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Abstract Thermal radiation of electrically charged fermio-
ns from a rotating black hole with electric and magnetic
charges in de Sitter space is considered. The tunneling prob-
abilities for outgoing and incoming particles are obtained
and the Hawking temperature is calculated. The relation for
the classical action for the particles in the black hole’s back-
ground is also found.

1 Introduction

Hawking radiation has attracted a lot of attention since it was
proposed [1]. Different methods have been applied [2] to its
study. The semi-classical tunneling approach that was pro-
posed by Kraus and Wilczek [3,4] has gained considerable
interest recently. It was shown that the Hawking tempera-
ture is defined by the imaginary part of the emitted particle’s
action for the classically forbidden region near the horizon.
To calculate it two methods were proposed. The first one is
the so-called null-geodesic method proposed by Parikh and
Wilczek [5] which is based on the fact that the imaginary
part of the action is caused by the integration of the radial
momentum p; for the emitted particles. The second method
is based on the relativistic Hamilton—Jacobi equation, and the
imaginary part of the action can be obtained after integration
of that equation [6]. This second approach can be treated as
an extension of the complex path method proposed by Pad-
manabhan et al. [7-9].

The tunneling approach based on the Hamilton—Jacobi
equation at first was applied to the emission of scalar par-
ticles. Then it was successfully applied to the vast area of
well-known and exotic spacetimes, in particular the Kerr and
Kerr—Newman ones [10,11], the Taub-NUT spacetime [12]
the Godel spacetime [13], BTZ black holes [ 14], and dynami-
cal black holes [15]. A review of the tunneling method is con-
sidered in Ref. [16], where further references can be found.
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The tunneling approach was also successfully applied to
the tunneling of fermions. In their seminal work, Kerner
and Mann used the Dirac equation instead of the Hamilton—
Jacobi one to obtain the temperature of the emitted fermions
and showed that for a chosen type of spacetime the tem-
perature of the emitted fermions would be the same as the
temperature of scalar particles [17]. That method was later
applied to different kinds of black hole spacetimes, includ-
ing the Reissner—Nordstrom one [ 18], the Kerr—-Newman one
[19,20], dilatonic black holes [21], BTZ black holes [22],
black holes in Horava—Lifshitz gravity [23,24], accelerating
and rotating black holes [25,26], and rotating black strings
[27].

In our work, we consider the Kerr—Newman—de Sitter
black hole which carries both electric and magnetic charges.
Using the Kerner—Mann procedure, we consider the emission
of charged spin 1/2 particles. We show that in the presence
of electric and magnetic charges of the black hole the vari-
ables of the Dirac equation can also be separated and as a
consequence the temperature can be found. We also find the
quasiclassical action of an emitted particle.

2 Charged spin 1/2 particle tunneling from
Kerr—Newman—de Sitter black hole

Emission of charged particles with spin 1/2 was consid-
ered independently in Ref. [19,20]. We consider emission
of a charged spin 1/2 particle from a Kerr—-Newman—de
Sitter black hole which carries both electric and magnetic
charges (dyonic black hole). The Kerr—-Newman—de Sitter
black hole’s metric in Boyer-Lindquist coordinates takes the
form

. 2
A 29 2 2
ds? = -5 <dt _asm d<,0> + %drz + Z—d92
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+% (;dw - adr) : M
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where R?2 = r2 4+ a2, p2 = r2 + a%cos?6, A = R*(1 —
r2/13) + Q2 + Q2 —2Mr, E = 1+ a%/1%, Ay =
1 4+ a?/1%>cos’> 6. Here @ = J/M is the angular momen-
tum parameter and the other parameter, /> = 3/A, is defined
by the cosmological constant; the parameters Q. and Qp,
are electric and magnetic charges, respectively. It is known
that the black hole’s horizons can be found from the equation
A = 0, and in the case of Kerr—Newman—de Sitter metrics
we have four roots. The largest one is the cosmological hori-
zon r (CH), the minimal positive root is the Cauchy horizon
ri, and the intermediate root is the event horizon r. The last
root is negative and is not taken into consideration.

The components of the electromagnetic potential take the
form

A= —%(Qer — Omacosb), @

1 ra . 5 R?
Ap =5 | Qe7sin" 0+ Om (£l — —5cosb ) |. 3)
c P P

We note that the magnetic part of the vector potential contains
a string singularity. The two signs in that term correspond
to two choices of gauge. Taking into account the boundary
conditions (matching of the potential at the boundary) allows
one to avoid the divergence of the vector potential [28].

The Dirac equation for electrically charged particle takes
the form

iy (DM—%]AM)W%I//:Q @

where Dy, = 8,4+, . = LT [y, y*]and y* matrices
are obeyed to commutation relation:

fy*, y¥) =2¢g"1. )

The representation for the y* can be taken as follows:

y = YD 0 LZW y =201 (6
VIR o o
D

VK, 6) \sinf o/ A Dy ’

where we denoted K (r,0) = R4A9 — Aa?sin? 6, and the
matrices y¢ take the form

0__ 0 1 1 _ 0 o1
() (07
2 0 (o)} 3 0 o3
Y = (02 0) v'= <03 O) ©)

and o; are the Pauli matrices. We note that a representation
similar to (6) was used in [20].
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We choose the wave functions with spin-up and spin-down
in the form

A(t,r, 0, )
0
B(t,r,0,¢)
0

0

C(t,r,0, )
Yy, = 0

B(t,r,0,¢)

i
Yy = exp (EIT(I, r,0, (p))

exp <;_Z—.I¢(t, r,0, (p)), (10)

where I; and [ are the action for the Dirac particles with
spin-up (1) and spin-down (| ) tunneling through the hori-
Zons.

Then we substitute (10) into the Dirac equation (4) and
perform the quasiclassical approximation to obtain

B[m VA

Ea(A — R*Ag)

————— 0y — — 0 [y + ————09,1
pJANg T o T o AReK Gy
D ga(A — R*Ap)

——————(Qe¢r — Qmacosf) - —————
3V AN o/ AAGK (r, 6)

ra . , R?
X Qe—2 sin“0+Qm | £1 — ?cosé +mA =0;
0
(11
VA | & ]
B |:— eang — Lep —0pl4 + Lan -
K(r,0)sin6 VK(r,0)sinf

ra . o R?
X | Qe—5sin“0 + Om | £1 — ?cose =0; (12)
0

Ea(A — R*Ag)

K(r,0) VA
Al X — —8, 0y — ———729,1
[vaAe Ty T pJARK o) !
JK(r, 0 a(A — R*A
+EED (9 — Quacost) + UL T2
PPNV ANy oV ANK (1, 0)
2
ra . , R
X (Qe—2 sin“ 0+ Qm (jzl — pcose)):| +mB =0;
0
(13)
x - .
B|:—V 9391¢— ! ,0. 0,11 + qp :
VK (r,0)sind JK(r,0)sind

ra . 5 R2
X Qe—2 sin“ 60 + On | £1 ——20059 =0. (14)
P P
Note that in the first-order WKB approximation the terms

proportional to €2, are omitted.
Suppose that the action /4 takes the form

Iy =—Et+Jo+W(,0). 15)
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Now we substitute (15) into (11)—(14). In order to make these
equations simpler, they are decomposed into the series near
the horizon surface [19,20] (here the decomposition in the
vicinity of the event horizon is represented):

5 [RiE — BaJ — q(Qert F Oma)

P/ A (ry)(r —ry)

/A _
VAT gy gy |+ ma =o; (16)
P+
B ,7VA9W9(EQ),21L.
P+ Ry /Agsint
r+a .2 R%r
X [EJ —q|Qe 5 sin“ 0+ Q0m il——zcose =0,
L oy
(17)

4 {_ RLE — EaJ — q(Qers F Oma)

P/ Ar(ry)(r —ry)

VA, —
YAy 9)} +mB =0; (18)
P+
P+ RV Agsinf
rya . 5 R_z,_
x |BJ —¢q Qe—zsin 04+0m :I:l——zcose =0.
rPL Py
(19)

Here A, (ry) = 2(r4(1 — a?/1?) — 2r3 /1> — M), RE =
r42_ + a2 and pi = ri +a®cos? 6.

It should be stressed that the coordinate 6 in our decompo-
sitions in the vicinity of the horizon point r is not fixed sim-
ilarly as in Ref. [20]. We also remark that in order to get the
black hole’s temperature in [12], the polar angle 6 was fixed
in the near-horizon metric. This was done for the following
reason: if the coordinate 6 is fixed the equations of motion can
easily be integrated, especially in the null-geodesic approach.
It was noted that the resulting temperature would not depend
on the chosen angle 6, so it can take an arbitrary value [12].
A similar situation was considered in Ref. [10], but there, to
simplify the equations for the null geodesics, an additional
transformation of the coordinates was performed.

For the massless case Eqs. (16) and (18) decouple and can
be solved. Similarly, as was done in [20] for the massless case
it is possible to pull a factor 1/p4 out of Egs. (16) and (18).
Let us note that Egs. (17) and (19) do not explicitly depend
on the variable r. It means that the variables r and 6 can
be separated in the vicinity of the horizon. So the function
W (r, 0) is represented in the form

W(r,0) = W(r)+ ©(@0). (20)
When A = 0, Eq. (16) leads to

RIE — BaJ — q(Qery F Oma)

Wr(r, 00 = AT —11)

21

Having integrated around the pole, and taking the imaginary
part of the action, we obtain

TR} <E —EQJ — I;’—i(QerJr F Qma)>

Ap(ry)

Im W+ =

)

(22)

where Q4 =a/ Ri is the angular velocity at the horizon.
Similarly, when B = 0 we write

RiE — EBaJ — q(Qery F Oma)
Ap(ry)(r —ry) '

Wr(r,0) = — (23)

And after integration the result is as follows:

JTR_%_ (E —8Q4J - Ig_i(Qer+ + Qma)>

A,«(F+)

ImW_ = —

(24)

As was argued in Refs. [7-9,20], the probabilities of crossing
the horizon are defined by the imaginary part of the action:

Poyr < exp[—2ImW,], P xexp[—2ImW_]. (25)

The resulting tunneling probability is represented as the ratio
of the probabilities (25):

Pout _ exp[—2ImW, ] _

I' x = =
P, exp[—2ImW_]

exp[—4Im W, ]. (26)

Substituting relation (22) into (26) we obtain

R} (E ~EQS — L (Qers F Qma))

Ay (r+)

['=exp | —47

27)

It should be noted that the obtained probabilities do not
break unitarity. This is due to the fact that the temporal part
of the action also gives a contribution to the emission and
absorption probabilities [29-31], and the correct value of "
is obtained.
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As a result the temperature takes the form

A (e (1 =@/ 1) =20 /17— M)
 4nRE 21 (r2 + a?) '

(28)

In the massive case (m # 0), the system of equations (16)
and (18) cannot be decoupled and tunneling should be con-
sidered more carefully. First, we use these two equations to
find an equation relating the parameters A and B in terms of
known quantities. Having subtracted B x(18) from A x(16)
we arrive at

2AB [RiE — BaJ — q(Qery F Qma)]

P+ VAL (r —ry)

+m(A> = B*) =0 (29)

and as a result

trajectories. In spite of that qualitative difference, calcula-
tions of the Hawking temperature at the cosmological hori-
zon can be made in the same way as at the event horizon. To
obtain the expression for the Hawking temperature at the cos-
mological horizon one should replace the radius of the event
horizon in formula (28) by the cosmological one (r+ — r¢).
So we have

A (e (1=a?/ 1) =210 /17 — M)
© 4mR? 27 (r? + a?) '

(33)

The relations for the temperature at the event horizon (28) and
at the cosmological one take the same form as in the case of
the black hole with only an electric charge [19]. It should be
noted that the radii of the horizons depend on both the electric
and the magnetic charge, so our formulas are consistent with
the relations given in Ref. [19] when O, — O.

A
B

~(RYE — BaJ — q(Qery, F Qn)) + [ (RLE — BaJ — q(Qers. F Qna))? +m203 A, (r)(r — 1)

mp4+/Ar(ry)(r —ry)

(30)

When r — r4 the ratio A/B can tend to 0 or —oo (see also
[20]). When A/B — 0 then A — 0 the Eq. (18) is solved
in terms of m and the result is inserted into (16). It should
be noted that the resulting expression does not depend on the
variable 6. So we obtain

Wi (r,0) = W (r)
R <E —BQ4J — Rq—i(Qem F Qma)> 1+ 2—2
AT

2

Ar(ry)(r —ry) -2

(3D

The result that is found after integration around the pole is the
same as in the massless case, since A/B — 0 at the horizon.
When B — 0 the relation (31) can be rewritten as follows:

W, (r,0) = W.(r)
2 =
RY (E —2Q4J — Ig_i(Qer+ + Qma)> 1+ ﬁ_;
Ar(ry)(r —ry) 1- 8

Az
(32)

Similarly the result after integration gets no correction in
addition to the massless case. As a consequence the temper-
ature for the emitted massive fermions is the same as for the
massless fermions, and it given by the relation (28).

It is known that Hawking radiation in de Sitter space can
also appear at the cosmological horizon. In contrast to the
emission of particles at the event horizon, Hawking radiation
at the cosmological horizon is caused by incoming particles
whereas outgoing particles move along classically permitted

@ Springer

3 Action for the emitted particles

Equations (16)—(19) allow one to obtain an explicit expres-
sion for the action of the emitted particles. As was already
shown, angle and radial variables are separated near the
horizon. So the radial and angular parts of the action can
be obtained independently. Having used the relation (20),
Eq. (16) can be rewritten in the form

RiE — BaJ — q(Qery F Oma)

W (r) =
Ar(re)(r —ry)
A
+ s . (34)
B/ Ay (ry)(r —ry)
After integration we obtain
R2E — BalJ —
W (r) = T a q(Qer+ F Oma) G — ry)
Ap(ry)
A
+ / o+ dr. (35)
B/ A (ry)(r —ry)

In order to find relation for radial part of the action for incom-
ing particles one should integrate Eq. (18). After integration
we arrive at the relation

RiE — BaJ — q(Qery F Oma)

W_(r)=— Ao In(r —ry)
+ / Brmp- dr. (36)
AV A (rp)(r—ry)
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For the angular part, relation (17) can be represented in the
form

(EJ Tq0Om) | .(BJ FqQm)a*sinb

e'®) = -
@ = 0as RZAg
in 6 0
_ qQeryasin _ tim cos . 37)
RiAg sinfAg

Having integrated the last equation we obtain

&J
o) = i &/ F40m)
1 a

12

a acoso 1 1+ cosé
X | — arctan —=In|——
[ l 2 1 —cos6

_;4(EJa = q(Qery F Oma))
[

l 0
X — arctan (QCOS ) +1i qQm 5
a ! 2(1+%)

2
X <ln

1+ % cos?0
+ 7 cos
Using the relations (36) and (38), one can write the action
for outgoing massive particles. Similarly Egs. (36) and (38)
allow one to get the action for the incoming particles.

—ln|l—00529|>. (38)

4 Conclusions

In this paper, we considered charged fermion tunneling from
the electrically and magnetically charged Kerr—Newman—de
Sitter black hole. Using the Kerner—Mann approach [20],
we successfully recovered the black hole’s temperature. It
was shown that similarly to the case when the black hole
carries only an electric charge, inclusion of an additional
magnetic charge does not spoil the separability of the Dirac
equation in the vicinity of the horizons. So the relations for
the temperature are obtained in the same manner and take
almost the same form as in the case of an electrically charged
black hole. We also note that for the temperature an explicit
dependence on the magnetic charge is hidden in the definition
of the radii of the horizons.

We also obtained relations for the radial and angular parts
of the action. Those relations might be helpful if one tries to
find corrections to the spectrum of emitted particles. Here we
have an explicit dependence on the electric as well as mag-
netic charges, so these terms might have a different influence
on the spectrum of the emitted particles.

Another issue that still remains open is taking into account
higher orders of the WKB corrections. This problem is

connected with the calculation of terms caused by the spin
connection. These terms might affect the separability and
tractability of the Dirac equation and this problem requires
additionally careful consideration.
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