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Abstract

Background: PAR-CLIP is a recently developed Next Generation Sequencing-based method enabling
transcriptome-wide identification of interaction sites between RNA and RNA-binding proteins. The PAR-CLIP
procedure induces specific base transitions that originate from sites of RNA-protein interactions and can therefore
guide the identification of binding sites. However, additional sources of transitions, such as cell type-specific SNPs and
sequencing errors, challenge the inference of binding sites and suitable statistical approaches are crucial to control
false discovery rates. In addition, a highly resolved delineation of binding sites followed by an extensive downstream
analysis is necessary for a comprehensive characterization of the protein binding preferences and the subsequent
design of validation experiments.

Results: We present a statistical and computational framework for PAR-CLIP data analysis. We developed a sensitive
transition-centered algorithm specifically designed to resolve protein binding sites at high resolution in PAR-CLIP
data. Our method employes a Bayesian network approach to associate posterior log-odds with the observed
transitions, providing an overall quantification of the confidence in RNA-protein interaction. We use published
PAR-CLIP data to demonstrate the advantages of our approach, which compares favorably with alternative
algorithms. Lastly, by integrating RNA-Seq data we compute conservative experimentally-based false discovery rates
of our method and demonstrate the high precision of our strategy.

Conclusions: Our method is implemented in the R package wavClusteR 2.0. The package is distributed under the
GPL-2 license and is available from BioConductor at http://www.bioconductor.org/packages/devel/bioc/html/
wavClusteR.html.
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Background
RNA-binding proteins (RBPs) play a fundamental role
in virtually all aspects of RNA metabolism, including
the regulation of RNA localization, stability, translation
or degradation [1]. These proteins extensively contribute
to the control of gene expression by regulating the life
cycle of microRNAs, where the RBP-RNA interaction is
mediated by specific RNA sequence motifs or secondary
structures [2]. Interestingly, recent studies showed that
deregulation of RBP expression or mutation of cognate
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binding sites are causally related to several human dis-
eases including cancer [3-6]. Many of these studies have
been made possible by the development of new methods
mapping interaction sites in a comprehensive and sys-
tematic manner [7]. Particularly, the Photo-Activatable
Ribonucleoside-enhanced CrossLinking and ImmunoPre-
cipitation (PAR-CLIP) methodmade it possible to identify
highly specific RBP-RNA interactions by generating a dis-
tinct imprint in the bound RNA [8-10]. In this method,
cells are cultured with a ribonucleoside analogue, e.g.
4-thiouridine (4SU), which becomes incorporated into
nascent RNA molecules. Then, in vivo UV crosslinking at
a specific wavelength is performed to stabilize the RNA-
RBP interaction, resulting in a covalently linked RNA-
RBP complex. Next, the complex is isolated, the protein
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digested, the RNA molecules recovered and reverse tran-
scribed to cDNA. Next-Generation Sequencing is then
used to determine the identity of these molecules.
Importantly, the reverse transcription induces specific

base transitions at the original cross-linked sites, which
can be used to identify high-confidence RBP-RNA bind-
ing interactions in PAR-CLIP data [11]. Based on the
induction of transitions, different strategies have been
developed for the identification RNA-RBP interactions in
PAR-CLIP data. CLIPZ [12], a widely adopted method
for PAR-CLIP data analysis, ranks protein binding sites,
referred to as clusters, based on their total number of
observed transitions. PARalyzer [13], in contrast, utilizes
transitions to fit a Gaussian kernel density estimate classi-
fier in order to discriminate signal from noise at interac-
tion sites with the aim to infer the protein binding sites.
The cluster boundaries are determined by extending the
interaction sites using a fixed threshold on the coverage
or by applying an arbitrary window size. PIPE-CLIP [14],
a very recent tool designed for CLIP-seq data analy-
sis, employs a binomial model and performs comparably
to PARalyzer in identifying binding sites in PAR-CLIP
data. However, these methods fall short on important
aspects of PAR-CLIP data analysis. (i) As experimental
validation of RNA-RBP interactions is laborious and only
feasible on small scale, statistically rigorous approaches
are needed to rank clusters and identify high-confidence
subsets amenable to experimental testing. (ii) PAR-CLIP
data allows for a highly resolved identification of the RBP
binding sites. However, to delineate cluster boundaries
accurately, a sensitive peak caller tailored to this problem
is needed. (iii) Not every observed transition is induced by
cross-linking, i.e. by PAR-CLIP. Rather, sequencing errors,
RNA contaminants and cell type-specific SNPs represent
additional sources of transitions which can lead to the
detection of a considerable number of false positives [11].
Attempts to limit the false discovery rate (FDR) by requir-
ing a minimum number of interaction sites per cluster,
as recommended by [13,15], can largely reduce sensitiv-
ity as it will inevitably miss all true clusters containing less
interaction sites. In fact, given that the nucleotide com-
position of protein binding sites can greatly vary, clusters
exhibiting a few PAR-CLIP induced transitions can still
correspond to bona fide interaction sites.
In this work, we specifically address the three points

outlined above.We introduce a Bayesianmodel to identify
PAR-CLIP induced high-confidence transitions extend-
ing our recent work in [11]. We detail a new, coverage-
based algorithm for the identification of cluster bound-
aries termed Mini-Rank Norm (MRN) and show that it
substantially improves resolution of binding sites over
other methods. We test our algorithm on published
data and compare its performance with PARalyzer. We
demonstrate that wavClusteR outperforms alternative

algorithms both in detection and resolution of clus-
ters. By using a transition frequency-based strategy our
method overcomes the reduction in sensitivity and speci-
ficity which characterizes hard thresholding approaches
such as PARalyzer. Lastly, we evaluate the performance
of our algorithm by integrating matched RNA-Seq data
to compute conservative FDR estimates, confirming that
high-confidence transitions identified by our approach are
PAR-CLIP specific.

Methods
Model
Let i be a genomic position spanned by a number of
reads after the short read alignment. The relative substi-
tution frequency (RSF) x at position i is the ratio between
the number of base substitutions y within the reads (e.g.
T→ C) aligned at i relative to the total coverage z at the
site, and can be interpreted as an estimate of the corre-
sponding transition probability. We recently introduced
a non-parametric, two-component mixture model to dis-
criminate PAR-CLIP-specific from non-experimentally-
induced transitions [11]. In our model, the first and
second component represent non-experimental and PAR-
CLIP-induced transitions, respectively.
Here, we developed a model that integrates information

over the entire RSF range. For this purpose, we consider
a Bayesian network representation of our mixture model
(Figure 1) corresponding to a chain of three random vari-
ables (�,X,Y ). Here � ∈ {1, 2} encodes the source of
transition (non-experimental [� = 1] or experimental
[� = 2]), X ∈ (0, 1] represents a relative substitution
frequency (RSF) value and Y is the number of observed
transitions at a given position. According to this model
all observed substitutions are thought to be generated as
follows. First, a binary random number � is drawn from
a Bernoulli distribution Bern(λ) with p(� = 1) = λ.
The value of � determines the component used to sample
the base substitution probability x. Second, the number of
observed transitions Y is obtained from a binomial dis-
tribution Bin(z, x), where the sample size z corresponds
to the total number of aligned reads at a given position.
According to our model, p(Y ,X,�) factorizes as:

p(Y ,X,�) = p(Y |X)p(X|�)p(�).

Therefore, the posterior probability that a given num-
ber of transitions was induced by either source can be
computed as:

p(� = θ |Y ) = p(Y , θ)

p(Y )
=

∫ 1
0 p(Y |x)p(x|θ)p(θ)dx

p(Y )
.

The resulting posterior probability marginalizes outX and
thereby integrates information over the entire RSF range.
Using p(� = θ |Y ), we then compute the log-odds ratio for
each transition as log(p(� = 2|Y )/p(� = 1|Y ) and define
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Figure 1 Graphical representation of the Bayesian network
employed to discriminate PAR-CLIP-specific from extrinsic
transitions. The data generating process is modeled hierarchically,
where i) � encodes the unobserved source of the transition
(PAR-CLIP-specific or -independent), ii) X represents the relative
substitution frequency and iii) Y is the number of observed transitions
at the position, which exhibits a coverage of z reads.

the relative log-odds ratio for a cluster as the sum of all
log-odds within a cluster, normalized to the total number
of bases susceptible to cross-linking.

Cluster boundaries identification
Let C(i) be the coverage at position i and C(i, j) be the
sequence of coverage values (C(i), C(i+1), . . . , C(j)), i ≤ j.
Similarly, let S(i), E(i) be the positive and negative dif-
ferences in the coverage function, i.e. the number of read
alignments starting or ending at position i, respectively,
and S(i, j) = (S(i),S(i+1), . . . ,S(j)), E(i, j) = (E(i), E(i+
1), . . . , E(j)), i ≤ j be the extended notation to intervals.
We then consider the set T of all genomic positions corre-
sponding to high-confidence transitions (hcTs) of a given
type (e.g. T→C). In the following paragraphs, we detail
the steps performed by the MRN algorithm.

Estimate local background threshold
For each it ∈ T , we consider the largest non-zero cov-
erage window w containing it and compute all putative
cluster start Cs = (S(i) ≥ δ)i∈w:i≤it and cluster end
Ce = (E(i) ≥ δ)i∈w:i≥it positions therein, where δ is
an integer background threshold (Figure 2A). To account
for large variations in coverage between distinct genomic
regions, we estimate noise levels in the coverage func-
tion at positions proximal to hcTs and use this estimate
to compute a window-specific threshold δw as follows.
We draw a random sample U ⊆ T of size N (here

N = 1000) and consider W̃ = ((it − n, it + n))t∈U , i.e.
a sequence of genomic intervals centered on each it . By
default, n = 25. Then, we compute normalized non-zero
coverage differences D+ within W̃ . Let

D =
( S(w̃)

max(S(w̃), E(w̃))
,

E(w̃)

max(S(w̃), E(w̃))

)
w̃∈W̃

be the sequence of all normalized coverage fluctuations
observed within W̃ . Wemodel the distribution of nonzero
fluctuations D+ as a mixture of two Gaussian compo-
nents with unequal variance. The first component (k = 1)
models noisy fluctuations, while the second component
(k = 2) models sharp jumps in the coverage func-
tion. Model parameters are estimated using expectation-
maximization and responsibilities are used to compute the
coefficient c = min{x ∈ D+ : p(k = 2|x) ≥ p(k = 1|x)},
which along with max(S(w)) and max(E(w)) determines
δw within each window. Alternatively, the user can define
a global threshold, e.g. by selecting a fraction of the min-
imum coverage requirement m1 at hcTs or of the mode
m2 of the coverage distribution at these sites. A choice
δ = �0.1 · max(m1,m2)�, where �x� is the largest integer
not greater than x, empirically works well on all analyzed
PAR-CLIP datasets.

Identify candidate cluster boundaries
The width W = (l − k + 1)(k,l)∈Cs×Ce of each candi-
date cluster and signal levels at Cs and Ce, namely ns =
(S(i))i∈Cs and ne = (E(i))i∈Ce , respectively, are computed
(Figure 2A).

Represent candidate clusters as rank vectors
We represent each candidate cluster characterized by the
vector (nsk , nel ,wkl) as a rank vector rkl = (rsk , rel , rwkl )

(Figure 2A), where rs is the ranking of start positions
(with ties resolved 5’→3’, i.e. with increasing values at each
index set of ties), re = π(ne) is the ranking of end posi-
tions (with ties resolved 3’→5’) and rw = π(−W ) is the
ranking of candidate cluster widths (with ties resolved by
minimum ranking).

Identify the optimal solution
The expected coverage of a RBP binding site corresponds
to a sharply peaked rectangle function [12], represented
by the rank vector O = (0, 0, 0). We identify the opti-
mal solution as the candidate cluster that is closest to
O in terms of the euclidean norm of its rank vector rkl.
Although multiple optimal solutions can occur, the choice
of the euclidean norm strongly disfavors large clusters by
construction. Therefore, in case of ties, the shortest clus-
ter is reported, as it corresponds to the binding site with
higher signal at the cluster boundaries as compared to any
other optimal solution.
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Figure 2 Outline of the MRN algorithm and examples. (A) A non-zero coverage window w containing two high-confidence transitions (hcTs,
denoted by white circles and dashed gray lines) located in close proximity but marking two distinct protein binding sites is shown (gray rectangle).
In this window, the observed total coverage of aligned PAR-CLIP reads is indicated by the solid black line, which exhibits two proximal peaks
corresponding to the interaction sites. The MRN algorithm aims at resolving these binding sites by discriminating binding-dependent coverage
fluctuations from noise and by subsequently using geometric properties of RBP binding sites to refine the cluster boundaries. First, all coverage
fluctuations, i.e. positive and negative coverage differences (blue and orange triangles, respectively, with heights proportional to the magnitude of
the coverage fluctuations) within w are computed and stored in the two vectors ns and ne , respectively. These values are then used to learn a local
threshold δw (see Methods) that is applied to remove noise from the coverage function. Coverage fluctuations smaller than δw (solid gray line) are
discarded. Next, each hcT is processed separately. The values of all retained positive and negative coverage differences localizing upstream and
downstream to the analyzed transition, respectively, are ranked. Rankings are stored in the rank vectors rs and re . Finally, all putative cluster
boundaries (rectangles) are identified and their length is ranked. Each candidate cluster, represented by a rank vector summarizing coverage and
cluster length rankings (e.g. (0, 2, 0)), is then evaluated and the optimal cluster (light blue) is identified (see Methods). (B) Clusters (blue rectangles)
identified by the MRN algorithm within a complex coverage region of length 1.6 kb of chromosome 10, MOV10 data set. Positive and negative
coverage differences are shown in red and blue, respectively. hcTs are indicated by vertical dashed lines. Cyan lines correspond to hcTs that solely
localize within clusters identified by the MRN algorithm. Clusters identified using the CWT-based algorithm do not contain these sites. (C) AGO2
clusters identified within the 3’-UTR of the KLHL20 transcript. Each cluster contains ≥ 1 microRNA seed sequences of microRNAs expressed in
HEK293 cells. The color scheme is the same as in B. (D) Same as C, but for the 3’-UTR of the RAB5A transcript.
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Comparison with PARalyzer
Data processing
All PAR-CLIP data sets were processed as previously
described [11]. Briefly, adapter sequences were removed.
Reads of length ≥ 15 passing the Illumina quality filter
were aligned to the human reference assembly ‘hg19’ using
Bowtie [16], allowing at most one mismatch. The follow-
ing Bowtie parameters were specified: -best -chunkmbs
512 -n 1 -S -M 100.

Parametrization
While our method depends on few parameters - essen-
tially the minimum required coverage at transitions and
the posterior probability cutoff - PARalyzer contains a
more extensive parametrization. To allow for a fair com-
parison we selected mainly default and recommended
parameter values. Both methods differ on what consti-
tutes the minimum required evidence for a binding site.
While wavClusteR poses a cutoff c on the strand-specific
coverage at hcTs, PARalyzer applies a threshold on the
number of reads forming a read group. To compare the
performance of the two methods, we first learn the PAR-
CLIP specific RSF interval by fitting the mixture model
using c = 20 and then exhaustively identify binding
sites with wavClusteR starting from hcTs with RSF values
within the Bayes classifier and c = 1. We run PARalyzer
using two different values for the minimum conversion
locations for clusters n, namely n = 1 (default value) or
n = 2 (recommended value), respectively. The choice of
this parameter crucially determines sensitivity and recall
of the algorithm. The full set of PARalyzer parameters
used for the comparison is provided in Additional file
1, Section 1.1. Only clusters exhibiting at least one T
to C transition with a strand-specific coverage of 10 are
retained for the comparison, with no requirement on its
RSF value to enable a fair comparison between algorithms.

microRNA seedmapping
We considered a set of microRNAs (miRNAs) previously
shown to be expressed in HEK293 cells [17] and com-
puted the enrichment of miRNA seeds within each set of
cluster sequences relative to a random control. The latter
was obtained by generating 104 samples of dinucleotide
shuffled microRNA sequences and the mean relative seed
count was used as background estimate. To allow for a fair
comparison PARalyzer-specific clusters were extended to
the median length of wavClusteR-specific clusters.

Computing false discovery rates
To provide experimentally-based estimates of the False
Discovery Rate (FDR) of our method, we analyze the
MOV10 PAR-CLIP data set and a matched total RNA-Seq
profile from the same HEK293 cells used to perform the
PAR-CLIP experiment [11].

FDR of high-confidence interaction sites
We estimated a highly conservative FDR upper bound and
a FDR lower bound as a function of the RSF as follows.
Let G be the set of genomic positions with a minimum
coverage of 20 within the PAR-CLIP and the RNA-Seq
data set and at least one transition within PAR-CLIP.
Each element of G is associated with a specific PAR-CLIP
RSF value. We partition the RSF interval (0, 1] into ten
equally spaced intervals and for each range we identify the
genomic positions P ⊆ G such that the associated RSF
values fall into the RSF interval. We compute a conser-
vative FDR upper bound by regarding as FPs all genomic
positions U ⊆ P showing at least one transition in the
RNA-Seq data, irrespective of their RSF values. The FDR
upper bound is therefore |U |/|P|. Similarly, we compute
the FDR lower bound by considering FPs all genomic posi-
tions L ⊆ P exhibiting an RNA-Seq-based RSF within
the same interval, and compute the FDR lower bound as
|L|/|P|.
FDR clusters
We rank clusters by decreasing values of relative log-
odds and consider the resulting top n clusters. For each
cluster in the ranking, we identify the set T of genomic
positions with hcTs localizing therein and compute the
RNA-Seq-based RSF xt , t ∈ T . To compute conservative
FDR estimates, we regard a cluster as FP if there exist at
least one t ∈ T such that a ≤ xt ≤ b, where [a, b] is
the PAR-CLIP-specific RSF support resulting from apply-
ing a given posterior probability cutoff. This condition is
highly conservative, as a single true hcT within a cluster
with multiple detected hcT suffices to correctly identify
the binding site. Similarly, we compute less conservative
FDR values by regarding a binding site as FP if every t ∈ T
satisfies a ≤ xt ≤ b.

Implementation
The algorithms described above are implemented in ver-
sion 2.0 of our R package wavClusteR [11]. The MRN
algorithm is implemented using parallelization, as binding
sites are independent of each other. A graphical outline
of the data analysis workflow offered by wavClusteR is
illustrated in Additional file 1, 2.1.

Results and discussion
First, we show that the MRN algorithm provides sen-
sitive and highly resolved identification of clusters. We
then apply our method to published PAR-CLIP data sets
and demonstrate part of our post-processing pipeline. We
compare our algorithm to PARalyzer [13] using published
AGO2 PAR-CLIP data. Finally, we report estimates of
FDRs of high-confidence transitions (hcTs) and of inferred
protein binding sites by integrating matched RNA-Seq
data.
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Sensitive delineation of clusters at high resolution
We previously proposed an algorithm to resolve cluster
boundaries by computing the continuous wavelet trans-
form (CWT) of the coverage function around hcTs. How-
ever, this method is prone to false negatives, i.e. hcTs
that are not assigned to a cluster, when genomic regions
with complex coverage geometry and high variance of
local signal-to-noise ratios are encountered. To address
this issue and increase the sensitivity of our peak calling
procedure, we developed a CWT-independent algorithm
whichwe termedmini-rank norm (MRN). TheMRN algo-
rithm (see Methods and Figure 2) solves an optimization
problem in which hcTs are first employed to reduce the
search space. Signal and noise in the coverage function
are locally separated by modeling coverage fluctuations
and integrating knowledge of the geometric properties of
RBP binding sites. By assuming that the expected cover-
age of a cluster corresponds to a sharply peaked rectangle
function [12], all candidate cluster boundaries spanning
a high-confidence PAR-CLIP signal are then exhaustively
evaluated and ranked accounting for this prior knowledge.
By design, our algorithm favors sharp boundaries and
short cluster widths, and, thus, accurately resolves clus-
ters even when multiple binding sites localize within close
proximity (Figure 2B). In order to test whether the highly
volatile coverage function of PAR-CLIP data reflects com-
plex RBP binding profiles or is an artifact of the proce-
dure, we analyzed published AGO2 PAR-CLIP data [18]
for which we can readily evaluate identified binding
sites by considering expressed microRNA sequences. Our
sequence analysis of 3’-UTRs exhibiting multiple clusters
resulted in a large number of transcripts (n = 928). Each
cluster localized within the 3’-UTR could be assigned to
one or more microRNA seed sequences of microRNAs
expressed in HEK293 cells, suggesting that these clusters
correspond to biologically relevant AGO2 binding sites.
Two exemplary regions are illustrated in Figure 2C-D. In
addition, our hcT-centered strategy resulted on average in
a ∼ 10x speed up over the CWT-based peak calling on all
tested PAR-CLIP data sets (Additional file 1, 1.2).

Application to published PAR-CLIP data sets
In order to place the binding preference of the RBP within
the biological context, post-processing of identified bind-
ing sites is required. PARalyzer returns all identified clus-
ters and read groups, and optionally seed-matches for
supplied microRNA sequences within the resulting clus-
ters as text files. In contrast, wavClusteR makes use of
the R environment to provide extensive post-processing
functions supporting i) export of the coverage function,
hcTs and clusters for visualization in the UCSC genome
browser; ii) export of cluster sequences in FASTA format
for de novo motif discovery and motif analysis; iii) strand-
specific cluster annotation across different functional

transcriptome compartments in sense and antisense ori-
entations, including normalization of observed frequen-
cies to the overall compartment length and iv) generation
of metagene profiles of clusters and their statistics to
assess the protein-specific distribution of binding sites
across genes. Furthermore, most BioConductor packages
can directly use R objects returned by wavClusteR as an
input.
For illustration, we provide examples of cluster annota-

tions andmetagene profiles obtained from PAR-CLIP data
sets of MOV10 and QKI, which are characterized by dif-
ferent binding preferences. Annotation of MOV10 clus-
ters shows that MOV10 preferentially binds to 3’-UTRs of
transcripts [11] (Figure 3A), whereas binding sites of QKI,
which regulates pre-mRNA splicing, mRNA export and
stability, and protein translation [19], are enriched in 3’-
UTRs, coding sequences and introns (Figure 3A). Notably,
the distinct binding preferences of the two proteins are
neatly reflected in their metagene profiles (Figure 3B).

Comparison with PARalyzer
Using published AGO2 PAR-CLIP data sets, we compared
the performance of wavClusteR with PARalyzer [13]. Our
comparison revealed that the largest fraction of clus-
ters is similarly identified by both methods (Figure 4A,
see Additional file 1, 2.2 for cluster size distributions).
However, depending on the parameter settings, the clus-
ters specifically called by either method can represent
a substantial fraction. Therefore, we decided to ana-
lyze method-specific clusters in more detail. The dis-
tribution of RSF values within these clusters revealed
that PARalyzer-specific clusters contained almost exclu-
sively extreme RSF values. These values are unlikely to
be caused by experimental induction, as the PAR-CLIP-
specific enrichment of T to C transitions is missing when
compared with other substitutions exhibiting similar RSF
values (Additional file 1, 2.3). In contrast, wavClusteR-
specific clusters covered the entire RSF range (Figure 4B
and Additional file 1, 2.4) and mostly localized within
the high-confidence RSF support. In addition, analysis of
the read count distribution of PARalyzer-specific clusters
(Additional file 1, 2.5) ruled out that the observed extreme
RSF values result from clusters with low read count,
which could be otherwise filtered out using more strin-
gent parameter cutoffs. Annotation of clusters to the tran-
scriptome shows that PARalyzer-specific AGO2 clusters
preferentially localize within intergenic regions or introns
(Figure 4C). In contrast, wavClusteR-specific binding sites
mainly fall into 3’UTRs, which agrees well with the known
biological function of the AGO2 protein [20,21]. Further-
more, we integrated RNA-Seq data derived from the same
cell line to independently assess expression of the iden-
tified clusters. PARalyzer-specific clusters show signifi-
cantly reduced expression levels (Figure 4D). This analysis
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Figure 3 Post-processing of binding sites identified in the MOV10 and QKI data sets. (A) Annotation of MOV10 and QKI clusters with respect
to the sense and antisense strand, respectively (top). The distribution of different transcript features in the human transcriptome (hg19, bottom left)
is used to compute the normalized annotation profile for clusters mapping on the sense strand (bottom right). (B) Corresponding metagene
profiles of MOV10 and QKI clusters.

suggests that the largest proportion of PARalyzer-specific
clusters corresponds to false positives, possibly caused
by RNA contamination during the experimental proce-
dure, as most of the cluster-containing transcripts show
no detectable expression.
An additional criterion to determine whether an AGO2

cluster, identified by either PARalyzer or wavClusteR,
corresponds to a bona fide binding site is whether the
site can be assigned to any expressed miRNA. There-
fore, we decided to evaluate the quality of the method-
specific clusters by considering the presence of seeds
of miRNAs known to be expressed in HEK293 cells.
Since miRNAs target AGO2 proteins by complementary
base pairing [20], we searched for corresponding seed
sequences within the identified AGO2 binding sites (see

Methods). Our analysis revealed that wavClusteR-specific
clusters were substantially more enriched (>2 folds) for
miRNA seeds than PARalyzer-specific ones, suggesting
that these clusters more accurately reflect AGO2 binding
sites. In addition, we repeated the analyses using PAR-
CLIP datasets from mir-124 miRNA transfection experi-
ments [8] to quantify the fraction of the PARalyzer- and
wavClusteR-specific clusters that could be assigned to the
transfected miRNA. Figure 4F shows an enrichment of
mir-124 seeds within wavClusteR-specific clusters, which
is missing in clusters exclusively called by PARalyzer.
Finally, these results are further supported by the analy-
sis of a previously published Pumilio-2 (PUM2) PAR-CLIP
data set [8]. This RNA-binding protein recognizes a well
characterized UGUAHAUA motif [22], which we found
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Figure 4 Comparison of wavClusteR with PARalyzer on publicly available PAR-CLIP data. (A) Barplot representing overlapping or exclusive
clusters identified by PARalyzer (with parameters n = 1 (left) and n = 2 (right)) and wavClusteR on AGO2 PAR-CLIP data. Note that the number of
overlapping clusters called by either method differ as there is no one-to-one correspondence between them. (B) Distribution of RSF values for T →
C transitions localizing within clusters exclusively identified by PARalyzer (n = 1) and wavClusteR (n = 2). (C) Annotation of method-specific clusters
to distinct features of the human transcriptome. Blue and orange circles denote clusters exclusively identified by wavClusteR and PARalyzer,
respectively. (D) Normalized number of RNA-Seq reads from transcripts overlapping with clusters exclusively identified by by either method. (E)
Seed enrichments over randomized background for microRNA seeds of microRNA expressed in HEK293 cells within clusters exclusively identified by
PARalyzer and wavClusteR. (F) Same as E, but for the mir-124 seed in AGO2 PAR-CLIP from cells transfected with this microRNA.

to be strongly enriched in wavClusteR-specific clusters
(20.2%, n = 1777) with respect to PARalyzer-specific ones
(0.9%, n = 219 and standard parameters).

Experimentally-based estimation of false discovery rates
We assessed the FDR of our high-confidence transi-
tions by integrating matched total RNA-Seq data from
HEK293 cells [11]. We reason that no cross-linking

induced transitions are present in RNA-Seq. Hence, if
our model correctly identifies PAR-CLIP induced RSF
value, a transition classified as PAR-CLIP-specific and
equally found in RNA-Seq data is likely to correspond
to a false positive (FP). We partitioned the entire RSF
interval (0, 1] into different subsets and used transitions
identified in both PAR-CLIP and RNA-Seq data to com-
pute a highly conservative FDR upper bound, treating all
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observed RNA-Seq transitions as FPs irrespective of their
RSF values (see Methods). Our analysis shows that the
RSF interval [ 0.2, 0.7], which we previously reported as
PAR-CLIP-specific [11], is bounded by the lowest FDRs
values (Figure 5A), thus demonstrating the high precision
of our approach. Furthermore, the distribution of RNA-
Seq RSF values within the central partitions of the RSF
interval (Figure 5B) are mainly dominated by low RSF val-
ues compatible with sequencing errors, indicating that our
FDR estimates are highly conservative.
Next, we assessed the FDR of clusters, which poten-

tially contain multiple interaction sites. We consid-
ered increasing posterior probability cutoffs δ and com-
puted highly conservative FDR estimates of clusters (see
Methods) obtained for each threshold (Table 1). At δ =
0.9, our method identified 66.837 MOV10 clusters (of
which 20% contained a single hcT) at a ≤ 3% FDR for
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Figure 5 False Discovery Rate of high-confidence transitions. (A)
Posterior probability of PAR-CLIP induced RSF values (top) and
corresponding lower and upper bounds of the FDR (bottom) over the
RSF interval. The normalized fraction of positives is shown in orange.
(B) Distribution of RNA-Seq RSF values over the RSF interval
considered above.

Table 1 Conservative FDR estimates of clusters as a
function of different posterior probability cutoffs (see
Methods)

Posterior cutoff (δ) >0.7 >0.8 >0.9

RSF support [ 0.014, 0.808] [ 0.021, 0.779] [ 0.044, 0.713]

No. hcTCs 268.771 265.085 246.619

No. clusters 67.856 67.493 66.837

with 1 hcTC 13.227 (19.5%) 13.351 (19.8%) 13.471 (20.1%)

FDR top 75 0.066 0.066 0.024

FDR top 125 0.096 0.085 0.0266

FDR top 250 0.132 (0.02) 0.108 (0.02) 0.028 (0.012)

FDR values in parenthesis refer to more relaxed FDR estimates.

the top 250 clusters ranked by relative log-odds (Table 1).
Notably, the FDR values dropped substantially from δ =
0.7 to δ = 0.9 without a major effect on the total number
of reported clusters, thus showing that stringency of the
analysis can be effectively tuned by this parameter. This
property is desirable for experimental validation, which is
generally performed on few top ranked candidates only.

Conclusion
We presented a sensitive and comprehensive frame-
work for PAR-CLIP data analysis, which provides sta-
tistically grounded and biologically interpretable results.
In our approach, not the total number of interaction
sites or observed transitions are considered, but rather
the frequency at which expected transitions occur. This
transition-based strategy outperforms hard thresholding-
based approaches and achieves higher sensitivity and
specificity.

Availability and requirements
• Project name: wavClusteR
• Project home page: https://github.com/
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