β, ξ2)P (t2|β, ξ2)

× P(ξ1, ξ2|α,β)dξ1dξ2

= 1

4π2

∫ 2π

0

∫ 2π

0
P(x1|α, ξ1)P (t1|α, ξ1)P (x2|β, ξ2)P (t2|β, ξ2)

× P(ξ1, ξ2)dξ1dξ2, (18)

where, in the last step, we assumed that the values of ξ1 and ξ2 are independent of
α or β . With the three assumptions made so far, (18) gives the exact probabilistic
description of our simulation model. It is of interest to note that (18) can be derived
directly from the description of the algorithm, without recourse to probability theory,
by letting the number of events in the discrete sums approach infinity.
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The mathematical structure of (18) is the same as the one that is used in the deriva-
tion of Bell’s results and if we would go ahead in the same way, our model also cannot
produce the correlation of the singlet state. However, the real factual situation in the
experiment [8] is different: The events are selected using a time window W that the
experimenters try to make as small as possible [9]. Accounting for the time window,
that is multiplying (18) by the step function and integrating over all t1 and t2, the
expression for the probability for observing the event (x1, x2) reads

P(x1, x2|α,β)

=
∫ 2π

0

∫ 2π

0 P(x1|α, ξ1)P (x2|β, ξ2)w(α,β, ξ1, ξ2,W)P (ξ1, ξ2)dξ1dξ2
∑

x1,x2=±1

∫ 2π

0

∫ 2π

0 P(x1|α, ξ1)P (x2|β, ξ2)w(α,β, ξ1, ξ2,W)P (ξ1, ξ2)dξ1dξ2

=
∫ 2π

0

∫ 2π

0 P(x1|α, ξ1)P (x2|β, ξ2)w(α,β, ξ1, ξ2,W)P (ξ1, ξ2)dξ1dξ2
∫ 2π

0

∫ 2π

0 w(α,β, ξ1, ξ2,W)P (ξ1, ξ2)dξ1dξ2

, (19)

where, in general, the weight function

w(α,β, ξ1, ξ2,W) =
∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 P(t1|α, ξ1)P (t2|β, ξ2)	(W − |t1 − t2|),

(20)
will be less than one (because

∫ +∞
−∞ dt1

∫ +∞
−∞ dt2 P(t1|α, ξ1)P (t2|β, ξ2) = 1) unless

W is larger than the range of (t1, t2) for which P(t1|α, ξ1) and P(t2|β, ξ2) are
nonzero. It is self-evident that unless w(α,β, ξ1, ξ2,W) = w(α, ξ1,W)w(β, ξ2,W),
(19) cannot be written in the factorized form P(x1, x2|α,β) = ∫

P(x1|α,λ)×
P(x2|β,λ)ρ(λ)dλ (see [16, 30] for the notation) that is essential to derive the original
Bell (CHSH) inequalities.

In our simulation model, the time delays ti are distributed uniformly over the
interval [0, Ti] where T1 = T0| sin 2(α − ξ1)|d and T2 = T0| sin 2(β − ξ2)|d . Thus,
P(t1|α, ξ1) = 	(t1)	(T1 − t1)/T1, P(t2|β, ξ2) = 	(t2)	(T2 − t2)/T2, and

w(α,β, ξ1, ξ2,W) = 1

T1T2

∫ T1

0
dt1

∫ T2

0
dt2 	(W − |t1 − t2|). (21)

The integrals in (21) can be worked out analytically, yielding

w(α,β, ξ1, ξ2,W) = 1

4T1T2
[T 2

1 + T 2
2 + 2(T1 + T2)W + (W − T1)|W − T1|

+ (W − T2)|W − T2| − (W − T1 + T2)|W − T1 + T2|

− (W + T1 − T2)|W + T1 − T2|]. (22)

Clearly, (22) cannot be written in the factorized form w(α, ξ1,W)w(β, ξ2,W).
Hence, it should not come as a surprise that as soon as we want to simulate the real
EPRB experiment with photons in which the time window is essential, we can obtain
correlations that cannot be described by Bell-like models.
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According to our simulation model (and the assumption made at the beginning of
this section), the probability distributions that describe the polarizers are given by

P(x1|α, ξ1) = 1 + x1 cos 2(α − ξ1)

2
,

P (x2|β, ξ2) = 1 + x2 cos 2(β − ξ2)

2
.

(23)

It is easy to check that these distributions reproduce Malus law for a single polarizer.
We now consider some specific cases. First, we consider Case I and specialize

to the case that the source emits particles with opposite polarization P(ξ1, ξ2) =
δ(ξ1 + π/2 − ξ2)P (ξ1) with P(ξ1) being a uniform distribution. If d = 0 and
W ≤ T0, we have w(α,β, ξ1, ξ2,W) = (2T0 − W)W/T 2

0 . Likewise, if W > T0,
w(α,β, ξ1, ξ2,W) = 1. Therefore, if W > T0 or d = 0, we have

P(x1, x2|α,β) =
∫ 2π

0

∫ 2π

0 P(x1|α, ξ1)P (x2|β, ξ2)P (ξ1, ξ2)dξ1dξ2
∫ 2π

0

∫ 2π

0 P(ξ1, ξ2)dξ1dξ2

=
∫ 2π

0

∫ 2π

0
P(x1|α, ξ1)P (x2|β, ξ2)P (ξ1, ξ2)dξ1dξ2

= 1

8π

∫ 2π

0
(1 + x1 cos 2(α − ξ))(1 − x2 cos 2(β − ξ))dξ

= 2 + x1x2 cos 2(α − β)

8
, (24)

showing that if we ignore the time-tag information, the two-particle probability takes
the form of the hidden variable models considered by Bell [16], and we cannot repro-
duce the results of quantum theory [16].

Second, we consider Case I but focus on the regime for small W , the regime that
experimenters aim to reach [9]. Then, (22) reduces to

w(α,β, ξ1, ξ2) = 2W

max(T1, T2)
+O(W 2), (25)

and we find that E1(α,β) = E2(α,β) = 0 and that

E(α,β) = −
∫ 2π

0 cos 2(ξ − α) cos 2(ξ − β)max(| sin 2(ξ − α)|, | sin 2(ξ − β)|)−ddξ
∫ 2π

0 max(| sin 2(ξ − α)|, | sin 2(ξ − β)|)−ddξ

= −
∫ θ/2+π/4
θ/2 cos 2ξ cos 2(ξ − θ)| sin 2ξ |−ddξ

∫ θ/2+π/4
θ/2 | sin 2ξ |−ddξ

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1
2 cos 2θ, d = 0,

π
4 sin 2θ cos 2θ − cos 2θ + ln[| tan θ |sin2 2θ/2], d = 2,

− cos 2θ, d = 4,

− 1
2 cos 2θ [1 + 24(19 + 5 cos 4θ)−1], d = 6,

−(53 cos 2θ + 7 cos 6θ)(39 + 21 cos 4θ)−1, d = 8,

(26)
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where θ = α − β and we have omitted the expressions for odd d because they cannot
be written in terms of elementary functions. Note that by passing to the continuum
limit, one has to be careful with the integrals that appear in expressions such as (26):
The ratio of the two integrals is well-defined but each individual integral may vanish
or diverge for some choices of α − β . Needless to say, such situations do not occur
in the (discrete) simulation model.

Finally, in Case II, the values of ξ1 and ξ2 are fixed, hence P(ξ1, ξ2) =
δ(ξ1 − η1)δ(ξ2 − η2). Then, as is clear from (19), the weight function w(α,β,η1,

η2,W) drops out and the two-particle probability reduces to

P(x1, x2|α,β) = P(x1|α,η1)P (x2|β,η2), (27)

such that

E(α,β,W) =
∑

x1,x2=±1

x1x2P(x1, x2|α,β)

=
( ∑

x1=±1

x1P(x1|α,β)

)( ∑

x2=±1

x2P(x2|α,β)

)

= E1(α,β,W)E2(α,β,W). (28)

Evidently, the simulation model will reproduce the results of quantum theory for
Case II if the proper expression, the one yielding Malus law, is used for the single-
particle probabilities P(x1|α,η1) and P(x2|β,η2).

Summarizing: Up to first order in the time window W and for d = 4, in Case I
(corresponding to the case in which the source emits particles with opposite random
polarization) the probabilistic model of the simulation algorithm yields

E1(α,β) = E2(α,β) = 0,

E(α,β) = − cos 2(α − β),
(29)

for the single-particle averages and two-particle correlation, respectively. Obviously,
these expressions are identical to those given in the second column of Table 1. If, as
in Case II, the source emits particles with fixed polarizations η1 and η2, respectively,
the probabilistic model of the simulation algorithm yields

E1(α,β) = cos 2(α − η1), E2(α,β) = cos 2(α − η2),

E(α,β) = − cos 2(α − η1) cos 2(α − η2),
(30)

in exact agreement with the results in the third column of Table 1. Thus, it follows that
to first order in W , the probabilistic model of the simulation algorithm can reproduce
exactly the results for the single- and two-particle averages of the quantum theory of
a system of two photon polarizations.
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7 Simulation Results

We use the computer model, described earlier to simulate Cases I and II. The simu-
lation proceeds in exactly the same way as in the experiment, that is we first collect
the data sets ϒ1 and ϒ2 for various settings of the polarizers (various θn,i ), and then
compute the coincidences (2), the average single-particle counts and the correlation
(3), from which we can calculate the function S(θ) (see (4) and (6)). The parameters
for all simulations are k = 1, d = 4, τ = 0.00025, and N = 106, unless mentioned
otherwise.

In Fig. 5 (left), we present simulation data for the correlation E(α,β) for Case I,
that is for the case that the source emits particles with an opposite, random polariza-
tion, corresponding to the singlet state in the quantum theoretical description. Fig-
ure 5 (right), shows the corresponding results for Case II. It is clear that in both cases,
the agreement between the simulation data and quantum theory is excellent.

Also shown in Fig. 5 are the results for E(α,β) if we ignore the time-delay data
(equivalent to d = 0 or W → ∞). In Case I we obtain simulation results that agree
very well with the expression E(α,β) = −(1/2) cos 2θ (see (26)), a result that differs
from what is obtained by considering the class of models studied by Bell [16]. In
the latter case an equilateral saw-tooth function is obtained instead of the cosine.
In Case II, the results for d = 4 and d = 0 or W → ∞ are, apart from statistical
fluctuations, the same. Hence, for Case II the time window W can be omitted for the
calculation of the two-particle correlation function.

In Fig. 6 (left), we present additional simulation data for Case I. It is clear that
for d = 4, the simulation model reproduces the results of quantum theory for the
single-particle expectation values P±(α) and P±(β) (see Table 1) and S(θ) (see (9)).
Indeed, the frequency with which each detector fires is approximately one-half and
|S(θ)| agrees with the expressions E(α,β) = − cos 2(α − β) that is obtained for the
singlet state. Also shown in Fig. 6 (left) are the results for |S(θ)| if we ignore the
time-tag data. Effectively, this is the same as letting the time window W → ∞ or

Fig. 5 (Color online) Correlation E(α,β) between the coincidence counts as a function of the orienta-
tion difference of the two polarizers in each observation station. Left: Computer simulation of Case I in
which the source emits particles with opposite random polarization (EPRB experiment). Right: Computer
simulation of Case II in which the source emits particles with fixed polarization and α = θ , β = θ + π/4,
η1 = π/6, and η2 = π/6 + π/2 (see Fig. 2). Squares (red): Simulation results using the time-delay mech-
anism (with d = 4) to compute the two-particle coincidence. Open circles (black): Simulation results
without using the time-tags (equivalent to d = 0 or W → ∞). Solid lines: Quantum theory



340 Found Phys (2008) 38: 322–347

Fig. 6 (Color online) Left: Computer simulation of Case I in which the source emits particles with oppo-
site random polarization (EPRB experiment). Right: Computer simulation of Case II in which the source
emits particles with fixed polarization. Squares (red): Simulation results for F(θ) = |S(θ)| using the
time-delay mechanism (d = 4). Open circles (black): Simulation results for F(θ) = |S(θ)| without us-
ing the time-tags (equivalent to d = 0 or W → ∞). Other markers: Average single-particle counts on the
detectors (see Fig. 1). Squares (green): F(θ = θ1) = P+(θ1); Diamonds (green): F(θ = θ1) = P−(θ1);
Plusses (blue): F(θ = θ2) = P+(θ2); Crosses (blue): F(θ = θ2) = P−(θ2). In Case I (left), these four
symbols lie on top of each other. In Case II (right), these markers show the typical Malus law behavior.
Solid line: Quantum theory for |S(θ)|. Dashed line at |S(θ)| = 2

√
2: Maximum of S(θ) if the system is

described by quantum theory. Dashed line at |S(θ)| = 2: Maximum of S(θ) if the system is described by
the class of models introduced by Bell [16]; Dashed line at |S(θ)| = 1/2: Expected number of +1 and −1
events recorded by the detectors if the input to the polarizers consists of particles with random polarization.
Dotted lines: Quantum theory for P+(θ1), P−(θ1), P+(θ2) and P−(θ2)

setting d = 0. Then, our simulation model generates data that satisfies |S(θ)| ≤ 2,
which is what we expect for the class of models studied by Bell [16].

In Case II, the source emits particles with a fixed (but not necessarily opposite)
polarization. In the right panel of Fig. 6, we present results for the case θ1 = α = θ

and θ2 = β = θ +π/4. The angle ξ of the particles is π/6 (corresponding to η1 = π/6
and η2 = π/6 + π/2 in the quantum theoretical description). For this choice, we
have P+(α) = cos2(θ −π/6), P+(β) = cos2(θ −π/6 −π/4), E(α,β) = 2−1 sin 4 ×
(π/6−θ) and S(θ) = sin 4(π/6−θ). Also seen from Fig. 6 (right) is that |S(θ)| does
not depend on d , that is apart from statistical fluctuations, the time-tag data do not
affect |S(θ)|.

From Fig. 6, it is clear that for d = 4, the event-by-event simulation model repro-
duces the single- and two-particle results of quantum theory for both Cases I and II,
without any change to the algorithm that simulates the polarizers.

Having established that the data generated by our “non-quantum” system agrees
with quantum theory, it is of interest to explore if these algorithms can generate data
that is not described by quantum theory and by the locally causal, probabilistic mod-
els introduced by Bell [16]. We can readily give an affirmative answer to this question
by repeating the simulations for Case I (see Fig. 6 (left)) for different values of the
time-delay parameter d , all other parameters being the same as those used to obtain
the data presented in Fig. 6.

For d = 0, simulations with or without time-delay mechanism yield data that,
within the usual statistical fluctuations, are the same (results not shown) and satisfy
|S(θ)| ≤ 2. Figure 7 shows the simulation data for d = 2 and d = 6. For 0 < d < 4
our model yields two-particle correlations that are stronger than those of the Bell-type
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Fig. 7 (Color online) Left: Same as Fig. 6 (left) except that d = 2. Dotted line: F(θ) = |S(θ)| calculated
from (26). Right: Same as Fig. 6 (left) except that d = 6. Dotted line: F(θ) = |S(θ)| calculated from (26)

models but they are weaker than in the case of the singlet state in quantum theory.
Therefore, the maximum of S(θ) is less than 2

√
2 but larger than two. For d ≥ 5, we

find that the two-particle correlations are significantly stronger than in the case of the
singlet state in quantum theory.

For d < 4, 2 ≤ Smax < 2
√

2 for any value of W/τ . Hence, for d < 4 our model
cannot produce the correlations of the singlet state. For d = 4, 2 ≤ Smax ≤ 2

√
2 and

our model produces the correlations of the singlet state if W is sufficiently small such
that contributions of order W 2 can be neglected. For d > 4, 2 ≤ Smax ≤ 4, and for a
range of W/τ , Smax > 2

√
2, implying that our model exhibits correlations that cannot

be described by the quantum theory of two spin-1/2 particles, while still satisfying
Einstein’s criteria for local causality.

From Fig. 7 it can be seen that for d = 2 and d = 6 there is good agreement be-
tween the results obtained with our event-based simulation model and the analytical
result for |S(θ)| obtained from (26). For d = 2, the simulation results show larger
fluctuations than for d = 6, but in all cases these fluctuations can be reduced by in-
creasing N (results not shown).

The simulation results presented in Figs. 6 and 7 have been obtained for W/τ = 1
and small τ (recall that the unit of time in our numerical work is set equal to one).
In general, in experiment the two-particle correlation depends on both W and τ . Our
simulation model makes definite predictions for this dependence. This can be seen
from Fig. 8, showing Smax = maxα,α′,β,β ′ S(α,α′, β,β ′) as a function of W/T0 for
various values of d and of Smax to first order in W as a function of d . The numerical
results agree with the values of Smax that have been obtained analytically to first order
in W , d = 0,2, . . . ,8 and for W → ∞.

Summarizing: In the regime of small W/T0 = τ/T0, the results produced by the
simulation algorithm are in excellent agreement with the quantum theoretical expres-
sions (see Table 1) of the single- and two-particle averages.

8 Comparison with Experimental Data

For the simulation model described in Sect. 5, it follows immediately from (2) and
(3) that |E(α,β)| < 1 and that
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Fig. 8 (Color online) Left: Smax = maxα,α′,β,β′ S(α,α′, β,β ′) as a function of the time window W

relative to the maximum time delay resolution T0. Curves from bottom to top: Results for d = 0,1, . . . ,10.
Solid line at 2

√
2: Value of Smax for a quantum system in the singlet state. Dashed line at 2: Value

of Smax for a quantum system in an uncorrelated state. Right: Smax = maxα,α′,β,β′ S(α,α′, β,β ′) as a

function of the time-delay parameter d neglecting contributions of O(W). Solid line at 2
√

2: Value of
Smax for a quantum system in the singlet state. Dashed line at 2: Value of Smax for a quantum system in
an uncorrelated state

|E(α,β) − E(α,β ′) + E(α′, β) + E(α′, β ′)| ≤ 4. (31)

Without any further constraints on the algorithm that generates the data {ϒ1,ϒ2} the
upperbound (4) in (31) cannot be improved. On the other hand, for a local realist
(probabilistic) model, it can be shown that [14]

|E(α,β) − E(α,β ′) + E(α′, β) + E(α′, β ′)| ≤ 6

γ
− 4, (32)

where γ is the infimum of the probability of coincidence over all possible settings
{α,β}. In our simulation model the frequency of coincidences

� = 1

N

N∑

n=1

	(W − |tn,1 − tn,2|), (33)

is easy to compute and, assuming that the results that we obtain by using pseudo-
random numbers can be described by a probabilistic model (see Sect. 6), we may
assume that γ = � with probability one. For W = τ and d = 4, a straightforward
calculation gives

γ = min
α−β

� = 16

3π

W

T0
+O(W 2), (34)

showing that up to first order in the time window W , the minimum frequency of
coincidences is proportial to the time window, as one naively would expect.

As pointed out in [14], a local realist model that uses coincidence in time to de-
cide which particles form a pair is not necessarily in conflict with the predictions of
quantum theory unless γ > 3 − 3/

√
2. Thus, in Case I, it is of interest to explore how

� affects Smax and the sinusoidal shape of the two-particle correlation but before we
present some results, we want to draw attention to the fact that the model that we
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introduce in this paper is not unique in the sense that it is not the only model that
reproduces the results of quantum theory for the singlet state [15]. Different models
will yield different numerical results for � but the general behavior is the same. In
these event-based models, there are three independent parameters that we can use to
“tune” the simulation results to experimental data, namely τ/T0, W/T0, and d .

First, we consider the problem of “fitting” our model to experimental data
for Smax . As explained earlier, to obtain Smax , one has to perform four experiments.
For instance, [8] reports Smax ≈ 2.73 using α = θ1 = 0,π/4 and β = θ2 = π/8,3π/8
and if we make the hypothesis that the frequency of coincidences that we found ear-
lier (≈ 0.01 for α − β = ±π/8,−3π/8) is a good estimate for γ , no conclusion
can be drawn from the relevant theoretical bound (32), other than that this exper-
iment does not rule out a local realist (probabilistic) description [14]. The simula-
tion model described in Sect. 5, reproduces the experimental result Smax ≈ 2.73 [8]
for τ/T0 = 1/29, W/T0 = 1/29, and d = 4. For α − β = 0,π/8,π/4,3π/8,π/2
we find � = 0.38,0.14,0.06,0.14,0.38, respectively. Because in our simulation the
source only emits particle pairs and since no particles are lost or falsely detected, we
may expect that the simulation for α − β = ±π/8,−3π/8 yields a value of � that is
larger than the one (≈ 0.01) extracted from the experimental data [8]. A simulation
run with N = 300000 events (roughly the same number as observed in the experi-
mental data analyzed in Sect. 4), gives

∑
n xn,1 = 0.0016,−0.0011 for α = 0,π/4

and
∑

n xn,2 = 0.007,0.001 for β = π/8,3π/4, respectively, in reasonable agree-
ment with the experimental results (see Sect. 4).

For comparison, the simulation model introduced in [15] reproduces the same
value of Smax for τ/T0 = 1/9, W/T0 = 1/9, and d = 2, yielding � = 0.38,0.18,

0.13,0.18,0.38 for α − β = 0,π/8,π/4,3π/8,π/2, respectively.
As another example, we consider the result Smax ≈ 2.25 as obtained from ion-trap

experiments [10]. Although it is not evident that the events registered in this experi-
ment are as simple as the detection of single photons, let us assume that the model for
the real EPRB experiment with photons can nevertheless be used to describe the out-
come of these ion-trap experiments. Then, the simulation model described in Sect. 5
reproduces the value of Smax ≈ 2.25 if we take τ/T0 = 1/4.3, W/T0 = 1/4.3, and
d = 4. For α − β = 0,π/8,π/4,3π/8,π/2 we find � = 0.65,0.46,0.32,0.46,0.65,
respectively. For comparison, the simulation model described in [15] yields the
same value of Smax = 2.25 for τ/T0 = 1/1.031, W/T0 = 1/1.031, and d = 2, with
� = 0.95,0.89,0.89,0.89,0.95 for α−β = 0,π/8,π/4,3π/8,π/2, respectively. As
� ≈ 1, this experiment seems to have an almost ideal detection efficiency [10].

For completeness, we consider the case Smax = 2.83. Recall that both the model
introduced in this paper and the one of [15] reproduce the result (E(α − β) =
− cos 2(α − β)) of quantum theory if we keep the contributions of O(W) only.
The model described in Sect. 5 yields Smax = 2.83 if we take τ/T0 = 1/1500,
W/T0 = 1/1500, and d = 4 for which � = 0.13,0.0032,0.0011,0.0032,0.13 for
α − β = 0,π/8,π/4,3π/8,π/2, respectively. For these choices of parameters, the
numerical results for E(α −β) are very close to those of quantum theory (see Fig. 5).

For the model of [15] and τ/T0 = 1/1500, W/T0 = 1/1500, and d = 2, we find
� = 0.031,0.0011,0.00085,0.0011,0.031 for α − β = 0,π/8,π/4,3π/8,π/2, re-
spectively.
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Fig. 9 (Color online) Left: The frequency of coincidences � as a function of |α −β| for parameters τ/T0,
W/T0 and d chosen such (see text) that the simulation model reproduces quantum theory (solid line, red),
Smax = 2.83, and the values of Smax = 2.25 (dashed line, black) and Smax = 2.73 (dotted line, blue),
as obtained from experiments with ions [10] and with photons [8], respectively. Right: Simulation results
of the two-particle correlation E(α − β) as a function of |α − β| for the model parameters that yield
Smax = 2.25 (squares, black) and Smax = 2.73 (stars, blue), respectively. The dashed lines are given by
−0.875 cos 2(α −β) and −0.725 cos 2(α −β). The solid line (red) is the result − cos 2(α −β) of quantum
theory (see Fig. 5 (left))

In Fig. 9 (left), we plot � as a function of α − β , as obtained for the simulation
model introduced in the present paper, for the three cases Smax = 2.25,2.73,2.83
discussed earlier. The general trend is clear: � reaches its maximum at α − β =
0,π/2, . . . and its (nonzero) minimum at α − β = π/4,3π/2, . . . .

Finally, we study how E(α − β) deviates from the result E(α − β) = − cos 2 ×
(α−β) of a system in the singlet state as we fit the values of Smax to the experimental
results. In Fig. 9 (right), we show the simulation results for the two cases Smax =
2.25,2.73, corresponding to the experiment with ions of [10] and the experiment
with photons of [8], respectively. From Fig. 9 (right), we see that the main effect of
reducing Smax is to reduce the amplitude (visibility) of the correlation. Although it is
clear that the simulation data cannot be described by a single sinusoidal function, the
deviations are small and it remains to be seen if experiments can resolve such small
differences.

As is evident from Fig. 8, for d > 4 our model yields the value for the singlet state
Smax = 2

√
2 without having to consider the regime of small W . Thus, in order for an

experiment and a model of the type considered in the present paper to reproduce the
features of a quantum system of two S = 1/2 particles in the singlet state, it is not
sufficient to show that it can yield Smax = 2

√
2 for some choice of the parameters. As

mentioned earlier, the singlet state is completely characterized by the single- and two-
particle expectation values. Hence, in order to make a comparison with the singlet
state, it is necessary to measure or compute these two quantities.

9 Discussion

We have presented a computer algorithm that simulates Aspect-type EPRB experi-
ments. In the simulation, the source produces particles with opposite but otherwise
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unpredictable polarization. Each particle of a pair is analyzed in an observation sta-
tion, consisting of a polarizer and two detectors (Case I). Placing an additional po-
larizer in between the source and each observation station changes the opposite, un-
predictable polarization of the two particles into a pair of fixed, but not necessarily
opposite, polarizations (Case II). The time-tag data of the detection events observed
in both stations are used for pair identification. Application of quantum theory to
both types of experiments yields the single-particle and two-particle expectation val-
ues that are characteristic for the singlet state (Case I) and the product state (Case II).

The salient features of the simulation model are that:

• Every essential component of the real laboratory experiment (polarizers, detectors,
time-tag logic, data analysis procedure) has a counterpart in the algorithm.

• Identical elements in the experimental setup are represented by identical algo-
rithms. For instance, to simulate Cases I and II, we use the same algorithm to
simulate the polarizers. In particular, the algorithm that simulates the polarizer re-
produces Malus law, which is not essential to reproduce the quantum theoretical
results of Case I, see the model introduced in [15].

• It is event-based and strictly satisfies Einstein’s criteria of local causality but it is
not unique.

• At any time, it allows free choice of the directions in which the polarization will
be measured, in contrast to laboratory experiments in which the polarizers in the
observation stations can take 2 × 2 directions only [8].

• It identifies pairs based on the time-tag of each detection event, using a time win-
dow W and allowing for several different procedures to define which two photons
form a pair, just as in real laboratory experiments.

• To first order in the time window W , it reproduces exactly the single-particle aver-
ages and two-particle correlations of quantum theory for both Cases I and II.

• It provides information about the frequency of coincidences �. In order to repro-
duce the results of the two-particle correlation as given by quantum theory for
Case I, � must be sufficiently small. Values of �, corresponding to those found
in EPRB laboratory experiments [8, 10] can be reproduced also. For these values
of �, the two-particle correlation function deviates from the quantum theoretical
result but the deviations are small. In all cases, the simulation model reproduces
the single-particle averages as given by quantum theory.

In our simulation model, the time-tag data are a key element for producing the
single-particle expectation values and two-particle correlations as given by the quan-
tum theory of a system of two S = 1/2 particles. In our model, in Case I, the two-
particle correlation depends on the value of the time window W . By reducing W from
infinity to zero, this correlation changes from typical Bell-like to singlet-like, without
making any change to the whole algorithm. Thus, the character of the correlation not
only depends on the whole experimental setup but also on the way the data analysis
is carried out. Hence, from the two-particle correlation itself, one cannot make any
definite statement about the character of the source. Thus, the correlation is a prop-
erty of the whole system (which is what quantum theory describes), not a property of
the source itself. It is of interest to note that if we perform a simulation of Case II the
single-particle and two-particle correlations do not depend on the value of the time



346 Found Phys (2008) 38: 322–347

window W . In this case, the observation stations always receive particles with the
same polarization and although the number of coincidences decreases with W (and
the statistical fluctuations increase), the functional form of the correlation does not
depend on W .

Summarizing: We have demonstrated that a simulation model that strictly satisfies
Einstein’s criteria of locality can reproduce, event-by-event, the quantum theoretical
results for EPRB experiments with photons, without using a single concept from
quantum theory. We have given a rigorous proof that this model reproduces the single-
particle expectations and the two-particle correlation of two S = 1/2 particles in the
singlet state and product state.
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