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1 Introduction
In this paper we deal with the existence and multiplicity of solutions to the following
p-Kirchhoff type with critical exponent:

{
–[g(

∫
�

|∇u|p dx)]�pu = λh(x, u) + up∗–u, x ∈ �,
u = , x ∈ ∂�,

(.)

where  < p < N , λ is a positive parameter, � ⊂ R
N is an open bounded domain with

smooth boundary and λ is a positive parameter, p∗ = Np/(N –p) is the critical exponent ac-
cording to the Sobolev embedding. f : � ×R→R, g : R+ →R

+ are continuous functions
that satisfy the following conditions:

(G) There exists α >  such that g(t) ≥ α for all t ≥ .
(G) There exists σ satisfied  < p

σ
< p∗ and G(t) ≥ σ g(t)t for all t ≥ , where

G(t) =
∫ t

 g(s) ds.
(H) h(x, u) ∈ C(� ×R,R), h(x, –u) = –h(x, u) for all u ∈R.
(H) lim|u|→∞ h(x,u)

|u|p∗– =  uniformly for x ∈ �.
(H) lim|u|→+ h(x,u)

up/σ– = ∞ uniformly for x ∈ �.
Much interest has grown on problems involving critical exponents, starting from the

celebrated paper by Brezis and Nirenberg []. For example, Li and Zou [] obtained in-
finitely many solutions with odd nonlinearity. Chen and Li [] obtained the existence of
infinitely many solutions by using the minimax procedure. For more related results, we
refer the interested reader to [–] and references therein.
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On the one hand, for the special case of problem (.), equation (.) reduces to the
following Dirichlet problem of Kirchhoff type:

{
–(a + b

∫
�

|∇u| dx)�u = f (x, u), x ∈ �,
u|∂� = ,

(.)

where � ⊂ R
N , problem (.) is a generalization of a model introduced by Kirchhoff [].

More precisely, Kirchhoff proposed a model given by the equation

ρ
∂u
∂t –

(
ρ

h
+

E
L

∫ L



∣∣∣∣∂u
∂x

∣∣∣∣


dx
)

∂u
∂x = , (.)

where ρ , ρ, h, E, L are constants, which extends the classical d’Alembert wave equation, by
considering the effects of the changes in the length of the strings during the vibrations. The
equation (.) is related to the stationary analog of problem (.). Equation (.) received
much attention only after Lions [] proposed an abstract framework to the problem. Some
important and interesting results can be found; see for example [–]. We note that
results dealing with the problem (.) with critical nonlinearity are relatively scarce.

In [], by means of a direct variational method, the authors proved the existence and
multiplicity of solutions to a class of p-Kirchhoff-type problem with Dirichlet boundary
data. In [], the author showed the existence of infinite solutions to the p-Kirchhoff-type
quasilinear elliptic equation. But they did not give any further information on the sequence
of solutions. Recently, Kajikiya [] established a critical point theorem related to the sym-
metric mountain-pass lemma and applied to a sublinear elliptic equation. However, there
are no such results on Kirchhoff-type problems (.).

Motivated by reasons above, the aim of this paper is to show that the existence of in-
finitely many solutions of problem (.), and there exists a sequence of infinitely many
arbitrarily small solutions converging to zero by using a new version of the symmetric
mountain-pass lemma due to Kajikiya [].

To the best of our knowledge, the existence and multiplicity of solutions to problem
(.) has not ever been studied by variational methods. As we shall see in the present pa-
per, problem (.) can be viewed as an elliptic equation coupled with a non-local term.
The competing effect of the non-local term with the critical nonlinearity and the lack of
compactness of the embedding of H,p

 (�) into the space Lp∗ (�), prevents us from using
the variational methods in a standard way. Some new estimates for such a Kirchhoff equa-
tion involving Palais-Smale sequences, which are key points to the application of this kind
of theory, are needed to be re-established. We mainly follow the idea of [, ]. Let us
point out that although the idea was used before for other problems, the adaptation to the
procedure to our problem is not trivial at all, since the appearance of non-local term, we
must consider our problem for suitable space and so we need more delicate estimates.

Our main result in this paper is the following.

Theorem . Suppose that (G)-(G), (H)-(H) hold. There then exists λ∗ >  such that,
for any λ ∈ (,λ∗), problem (.) has a sequence of non-trivial solutions {un} and un → 
as n → ∞.
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2 Preliminary lemmas
We consider the energy functional J : W ,p

 (�) →R defined by

J(u) =

p

G
(‖u‖p) – λ

∫
�

H(x, u) dx –


p∗

∫
�

|u|p∗
dx,

where W ,p
 (�) is the Sobolev space endowed with the norm ‖u‖p =

∫
�

|∇u|p dx. Standard
arguments [] show that a critical point of J is a weak solution of problem (.). We try to
use a new version of the symmetric mountain-pass lemma due to Kajikiya []. But since
the functional J(u) is not bounded from below, we could not use the theory directly. So we
follow [] to consider a truncated functional of J(u). Denote by J ′ : E → E∗ the derivative
operator of J in the weak sense. Then

〈
J ′(u), v

〉
= g

(‖u‖p)∫
�

(|∇u|p–∇u · ∇v
)

dx –
∫

�

|u|p∗–uv dx

– λ

∫
�

h(x, u)v dx, ∀u, v ∈ W ,p
 (�).

To use variational methods, we give some results related to the Palais-Smale compact-
ness condition. Recall that a sequence (un) is a Palais-Smale sequence of J at the level c, if
J(un) → c and J ′(un) → .

We recall the second concentration-compactness principle of Lions [, ].

Lemma . [, ] Let {un} be a weakly convergent sequence to u in W ,p
 (�) such that

|un|p∗
⇀ ν and |∇un| ⇀ μ in the sense of measures. Then, for some at most countable index

set I ,
(i) ν = |u|p∗ +

∑
j∈I δxjνj, νj > ,

(ii) μ ≥ |∇u|p +
∑

j∈I δxjμj, μj > ,
(iii) μj ≥ Sν

p/p∗
j ,

where S is the best Sobolev constant, i.e. S = inf{∫
RN |∇u|p dx :

∫
RN |u|p∗ dx = }, xj ∈R

N , δxj

are Dirac measures at xj and μj, νj are constants.

Under assumptions (H) and (H), we have

h(x, s)s = o
(|s|p∗)

, H(x, s) = o
(|s|p∗)

,

which means that, for all ε > , there exist a(ε), b(ε) >  such that

∣∣h(x, s)s
∣∣ ≤ a(ε) + ε|s|p∗

, (.)∣∣H(x, s)
∣∣ ≤ b(ε) + ε|s|p∗

. (.)

Hence,

H(x, s) –
σ

p
h(x, s)s ≤ c(ε) + ε|s|p∗

(.)

for some c(ε) > .
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Lemma . Suppose that (G)-(G), (H)-(H) hold. Then, for any λ > , the functional J
satisfies the local (PS)c condition in

c ∈
(

–∞,
p∗σ – p

pp∗ (αS)N/p – λc
(

p∗σ – p
pp∗λ

)
|�|

)

in the following sense: if

J(un) → c <
p∗σ – p

pp∗ (αS)N/p – λc
(

p∗σ – p
pp∗λ

)
|�|

and J ′(un) →  for some sequence in W ,p
 (�), then {un} contains a subsequence converging

strongly in W ,p
 (�).

Proof Let {un} be a sequence in W ,p
 (�) such that

J(un) =

p

G
(‖un‖p) – λ

∫
�

H(x, un) dx –


p∗

∫
�

|un|p∗
dx = c + o(), (.)

〈
J ′(un), v

〉
= g

(‖un‖p)∫
�

(|∇un|p–∇un · ∇v
)

dx –
∫

�

|un|p∗–unv dx

– λ

∫
�

h(x, un)v dx = o()‖un‖. (.)

By (.) and (.), we have

c + o()‖un‖ = J(un) –
σ

p
〈
J ′(un), un

〉

=

p

G
(‖un‖p) –

σ

p
g
(‖un‖p)‖un‖p +

(
σ

p
–


p∗

)∫
�

|un|p∗
dx

– λ

∫
�

H(x, un) dx +
σ

p
λ

∫
�

h(x, un)un dx

≥ p∗σ – p
pp∗

∫
�

|un|p∗
dx – λ

∫
�

H(x, un) dx

+
σ

p
λ

∫
�

h(x, un)un dx,

i.e.

p∗σ – p
pp∗

∫
�

|un|p∗
dx ≤ λ

∫
�

(
H(x, un) –

σ

p
h(x, un)un

)
dx + c + o()‖un‖.

Then by (.), we have

(
p∗σ – p

pp∗ – λε

)∫
�

|un|p∗
dx ≤ λc(ε)|�| + c + o()‖un‖.

Setting ε = p∗σ–p
pp∗λ

, we get

∫
�

|un|p∗
dx ≤ M + o()‖vn‖, (.)
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where o() →  and M is a some positive number. On the other hand, by (.) and (.),
we have

c + o()‖un‖ = J(un)

=

p

G
(‖un‖p) – λ

∫
�

H(x, un) dx –


p∗

∫
�

|un|p∗
dx

≥ ασ

p
‖un‖p – λb(ε)|�| –

[


p∗ + λε

]∫
�

|un|p∗
dx. (.)

Therefore, the inequalities (.) and (.) imply that {un} is bounded in W ,p
 (�). Hence,

up to a subsequence, we may assume that

un ⇀ u weakly in W ,p
 (�),

un → u a.e. in �,

un → u in Ls(�),  ≤ s < p∗, (.)

|∇un|p ⇀ μ
(
weak∗-sense of measures

)
,

|un|p∗
⇀ ν

(
weak∗-sense of measures

)
,

where μ and ν are a nonnegative bounded measures on �. Then, by the concentration-
compactness principle due to Lions [, ], there exists some at most countable index
set I such that

ν = |u|p
+

∑
j∈I

νjδxj , νj > ,

μ ≥ |∇u|p +
∑
j∈I

μjδxj , μj > ,

Sν
p/p

j ≤ μj,

where δxj is the Dirac measure mass at xj ∈ �. Let ψ(x) ∈ C∞
 such that  ≤ ψ ≤ ,

ψ(x) =

⎧⎨
⎩ if |x| < ,

 if |x| ≥ ,
(.)

and |∇ψ |∞ ≤ .
For ε >  and j ∈ I , denote ψ

j
ε(x) = ψ((x – xj)/ε). Since J ′(un) →  and (ψ j

εun) is bounded,
〈J ′(un),ψ j

εun〉 →  as n → ∞; that is,

g
(‖un‖p)∫

�

|∇un|pψ j
ε dx

= –g
(‖un‖p)∫

�

un|∇un|p–∇un∇ψ j
ε dx

+ λ

∫
�

h(x, un)unψ
j
ε dx +

∫
�

|un|p∗
ψ j

ε dx + on(). (.)
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By (.) and Vitali’s theorem, we see that

lim
n→∞

∫
�

∣∣un∇ψ j
ε

∣∣p dx =
∫

�

∣∣u∇ψ j
ε

∣∣p dx.

Hence, by Hölder’s inequality we obtain

lim sup
n→∞

∣∣∣∣
∫

�

un|∇un|p–∇un∇ψ j
ε dx

∣∣∣∣
≤ lim sup

n→∞

(∫
�

|∇un|p dx
)(p–)/p(∫

�

∣∣un∇ψ j
ε

∣∣p dx
)/p

≤ C

(∫
B(xj ,ε)

|u|p∣∣∇ψ j
ε

∣∣p dx
)/p

≤ C

(∫
B(xj ,ε)

∣∣∇ψ j
ε

∣∣N dx
)/N(∫

B(xj ,ε)
|u|p∗

dx
)/p∗

≤ C

(∫
B(xj ,ε)

|u|p∗
dx

)/p∗

→  as ε → . (.)

Since ψ
j
ε has compact support, letting n → ∞ in (.) we deduce from (.) and (.)

that

α

∫
�

ψ j
ε dμ ≤ C

(∫
B(xj ,ε)

|u|p∗
dx

)/p

+ λ

∫
B(xj ,ε)

f (x, u)u dx +
∫

�

ψ j
ε dν.

Letting ε → , we obtain αμj ≤ νj. Therefore,

(αS)N/p ≤ νj. (.)

We will prove that this inequality is not possible. Let us assume that (αS)N/p ≤ νj for
some j ∈ I . From (G) we see that

G
(‖un‖p) – σ g

(‖un‖p)‖un‖p ≥  for all n.

Since

c = J(un) –
σ

p
〈
J ′(un), un

〉
+ on(),

it follows that

c = lim
n→∞

(
J(un) –

σ

p
〈
J ′(un), un

〉)

≥
(

σ

p
–


p∗

)∫
�

|un|p∗
dx – λ

∫
�

[
H(x, un) –

σ

p
h(x, un)un

]
dx

≥
(

p∗σ – p
pp∗ – λε

)∫
�

ψ j
ε |un|p∗

dx – λc(ε)|�|.
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Letting ε = p∗σ–p
pp∗λ

and n → ∞, we obtain

c ≥ p∗σ – p
pp∗

∑
j∈J

ψ j
ε (xj)νj – λc

(
p∗σ – p
pp∗λ

)
|�|

≥ p∗σ – p
pp∗ (αS)N/p – λc

(
p∗σ – p
pp∗λ

)
|�|.

This is impossible. Then I = ∅, and hence un → u in Lp∗ (�).
Then, using (.) and the fact that un → u in Lp∗ (�), we have

lim
n→∞

∫
�

h(x, un)(un – u) dx =  (.)

and

lim
n→∞

∫
�

|un|p∗–un(un – u) dx = . (.)

From 〈J ′(un), un – u〉 = on(), we deduce that

〈
J ′(un), un – u

〉
= g

(‖un‖p)∫
�

|∇un|p–∇un∇(un – u) dx

– λ

∫
�

h(x, un)(un – u) dx –
∫

�

|un|p∗–un(un – u) dx = on().

This, (.), and (.) imply

lim
n→∞ g

(‖un‖p)∫
�

|∇un|p–∇un∇(un – u) dx = .

Since un is bounded and g is continuous, up to subsequence, there is t ≥  such that

g
(‖un‖p) → g

(
tp

) ≥ α as n → ∞,

and so

lim
n→∞

∫
�

|∇un|p–∇un∇(un – u) dx = .

Thus by the (S+) property, un → u strongly in W ,p
 (�). The proof is complete. �

3 Existence of a sequence of arbitrarily small solutions
In this section, we prove the existence of infinitely many solutions of (.) which tend to
zero. Let X be a Banach space and denote

� :=
{

A ⊂ X \ {} : A is closed in X and symmetric with respect to the origin
}

.

For A ∈ �, we define genus γ (A) as

γ (A) := inf
{

m ∈ N : ∃ϕ ∈ C
(
A,Rm \ {}, –ϕ(x) = ϕ(–x)

)}
.
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If there is no mapping ϕ as above for any m ∈ N , then γ (A) = +∞. Let �k denote the family
of closed symmetric subsets A of X such that  /∈ A and γ (A) ≥ k. We list some properties
of the genus (see [, ]).

Proposition . Let A and B be closed symmetric subsets of X which do not contain the
origin. Then the following hold.

() If there exists an odd continuous mapping from A to B, then γ (A) ≤ γ (B).
() If there is an odd homeomorphism from A to B, then γ (A) = γ (B).
() If γ (B) < ∞, then γ (A \ B) ≥ γ (A) – γ (B).
() Then n-dimensional sphere Sn has a genus of n +  by the Borsuk-Ulam theorem.
() If A is compact, then γ (A) < +∞ and there exists δ >  such that Uδ(A) ∈ � and

γ (Uδ(A)) = γ (A), where Uδ(A) = {x ∈ X : ‖x – A‖ ≤ δ}.

The following version of the symmetric mountain-pass lemma is due to Kajikiya [].

Lemma . Let E be an infinite-dimensional space and J ∈ C(E, R) and suppose the fol-
lowing conditions hold.

(C) J(u) is even, bounded from below, J() =  and J(u) satisfies the local Palais-Smale
condition, i.e. for some c̄ > , in the case when every sequence {uk} in E satisfying
limk→∞ J(uk) = c < c̄ and limk→∞ ‖J ′(uk)‖E∗ =  has a convergent subsequence.

(C) For each k ∈ N , there exists an Ak ∈ �k such that supu∈Ak
J(u) < .

Then either (R) or (R) below holds.

(R) There exists a sequence {uk} such that J ′(uk) = , J ′(uk) < , and {uk} converges to zero.
(R) There exist two sequences {uk} and {vk} such that J ′(uk) = , J(uk) < , uk �= ,

limk→∞ uk = , J ′(vk) = , J(vk) < , limk→∞ vk = , and {vk} converges to a non-zero
limit.

Remark . From Lemma . we have a sequence {uk} of critical points such that J(uk) ≤
, uk �=  and limk→∞ uk = .

In order to get infinitely many solutions we need some lemmas. Let ε = 
p∗λ

, from (.)
we have

J(u) :=

p

G
(‖u‖p) – λ

∫
�

H(x, u) dx –


p∗

∫
�

|u|p∗
dx

≥ ασ

p

∫
�

|∇u|p dx –
(


p∗ + ελ

)∫
�

|u|p∗
dx – λb(ε)|�|

=
ασ

p

∫
�

|∇u|p dx –

p∗

∫
�

|u|p∗
dx – λb

(


p∗λ

)
|�|

≥ L‖u‖p – L‖u‖p∗
– Lλ,

where L, L, L are some positive constants.
Let Q(t) = Ltp – Ltp∗ – Lλ. Then

J(u) ≥ Q
(‖u‖).
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Furthermore, there exists λ∗ := pL
NL

( pL
p∗L

)(N–p)/p such that for λ ∈ (,λ∗), Q(t) attains its
positive maximum, that is, there exists

R =
(

pL

p∗L

)(N–p)/p

such that

e = Q(R) = max
t≥

Q(t) > .

Therefore, for e ∈ (, e), we may find R < R such that Q(R) = e. Now we define

χ (t) =

⎧⎪⎪⎨
⎪⎪⎩

,  ≤ t ≤ R,
Ltp–λL–e

Ltp∗ , t ≥ R,

C∞, χ (t) ∈ [, ], R ≤ t ≤ R.

Then it is easy to see χ (t) ∈ [, ] and χ (t) is C∞. Let ϕ(u) = χ (‖u‖) and consider the
perturbation of J(u):

G(u) :=

p

G
(‖u‖p) –


p∗ ϕ(u)

∫
�

|u|p∗
dx – λϕ(u)

∫
�

H(x, u) dx. (.)

Then

G(u) ≥ L‖u‖p – Lϕ(v)‖u‖p∗
– Lλ = Q

(‖u‖),

where Q(t) = Ltp – Lχ (t)tp∗ – Lλ and

Q(t) =

⎧⎨
⎩Q(t),  ≤ t ≤ R,

e, t ≥ R.

From the above arguments, we have the following.

Lemma . Let G(u) is defined as in (.). Then:
(i) G ∈ C(W ,p

 (�),R) and G is even and bounded from below.
(ii) If G(u) < e, then Q(‖u‖) < e, consequently, ‖u‖ < R and J(u) = G(u).

(iii) There exists λ∗ such that, for λ ∈ (,λ∗), G satisfies a local (PS)c condition for

c < e ∈
(

, min

{
e,

p∗σ – p
pp∗ (αS)N/p – λc

(
p∗σ – p
pp∗λ

)
|�|

})
.

Lemma . Suppose that (G)-(G), (H) hold. Then, for any k ∈N, there exists δ = δ(k) >
 such that γ ({u ∈ W ,p

 (�) : G(u) ≤ –δ(k)} \ {}) ≥ k.

Proof First of all, by (H) of Theorem ., for any fixed u ∈ W ,p
 (�), u �= , we have

H(x,ρu) ≥ M(ρ)(ρu)
p
σ with M(ρ) → ∞ as ρ → .
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On the other hand, by integrating (G), we obtain

G(t) ≤ G(t)
t/σ


t/σ = Ct/σ for all t ≥ t > . (.)

Second, given any k ∈ N , let Ek be a k-dimensional subspace of W ,p
 (�). There then exists

a positive constant δ such that

‖u‖ ≤ δ|u|p/σ for all u ∈ Ek .

Therefore, for any u ∈ Ek with ‖u‖ =  and ρ small enough, by (.) and (H) we have

G(ρu) =

p

G
(‖u‖p) –


p∗ ϕ(u)

∫
�

|u|p∗
dx – λϕ(u)

∫
�

H(x, u) dx

≤ C

p
ρ

p
σ –

λM(ρ)
δp/σ ρ

p
σ

≤
(

C

p
–

λM(ρ)
δp/σ

)
ρ

p
σ

= –δ(k) < ,

since lim|ρ|→ M(ρ) = +∞. That is,

{
u ∈ Ek : ‖u‖ = ρ

} ⊂ {
u ∈ W ,p

 (�) : G(u) ≤ –δ(k)
} \ {}.

This completes the proof. �

Now we give the proof of Theorem . as follows.

Proof of Theorem . Recall that

�k =
{

A ∈ W ,p
 (�) \ {} : A is closed and A = –A,γ (A) ≥ k

}
and define

ck = inf
A∈�k

sup
u∈A

G(u).

By Lemma .(i) and Lemma ., we know that –∞ < ck < . Therefore, assumptions (C)
and (C) of Lemma . are satisfied. This means that G has a sequence of solutions {un}
converging to zero. Hence, Theorem . follows by Lemma .(ii). �

4 A special case of problem (1.1)
We consider the following special case of problem (.):

–
(

α + β

∫
�

|∇u|p dx
)

�pu = λf (x, u) + |u|p∗–u in �,

u =  on ∂�,
(.)
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where � is a bounded smooth domain of RN ,  < p < N < p, α and β are positive con-
stants.

Set g(t) = α + βt. Then g(t) ≥ α and

G(t) =
∫ 


g(s) ds = αt +



βt ≥ 


(α + βt)t = σ g(t)t,

where σ = /. Hence the conditions (G) and (G) are satisfied.
For this case, a typical example of a function satisfying the conditions (F)-(F) is given

by

f (x, t) =
k∑

i=

ai(x)|t|qi–t,

where k ≥ ,  < qi < p
σ

, and ai(x) ∈ C(�). In view of Theorem ., we have the following
corollary.

Corollary . Suppose that (F)-(F) hold. There then exists λ∗ >  such that for any λ ∈
(,λ∗), problem (.) has a sequence of non-trivial solutions {un} and un →  as n → ∞.
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